Using the Beans Development Kit 1.0
April 1997

A Tutorial

Alden DeSoto

2 JAVASOFT

un Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043 U.S.A.
408-343-1400

Apr97revd

Contents

1. GettingStarted il 1-1
Beans Development Kit (BDK)........................... 1-1
TheBeanBox............. i 1-1
Testing Sample Beans 1-2
Creating and Testing the Simplest Bean 1-4

2. Properties....... ..ot i i i it 2-1
Simple Properties. i 2-1
Indexed Properties. 2-2
Bound Properties il 2-3
Constrained Properties 2-6

3. Events ... i e e 3-1
WaterEventObject 3-2
WaterSource 3-2
Valve o 3-3
Pipe ... 3-5

ii

iii

Testing WaterSource, Valve,and Pipe..................... 3-6

Customization............coiiiiiiiiiiiiiiiiiiiinene, 4-1
Customizer Interface il 4-1
PropertyEditor Interface............... 4-2
BeanInfo Interface i i 4-2
Persistencecoiiiiiiiiiiiiiiiii it 5-1
WhattoSave.o i 5-1
Changes and Versioning 5-1
Packaging...........ccoiiiiiiiiiiiiiiiiiiiiiiiiiii., 6-1
MANIFEST file.oo e 6-1
Example. 6-1

JavaBeans Tutorial—April 1997

Getting Started 1

JavaBeans is a portable, platform-independent software component model
written in Java. It enables developers to write reusable components once and
run them anywhere - benefiting from the platform-independent power of Java.

Beans may be manipulated in a visual builder tool and composed together into
applications. A Bean is any Java class which adheres to certain property and
event interface conventions. This short tutorial provides simple examples of
how to program to these conventions.

Beans Development Kit (BDK)

The BeanBox

The Beans Development Kit (BDK) is a pure Java application whose only
dependency is the Java Development Kit (JDK) 1.1. The BDK provides support
for the JavaBeans APIs, a test container (the “BeanBox” to test Bean behavior),
sample Beans complete with their source code, the JavaBeans Specification, and
this Tutorial.

The BeanBox is a sample container for testing Beans. Currently the BeanBox
handles visible Beans, those Beans that have a visual element that an
application user can interact with. Invisible Beans, for example purely
computational objects, cannot be tested in the BDK 1.0 BeanBox.

1-1

—
=1
When you start the BeanBox, a ToolBox of sample Beans is displayed. Source
code for these Beans is provided in the demo\ sunw\demo\ subdirectory of the
distribution.
Testing Sample Beans
Start the BeanBox with the following commands:
C:>cd beanbox
C:>nmake run
The BeanBox, ToolBox, and PropertySheet appear on the screen. To instantiate
a Bean in the BeanBox, click on the desired Bean in the ToolBox and then click
in the BeanBox area. In the example below, a Juggler and two OurButtons have
been instantiated in the BeanBox. The buttons have been labeled “Start” and
“Stop” by editing the label property in the PropertySheet.
save/load, cut/copy/paste, and
other ogerations supported via
File z’m Edit menus.
= ’ EeanBox R PropertyS heet
file Fdit foreground _
| =] ToolBox labal |iStart edltablf £
sample properties for
Beans Bl e e pecareund [[| the selected
\ P — fontsize |12 Bean in BeanBox
@ JellyBean
Icon ‘ﬁ‘-’juugler M\-o fent Abcde..
represen_ Ezj:rgEREp”rt” hame |fcanvas4s
tations are Molecule largeFont False —
specified in ugteMonitor
the gmk JQDBc SELECT ! debug Falze —
files of some fdeseras
Beans
Beans instantiated
from ToolBox
To test the OurButton and Juggler sample Beans:
1. Instantiate two OurButtons and a Juggler in the BeanBox as shown above.
Label one button “start” and the other “stop” in the PropertySheet.
2. Select the “start” button.
1-2 JavaBeans Tutorial—April 1997

~
1]

=i}

3. Select the Edit-->Events-->action-->actionPerformed pulldown menu as

shown above.
The BeanBox positions a line under your mouse arrow which you can use to

connect “start” to the Juggler.

Getting Started 1-3

1]
~

4. Connect the line to the Juggler and click the mouse button.
The BeanBox responds with an Event Target Dialog as shown below. Juggler
methods which either take no argument or which take an argument of type
actionPerformed are listed in this dialog.

= EeanEox

File Edit

EventTargetDialog

Please chose a target method:

(I

invalidate ‘

o]

5. Select the start method and press “OK”.
The BeanBox will generate an adapter class. Once the BeanBox has
generated this code, press the “start” button in the BeanBox and the Juggler
will start juggling.

6. Connect the “stop” button to the Juggler stop method in the same
fashion.
Test by pressing the “stop” button.

Creating and Testing the Simplest Bean

1. Create a SimplestBean.java source file as shown below.
Create a simplest directory under demo\sunw\demo\ and create a
SimplestBean. java within it.

1-4 JavaBeans Tutorial—April 1997

~
1]

package sunw.demo.simplest;
import java.awt.*;

public class SimplestBean extends Canvas{

;ggs;rgfstj%lie public SimplestBean () {
attribute setBackground (Color.red) ;
}
gmﬁﬁhﬁnuunSQQ___ public Dimension getMinimumSize () {
assures that Bean return new Dimension (50,50);
will be big enough }

to see in BeanBox

2. Create a SimplestBean.mk file as shown below.
Create this file in the demo\ directory. Refer to the sample Bean .mk files
provided in demo\ for additional examples.

CLASSFILES= \

list of pompiled I sunw\demo\simplest\SimplestBean.class
class files

. JARFILE= ..\jars\SimplestBean.jar
Beans in
in this location will ,
be found by the .SUFFIXES: .java .class
BeanBox

all: $(JARFILE)

package classes $ (JARFILE) : $(CLASSFILES) $(DATAFILES)
“Java-Bean: True” jar cfm $(JARFILE) <<manifest.tmp sunw\demo\simplest*.class
causes class to $ (DATAFILES)

appear in Toolbox | Name: sunw/demo/simplest/SimplestBean.class
Java—-Bean: True
<<
Rule for compiling a normal .Jjava file
{sunw\demo\simplest}.java{sunw\demo\simplest}.class
set CLASSPATH=.
Jjavac $<

clean:

—del sunw\demo\simplest\SimplestBean.class
—del $(JARFILE)

Getting Started 1-5

3. Build the example

C:>nmake -f SimplestBean.mk

4. Run the BeanBox and create an instance of your SimplestBean.
Your simplestbean will automatically appear in the ToolBox at startup.

| ToolBox W o BeanBox & 7
@Explicitautton File Edit

ellyBean
¥ Juggler

ChangeRreporter

PropertySheet

font Abcde..
Woter

Molecule y, name |kanvass
GuoteMonitor

JDEC SELECT
M BridgeTester
Transitionalgean

simplesthean

SimplestBean instance of
added to ToolBox SimplestBean
in the BeanBox

JavaBeans Tutorial—April 1997

Simple Properties

N
1]

Properties

A property is a single public attribute. Properties can be read /write, read-only
or write-only. There are several types of properties: simple, indexed, bound,
and constrained.

A simple property represents a single value and can be defined with a pair of
get/set methods. A property’s name is derived from the method names. For
example the method names setX and getX indicate a property named “X”. A
method name isX by convention indicates that “X” is a boolean property.

2-1

1]
N

public class alden2 extends Canvas {

roperty will —— String ourString="Hello";
ge called
ourString public alden2 () {

setBackground(Color.red) ;
setForeground (Color.blue);

}

public void setString(String newString) {

“set” property —
Propetty ourString = newString;

}

“get” property — public String getString() {
return ourString;

}

public Dimension getMinimumSize () {
return new Dimension (50, 50);

}

Indexed Properties

An indexed property represents an array of values. Property element get/set
methods take an integer index parameter. The property may also support
getting and setting the entire array at once.

The BDK 1.0 BeanBox does not support indexed properties.

2-2 JavaBeans Tutorial—April 1997

N
1]

dataSet is an
indexed property

set entire array —

set one element—
of array

get entire array —

get one element —
of array

Bound Properties

public class alden3 extends Canvas {
int[] dataSet={1,2,3,4,5,6};

public alden3 () {
setBackground(Color.red) ;
setForeground(Color.blue);

}

public void setDataSet (int[] x) {
dataSet=x;
}

public void setDataSet (int index, int x) {
dataSet [index]=x;

}

public int[] getDataSet () {
return dataSet;

}

public int getDataSet (int x) {
return dataSet[x];

}

public Dimension getMinimumSize () {
return new Dimension (50,50);

}

A bound property notifies other objects when its value changes. Each time its
value is changed, the property fires a PropertyChange event which contains
the property name, old, and new values. Notification granularity is per bean,
not per property.

Properties 2-3

2-4

declare and instantiate
a property change =
object

send change event to
listeners when -
property is changed

implement methods

to add and remove
listeners. The BeanBox
will call these methods
when a connection

is made.

public class alden5 extends Canvas {
String ourString="Hello";
private PropertyChangeSupport changes =
new PropertyChangeSupport (this);

public alden5()
{

setBackground(Color.red) ;
setForeground (Color.blue);

}

public void setString(String newString) {
String oldString = ourString;
ourString = newString;
changes.firePropertyChange ("string",o0ldString, newString);

}

public String getString() {
return ourString;

}

public Dimension getMinimumSize ()

{

return new Dimension (50, 50);

}

public void addPropertyChangelistener (PropertyChangelListener 1)
changes.addPropertyChangeListener (1) ;
}

public void removePropertyChangeListener (
PropertyChangelListener 1) ({
changes.removePropertyChangelListener (1) ;

You can test bound properties in the BeanBox as follows.

1. Instantiate a Bean with bound properties and any other Bean in the
Beanbox. Select the Bean with bound properties.

2. Select the Edit-->Events-->propertyChange-->propertyChange pulldown
menu as shown below.

JavaBeans Tutorial—April 1997

{

N
1]

rﬂ ToolBox | rﬂ EeanBox B PropertySheet
Beansex File Edit
@ ExplicitButton T f foraground
ourButton
@ jellyeean
Y Jugal Faste blah blah |Helle
Juggler ah blal
Repart...
ChangeReporter ‘\ k
- Berts T o -
— Bind property,., key r
GuoteManitor component. #
P
JDBC SELECT propertyChange propertyChange
Mandqﬂester foous -
TransitionalBean ¥, mouseflotion -
alden
aldenz
3. Connect the Bean with bound properties to the second Bean and select a
target method.
. FEET
The BeanBox will add the second bean to the bound property Bean’s list of
listeners.
+| ToolBox @& v BeanBox R Bk PropertySheet
Beankos File Edit
Eletesnan T, reeareun. [
oursution 4 e z
@ Jellysean ‘ EventTargetDialog
’
Y Juagler H Please chose a target method:
ChangeReparter 4
Voter E T 1 notify
H | notifyall
ok hrerssiriae] |omoteNotity
Quotemanitor repaint
JDBC SELECT requestFocus
L eriggeTester run
TransitionalBean -
qling
alden
lifane Cancel OK
aldend .

4. When the BeanBox has finished generating code, change the bound
property value in the PropertySheet.
The selected method on the listener bean will be invoked.

Properties 2-5

2

Constrained Properties

2-6

set method throws a
PropertyVetoException

An object with constrained properties allows other objects to veto a
constrained property value change. Constrained property listeners can veto a
change by throwing a PropertyVetoException.

The JellyBean class in demo\sunw\demo\jelly\ has a constrained property
called PriceInCents.

public class JellyBean extends Canvas {
private PropertyChangeSupport changes =
new PropertyChangeSupport (this);
private VetoableChangeSupport vetos =
new VetoableChangeSupport (this);

public void setPriceInCents (int newPriceInCents)
throws PropertyVetoException {
int oldPriceInCents = ourPriceInCents;

tell vetoers about the change; vetos.fireVetoableChange ("priceInCents",

exception is not caught but
passed on to caller.

change the property
and send change event to
listeners

define methods to add and
remove veto ers.

new Integer (oldPriceInCents),

new Integer (newPriceInCents));
ourPriceInCents = newPriceInCents;
changes.firePropertyChange ("priceInCents",

new Integer (oldPriceInCents),

new Integer (newPriceInCents));

}

public
void addVetoableChangeListener (VetoableChangeListener 1) {
vetos.addVetoableChangelListener(l);

}

public
void removeVetoableChangelListener (VetoableChangeListener 1) {
vetos.removeVetoableChangeListener (1) ;

In general, constrained properties should also be bound. As illustrated above
with PriceInCents, the source should notify any registered vetoableChange
listeners that a vetoableChange has been proposed. If the change is acceptable,

JavaBeans Tutorial—April 1997

2

the source notifies any registered propertyChange listeners that the change has
completed. If any vetoable change listener rejects the change then a new
vetoableChange event will be delivered reverting to the previous value.

This allows a property watcher to either:

® treat constrained/bound property updates in a "two phase" fashion by
registering both a VetoableChangeListener and a PropertyChangeListener.
The watcher ignores the vetoableChange event unless it wants to veto the
change. At propertyChange event time it acts on the new value, as it knows
that this new value has successfully passed the vetoableChange phase.

® register only a vetoableChange listener. In this case, the watcher will be
notified about proposed changes and will also get subsequently notified if
the proposed change is vetoed. This approach means that the watcher is
deliberately choosing to assume that vetoable changes will "pass" and is
prepared to act on information that may be subsequently vetoed.

Properties 2-7

2-8

JavaBeans Tutorial—April 1997

Events 3

This chapter uses three example Beans to explain Events: WaterSource, Valve,
and Pipe. A WaterSource drips one WaterEventObject per second to its list of
WaterListeners. The list of WaterListeners may include any number and/or
combination of Valves and Pipes. An open Valve passes on WaterEventObjects
that it receives to its own list of WaterListeners. A closed Valve does not pass
on any WaterEventObjects. A Pipe behaves in the same way as an open Valve.

public interface WaterListener extends EventListener {
void handleSplash(WaterEventObject weo);
}

(implements)

WaterSource

(implements)

[_vector Waterllisteners + —

[vector WaterListeners |- — -

vector WaterListeners]

(1 event per second)

/\
WaterEventObject

WaterEventObject

3-1

3

WaterEventObject

WaterListeners
check timeOfEvent
to determine
whether it is more
than 2 seconds old.

WaterSource

maintain a list of

of objects which have
registered to recieve
water events

3-2

public class WaterEventObject extends EventObject {
long timeOfEvent;

public WaterEventObject (Object o) {
super (o) ;
timeOfEvent = System.currentTimeMillis();

}

public long getTimeOfEvent () {
return timeOfEvent;

}

public class WaterSource extends Canvas implements Runnable {

private Vector waterListeners = new Vector();
Thread thread;

public WaterSource () {
setBackground(Color.blue);
thread = new Thread(this);
thread.start () ;

}

public Dimension getMinimumSize ()
{
return new Dimension(15,15);

}

public void run() {
while (true) {
splash();
try {
thread.sleep(1000);
} catch (Exception e) {}

JavaBeans Tutorial—April 1997

o
1]

BeanBox will call
these methods to add
and remove registered
listeners

public synchronized void addWaterListener (WaterListener 1) {
waterListeners.addElement (1) ;

public synchronized void removeWaterListener (WaterListener 1) {
waterListeners.removeElement (1) ;

}

send a water event _

1 - private void splash () {
to registered listeners

Vector 1;
WaterEventObject weo = new WaterEventObject (this);

you must copy the

vector before sending synchronized(this) {
the event in order to 1 = (Vector)waterListeners.clone();
avoid a timing race }
for (int 1 = 0; i < l.size(); i++) {
WaterListener wl = (WaterListener) l.elementAt (i);

wl.handleSplash (weo);
}

Valve

public class Valve extends Canvas implements WaterListener,
Runnable {

list of listeners ——— private Vector waterListeners = new Vector();
last water event received —— private WaterEventObject lastWaterEvent;
open/close valve property — private boolean open = true;

Thread thread;

public Valve () {
setBackground (Color.white) ;
thread = new Thread(this);
thread.start ();

}

property get and set public boolean isOpen() {
methods return open;

}

public void setOpen (boolean x) {
open = x;

}

Events 3-3

public Dimension getMinimumSize () {
return new Dimension (20, 30);

}

this method is specified public void handleSplash (WaterEventObject e) {
in the WaterListener lastWaterEvent = e;
interface (which this class if (isOpen()) {
implements). setBackground (Color.blue) ;

repaint () ;

splash();

}
}

public void run() {
while (true) {
try {
thread.sleep(1000);
} catch (Exception e) {}

if (lastWaterEvent != null) {
make the valve white if long dt = System.currentTimeMillis () -
a WaterEventObject has lastWaterEvent.getTimeOfEvent () ;
not been recieved in the if ((dt > 2000) || (!isOpen()))
last 2 seconds or if the setBackground (Color.white) ;
valve is closed repaint () ;

}

}
}
BeanBox will call these public synchronized void addWaterListener (WaterListener 1) {
methods to add and waterListeners.addElement (1) ;
remove registered }
listeners
public synchronized void removeWaterListener (WaterListener 1) {
waterListeners.removeElement (1) ;

}

void splash () {
Vector 1;
WaterEventObject weo = new WaterEventObject (this);

send a water event to
registered listeners

... method continued on
next page synchronized(this) {

1 = (Vector)waterListeners.clone();

}

JavaBeans Tutorial—April 1997

o
1]

Pipe

send a water event to
registered listeners

... method continued from
previous page

for (int i = 0; i < l.size(); i++) {
WaterListener wl = (WaterListener) l.elementAt (i);
wl.handleSplash (weo) ;

public class Pipe extends Canvas implements WaterListener,

list of listeners

Runnable {

private Vector waterListeners = new Vector();

last water event received —— private WaterEventObject lastWaterEvent;

This method is specified
in the WaterListener
interface (which this object
implements)

make the pipe white if
a water event has not
been received in the
last 2 seconds

Thread thread;

public Pipe () {
setBackground (Color.white) ;
thread = new Thread(this);
thread.start ();

}

public Dimension getMinimumSize () {
return new Dimension(150,10);

}

public void handleSplash (WaterEventObject e) {
lastWaterEvent = e;
setBackground (Color.blue);
repaint () ;
splash();
}

public void run() {
while (true) {
try {
thread.sleep(1000);
} catch (Exception e) {}

if (lastWaterEvent != null) {
long dt = System.currentTimeMillis () -
lastWaterEvent .getTimeOfEvent () ;
if (dt > 2000) {
setBackground (Color.white) ;
repaint () ;

}

Events 3-5

1]
Qo

}
}
public synchronized void addWaterListener (WaterListener 1) {

BeanBox will call these waterListeners.addElement (1) ;
methods to add and } !

remove registered

listeners))) . .
public synchronized void removeWaterListener (WaterListener 1) {

waterListeners.removeElement (1) ;

}

void splash () {
WaterEventObject weo = new WaterEventObject (this);

for (int i = 0; i < waterListeners.size(); i++) {
WaterListener wl =

(WaterListener)waterListeners.elementAt (i) ;
wl.handleSplash (weo) ;

Testing WaterSource, Valve, and Pipe

1. Instantiate a collection of WaterSources, Valves, and Pipes in the BeanBox.

2. Select a WaterSource Bean and invoke the
Edit-->Events-->water-->handleSplash pulldown as shown in the picture
below.

3-6 JavaBeans Tutorial—April 1997

o
1]

[ToolBox | = BeanBox = PropertySheet
(5] explicitentton File Edit
SUrCIED — o f foreground _
@ Jellykean Copy hackaround _
‘&"J"”Ier Paste
changeReporter # Report.. font Abcde..
o © Events
R e mouse - name |lcanvas1i
QuoteMonitar key -
JDBC SELECT compenent -
Ed eridgerester water handleSplash
Transitionalean facus -
simplestbean mouseMotion -
valve
WaterSource

Fipe

3. Connect the WaterSource to a Pipe or Valve and select the handleSplash
method in the EventTargetDialog.
The BeanBox will generate an adaptor class.

4. Continue to connect water event producers to water event consumers as
desired.
You can manipulate the water flow by turning valves on and off as
illustrated in the example below.

rﬂ ToolBox @ | BeanBox [] PropertySheet

@Exphcitsut{on File Edit |
B Juaaler

chahgeReporter - - font Abcde...
Yoter
Malecule name |lkanvas3s

QuoteManitar
open False —
JDBC SELEST |
MBrldgeTester
Transitionalbean

simplesthean
walue

WaterSource

Pipe

““:
““‘

Events 3-7

3-8

JavaBeans Tutorial—April 1997

Customizer Interface

Customization 4

You can customize how a Bean appears and behaves within a builder
environment by using the Customizer, PropertyEditor, and BeanInfo interfaces
as described in this chapter.

Implement the java.beans.Customizer interface to provide your own GUI
implementation of the property sheet. For example, the OurButton bean in
demo\sunw\demo\buttons\ is packaged with a custom property sheet:

public OurButtonCustomizer extends Panel implements Customizer {

When implementing a custom property sheet such as OurButtonCustomizer, be
sure to implement addPropertyChangeListener and
removePropertyChangeListener. These will allow the BeanBox or other builder
environment to add property event listeners for the Bean as required.

4-1

1]
H~

private PropertyChangeSupport support =
new PropertyChangeSupport (this);

public void addPropertyChangelListener (PropertyChangelListener 1) {
support.addPropertyChangeListener (1)
}

public void
removePropertyChangelistener (PropertyChangeListener 1) {
support.removePropertyChangeListener (1)

}

PropertyEditor Interface

PropertyEditorSupport
is a basic implementation
of the PropertyEditor
interface

BeanlInfo Interface

4-2

Implement the PropertyEditor interface to create a custom editor for a specific
property. The MoleculeNameEditor class in demo\sun\demo\molecule\ of
the distribution provides a good example of this.

If you provide a custom property editor class, you must refer to this class with
a call to PropertyDescriptor.setPropertyEditorClass in a Beanlnfo
class (see next section).

public class MoleculeNameEditor
extends java.beans.PropertyEditorSupport {

public String[] getTags () {

String result[] = {
"HyaluronicAcid",
"benzene",
"buckminsterfullerine",
"cyclohexane",
"ethane",
"water"};

return result;

Each Bean class may have a BeanInfo class which customizes how the Bean is
to appear in a builder. The BeanInfo can define properties, methods, events,
with display names and short help.

JavaBeans Tutorial—April 1997

H
1]

SimpleBeanInfo
is a basic implementation
of the BeanInfo interface

Point to custom property
editor

The example shown below is from MoleculeBeanInfo. java in
demo\sunw\demo\molecule\ of the distribution.

public class MoleculeBeanInfo extends SimpleBeanInfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {
PropertyDescriptor pd = new PropertyDescriptor (
"moleculeName",Molecule.class);
pd.setPropertyEditorClass (MoleculeNameEditor.class) ;
PropertyDescriptor result[] = { pd };
return result;
} catch (Exception ex) {
System.err.println ("MoleculeBeanInfo:
unexpected exeption: " + ex);
return null;

The ExplicitButtonBean in demo\ sunw\demo\buttons\also illustrates the use
of a BeanlInfo class. ExplicitButtonBeanInfo defines four property descriptors,
rather than just one as in MoleculeBeanInfo. Note that properties are displayed

in the order they are listed in the PropertyDescriptor.

ExplicitButtonBean also illustrates the use of EventSetDescriptor and

BeanDescriptor. EventSetDescriptor allows you to specify the text labels used
in event dialogs and pulldowns. BeanDescriptor allows you to graphic image

files to represent the Bean.

Customization

4-3

4-4

JavaBeans Tutorial—April 1997

What to Save

Persistence 5

To make fields in a Bean class persistent, simply define the class as
implementing java.io.Serializable.

public class Button implements java.io.Serializable {

}

The fields in any instance of a Bean which implements Serializable will
automatically be saved. You need do nothing else. You can prevent selected
fields from being saved by marking them transient or static; transient
and static variables are not saved.

Generally, a Bean should store the state of any exposed properties. Selected
internal state variables may also be saved. Beans should not, however, store
pointers to external Beans.

Changes and Versioning

As you update software, you can add fields, add or remove references to
classes, change a field’s private/protected/public status without altering the
persistence schema of the class. However, deleting fields from the class,
changing a variable’s position in the class hierarchy, changing a field to or from
transient/static, or changing a field’s data type will change the persistence
schema.

5-1

5-2

If you need to make changes to a class which alter its persistence, you might
define a version id field which can be checked at runtime. For example,

static final long SerialVersionUID 348749695999L;

JavaBeans Tutorial—April 1997

MANIFEST file

Example

Packaging 6

JavaBeans are distributed through JAR files. A JAR file is a ZIP format archive
file that may optionally have a MANIFEST file. The MANIFEST describes the
contents of the JAR file. A JAR file may contain .class files, serialized Beans
(.ser), help files in HTML format, and resources (images , audio, text).

If a JAR file does not have a MANIFEST, then all classes and serialized objects
in the package are treated as beans. Providing a MANIFEST file allows you to
specify which classes are Beans via "Java-Bean: True" entries (see Example
below).

This example .mk file illustrates the compiling and packaging of three Beans
and two auxiliary classes. This .mk file was used to package the example
discussed in chapter 3, “Events”.

6-1

1]
(@)

do not display
in ToolBox

do not display
in ToolBox

6-2

CLASSFILES= \
sunw\demo\valves\WaterListener.class \
sunw\demo\valves\WaterSource.class \
sunw\demo\valves\Valve.class \
sunw\demo\valves\Pipe.class \
sunw\demo\valves\WaterEventObject.class

JARFILE= ..\jars\valves. jar

.SUFFIXES: .java .class

all: $(JARFILE)

Create a JAR file with a suitable manifest.

$ (JARFILE) : $(CLASSFILES) $(GIFFILES)
jar cfm $(JARFILE) <<manifest.tmp sun\demo\valves*.class $(GIFFILES)

Name: sunw/demo/valves/WaterListener.class
Java—-Bean: False

Name: sunw/demo/valves/WaterSource.class
Java—-Bean: True

Name: sunw/demo/valves/Valve.class
Java—-Bean: True

Name: sunw/demo/valves/Pipe.class
Java—-Bean: True

Name: sunw/demo/valves/WaterEventObject.class
Java—-Bean: False
<<

Rule for compiling a normal .java file
{sunw\demo\valves}.java{sun\demo\valves}.class
set CLASSPATH=..\classes;.
Jjavac $<

clean:

—del sunw\demo\valves*.class
—del $(JARFILE)

JavaBeans Tutorial—April 1997

