
SG24-2152-00

Accessing the AS/400 System with Java

August 1997

This soft copy for use by IBM employees only.

International Technical Support Organization

Accessing the AS/400 System with Java

August 1997

SG24-2152-00

This soft copy for use by IBM employees only.

This soft copy for use by IBM employees only.

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix E, “Special Notices” on page 277.

First Edition (August 1997)

This edition applies to OS/400 Version 3, Release Number 2 and OS/400 Version 3, Release Number 7

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

This soft copy for use by IBM employees only.

Contents

Preface . vii
The Team That Wrote This Redbook . vii
Comments Welcome . ix

Chapter 1. Object-Oriented Technology Overview 1
1.1.1 Before Object-Oriented Technology . 1

1.2 Objects . 3
1.2.1 Encapsulation of Objects . 3

1.3 Classes . 3
1.4 Class Relationships . 4

1.4.1 Specialization . 4
1.4.2 Composition . 6
1.4.3 Collaboration . 6

1.5 Polymorphism . 7
1.6 Benefits of Object-Oriented Technology . 7

Chapter 2. Introduction to VisualAge for Java 11
2.1 The VisualAge Family . 11
2.2 VisualAge for Java Overview . 12
2.3 Integrated Development Environment (IDE) 14

2.3.1 Java Support . 14
2.3.2 Navigating within VisualAge for Java 16
2.3.3 How It Fits Together . 24
2.3.4 Team Development . 43
2.3.5 Applet Viewer . 47
2.3.6 Editor/Debugger/SmartGuides . 49
2.3.7 Proxy Builder . 56

2.4 Enterprise Access Builders (EAB) . 57
2.4.1 Data Access Builder (DAX) . 57

2.5 System Requirements . 58
2.6 Summary . 59

Chapter 3. AS/400 Toolbox for Java . 61
3.1 Introduction to the AS/400 Toolbox for Java 61

3.1.1 Application Developer Usage . 62
3.1.2 AS/400 Host Servers . 62
3.1.3 AS/400 Object/Infrastructure/Sign-On 62

3.2 AS/400 Toolbox for Java and Host Servers 64
3.2.1 Data Descriptions and Conversions . 64
3.2.2 AS/400 Data Types . 65
3.2.3 Record Level Conversions . 65
3.2.4 JDBC Specification . 66
3.2.5 Record-Level File Access . 67
3.2.6 Integrated File System (IFS) . 68
3.2.7 Print . 68
3.2.8 Command . 69
3.2.9 Program Call . 69
3.2.10 Data Queue . 70

3.3 How Does the AS/400 System Fit into This Picture? 70
3.3.1 Security . 71
3.3.2 National Language Support . 71

 Copyright IBM Corp. 1997 iii

This soft copy for use by IBM employees only.

3.3.3 Save/Restore Considerations . 72
3.3.4 Install and Run-Time Considerations 72
3.3.5 Error Recovery Considerations . 72

3.4 Introduction to Application Examples . 72
3.5 AS/400 Database Access . 73

3.5.1 JDBC Interface . 73
3.5.2 JDBC Performance Tips . 74
3.5.3 A JDBC Application Example . 76
3.5.4 JDBCExample Class . 78
3.5.5 Reusable GUI Part . 83
3.5.6 Stored Procedures . 84
3.5.7 A JDBC Stored Procedure Application Example 85
3.5.8 StoredProcedureExample Class . 87
3.5.9 A DDM Record Level Access Application Example 91
3.5.10 RLExample Class . 93
3.5.11 Distributed Program Call Feature . 98
3.5.12 A Distributed Program Call (DPC) Application Example 99
3.5.13 DPCExample Class . 101
3.5.14 Data Queues . 108
3.5.15 A Data Queue Application Example 110
3.5.16 DataQueueExample Class . 112

3.6 Network Print . 118
3.6.1 A Print Example . 119
3.6.2 SpooledFileListExample Class . 120

3.7 Integrated File Systems Access . 123
3.7.1 An IFS Example . 123
3.7.2 IFSExample Class . 126

Chapter 4. Overview of the CPW Application 129
4.1 Overview of the Application . 129

4.1.1 The Company . 129
4.2 CPW Benchmark Database Layout . 131

4.2.1 District . 131
4.2.2 Customer . 132
4.2.3 Order . 132
4.2.4 Order Line . 133
4.2.5 Item (Catalog) . 133
4.2.6 Stock . 133

4.3 Database Terminology . 134

Chapter 5. Enterprise Access Builder For Data (DAX) 135
5.1 Enterprise Access Builder for Data (DAX) 135
5.2 Building an Application Using the Data Access Builder (DAX) 136

5.2.1 Application Requirements . 136
5.3 Generating the Application Using DAX . 139

5.3.1 Understanding Our Software Design 139
5.3.2 Building the Application . 141

5.4 Building the Company Class . 147
5.5 Building a Custom GUI Using DAX Objects 151
5.6 The Completed Application . 154
5.7 Summary . 154

Chapter 6. Developing AS/400 Java Applets 155
6.1 Applet Class Structure . 155

6.1.1 Applet Limitations . 156

iv Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

6.1.2 Applet Capabilities . 157
6.1.3 HTML Tags for Applets . 157
6.1.4 Browser Versioning . 158
6.1.5 JDK 1.1 Applets versus JDK 1.0 Applets 158

6.2 Internet Shopping Application Example Introduction 159
6.2.1 Shopping Application User Interface 160

6.3 Shopping Application Objects and Classes 162
6.4 Testing the Applets . 165
6.5 The "SelectedItems" Class . 166

6.5.1 Writing the Class . 166
6.5.2 Writing the Methods . 167

6.6 The "ItemsDb" Class . 168
6.6.1 Common Methods All Applets Use . 169
6.6.2 Methods Used by ToolboxApplet . 171
6.6.3 Methods Used by CartApplet . 172
6.6.4 Methods Used by the StatusApplet . 173

6.7 The "ToolboxApplet" Applet . 174
6.7.2 MyInit() . 176
6.7.3 AddAllRows() . 176
6.7.4 AddAllRows() . 177
6.7.5 GetSelectedIndexes() . 178
6.7.6 Checking the Connections . 178

6.8 The "CartApplet" Applet . 179
6.8.1 Writing the Class . 179
6.8.2 Viewing the Methods . 180

6.9 The Check Order Status Applet . 184
6.9.2 Using JAR Files . 187

Chapter 7. JavaBeans . 189
7.1 What Do JavaBeans Offer? . 189
7.2 The Basics of JavaBeans . 190
7.3 Creating a Simple JavaBean . 192
7.4 Making ItemsDb a JavaBean . 194

7.4.1 Review of Current "ItemsDb" . 194
7.4.2 Modification of "ToolboxApplet" Class 203

7.5 Advanced JavaBeans Concepts . 205
7.5.1 What Makes a Good JavaBean . 206
7.5.2 References and More Information . 207

Chapter 8. Java on AS/400 System . 209
8.1 Java on the AS/400 System . 209
8.2 AS/400 Java Virtual Machine . 210
8.3 Java on the AS/400 Server . 211
8.4 Java Applications on Server . 212
8.5 AS/400 Java Remote Method Invocation 213
8.6 AS/400 Java Proxy Interface . 214
8.7 VisualAge for Java - AS/400 Feature . 215
8.8 Java on the AS/400 Conclusions . 216

Appendix A. Example Programs . 217
A.1 Downloading the Files from the Internet Web Site 217

Appendix B. AS/400 Source Listings . 219
B.1 PARTS/PF . 219
B.2 SPROC2/SQLRPGLE . 219

Contents v

This soft copy for use by IBM employees only.

B.3 DPCXRPG/RPGLE . 221
B.4 DQXRPG/RPGLE . 222

Appendix C. AS /400 Toolbox Example Java Code 225
C.1 JDBCExample.java . 225
C.2 JDBCExampleDisplayAll.java . 227
C.3 ToolboxGUI.java . 228
C.4 DisplayAllParts.java . 230
C.5 PartsContainer.java . 232
C.6 StoredProcedureExample.java . 233
C.7 DPCExample.java . 235
C.8 DataQueueExample.java . 239
C.9 RLExample.java . 242

Appendix D. Internet Shopping Applet Code Listings 245
D.1 SelectedItems.java . 245
D.2 ItemsDb.java . 246
D.3 ToolboxApplet.java . 253
D.4 CartApplet.java . 260
D.5 StatusApplet.java . 267
D.6 MyListbox.java . 273
D.7 MyImage.java . 274

Appendix E. Special Notices . 277

Appendix F. Related Publications . 279
F.1 International Technical Support Organization Publications 279
F.2 Redbooks on CD-ROMs . 279
F.3 Other Publications . 279

How to Get ITSO Redbooks . 281
How IBM Employees Can Get ITSO Redbooks 281
How Customers Can Get ITSO Redbooks . 282
IBM Redbook Order Form . 283

List of Abbreviations . 285

Index . 287

ITSO Redbook Evaluation . 289

vi Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Preface

In the past year, Java has become the hot new programming language. The
reasons for Java's popularity are its portability and its ability to produce Internet
enabled applications. This redbook is intended for anyone who wants to design
and build Java applications that access the AS/400 system. We cover how you
can use Java and the AS/400 system to build client/server applications and
Internet based applets. We provide many practical programming examples with
detailed explanations of how they work. These examples are also available for
download from our Internet site. This redbook will give you a fast start on your
way to using Java and the AS/400 system.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Rochester Center.

Bob Maatta is a Senior Software Engineer from the United States at the
International Technical Support Organization, Rochester Location. He writes
extensively and teaches IBM classes worldwide on all areas of AS/400
client/server. Before joining the ITSO 2 years ago, he worked in the U.S. AS/400
National Technical Support Center as a Consulting Market Support Specialist.
He has over 20 years of experience in the computer field and has worked with all
aspects of personal computers for the last 10 years.

Marshall Dunbar has been a Sr. Systems Analyst with Data Processing Services,
Inc., in Indianapolis, Indiana for the last 11 years. Marshall has been a primary
developer on DPS' Distribution and Financial software, DPS/9000. Working on
the R&D team, Marshall has primarily dealt with PC to AS/400 integration using
various tools. Recently, Marshall has implemented a Graphical User Interface
for DPS/9000 and been intimately involved in DPS' Internet development and
consulting efforts.

Stuart Foster has worked for IBM U.K. for 11 years. He started working in the
mid-range S/370 arena with VM and VSE customers before moving to work on
the AS/400 system six years ago as an application development specialist. He
has been a pioneer of object technology implementations on the AS/400 system
in the U.K. predominately using the VisualAge Smalltalk for AS/400 product set
at a large number of AS/400 Business Partners and customers. Most recently,
Stuart has been leading the work with AS/400 Business Partners to integrate
Lotus Notes with their existing applications.

Paul Holm is an Advisory Software Engineer from the United States at the
Partner's In Development Organization in Rochester, MN. He has focused
exclusively on AS/400 Object Oriented Technology for the past five years.
Before joining Partners in Development, he was a developer for DB2/400. His
areas of expertise include DB2/400, Java, Smalltalk, and Object Oriented
Analysis and Design.

Cheryl Pflughoeft is an advisory programmer on the Object Oriented Team in
AS/400 Partners in Development (PID). Her current job is to assist business
partners with their migration to Object Oriented Technologies focusing on Java.
Prior to this, she was the coordinator for the PID early involvement programs for

 Copyright IBM Corp. 1997 vii

This soft copy for use by IBM employees only.

ILE C, ILE RPG, and ILE COBOL. Cheryl started with IBM Rochester
programming in-house manufacturing and warehouse applications on the S/3.
She was part of the team that converted existing RPG applications to the S/38.
Cheryl then moved on to the development team for Query/36 and Query/400
products, later becoming team leader for the Query/400 product.

Kevin Roberts is a computer engineering student, focusing in software
engineering at the University of Michigan and expects to graduate in the spring
of 1998. Kevin had the opportunity to work on the Object Oriented Team in
AS/400 Partners in Development department at IBM as a co-op for seven
months. There he focused on Java, JavaBeans, and accessing the AS/400
system with Java. He is currently back at the University of Michigan working for
the School of Dentistry as a webmaster and system administrator.

Roger Wong is an IBM System Engineer and Sales Specialist in Hong Kong and
the South China region. Roger has a lot of practical experience in AS/400
System Management, LAN technology, and Application Development. He has
been working on the AS/400 Web, serving with Internet Connection for OS/400
since 1995. Roger supports IBM major Finance and Security accounts in South
China. He has played a leading role in promoting IBM technology in the South
China region.

Thanks to the following people for their invaluable contributions to this project:

Phil Coulthard
IBM Toronto Laboratory

Karen Eikenhorst
IBM Rochester Laboratory

Anita Leung
IBM Toronto Laboratory

Gary Mullen-Schultz
IBM Rochester-Partners in Development

Clif Nock
IBM Rochester Laboratory

Pramod Patel
IBM Toronto Laboratory

Schuman Shao
IBM Rochester Laboratory

Pamela Tse
IBM Toronto Laboratory

David Wall
IBM Rochester Laboratory

viii Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

Fax the evaluation form found in “ITSO Redbook Evaluation” on page 289 to
the fax number shown on the form.

Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

Send us a note at the following address:

redbook@vnet.ibm.com

Preface ix

This soft copy for use by IBM employees only.

x Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Chapter 1. Object-Oriented Technology Overview

The purpose of this redbook is to introduce VisualAge for Java and to describe
how it can be used to access the AS/400 system.

Java is an object-oriented language. In this chapter, object-oriented principles
are reviewed but not explained in full detail. For a full introduction to object
technology, one of the best books on the subject is Object-Oriented Technology:
A Managers Guide by David A Taylor, published by Addison-Wesley (ZH20-9092,
and ISBN 0-201-56358-4).

This chapter contains information about the following subjects:

Objects
Classes
Class relationships
Polymorphism
Benefits of object-oriented technology

1.1.1 Before Object-Oriented Technology
Remaining competitive in the business world means seeking a better, more
reliable software technology that actually delivers on its claims. The advent of
object technology has done just that. It has rapidly closed the gap between
hardware potential and software performance. As computers continue to
increase in speed and power, the implementation of object-oriented technology
becomes increasingly important.

Let's just take a moment to review the traditional application development
scenario. I wonder how many of you recognize this scenario.

 Copyright IBM Corp. 1997 1

This soft copy for use by IBM employees only.

When our applications were designed about 20 years ago, they were designed to
segregate the procedures from the data using techniques such as information
engineering (to normalize our databases) and functional decomposition to split
our functions down into manageable chunks of code. Rarely, if ever, did we try
to think of our small normalized database tables and our small code
modules/programs/subroutines as entities that benefit more by being designed
together.

On day one, our application was perfect. Our modules were small and discrete,
and our data was well normalized with clear and well defined links between the
modules and the data. Three months passed and the users loved our
application, but then the first request comes in. This request is to extend the
application a little. And the second request is to fix a small bug that has
appeared. Maybe we were lucky this time as the impact on our total application
was just to make a couple of minor modifications to the code modules, and to
make a couple of extra links from a module to the database. But they were not
in the original design.

Suppose this scenario continues for the next 20 years with a couple of changes
coming in every two to three months. Even the best AP/AD professional would
have great difficulty in retaining anything similar to the original design. But
given that our programmers and designers have moved on two or three times
from the original team, it is easy to see how the third picture in this little
scenario has come about. I really do wonder how many of you recognize the
picture on the right? Is this your application?

But wait a minute. From 20 years ago, we have moved from 2GL to 3GL, 3GL to
4GL, 4GL to case, case to uppercase and lowercase. Each of these transitions
has made an incrementally better impact on software quality and design, and on
programmer productivity. But as an industry, we are still left trying to maintain
these creaking systems, and trying to add real value to business and to provide
competitive advantage with Web based applications and so on. The industry has
been looking for a new way to develop applications that better simulates the real
world, not by splitting data and function apart and trying to mesh it back together
again as we have been doing, but by keeping the data and procedures together

2 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

from analysis, through design, all the way to coding. This way of building
systems is the object-oriented way. Let's take a look at what this actually
means.

1.2 Objects
An object is a software package that contains a collection of related procedures
and data. In the object-oriented approach, procedures go by the name
methods/member functions. In keeping with traditional programming
terminology, the data elements are referred to as variables/member
variables/data members because their values change over time.

1.2.1 Encapsulation of Objects
The act of grouping both data and the operations that affect that data into a
single object is known as encapsulation. Encapsulation is a powerful technique
for building better software because it provides neat, manageable units that can
be developed, tested, and maintained independently of one another. The
knowledge encapsulated within an object can be hidden from external view.
Consequently, the knowledge encapsulated within an object looks different from
outside the object than it does within it. As with us, objects have a private side.
The private side of an object is how it performs things, and it can do them in any
way required. How it performs the operations or computes the information is not
a concern of other parts of the system. Using this principle known as
information hiding, objects are free to change their private sides without
affecting the entire system.

1.3 Classes
Objects that share the same behavior are said to belong to the same class. A
class is a generic specification for an arbitrary number of similar objects.
Objects that behave in a manner specified by a class are called instances of that
class. All objects are instances of some class. Once an instance of a class is
created, it behaves the same as all other instances of its class, and is able upon
receiving a message to perform any operation for which it has methods. It may
also call upon other instances, either of the same or other classes, to perform

Chapter 1. Object-Oriented Technology Overview 3

This soft copy for use by IBM employees only.

still other operations on its behalf. A program can contain as many or as few
instances of a particular class as required.

In theory, a class is a template for objects. Once the template is defined, it can
stamp out as many objects (instances of the class) as desired. Each can take on
different values, but all use the same variables and work with the same
methods. This is how you can have a thousand different product objects but
define the method for computing the price in only one place.

To conclude,

A class is a template that defines the methods and variables to be included
in a particular type of object.

The descriptions of the methods and variables that support them are defined
only once in the definition of the class.

The objects that belong to a class, called instances of the class, contain only
their particular values for the variables.

1.4 Class Relationships
It is important to understand the relationship among classes. There are only
three ways that classes can be connected together: specialization, composition,
and collaboration.

1.4.1 Specialization
By declaring one class to be a special case, or subclass of another, the subclass
inherits all the method and variable definitions of its superclass. In the following
class hierarchy figure, vehicle is the superclass of all the other subclasses, and
car is a subclass of vehicle (because it is a type of vehicle). Car is the
superclass of its four subclasses (Hatchback, Saloon, Estate, Sports). These last
four classes are subclasses of car because they are a type of car.

4 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

It is all well and good arranging classes into a hierarchy, but what features does
the hierarchy have and what benefits does this bring? The vehicle class
abstracts as much data and procedures common to all vehicle types, and
implements these data items (variables) and functions. In the diagram below the
vehicle class defines the regno variable (registration number or plate number)
and all the functions that act on regno; for example, to set its value and to
retrieve it (commonly called setters and getters). These are defined only once at
the vehicle class level, but they are immediately inherited by the seven
subclasses shown in this hierarchy. There is no copying and pasting code, no
retyping; it all happens automatically. This has a dramatic effect on the amount
of code needed to be written, on the quality of the code, and on the downstream
maintenance effort (because you amend it in one place only, not in eight).

Therefore, in the following figure, the sedan class has a variable and methods
for trunk capacity (which it defines itself), for trim (which it inherits from car), and
for regno (which it inherits from vehicle).

Chapter 1. Object-Oriented Technology Overview 5

This soft copy for use by IBM employees only.

1.4.2 Composition
Classes can also be defined as components of one another. A laser printer
might contain, among many other parts, a print engine, a roller, a cartridge, a
paper tray, and so on. Composition provides a convenient means of capturing
the fact that these parts all go together, and it allows them to be treated as a
single collective entity. Composition is especially useful for defining high-level
objects that hide the details of their inner workings. A division might consist of a
specified set of departments, several divisions can be combined into a business
unit, and a company might include any number of business units. It is important
not to confuse specialization with composition. They have different properties
and serve different functions. For example, the hierarchy defined by an
organization is not an inheritance hierarchy. Departments do not inherit
properties from divisions, and divisions do not inherit from business units. That
is because they are components of one another, not special cases of each other.

1.4.3 Collaboration
The final class relationship is one that triggers objects into action. A
collaboration between two objects is a request from one object to another to
carry out one of its services. The request takes the form of a message from the
first object, called the sender, to the second object, called the receiver. The
message consists of the name of a method defined by the receiver together with
any information (expressed as parameters or arguments) that the receiver needs
to carry out that method.

Collaborations provide the active element in object technology. The other two
relationships, important as they are, are merely packaging rules that define how
objects are composed. It is the passing of messages among objects during the
execution of a program that actually makes the objects carry out their tasks.

6 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

1.5 Polymorphism
Understanding how object-oriented software works leads to realizing its vast
benefits. One most important benefit is an abstraction known as polymorphism.
Simply put, polymorphism is the ability of two or more classes of an object to
respond to the same message, each in its own way. This means that an object
does not need to know to whom it is sending a message. It just needs to know
that many different kinds of objects have been defined to respond to that
particular message. The only concern is sending the right message; it is up to
the receiver to interpret the request and do the correct thing.

Closely related to polymorphism is the concept of dynamic binding. This idea
stresses that because the sender of a message does not know anything about its
receiver, determining the identity of that receiver can be left until the program is
actually running. The advantage of dynamic binding is that it leaves all your
options open until the moment the message is actually sent. In fact,
fundamental changes can be made in the way a system works just by adding
new kinds of objects, without recompiling any programs or modifying existing
classes.

1.6 Benefits of Object-Oriented Technology
We know that object technology delivers speed improvements, so it is important
to recognize from where that added speed comes. Merely programming with
objects is not faster than other kinds of programming. The increased speed
comes not from programming faster, but from programming less. The critical
factor is to build up an inventory of reusable class definitions such that new
applications can be constructed largely by recombining existing classes. The
more reuse that is implemented, the greater the benefit.

Encapsulation allows the building of entities that can be depended upon to
behave in certain ways, and to know certain information. Such entities can be
reused in every application that can make use of this behavior and knowledge.
While it is possible to construct entities that are useful in many situations, using
just object-oriented design tools is not enough. More software can be reused
from each application if time is spent during the design phase identifying and
designing components and frameworks, which is the result of abstracting
re-usability from applications while building them.

Components are entities that can be used in a number of different programs.
Items such as lists, arrays, and strings are components of many different
programs. The primary goal when designing components is to make them
general, so they can be components of as many different applications as
possible. Application developers that make use of components need not
understand the implementation of those components. They are reusable code in
its simplest form. Components are typically discovered when programmers find
themselves repeatedly writing similar pieces of code. Although each piece has
been written to accomplish a specific task, the tasks themselves have enough in
common that code written to accomplish them appears remarkably alike. When
a programmer takes the time to abstract out the common elements from the
disparate pieces into one, and to create a uniform, generally useful interface to
it, a component is born. Ultimately, programmers can aim for abstracting out
common functionality as they design a piece of software before they have coded
similar pieces again and again.

Chapter 1. Object-Oriented Technology Overview 7

This soft copy for use by IBM employees only.

Frameworks are skeletal structures of programs that must be fleshed out to build
a complete application. The goal when designing frameworks is to make them
refinable. The interface to the rest of the application must be as clear and
precise as possible. Application developers must be able to quickly understand
the structure of a framework, and how to write code that will fit within the
framework. Frameworks are reusable designs as well as reusable code.

Applications are complete programs, similar to a fully-developed simulation, a
word processing system, a spread sheet, a calculator, or an employee payroll
system. The goal when designing applications is to make them maintainable.
This assures that the behavior of the application is kept appropriate and
consistent during its lifetime. Application developers must frequently make
ingenious use of components and frameworks to fit existing systems.
Applications must be made compatible with existing software, files, and
peripherals so as not to render a smoothly functioning system prematurely
obsolete. This requirement makes the design of useful components and
frameworks all the more important. If an application is successful, it will be
maintained and extended in the future. And if an application-specific object has
potentially a broader utility, one should consider designing it as a component
that can be reused by other applications.

8 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

A large by-product of the reuse concept is increased quality. If 90 percent of a
new application consists of proven, existing components, only the remaining 10
percent of the code has to be tested from scratch. This, in turn, leads to an
increase in maintenance ease. If there are only 10 percent as many defects to
begin with, there are a lot fewer bugs to chase down after the software is in the
field. Additionally, the encapsulation and information hiding provided by objects
serves to eliminate many kinds of defects and make others easier to find.

In summary, object-oriented technology simulates the real world; objects are
software packages containing methods/functions (behavior) and variables (state).
Object-oriented technology delivers the following benefits:

Faster application delivery
Higher quality applications
Easier maintenance
Applications with advanced functions

These benefits are accomplished by implementing the following concepts:

Inheritance down the class hierarchy (code reuse)
Polymorphism (easier application changes)
Encapsulation (easier application changes)
Assembly from parts (building quality into the application)

Chapter 1. Object-Oriented Technology Overview 9

This soft copy for use by IBM employees only.

10 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Chapter 2. Introduction to VisualAge for Java

This chapter covers VisualAge for Java with specific emphasis on the
components most likely to be used by an AS/400 development team. It covers
the following topics:

The VisualAge family
VisualAge Java overview
Integrated Development Environment (IDE)
− Java support
− Navigating within VisualAge for Java
− Visual Composition Editor
− Team development
− Applet viewer
− Editor/Debugger/SmartGuides
− Proxy builder
The Enterprise Access Builders (EAB)
− Data Access Builder (DAX)
System requirements
Summary

This chapter discusses various processes and windows that you use in the
development of windows and applications using VisualAge for Java. All
development for this redbook was performed using the Windows 95 client of the
Enterprise Edition of VisualAge for Java. If you are using a different client or the
Professional Edition, there may be some slight differences in the processes and
windows discussed and shown here.

2.1 The VisualAge Family
VisualAge for Java is one of the newest member of the family of VisualAge
products. These products cover the complete range of client/server application
development topologies, clients, servers, and languages.

The VisualAge family supports the following programming environments:

VisualAge for Java
VisualAge Generator (4GL)
VisualAge for COBOL
VisualAge for RPG
VisualAge for C + +
VisualAge for Smalltalk
VisualAge for Basic
VisualAge for e-business
VisualAge for PacBase
VisualAge Financial Foundation
VisualAge 2000
VisualAge WebRunner

In addition, the VisualAge product set supports application development across
the following client and server platforms.

Note: Not all VisualAge products support all the client and servers listed here.

OS/2

 Copyright IBM Corp. 1997 11

This soft copy for use by IBM employees only.

Windows 3.1 and 3.11
Windows NT
Windows 95
AIX
OS/390
OS/400

VisualAge uses a construction-from-parts paradigm, which eases the migration
to client/server, object-oriented, and Web-based technologies. With the Visual
Composition Editor, which is available with VisualAge for Java, you can develop
programs by visually arranging and connecting prefabricated parts. You can
also create your own reusable parts.

For a complete description of each of the VisualAge family members and
supported environments, visit the VisualAge Family Web page at:

http://www.software.ibm.com/ad/

2.2 VisualAge for Java Overview
IBM VisualAge for Java is one of the first enterprise-wide, team enabled,
incremental application development environments for Java in the industry. It is
designed to connect Java clients to existing server data, transactions, and
applications. This enables developers to extend server-based applications to
communicate with Java clients on the Internet or intranet, rather than rewrite the
application from scratch. VisualAge for Java creates 100% pure Java
compatible applications, applets, and JavaBeans.

VisualAge for Java is available in three versions:

Entry

− Free
− One hundred class limit
− Does not support the AS/400 Toolbox for Java

Professional Edition

− Includes the Integrated Development Environment (IDE)
− Supports the AS/400 Toolbox for Java

Enterprise Edition

− Includes all Professional Edition support
− Supports the AS/400 Toolbox for Java
− Includes the Enterprise Access Builders
− Team support will be included in the future

Beyond the current batch-based Java tools available today, VisualAge for Java
provides:

Superior enterprise connectivity
Project-based team development
A true incremental rapid application development environment for Java

VisualAge for Java is part of the VisualAge family of products and shares some
of the components from the other VisualAge products. For example, VisualAge
for Java shares the team environment repository and image concepts (and
implementation) with the VisualAge for Smalltalk product. It also shares the

12 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Visual Composition Editor component, which is common across all the
development environments.

With VisualAge for Java the developer can develop 100% compliant Java JDK
1.1 applications and applets all from the same development environment. This
enables customers and Business Partners to migrate to Java-based Web applets
at their own pace along an incremental path, including:

Implementing Java extensions to their applications
Developing whole Java applications
Moving to client/server Java applications
Developing Web-based Java applets

The Integrated Development Environment incorporated within the product
enables the developer to code/compile/test/debug single lines of code as well as
full-scale applications, enabling the application to scale with the business
requirement. The IDE is built around the industry leading ENVY/Developer team
development environment from OTI (an IBM subsidiary company), which is well
recognized within the object technology marketplace for its ability to provide
management facilities for small and large scale application development
projects.

The IDE enables a developer to build and run applications, applets, and code
snippets interactively without the need to run the compile statement (JavaC)
from the command line. All applications can be run from within the IDE without
the need to export the Java source or class files. This is achieved through the
provision of a JDK 1.1 compliant Virtual Machine (VM) within the IDE. Because
you can interactively modify code and run it without compilation, developers are
able to debug code on the fly, spotting errors in their code with the debugger,
changing it, and continuing without bringing the running application down...all
within the VisualAge for Java IDE.

VisualAge for Java is an open IDE and developers can easily import and export
Java source and class files as well as JavaBeans that may have been purchased
by the company or made available on the WWW. The JavaBeans support in
VisualAge for Java also enables a developer to take an existing JavaBean (for
example, from the WWW), import it into VisualAge for Java, modify the bean, and
export it again for use within another JDK 1.1 compliant development
environment (for example, Symantic Cafe and Borlands JBuilder).

Version 1 of VisualAge for Java supports JDK 1.1 (the most recent version at the
time of publication). Along with the current JDK support, VisualAge for Java also
supports all the most current standards for Java development (for example, Java
Database Connectivity (JDBC) and so forth), which is discussed later. Because
of the portability of JDK 1.1 compliant Java code, code that is developed using
VisualAge for Java should be able to run without change on the native AS/400
Java Virtual Machine when it becomes available.

VisualAge for Java has two components that extend its capabilities to make
client/server programming easier. The Enterprise Access Builders (EAB)
provide components to aid connection to DB2 compliant datasources, CICS
transactions, and other programs. In addition, the AS/400 Toolbox for Java
provides a series of classes specifically designed to access many AS/400
features (all without using Client Access/400 as a prerequisite).

Chapter 2. Introduction to VisualAge for Java 13

This soft copy for use by IBM employees only.

The initial release of the product runs on OS/2 Warp Version 4.0, Windows NT
4.0, or Windows 95.

VisualAge for Java comes with the following core components:

Integrated Development Environment:

− Hierarchy browser
- Projects
- Packages
- Classes
- Methods

− Editor
− Debugger
− Applet viewer
− Team support (Enterprise edition)
− Java class libraries
− Visual Composition editor

Enterprise Access Builders (EAB)

− Data access builder
− CICS access builder
− RMI builder
− C + + builder

All of the preceding components utilize the JDK 1.1 and Java Virtual Machine
Support of VisualAge for Java.

The AS/400 Toolbox for Java is not part of the core VisualAge for Java product
and needs to be ordered separately. In a feature release of VisualAge for Java
Enterprise Edition, the Toolbox classes will be included; see Chapter 8, “Java on
AS/400 System” on page 209 for more information. The Enterprise Access
Builders are part of the Enterprise Edition of VisualAge for Java.

2.3 Integrated Development Environment (IDE)
This section of the chapter covers the Integrated Development Environment (IDE)
component of VisualAge for Java.

2.3.1 Java Support
Java is a collection of classes built from the ground up, following object-oriented
(OO) principles. In Java, everything is an object except for the standard data
types inherited at the top of the hierarchy from the root class, object.

Java classes are contained in packages. The concept of a package in Java is a
useful way of grouping classes that are related. A Java package is similar in
concept to an AS/400 ILE service program.

JDBC is the Java standard to manipulate enterprise data stored in relational
databases. It is the Java equivalent to ODBC, a widely accepted standard
developed by Microsoft. JDBC provides a standard SQL database access
interface. Constructs such as database connections, SQL statements, result
sets, and database metadata are included. With JDBC, it is possible to develop
Java applications independently of the target relational database management
system (R-DBMS). Many vendors already provide (or will provide in the near
future) JDBC drivers targeted at accessing dozens of database management

14 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

systems. The AS/400 system is no exception and IBM Rochester will provide a
JDBC driver to access DB2/400 Database as part of the AS/400 Toolbox for Java
set of classes.

In conjunction with JDBC, JavaSoft is releasing a JDBC-to-ODBC bridge. Such a
bridge provides a way for Java applications developed to the JDBC standard to
gain access to any database using the existing ODBC drivers.

Remote Method Invocation (RMI) lets programmers create Java objects whose
methods can be invoked from another Java Virtual Machine. RMI is equivalent
to a Remote Procedure Call in the non-object world.

The JavaBeans API defines a portable, platform-neutral set of APIs for software
components. JavaBeans components can plug into existing component
architectures such as IBM's OpenDoc, Microsoft's OLE/COM/Active-X
architecture, or Netscape's LiveConnect.

Java Native Interface (known previously as the native method interface in JDK
1.0) provides the capability for a Java object to call a native platform function
typically written in C, C + + , or any other language.

The internationalization support allows the development of localized applets and
applications. The global Internet demands global software; that is, software that
can be developed independently of the countries or languages of its users, and
then localized for multiple countries or regions. JDK 1.1 provides a rich set of
Internationalization APIs for developing global applications. These APIs are
based on the Unicode 2.0 character encoding and include the ability to adapt
text, numbers, dates, currency, and user-defined objects to any country's
conventions.

Java Archive (JAR) is a platform-independent file format that aggregates many
files into one, similar in concept to a ZIP file. Multiple Java applets and their
requisite components (class files, images, and sounds) can be bundled in a JAR
file and subsequently downloaded to a browser in a single HTTP transaction,
greatly improving the download speed. The JAR format also supports
compression, which reduces the file size and further improves the download
time. In addition, the Applet author can digitally sign individual entries in a JAR
file to authenticate their origin. It is fully backward-compatible with existing
applet code and is fully extendible, being written in Java.

The Core Java JDK 1.1 API includes the following packages:

Java.lang:

This package contains all the classes and interfaces of the base Java
language.

Java.util:

This is the utility package containing various utility classes and interfaces,
including random numbers, system properties, and other useful classes.

Java.io:

This package provides the input/output classes and the interfaces for files
and streams.

Java.net:

Chapter 2. Introduction to VisualAge for Java 15

This soft copy for use by IBM employees only.

This package is composed of classes and interfaces for handling network
operations such as TCP/IP, Sockets, and URL.

Java.awt:

This is the abstract windowing package that allows for definition of GUI
constructs that are portable to multiple windowing systems. This is the only
package in the core API to include sub-packages. The following
sub-packages are part of the Java.awt package:

− Java.awt.image:

Provides the classes necessary to handle images in various formats,
such as GIF and JPEG.

− Java.awt.peer:

Provides hidden classes that map their Java.awt equivalents and are
designed to implement the GUI constructs on specific platforms such as
Apple's Macintosh, Microsoft's Windows 95, or UNIX's Motif.

Java.applet:

This package is designed to provide the behavior specifically for applets.

For a full description of the Java class library and core API, visit the JavaSoft
JDK 1.x (currently 1.1.1 at June 1997) at:

http://java.sun.com:80/products/jdk/1.1/docs/index.html.

2.3.2 Navigating within VisualAge for Java
This section of the chapter introduces the fundamental elements of the
VisualAge for Java IDE that are accessed from the Workbench window in the IDE.
It covers:

Starting VisualAge for Java

The Workbench and its hierarchy:

− Projects
− Packages
− Classes
− Interfaces
− Unresolved problems

Browsers:

− Project
− Package
− Class

2.3.2.1 Starting VisualAge for Java
During the installation of VisualAge for Java, an item is added to the Windows 95
Taskbar - IBM VisualAge for Java for Windows. This item has a number of
sub-items, and selecting IBM VisualAge for Java starts VisualAge for Java.
Follow a similar process if you are using the OS/2 or Windows NT client.

16 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

During the startup process, VisualAge for Java loads the development image.
As this image can be 8MB or larger (typically in the 15MB-25MB range), the
startup process can take one to two minutes because the entire image must be
loaded into memory. The development image is also known as the workspace
and these two terms are used interchangeably in this chapter.

If this is the first time VisualAge for Java has been started, the first window
displayed is the Quick Start window.

The Quick Start window provides a single point to perform most of the simple
tasks. However, as you get more experienced using VisualAge for Java, you
may decide to stop this window from appearing at startup.

Select Go to Workbench and press OK to go to the Workbench window.

Chapter 2. Introduction to VisualAge for Java 17

This soft copy for use by IBM employees only.

Figure 1. VisualAge for Java Workbench

The Workbench is the main window into the workspace. You organize your work
from the Workbench. From here, you can open several other windows to help
with your tasks. As you open windows, navigate in them, create source code,
and perform other tasks, the workspace is modified. From the Workbench, you
can open specialized windows (called browsers) on individual program elements
in the workspace.

The Workbench window is split into a number of areas that are common across
most of the VisualAge for Java windows:

Title Bar
Menu bar
Tool Bar:

Provides fast access to menu items.
Notebook tabs:

Provides views of the four fundamental components of VisualAge for Java
(projects, packages, classes, and interfaces) as well as a tab for displaying
any unresolved problems.
Panes:
− Hierarchy pane:

18 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Typically displays the component being browsed in context with its
containing components. For example, a project browser shows all of its
packages and each package is expandable to show all of the
classes/interfaces it contains, and so forth.

− Source pane:

If a method is highlighted in the hierarchy pane, the method source code
is displayed in the source pane. Similarly, if a class/interface is
highlighted in the hierarchy pane, the class/interface definition is
displayed in the source pane.

Status line:

Provides feedback to the user on the current action/mouse
position/selection, and so forth.

2.3.2.2 Component Hierarchy
Source code is stored as structured objects in the following hierarchy of
VisualAge program elements:

Projects
Packages

Classes or Interfaces
Methods or constructors

You are probably already aware of the package, class or interface, and method
or constructor components that are part of the standard Java language. In
addition, VisualAge for Java includes a higher grouping level called projects,
which enables the grouping together of various packages.

Each higher level component can have multiple lower level components. For
example, a project can contain one or more packages.

Various icons are used in each of the browsers to depict each component.
Examples of the icons used are:

Figure 2. Project

Figure 3. Package

Figure 4. Class

Chapter 2. Introduction to VisualAge for Java 19

This soft copy for use by IBM employees only.

Figure 5. Interface.

Figure 6. Executable class

2.3.2.3 Workbench Window
In the following Workbench window (Projects tab), the workshop project has
been expanded to show its packages. One of these packages, the Workshop
Package, has been expanded to show its classes and interfaces (classes only in
this case). One of these classes, the DPCExample Class, has been expanded to
show its methods. One of its methods, the connectToDB (java.lang.String,
java.lang.String, java.lang.String) method, has been selected and its source is
shown in the source pane.

Figure 7. VisualAge for Java Workbench

20 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

2.3.2.4 Component Browsers
The next section discusses the four component browsers used extensively within
VisualAge for Java (project, package, class, and interface). Each of the browsers
is displayed from the Workbench window by selecting a component in the
Hierarchy Browser Pane of the Workbench (for example, a package) and then
selecting Open from its pop-up menu.

2.3.2.5 Project Browser
The project browser displays details on all the components within the project,
including the packages, classes, interfaces, methods, and method source across
the first three different views (tabs). The final tab on all the browsers is an
Editions tab, which displays the version/edition information about this component
enabling the developer (even in the Professional Edition of VisualAge for Java) to
manage multiple versions/editions of packages/classes/interfaces/methods.

Figure 8. VisualAge for Java Project Browser

2.3.2.6 Package Browser
The package browser displays details on all the components within the package,
including the classes, interfaces, methods, and method source across the first
two different views (tabs). As with the project browser, the package browser has
the editions tab to help manage multiple editions of the package.

The most used view shows the contained classes in the hierarchy in tree format.

Chapter 2. Introduction to VisualAge for Java 21

This soft copy for use by IBM employees only.

Figure 9. VisualAge for Java Class Hierarchy

There is also a graphical view of the classes contained in this package, although
a high resolution screen is required to gain maximum benefit from this particular
view.

22 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Figure 10. VisualAge for Java Class Hierarchy

2.3.2.7 Class Browser
The class browser is a little different in its implementation when compared with
the project and package browsers. The class browser still displays all the
sub-components (methods) it contains, the method source in the lower pane, and
an editions tab for managing multiple editions of the components. But in
addition, there are four extra tabs:

The Hierarchy tab displays the position of the class in the hierarchy showing
all the super-classes, both in tree and graphical format.
The Editions in Repository tabs shows the editions available for the class in
the repository.
The Visual Composition tab is used primarily for the design of visual classes.
The Bean Info tab displays information about the features that have been
defined for the class (if any), and which also allows the Bean Info to be
modified.

A lot of work is performed using the Visual Composition builder and this is
discussed in the next sections. To open this browser, you select a class, click
the right mouse, and select open.

Chapter 2. Introduction to VisualAge for Java 23

This soft copy for use by IBM employees only.

Figure 11. VisualAge for Java Class Browser

2.3.3 How It Fits Together

VisualAge for Java uses three basic components to build reusable JavaBeans
and to use JavaBeans that may have been built by other tool vendors. These
three components are the Visual Composition editor, the Features editor, and the
Script editor.

24 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

VisualAge for Java comes with a large number of reusable beans or parts that
are stored either in the VisualAge image/workspace or that can be brought into
the image/workspace from the repository (sometimes called the Parts/Beans
Warehouse). Once a class or bean is in the image, a developer can use the
Visual Composition editor to connect multiple beans together to perform the
required function.

The product can also be used to develop reusable beans, or to modify existing
beans. This is achieved by using a combination of the Feature editors for
properties, methods, and events, and the Script editor for actually writing the
Java code that is invoked by the various features.

2.3.3.1 JavaBeans and Classes

As discussed in Chapter 1, “Object-Oriented Technology Overview” on page 1,
a class is a template for objects that have similar behavior (methods) and data
elements (variables, properties). To use classes in visual builders (for example,
VisualAge for Java, Symantic Cafe) the class needs to have features defined for
it that allow it to be connected to other beans within a visual development
environment.

JavaBeans add standardized features and object introspection mechanisms to
classes, allowing builder tools to query components (classes or groups of
classes) about their properties, behavior, and events, thus allowing visual
builders to connect beans together that are implemented to the same JavaBeans
standard.

Individual JavaBeans vary in functionality, but most share certain common
defining features:

Introspection - allowing a builder tool to analyze how a bean works.

Events - allowing beans to fire events, and informing builder tools about both
the events they can fire and the events they can handle.

Properties - allowing beans to be manipulated programatically.

Methods - allowing beans to perform functions implemented by the
underlying classes methods.

Customization - allowing a user to alter the appearance and behavior of a
bean.

Persistence - allowing beans that have been customized in an application
builder to have their state saved and restored.

Chapter 2. Introduction to VisualAge for Java 25

This soft copy for use by IBM employees only.

In the preceding diagram, an account class has been defined with
functions/methods and variables. In addition to the account class definition,
bean features have been defined for the following definitions:

Variable/Property

− AccountHolderName
− AccountBalance

Method

− WithdrawCash
− DepositCash

Event

− GoneOverdrawn

In this example, there is probably a one-to-one relationship between the
accountHolderName and accountBalance Bean properties with instance
variables of the same name (defined in the class). There also is the
withdrawCash and depositCash methods with bean method features of the same
name. However, in addition to these four features, the bean has an event,
goneOverdrawn, which is fired from within the withdrawCash method. Other
JavaBeans can listen for this event before taking action. For example, an
OverDrawnAccounts object may listen for account objects to fire this event.
When the account object fires the goneOverdrawn event, the
OverDrawnAccounts object senses this automatically (because it listening) and
takes its appropriate action (sends a letter informing the account holder of the
account status and of the charges that have been applied).

26 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

In the preceding figure, there are two classes packaged as beans. The rightmost
bean (for example, a push button) has a connection to the leftmost bean (for
example, a listbox) and when the clicked event occurs, the listbox performs the
add function. In VisualAge for Java, this connection is made through a series of
simple steps that do actually connect the two beans together.

.

Beans can either be a single bean made up of individual beans/classes, or they
can be composite beans made up of two or more classes/beans. In the
preceding figure, the push button is a single bean, whereas the window is a
composite bean made up of a push button and a list.

The preceding figure represents single and composite beans that are visual.
Similar concepts apply to non-visual classes/beans. For example, an array
contains a number of strings.

The previous discussion has introduced the concepts (albeit, in overview) of
visual builders and of JavaBeans. In VisualAge for Java, you visually construct
many modules of your application by connecting various JavaBeans using the
Visual Composition editor (VisualAge's visual builder).

Chapter 2. Introduction to VisualAge for Java 27

This soft copy for use by IBM employees only.

The following table summarizes the types of connections that the Composition
editor provides. The return value is supplied by the connection's normalResult
property.

If you want to.. Use this connection type Color Return Value

Cause one data value to
change another

Property-to-property Dark blue None

Call a behavior
whenever an event
occurs

Event-to-method Dark green Yes

Supply an input
argument

Parameter Violet None

A property-to-property connection links two property values together. This
causes the value of one property to change when the value of the other changes.
A connection of this type appears as a bidirectional dark blue line with dots at
either end. The solid dot indicates the target, and the hollow dot indicates the
source. When your part is constructed in the running application, the target
property is set to the value of the source property. These connections never
take parameters.

An event-to-method connection calls the target method whenever the source
event occurs. An event-to-method connection appears as a unidirectional dark
green arrow with the arrow head pointing to the target.

A parameter connection supplies a parameter value to a method by passing
either a property's value or the return value from another method. This
connection appears as a bidirectional violet line with dots at either end. The
solid dot indicates the target, and the hollow dot indicates the source. In
addition, the parameter names are included in the connection's pop-up menu.
The parameter is always the source of the connection because the parameter
cannot store any values. If you connect the parameter as the target, VisualAge
reverses the direction of the connection to make the parameter the source.

The Composition editor uses a dashed line to give you a visual clue so that you
know when a parameter connection is needed. For example, if you connect an
event to a method that requires parameter values, the connection line between
the event and the method is dashed.

In the preceding discussion, the source and target points of a connection have
been introduced.

A connection is directional; it has a source and a target. The direction in which
you draw the connection determines the source and target. The part on which
the connection begins is the source and the part on which it ends is the target.
When you make an event connection, the Composition editor draws an arrow on
the connection line between the two parts. The arrow points from the source to
the target. If information can pass through the connection in both directions (as
it can in property-to-property connections) a hollow circle indicates the source
and a solid circle indicates the target.

Often, it does not matter which part you choose as the source or target, but
there are connections where direction is important. For example, in an event

28 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

connection, the event is always the source. If you try to make an event the
target, VisualAge automatically reverses it for you.

If the target of the connection takes input parameters, the connection line initially
appears dashed to show that it is incomplete. Many events pass data through
the connection to the target, so the connection line might appear solid even if
the target takes one input parameter and you have not otherwise provided one.

The target of a connection can have a return value. If it does, you can treat the
return value as a no-set property of the connection and use it as the source of
another connection. This return value appears in the connection menu for the
connection as normalResult.

2.3.3.2 Building a Sample Application Window
The objective of this section of the chapter is to build a simple application using
VisualAge for Java. The sample application enables an end-user to add parts to
a list as if the user where ordering them in a parts ordering application.

Earlier in this chapter, VisualAge for Java was started and you navigated past
the Quick Start window to the Workbench window.

From the Workbench window,
select the Selected menu item

then select the Add Project... submenu item

Note: In all future scripts, selected sub-menu items are formatted the same as
this: Selected--Add Project...

The SmartGuide - Add Project window is shown:

Type in the name of your Project, Team01Project, and
click Finish.

A project named Team01Project is created; you are returned to the Projects tab
of the Workbench window, and the Team01Project is highlighted.

Chapter 2. Introduction to VisualAge for Java 29

This soft copy for use by IBM employees only.

Open the Team01Project: Bring up the Team01Project's pop-up menu and
select Open:

The Team01Project window opens. The title of this window is
Team01Project(dd/mm/yy hh:mm::ss am). The time stamp element of the
window title is an indication of the date/time when this edition of the project was
created. If the Team01Project window does not open up maximized, then
maximize it.

Add a New Package (Team01Lab1) to the Team01Project Project

To add a new package, click the right mouse button in
the Packages pane and select add package from the pop-up menu.

Select the Packages--Add Package... menu item from the Team01Project window.

Enter Team01Project as the name of the project to which this class is added (this
is the default). Enter Team01Lab1 as the package name and click Finish to
create it.

A new package, Team01Lab1, is created in the Team01Project. The new
package is shown highlighted in the Packages pane of the Team01Project
window.

Add a New Class (Team01OrderEntry) to the Team01Lab1 Package: Select the
Classes/Interfaces--New Class/Interface... menu item. Enter Team01OrderEntry
as the class name. Enter java.awt.Frame as the superclass name.

Notice that class names are case sensitive. You are creating a visual class, and
most visual classes have java.awt.Frame as their superclass.

Select the Design the class visually radio button. Click Finish to create the
class.

30 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

A new class, Team01OrderEntry, is created in the Team01Lab1 package in the
Team01Project project. The new class is shown in the classes and interfaces
pane of the Team01Project window, and the Visual Composition editor for the
Team01OrderEntry class is opened and in focus.

Maximize the Team01Lab1.Team01OrderEntry(dd/mm/yy hh:mm:ss am) window.

The title of the window is Team01Lab1.Team01OrderEntry(dd/mm/yy hh:mm:ss
am). The suffix time-stamp element of the window title is an indication of the
date/time when this edition of the class was created, and the prefix shows you
which package.class you are working on.

Chapter 2. Introduction to VisualAge for Java 31

This soft copy for use by IBM employees only.

Figure 12. Visual Composition Editor

Take a moment to review the preceding window to see the various components
on the Visual Composition editor.

Window: The window being built, usually in the top left corner of the
free-form surface.

Free-form surface: The white space surrounding the window being built.
The free-form surface is usually used to drop non-visual parts (for example,
a timer) that you want to utilize in your class but that you do not want to
show to the end user at run time.

Parts palette: The area on the left of the Visual Composition Editor window
that contains:

− Parts categories (the leftmost column/scrollbar) - a container for parts.
− Parts (the rightmost column/scrollbar) - the parts.
− Sticky: The check-box at the bottom of the parts palette. The sticky

check box enables you to load the cursor with a part and to perform
multiple drops of that part onto the free-form surface or window.

Add the Visual Components to the Window: The completed window at run time
for this section looks similar to this:

32 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Note: Do not be too concerned with the placement and alignment of parts as
you are building the window. Later, we will make it look good. Also increase
the size of the window at this point. This makes it easier to add parts. To size a
part, click on it to select it. There is a block in each corner, which indicates that
it is selected. These are called re-size handles. Move the mouse pointer over
one of these re-size handles and press and hold the left mouse button to drag
the part to its desired size.

Now we build the Graphical User Interface by selecting parts from the parts
palette and placing them on the window. Use the completed window shown
previously as a guide. Add:

One TextField

Two buttons

One list

Two labels

Note: Use the hover help to recognize the parts in the parts palette. Move the
mouse pointer over the top of the part and view the online help.

Move the cursor over the parts palette and left-click on the data entry category.
Left-click on the TextField part. This loads the cursor with the TextField. Move
the cursor over the window, near to the left edge (about 10% in) and 20% down.
Left-click to drop the TextField into position. Now left-click on the Buttons
category. Left-click on the Button part. Move the cursor to the right side of the
window, about 25% in from the right edge and 20% down and drop a button with
a left-click, and then drop another button just below the first one. Left-click on
the lists category and then on the list part.

Move the cursor to the left side of the window about 10% in and 50% up.
Left-click to drop the List. Left-click on the Data Entry category, left-click on the
Label part.

Chapter 2. Introduction to VisualAge for Java 33

This soft copy for use by IBM employees only.

Move the cursor to just above the TextField that you dropped earlier and
left-click to drop it. Add another TextField just above the list that you dropped
earlier.

Make the Window Look Good: Move the cursor over the label just above the
TextField. Hold the Alt key and left-click (Alt-left). You can now type in the text
that is shown on the label. Type Part and then left-click on the free-form surface
to stop editing the label text. Move the cursor over the other label and Alt-left.
Type List of Parts . Move the cursor over the top button and Alt-left. Type Add.
Move the cursor over the bottom button and Alt-left. Type Exit. Move the cursor
to the free-form surface and left-click to stop editing. Move the cursor over the
Window title bar and double-click to open the Properties Dialog for the window.
Left-click in the value column of the title row and type in Order Entry Window for
the title of the window. Close this window by click on the x in the upper right
corner.

Move the cursor over the TextField and left-click. Move the cursor over the list
and then left-click while holding down the Ctrl key (Ctrl-left). Both parts are now
selected. You can tell a part is selected by the re-size handles. When you have
two or more parts selected, the alignment smarticons are enabled.

This allows you to align left, center, right, top, middle, bottom, space
horizontally, vertically, same width, and height.

Note: To learn the function of a smarticon, move the mouse over it and view the
help text.

Move the cursor to the bottom right re-size handle of the list. Click and hold the
left mouse button, and drag the re-size handle to make the list wider. Release
the button when you are happy with the width of the list. Notice that the
TextField stretches as well. Now select the Match Width smarticon. This makes

34 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

the TextField the same width as the list. The list is the part of reference because
it has the darker re-size handles. Still with the list and Textfield selected, click
on the Align-Left smarticon to align their left sides. Move the cursor to the
free-form surface and left-click to deselect the part. You now know how to align
and size parts. Using your own style and GUI building skills, align the various
parts to make the window look cool! Test the application. It does not have any
function but you can see how it looks. Click on the Test smarticon and then click
on run on the Command Line Argument window to test the application.

You receive a message saying "Generating run-time code". This is the Visual
Composition editor saving the layout information into Java code. The developed
window is shown. Review it and close the window. You return to the VisualAge
Visual Composition window.

Add the Function: Move the cursor over the Exit button and left-click to select it.
With the cursor still over the Exit button, right-click to bring up the Buttons
pop-up menu, select Connect and
action.actionPerformed(java.awt.event.ActionEvent).

Selecting Connect brings up the features available to you as defined on the
button JavaBean. The action.actionPerfomed feature listens or watches for the
default action being performed for the part. For a button, the default action is
the button being pressed or clicked.

The spider is shown. The spider allows you to connect parts (beans) together.
Move the spider to the window title bar and left-click. The connection target
pop-up window is displayed.

What happens when the Exit button is pressed? You want the window to be
closed/disposed.

Select dispose() from the pop-up window. A green connection is displayed
between the Exit button and the window.

You are now ready to visually perform the function to add text entries from the
TextField to the list. Move the cursor over the Add button and left-click to select

Chapter 2. Introduction to VisualAge for Java 35

This soft copy for use by IBM employees only.

it. With the cursor still over the Add button, right-click to bring up the Buttons
pop-up menu, select Connect, and action.actionPerformed. Move the spider to
the list and left-click. The connection target pop-up window is displayed.

What happens when the Add button is pressed? You want the text/string entered
in the TextField to be added to the list. Select add(java.lang.String) from the
pop-up window.

A dashed green connection is displayed between the Add button and the list.
You have now completed half of this connection. You have told VisualAge that
when the Add button is pressed, something is added to the list...but you have not
specified what is added. You can do this now.

Move the cursor over the dashed green connection from the Add button to the
list. Left-click over the connection. Selection handles are shown along the
connection to show that it has been selected. With the cursor still over the
connection (but not on a selection handle) right-click to bring up the Connections
pop-up menu and select Connect--Item.

Move the resulting spider over the TextField. Left-click and select Text. A
purple arrow joins the TextField to the green connection. Do not forget that
VisualAge colors each connection depending on its type. You have now
completed the window for this section.

Test it out by selecting the Test smarticon. Enter some values in the TextField
and check if the Add button adds them to the list. Test the Exit button.

This is how our completed VisualAge window looks; your window may look
similar.

36 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Version Your Application: Left-click on the Hierarchy tab. The class hierarchy
is displayed showing the Team01OrderEntry class and its super-classes.
Left-click on Team01Lab1.Team01OrderEntry to select it. Select the
Classes--Version... menu item. Make sure the Automatic radio button is selected
and click on the Finish button.

Your class is now versioned. You can change the class at any time but you can
also go back to this version of the Team01OrderEntry class whenever you need
to.

2.3.3.3 Extending the Application
The application is now extended and the following actions are performed:

Add a quantity field.

Modify the behavior so that the Add push button invokes a script to
concatenate the part and quantity details and then displays them in the list.

Add a Delete button to delete existing entries in the list.

Enable/disable the Delete button when an item is selected/deselected in the
list.

Add a Java script breakpoint and modify code when the breakpoint is
invoked.

At the end of this section of the chapter, the completed development window
should look similar to this:

Chapter 2. Introduction to VisualAge for Java 37

This soft copy for use by IBM employees only.

Add Standard GUI Parts: Click on the Visual Composition tab to get back to the
Visual Composition Editor.

Add a Delete button to the window.

Disable the Delete button. To modify a component's properties, double
left-click on the component to bring up its Properties window. Check on
expert features, then single left-click inside the value column for the property
name you want to modify (to bring focus to the value) and then change the
value as appropriate. Change the enabled property to false and the label to
Delete.

Add a TextField that allows the quantity of parts to be input (called the
Quantity TextField later).

Place it level with and a little to the right of the part TextField. You may
need to move some components around, and you may even have to make
the window a little larger. To re-size any component, single left-click and
hold down over a re-size handle and drag the mouse to the required size.
Release the mouse button to end re-sizing.

Add a label part and change its text property to Quantity.

Delete Connections: You can add items from the TextFields to the list using a
script in this section. Therefore, the current connection from the Add button
(action.actionPerformed) to the list (add(java.lang.String)), taking the Text
property from the TextField, is removed. Move the cursor to the green
connection from the Add button to the list (the one just described). Single
left-click over the connection and re-size handles should appear on it. If they do
not appear, you are not exactly over the connection; move the cursor and try
again if this is the case. Press the Delete key and select OK when prompted by

38 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

the confirmation message. The connection and any connections it was
supporting are deleted.

Write a New Java Method to Add Part/Quantity Text to the List: To add both the
part and quantity text to the list, write a script to concatenate the two TextFields
together. Single left-click on the Methods tab and select the Methods--New
Method... menu item. In the Method Name entry field of the Method Properties
window, enter String formatLine (String part, String qty) and select the Finish
button.

A new method called formatLine is created that takes two String variables (part
and quantity) and returns a string (the concatenated string).

/**
* This method was created by a SmartGuide.
* @return java.lang.String
* @param part java.lang.String
* @param qty java.lang.String
*/
public String formatLine(String part, String qty) {
return;
}

Modify the formatLine method source as shown in the following example and use
Ctrl-S to save the modified method.

/**
* This method was created by a SmartGuide.
* @return java.lang.String
* @param part java.lang.String
* @param qty java.lang.String
*/
public String formatLine(String part, String qty) {
return par t + " " + qty;
}

Single left-click on the Visual Composition tab to return to editing the window.

Chapter 2. Introduction to VisualAge for Java 39

This soft copy for use by IBM employees only.

Make the Connections to Add the Part/Quantity to the List: Start the connection
from the action.actionPerformed event of the Add button and drop the spider
over the free-form surface. The free-form surface is outside the window that you
are building. The connection target pop-up menu appears. Select the Event to
Script... menu item. The following window is shown that lists all of the scripts
you can connect to for the class being developed.

Select the java.lang.String formatLine(java.lang.String, java.lang.String) script
and select OK.

A light green dashed connection is shown from the Add button to the free-form
surface. A dashed connection means that the connection requires parameters
that have not yet been supplied.

Connect the part parameter for the preceding light green dashed connection
to the text property of the part TextField.

Connect the quantity parameter for the preceding light green dashed
connection to the text property of the quantity TextField.

Connect the normalResult parameter for the preceding light green dashed
connection to the addItem(java.lang.String) method of the list.

Try testing the application to see if you can add parts to the list using the
script that you just created.

Return back to the Visual Composition editor.

Make the Connections for the Delete Button

Connect the action.actionPerformed event of the Delete button to the
remove(java.lang.String) action of the list. There is a dashed green line
connection from the Delete button to the list.

Click on the list to select it.

Connect the selectedItem property of the list to the item parameter of the
connection between the Delete button and the list. The green connection
now should become a solid green line.

Connect the itemStateChanged event (that is, an event is fired when the
selected item changes) of the list to the enabled() action of the Delete button.
There is a dashed green connection between the list and the delete button.

40 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Double-click on the dashed green connection to open it. Click on Expert
features and then use the Set parameters button to set the value to True .
This enables the button when an item is selected in the list.

Connect the action.actionPerformed event of the Delete button to the
enabled() action of the Delete button. You can leave the parameter default
to false; this disables the button.

Test the part and add some part/quantity items to the list. Try to select some
items from the list to see if you can delete them. The Delete button should only
be enabled when an item is selected in the list. Keep the test window running
and continue with the next section.

Debugging Code, Setting Breakpoints, and Changing Code "on the Fly": With
the Test window still running, return to the class browser/editor Methods tab
page. Modify the code of the formatLine method so that the line return part + "
" + qty; now reads return part + " : " + qty. Save the part with Ctrl-S. Add
another part/quantity item and see that the code you changed was used to add
this new part. Your test window should look similar to this:

With the Test window still running, return to the Class browser/editor Methods
tab page. Move the cursor to the method source pane on the return part + " : "
qty; line. Right-click the mouse and select Insert/Remove Breakpoint . A blue
breakpoint marker is shown. This is the point where the code stops prior to
executing it and opens up a debugger window. If the blue breakpoint marker
does not appear, you probably were not in the first column or you were on an
incorrect line.

Chapter 2. Introduction to VisualAge for Java 41

This soft copy for use by IBM employees only.

Add another part/quantity item to the running test window. The debugger
window is shown.

Figure 13. VisualAge for Java Debugger

The code has stopped prior to executing the statement. The uppermost pane
shows the current thread when the debugger was invoked. In the three middle
panes, the left-hand pane shows the call stack with the most recent method at
the top (call stack pane), the center pane shows the variables that are
accessible (variables pane), and the right pane shows the value of the currently
selected variable (variable value pane). The bottom pane shows the current line
in the current method (method source pane). Single left-click on the part
variable in the variables pane. The variable value pane is updated and displays
the string value of whatever you typed into your part TextField. As you are
aware, a string is an array of characters. Expand the part variable you have
selected with a single left-click on the plus (+) . Then expand the resulting
char[] value entry. Select entry 0, then 1 (this assumes you typed in a part with
two or more characters). The variable value pane shows you the values of the
first two characters you typed into your part TextField.

42 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Now single left-click on the
Team01Lab1.Team01OrderEntry.connx(java.awt.event.ActionEvent) entry in the
call stack pane (notice your entry is similar to conn1). You see that the variables
pane, variable value pane, and method source pane are all updated. In the
method source pane, the actual code that called the current method is
highlighted (this.formatLine(getTextField12().getText(),
getTextField11().getText());). Navigate to the Methods pane of the
Team01OrderEntry Class editor/browser and traverse the list of methods and
select the connx (for example, conn1) method. This is the method that you are
currently looking at in the debugger. Return to the debugger window. Select the
top entry in the call stack pane,
Team01Lab1.Team01OrderEntry.formatLine(java.lang.String). Now modify the
code so that the string " : " now reads " :- ". Ctrl-S to save the method. Select
the Resume button. The debugger window blanks out as that thread has now
run to completion. Close the debugger window and navigate back to the running
test window. Your part/quantity entry has been added and with the " :- "
separator between the part and quantity.

Anywhere you have a method source window, you can modify the method, save
it, and it runs immediately with the updated code. Now select an entry in the list
of the running test window. The Delete button is now enabled. Test it out by
deleting the entry. The entry is deleted and the Delete button is disabled (until
you select another entry in the list).

Close it Down and Version: Close the Team01Lab1.Team01OrderEntry Class
editor/browser. Version the class, either accepting the default version name or
enter your own. Save the workspace.

2.3.4 Team Development
Team development will be enabled in VisualAge for Java with the incorporation
of the ENVY/Developer from OTI, an IBM Subsidiary company. Team
development will be available as part of VisualAge for Java Enterprise Edition.

Important Information

Team support is not available in the currently released product, but is
planned to be made available by the end of 1997.

For an individual, this allows a developer the freedom to develop code
independently from the rest of the development team, yet still within the scope of
the overall project. A developer can recall at any time a history of individual
changes made to any component made within the developer's image/workspace,
plus the ability to retrieve prior versions of a component should this be
appropriate. This total flexibility in development allows a developer to try things
out in the knowledge that at any time, a prior frozen version of a component can

Chapter 2. Introduction to VisualAge for Java 43

This soft copy for use by IBM employees only.

be recalled. The component to be recalled can be an individual method, an
entire class/interface, a package, or a complete project.

Version control within the team development provides facilities to freeze the
development of a component (class, package, or project) so that no changes can
be made to that component. This is extremely useful when checkpointing
components within a development cycle.

With the Enterprise Edition, multiple developers can, if appropriate, work on any
component (project, package, class, or method) concurrently. In a normal
check-in, check-out philosophy, this is impossible but within the VisualAge for
Java Enterprise Edition, this can be achieved. Despite this flexibility, component
integrity is never compromised. For further information, see the VisualAge for
Java documentation.

In the Professional Edition, each developer has a unique repository that stores
every component available, although the developer may only have a subset of
components in the image. However, in the Enterprise Edition every developer
shares a common repository allowing all the work to be shared and accessed
concurrently, online and in real time.

Just as in the Professional Edition, the Enterprise Edition records all changes
made to any component and who made that change. In the Enterprise Edition,
there are facilities to enable the access control rights for individual developers
to every component within the repository.

Therefore, because of the ease of development with fallback facilities, the
development in a RAD type environment is positively encouraged by the tool but
with all the management controls should they be necessary.

The configuration of VisualAge for Java places a development image/workspace
on the client and a repository on the client/file server in the Professional Edition.
In the Enterprise Edition, the repository has to be placed on a shared file server.
The repository holds a copy of every version of every component for the
development team, whereas the image/workspace contains only the requested
version of a sub-set of components. As an example, Developer1 may be working
on GUI projects, packages, and classes whereas Developer2 may be working on
AS/400 access packages, packages, and classes. The shared repository (the
Enterprise Edition) holds every edition/version of all these components, whereas,
for example, the Developer2 image/workspace holds only the AS/400 access
components and not the GUI components.

44 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

In a team development environment using the AS/400 IFS as the file server for
the repository code, changes made by a developer to any component get written
back immediately to the repository. Therefore, the component change is
immediately made available to all other developers who may be using the
component. On a nightly basis (as part of the regular systems management
procedures), the repository should be backed up to external media.

When a developer starts VisualAge for Java, the image/workspace gets copied
from disk into memory and it is this copy of the image that the developer works
with when adding/deleting/changing components. It is vital that the developer
saves this "in-memory" image to disk on a regular basis (for example, once per
hour). It is not catastrophic if the developer receives a GPF after an entire
series of changes since every component is still available in the repository.
However, rebuilding the image from scratch may take an hour or two.

In addition, at regular intervals (for example, at lunch time and at end-of-day),
each individual developer should copy their working image/workspace to the
AS/400 system, and these again should be backed up on a nightly basis.

The team development facilities enable the versioning and editing of
components. This is a simple process where the developer can create a version

Chapter 2. Introduction to VisualAge for Java 45

This soft copy for use by IBM employees only.

of a component at any time where a version is a frozen component that cannot
be changed. Therefore, in the following diagram, there are three separate
versions of the component. The developer can assign each version a unique
name and in the example, the versions are 1.0, 1.1, and 2.0. As with most things
in VisualAge for Java, a component can be any class/interface, package, or
project and the developer explicitly versions these components. Methods are
the exception and these get versioned automatically every time a change is
made to them.

The big question is..."If a component is a version and a version is just another
name for a frozen component that cannot be changed, then how do I change a
versioned component"? The answer to this is to create an edition of the
component. An edition of a component is editable, but the original version of the
component remains in the repository should the developer need to go back to it
at any time. Therefore, the process for creating, freezing, and changing a
component (let's say Class A) is as follows;

Create Class A (it gets created as an edition):

− Write methods.
− Define variables.

Version Class A as Class A 1.0:

− Class A is frozen and cannot be changed.

Edition Class A:

− Class A can now be edited again, but version 1.0 is still available should
it need to be restored.

Version Class A as Class A 2.0

46 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

2.3.5 Applet Viewer
The VisualAge for Java Applet Viewer is incorporated into the IDE. This enables
a developer to develop Java applets and to test them without having to boot up a
separate Web browser (for example, Netscape). The applet viewer is a primitive
viewer and should only be used for debugging purposes with the final testing
being performed in a real life Web browser. However, because the applet
viewer comes with VisualAge for Java, it supports the level of the JDK supported
by the IDE (currently JDK 1.1), whereas you may not be certain of this level of
support in some Web browsers. For example, the current level of Netscape
supports most but not all JDK 1.1 APIs.

VisualAge for Java has an applet creation SmartGuide that is accessed through
its smarticon on the toolbar.

The applet creation SmartGuide walks the developer through the process of
creating an applet and completing the tasks that usually are hand-coded into the
applet. One of the windows that is displayed as part of the SmartGuide is
included here as an example of the type of information the applet creation
SmartGuide can process. The SmartGuide - Applet Properties window allows
the setting of applet/application and thread details. Many applets can be run as
stand-alone applets and stand-alone applications. In the latter case, a main()
method needs to be created. In addition, should the applet perform a long
running task or repeatable task (such as repeating animation), it is advisable to
write this as a separate thread. Again, the SmartGuide provides the option of
creating the applet to use its own thread.

Figure 14. SmartGuide - Create Applet

Chapter 2. Introduction to VisualAge for Java 47

This soft copy for use by IBM employees only.

After the applet has been created from the SmartGuide, use the class browser to
view it and to see its place in the class hierarchy. As you expect, the applet
inherits from java.applet.Applet and its required methods are generated also
(init(), start(), stop(), destroy(), paint()). In the following example, you can see the
destroy() method.

Figure 15. Sample Applet

From the applets pop-up menu, select the run--In Applet Viewer menu item to
run the applet in the applet viewer. Outside of the IDE, an HTML file is required
to wrapper the applet so it can run in a Web browser. The HTML file specifies
the width, height, parameters, and so on... of the applet. Within the VisualAge
for Java IDE, this HTML file is not required. As part of the applet viewer, the
Settings window is displayed that asks the developer to input these HTML
settings prior to the applet running.

48 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Figure 16. Run Applet

2.3.6 Editor/Debugger/SmartGuides
In an object-oriented application development environment, developers need to
perform many similar tasks as procedural developers, but in addition, they
perform a number of different tasks as part of a RAD development process.
Specific to Java, these tasks include: add a project, package, or class
interactively.

A new project, package, or class can be added interactively (for example, a new
class can be created from many different places in the IDE including the
Workbench, Project Browser, Package Browser, and so on).

Add or change a method:

Adding or changing a method is probably the most important task of an
application developer as this is the code that is actually executed in the
running application. VisualAge for Java provides the capability to change a
method at virtually any point. All browsers allow method source editing, and
the debugger also allows methods to be added and edited.

Evaluate an expression:

Where ever a method can be entered or edited, an expression can be
evaluated. For example, a developer may write a complex, concatenated
line of Java code that needs to be tested. Instead of running the complete
application, in many cases, VisualAge for Java allows the code snippet to be
highlighted and run as is (provided it is a stand-alone piece of code).

For example, in any Method Source pane, the following code can be entered,
selected, and run:

System.out.println("Hello World!")

Hello World is displayed on the console window (the standard output device
of the IDE).

Invoke methods:

Chapter 2. Introduction to VisualAge for Java 49

This soft copy for use by IBM employees only.

As previously discussed, most code can be evaluated "on the spot" without
running an application; it follows from this that most methods can also be
evaluated/invoked "on the spot".

Test, debug, set breakpoints:

The debugger within the IDE is a powerful aid to the developer. It enables
breakpoints to be set, to hop over methods, to hop into methods, to run
methods to completion, to interactively patch code, and to add new method
classes while the running thread is held.

Patch code:

As previously stated, code can be patched at any time within the
development cycle without losing the original code. This includes patching
running code that may have caused the debugger to be invoked.

Compile class/method incrementally:

Outside of the IDE, a developer must modify the class as a complete unit.
Therefore, if only one line of a method needs modifying, then the entire
.JAVA file needs to be edited and compiled. Within the VisualAge for Java
IDE, individual methods can be edited and saved incrementally without the
need to recompile the entire class that contains the method being changed.

Maintain project database:

The team development environment has already been introduced in this
chapter, and it is this team development environment that provides a
complete project database for the development team.

Syntax check code:

VisualAge for Java detects syntax errors that occur when code violates Java
syntax rules. If, for example, you misspell a keyword or forget a semicolon,
a message dialog box informs you of the type of syntax error when you try to
save the code. In addition, the input cursor in the Source pane automatically
selects the piece of code that caused the problem.

In the following figure, the Workbench Window is displayed showing the
ConnectToDB(java.lang.String, java.lang.String). In the method pane, a class
can be defined/changed, a method can be defined/changed, a breakpoint can
be set, code is syntax checked, and code snippets can be evaluated. In the
following example, a breakpoint has been set on the
as400.connectService(AS400.COMMAND); line, and this is indicated by the
(blue) dot in the left margin.

50 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Figure 17. VisualAge for Java Workbench

2.3.6.1 The Editor Pane
The editing pane (elsewhere called the Method Source pane) allows the
developer to;

Perform editing operations.

Undo/Redo:

This option is accessed from the Edit--Revert menu item.

Search in the workspace (image) for highlighted text:

A developer can highlight some text and then select Search from the pop-up
menu to search the workspace for references to or declarations of the
highlighted text.

Insert and remove breakpoints for debugging:

A breakpoint is inserted/removed by moving the cursor to the left margin of
the line requiring a breakpoint and double-clicking. In the IDE, this forces
the debugger window to appear just before execution of this line.

Save your changes:

When changes are saved for a method, the entire method is syntax checked
before it is saved. At any time, the previous version can be restored.

Cancel your changes:

Chapter 2. Introduction to VisualAge for Java 51

This soft copy for use by IBM employees only.

If changes have been made to a method and the developer selects another
method to change without saving the pending changes, a warning dialog is
displayed asking whether the pending changes should be saved or not.

Editor setup:

The editor has some default settings and these can be modified. The default
settings are as follows:

− Browser Font - Serif 10
− Comment - Red
− Default Text - Courier 10
− Error - Red
− Keyword - Blue
− Literal String - Green

2.3.6.2 The Debugger
As you work in the integrated development environment, you need not launch a
special debugger virtual machine or start the virtual machine in debug mode.
The debugger opens automatically when you need it. It opens when:

Execution hits a breakpoint that you inserted.

An uncaught exception occurs.

You select the debug button () on any tool bar.

You can use the debugger to step through code and inspect and change
variables. As well, you can fix a bug by modifying the source from within the
debugger.

VisualAge activates the debugger when one of a program's threads encounters a
breakpoint. The top pane (the threads pane) displays the current thread that
was created when you started the applet/application and the debugger invoked
for whatever reason. In VisualAge, you create a thread (or multiple threads)
whenever you run a program or evaluate code in the Scrapbook. When the
debugger opens on a breakpoint, the threads pane displays the thread that
caused the debugger to open. The entry consists of an internal identifier for the
thread and an indication of what caused the debugger to open.

The middle part is divided into three panes that give more details of the current
state of processing the code. From left to right, they are:

Stackframes pane
Variables pane:

A text pane that displays the current value of a selected variable in the
variables pane.
Source pane

The stackframes pane (or thread stack pane) displays a stack trace as a list of
stackframes. Each stackframe corresponds to a method that was called.
Stackframes are in reverse chronological order (the most recent stackframe is
the top item). The debugger lets you manipulate thread execution by dropping
to a particular stackframe in the stackframes pane. This is particularly useful if
the debugger opens on an uncaught exception, since it lets you back up and
repeat the steps that caused the exception to be thrown.

The Source pane displays the source of the selected method.

52 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The Variables pane displays a list of all the locally visible variables for the
current stackframe. If you select a variable, its current value is displayed in the
text/variable pane.

Figure 18. VisualAge for Java Debugger

Stepping through Methods: With the debugger's navigation buttons, you can
step through the current method. You can use the buttons to process the current
statement (which is the one that is automatically selected), step into it, execute
until the method returns, or resume processing the thread. When the debugger
opens on a breakpoint, all the navigation buttons are enabled. By contrast, if the
debugger opens because of an uncaught exception, the navigation buttons are
disabled because the current process has hit a dead end. In this case, you must
first drop the stackframe that throws the exception to reset the current status of
processing.

Into:

Steps into the current statement and invokes the method (if any). A new
stackframe is added to the list and the Source pane displays the source of
the method that you stepped into. Use this button to follow a method and
determine what it does.

Over:

Executes the statement that is currently selected in the Source pane. The
values of local variables are updated.

Return:

Chapter 2. Introduction to VisualAge for Java 53

This soft copy for use by IBM employees only.

Executes all statements in the method that is currently selected in the
stackframe's pane until the method is about to return and then stops. All
local variables are updated.

Resume:

Continues processing. Select this button to continue running the program. If
the program is resumed successfully, its thread is removed from the
debugger.

2.3.6.3 Inspectors
You can use an inspector to view the state of objects or variables that hold
objects. With the inspector, you can:

Inspect the result of evaluating a code fragment in the Scrapbook or in the
Variables pane of the debugger.

Open a browser on the declarations of an object's class.

Evaluate code fragments in the context of an object.

Change the value of an object.

Using the Inspector: As an example, open an inspector on a string array object
by copying the following code to a page in the scrapbook.

String [] [] info = {
{ "Red", "Number", "R of RGB" },
{ "Green", "Number", "G of RGB" },
{ "Blue", "Number", "B of RGB" }};

return info;

Select the code and select Inspect from the pop-up menu. The inspector
appears and shows the array object stored in the info variable. The title bar
displays the identifier for the class of the inspected object (a two-dimensional
string array). The title bar also shows the context from which you opened the
inspector (from Page 1).

The Fields pane shows the elements of the array. The Value pane shows the
value of a selected field.

The info array maps to a table with three rows and three columns (indexed 0
through 2). The top-level items in the Fields pane map to the three rows. By
expanding items 0 through 2, you see that each row consists of three columns.

Select the second row in the first column (info[1] [.0]). It holds the parameter
name Green. Internally, the string Green is represented as an array of
characters that you can view in more detail by expanding the tree in the Fields
pane. The icon () to the left of the character array indicates that the internal
representation is private.

Changing the Value of an Object: You can change the value of fields while you
are inspecting an object. Follow these steps.

1. In the Fields pane, select the field that you want to modify.

2. In the Value pane, replace the text with the value you want in the field.

3. Select Save from the pop-up menu.

54 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The expression in the Value pane is evaluated and if the result can be assigned
to the object, it is. When the code resumes, it uses the value. If the result
cannot be assigned, the inspector displays an error message.

2.3.6.4 Other VisualAge for Java Windows
The Scrapbook: The Scrapbook helps you organize code fragments and notes.
You can run any Java statement or expression from the scrapbook and control
the context in which it is compiled.

To open the scrapbook, select Scrapbook from any window pull-down menu.
The scrapbook appears with an empty page. From the scrapbook, you can run
the code fragment or open an inspector on the object that is returned as the
result of running the code. To open an inspector, select Inspect from the pop-up
menu of the selected code fragment.

For example, most programming languages and environments take developers
through the "Hello World" application as the first exercise in learning a new
language/environment. With VisualAge for Java, this can be achieved in under a
minute.

Hello World in Under a Minute:

1. Select Scrapbook from the Window pull-down menu.

2. Type:

System.out.println("Hello World!");
Select the line of code that you typed
in Step 2.

3. Select Run from the pop-up menu.

The console (the standard output device) appears and displays the string Hello
World!. The example works. The code was automatically compiled by the
built-in Java compiler and then run by the built-in Java virtual machine.

The Console: The console is the standard output device (System.out) for Java
programs that you run in VisualAge.

The Repository Explorer: With the Repository Explorer, you can explore the
repository to view program components that are not present in the
workspace/image.

The Log: The log displays messages and warnings from VisualAge.

2.3.6.5 SmartGuides/Wizards
The VisualAge for Java IDE comes with various SmartGuides (also known as
Wizards in other IDEs) that guide the developer through the repeatable process
of creating a component.

For example, the Class Creation SmartGuide takes the developer through the
standard process of creating a class including the following setup "parameters::

Is this a class or an interface?

Which project is the class defined in?

Which package is the class defined in?

What is the class name?

Chapter 2. Introduction to VisualAge for Java 55

This soft copy for use by IBM employees only.

Which class is the superclass?

What happens when the SmartGuide completes?

− Open a Visual Composition Editor (for example, if the class inherits from
java.awt.Frame).

− Open a class browser.
− Do not open a browser.
− Which interfaces (if any) does the class implement?
− Which modifiers should be implemented?

- Public
- Abstract
- Final

− Should stub methods be generated?

With future releases of VisualAge for Java, it is likely that more SmartGuides will
be implemented, particularly in the area of AS/400 access to complement the
AS/400 Toolbox classes.

There are a number of SmartGuides including class creation, interface creation,
method creation, and applet creation.

2.3.7 Proxy Builder
The VisualAge for Java development environment includes a Java proxy builder
that allows the development of JavaBeans to enable a local JavaBean to access
another JavaBean located in another Java Virtual Machine (local or remote) by
using a Java proxy object.

In VisualAge for Java, the RMI access builder can generate proxy code for a
JavaBean in such a way that this JavaBean can be made accessible remotely
through the builder-generated proxy code. A client-side server proxy,
server-side server proxy, and supporting interface code are generated for each
user JavaBean. A distributed client/server application can easily be created
using these proxies. A client application can use the generated client-side
server proxy as if it were a local object even though service requests to the
client-side server proxy are actually sent over to the user JavaBean through
RMI.

Note: In this release, you can only create servers out of JavaBeans that are
generated by the C + + access builder. The tool to create distributed access for
user-written JavaBeans is not yet available.

To enable a Java application to access a Java server over RMI:

1. Create or modify the packages.

2. Create the JavaBeans.

3. Import the JavaBeans into the Enterprise access builders.

4. Generate the distribution proxies as JavaBeans.

5. Export the generated JavaBeans.

6. Import the generated JavaBeans into the IDE.

7. Write the business logic.

8. Assemble the client.

9. Assemble the server.

56 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

10. Build the application.

11. Deploy the application.

12. Run the application.

13. Regenerate code.

2.4 Enterprise Access Builders (EAB)
The Enterprise Access Builders provides a graphical method to organize, create,
and package parts generated by the following sub-components:

Enterprise Access Builder for data (Data Access Builder)
Enterprise Access Builder for CICS (CICS Access Builder)

These sub-components produce JavaBeans for access to transactions and
databases.

The following operations are available from the Enterprise Access Builders:

Create a package to organize parts into Java packages.

Create data access parts to provide access to the Data Access Builder.

Create CICS parts to access CICS transactions using CICS ECI.

Create Jar file to package multiple parts into a JAR file.

In this chapter, we focus only on the Data Access Builder.

2.4.1 Data Access Builder (DAX)
VisualAge for Java - Enterprise Access Builder for Data (referred to as Data
Access Builder or DAX) is an application development tool that you can use to
create data access classes customized for your existing relational database
tables. It allows you to create object-oriented applications quickly and reliably
by generating the source code for you. These data access classes (which are
JavaBeans) can be used directly in your Java programs and by the VisualAge for
Java IDE.

Some of the key features of the Data Access Builder are:

JDBC to access your database:

Data Access Builder generates code that uses JDBC to access your
database. You can use the JDBC driver in IBM DB/2, JDBC-ODBC bridge in
JDK Version 1.1, or other JDBC drivers with the generated code.

Flexibility in specifying source:

Data Access Builder generates code from database tables, from database
views, or from SQL statements that you type in.

Quick and simple to use:

You can simply specify a database table name and Data Access Builder can
access the table information and generate Java source code that allows you
to add, update, delete, or retrieve the data in that table.

Data manipulation operations:

Generated classes customized to your data help you perform common
database tasks such as adding, retrieving, updating, and deleting data.

Chapter 2. Introduction to VisualAge for Java 57

This soft copy for use by IBM employees only.

Classes are also generated to allow you to use a cursor to fetch rows from
database queries that return result sets.

Add your own methods:

You can add your own methods by typing in SQL statements; Data Access
Builder generates the Java source code for you.

Stored procedure support:

You can use Data Access Builder to generate code that calls stored
procedures.

Generate code for table joins:

You can specify table joins using SQL statements, and Data Access Builder
can generate Java classes for them.

Connection and transaction services:

Separate services are provided for connection and disconnection from your
databases. In addition, commit and rollback methods are generated to
handle transaction services.

For more detailed information on DAX and examples of how to use it to build
Java applications and applets that access the AS/400 system, please refer to
Chapter 5, “Enterprise Access Builder For Data (DAX)” on page 135.

2.5 System Requirements
The current release of VisualAge for Java has the following system
requirements:

Processor:

32-bit processor (Pentium or higher, or compatible processor)

Display:

SVGA 800x600 minimum (1024 x 768 recommended)

Operating system:

Windows NT 4.0, Windows 95, or OS/2 Warp 4.0

Other software:

− DAX with DB2 requires DB2 2.1.2.
− Support for other databases through ODBC is also available. An ODBC

driver is required and is not shipped with VisualAge for Java.
− TCP/IP

Memory:

32M minimum (64M recommended)

Disk space:

− EAB = 55MB
− EAB + IDE = 90MB
− Swap space = 30MB

58 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

2.6 Summary
In summary, VisualAge for Java is a full member and newest member of the
VisualAge family. It allows application developers to develop applications and
Web-based applets using the Java language.

VisualAge for Java includes a powerful and full-function integrated development
environment. The IDE is JDK 1.1 compliant, allowing the edit/compile/test of
Java applications within the IDE prior to exporting the code for running in other
JDK 1.1 compliant virtual machines and Web browsers. Because of its
compliance with the JDK 1.1 API, the VisualAge for Java environment supports
Java APIs for accessing remote components through the RMI and JDBC APIs. In
particular, with the AS/400 Toolbox, the AS/400 development environment is
extremely rich, enabling access to the most common application development
building blocks on the AS/400 system (files, data queues, programs, and so on).

Because of the portability of JDK 1.1 compliant Java code, code that is
developed using VisualAge for Java should be able to run without change on the
native AS/400 Java Virtual Machine when it becomes available.

The IDE enables a developer to build and run applications, applets, and code
snippets interactively without the need to run the compile statement (JavaC)
from the command line. All applications can be run from within the IDE without
the need to export the Java source or class files. This is achieved through the
provision of a JDK 1.1 compliant Virtual Machine (VM) within the IDE and an
applet viewer. Because you can interactively modify code and run it without
compilation, developers are able to debug code on the fly, spot errors in their
code with the debugger, change it, and then continue without bringing the
running application down...all within the VisualAge for Java IDE.

VisualAge for Java is an open IDE and developers can easily import and export
Java source and class files as well as JavaBeans, which may have been
purchased by the company or made available on the WWW. The JavaBeans
support in VisualAge for Java also enable a developer to take an existing
JavaBean (for example, from the WWW), import it into VisualAge for Java, modify
the bean, and then export it again for use within another JDK 1.1 compliant
development environment (for example, Symantic Cafe and Borlands JBuilder).

VisualAge for Java has two components that extend its capabilities to make
client/server programming easier. The Enterprise Access Builders (EAB)
provide components to aid connection to DB2 compliant data sources, CICS
transactions, and other programs. Secondly, the AS/400 Toolbox for Java
provides a series of classes specifically designed to access many AS/400
features (all without using Client Access/400 as a prerequisite).

The initial release of the product will run on OS/2 Warp Version 4.0, Windows NT
4.0, or Windows 95.

Chapter 2. Introduction to VisualAge for Java 59

This soft copy for use by IBM employees only.

60 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Chapter 3. AS/400 Toolbox for Java

This chapter covers the AS/400 Toolbox for Java. It covers the following topics:

Introduction to the AS/400 Toolbox for Java
Introduction to Application Examples
JDBC Performance Tips
JDBC Example
Reusable GUI Part
Stored Procedures Example
DDM Record Level Access Example
Distributed Program Call Example
Data Queues Example
Print Example
IFS Example

3.1 Introduction to the AS/400 Toolbox for Java
The AS/400 Toolbox for Java is a set of enablers that supports an internet
programming model. It provides familiar client/server programming interfaces
for use by Java applets and applications. The toolbox does not require
additional client support over and above what is provided by the Java Virtual
Machine and JDK.

The AS/400 Toolbox for Java is currently available as an open beta driver from
IBM. It can be downloaded from
http://www.as400.ibm.com/products/software/javatool/javatool.htm .

The toolbox provides support similar to functions available when using the Client
Access/400 APIs. It uses sockets connections to the existing OS/400 servers as
the access mechanism for the AS/400 system. Each server runs in a separate
job on the AS/400 system and sends and receives architected data streams on a
socket connection.

The AS/400 Toolbox for Java is delivered as a Java package that works with
existing servers to provide an internet-enabled interface to access and update
AS/400 data and resources.

The base API package contains a set of Java classes that represent AS/400 data
and resources. The classes do not have an end-user interface but simply move
data back and forth between the client program and an AS/400 system, under
the control of the client Java program. The Java classes in the base API
package have these functional responsibilities:

Describe the public interface for access to AS/400 data and resources.
Manage a set of sockets connections to the server jobs.
Implement the public interface by creating and parsing the data streams
defined for the appropriate server.

Access to the following AS/400 data and resources are provided:

AS/400 object/infrastructure/sign-on
JDBC access to DB2/400 data
Record-level access to DB2/400 data
Integrated file system

 Copyright IBM Corp. 1997 61

This soft copy for use by IBM employees only.

Print functions
Commands
Program calls
Data queues

The following functions do not directly access AS/400 data and resources but
provide useful services for Java programmers accessing AS/400 data:

AS/400 data types
AS/400 data description
Access to AS/400 messages generated from a command, program call or
print operation

The base API package requires a Java Virtual Machine supporting JDK 1.1. The
class files for JDK 1.1, and the base API package must be available at runtime
for applications and applets that are built using the base API package.

3.1.1 Application Developer Usage
Any Java Integrated Development Environment (IDE) can be used with the
AS/400 Toolbox for Java. Java source can be kept on your client workstation or
in the AS/400 integrated file system and accessed using a mapped drive.

3.1.2 AS/400 Host Servers
The AS/400 host servers must be running. Use the AS/400 command STRHOSTSVR
*ALL to start the host servers.

Ensure the QUSER user profile is enabled and that the password has not
expired. QUSER is used by the servers at startup time.

3.1.3 AS/400 Object/Infrastructure/Sign-On
An AS400 object manages:

A set of socket connections to the AS/400 system:

Each AS400 object contains one set of socket connections (up to one
connection for each service type). This allows the Java programmer to
control the number of connections to the AS/400 system. To optimize
communications performance, a Java program can create multiple AS400
objects for the same AS/400 system. This allows multiple sockets
connections to the AS/400 system. Java programs that want to conserve
AS/400 resources create only one AS400 object. This reduces the number of
connections and reduces the amount of resource used on the AS/400 system.

Sign-on behavior for the AS/400 system:

This includes prompting the user for sign-on information, password caching,
and default user management.

Prompting for sign-on information:

Prompting for userid and password may occur when connecting to the
AS/400 system. Java programs can turn off prompting and graphical
message windows displayed by the AS400 object. An example is an
application running on a gateway on behalf of many clients. If prompts and
messages were displayed on the gateway machine, the user has no way of
interacting with the prompts.

Password caching:

62 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

To minimize the number of times a user has to type sign-on information,
password caching can be used. The password cache applies to all AS400
objects that represent an AS/400 system within a Java virtual machine. This
means a cached password in one Java virtual machine is not visible to
another virtual machine. The cache is discarded when the last AS400 object
is destructed. The sign-on dialog has a check box that gives the user the
option to not cache any given password. When an AS400 object is
constructed, the Java program has the option to supply the userid and
password. Passwords supplied on constructors are not cached.

Default user management:

To minimize the number of times a user has to sign on, a default userid can
be used. The default userid is used when a userid is not provided by the
Java program. The default userid can be set either by the Java program or
through the user interface. If the default userid has not been established,
the sign-on dialog allows the user to set the default userid. Once the default
userid is established for a given AS/400 system, the sign-on dialog does not
allow the default userid to be changed.

The Java program must provide an AS400 object when using an instance of a
class that accesses the AS/400 system. For example, the CommandCall object
requires an AS400 object before it can send commands to the AS/400 system.

Chapter 3. AS/400 Toolbox for Java 63

This soft copy for use by IBM employees only.

3.2 AS/400 Toolbox for Java and Host Servers

Figure 19. Java Host Server Overview

This set of interfaces provides the infrastructure needed to create and maintain
sockets connections to the AS/400 servers, send and receive data streams, and
handle a sign on. This group of classes includes a private AS/400 security
manager class that maintains a list of validated AS/400s and sign-on information
for the system. These classes use the sign-on server and the central server to
interact with the AS/400.

3.2.1 Data Descriptions and Conversions
The data conversion APIs provide the capability to convert numeric and
character data between AS/400 and Java formats. Conversion may be needed
when accessing AS/400 data from a Java program. The data conversion APIs
support conversion of various numeric formats and between various EBCDIC
code pages and unicode.

Two levels of support are provided by the data conversion APIs.

Data types convert data between AS/400 and Java format.

Record-level conversion builds on data types to support converting all fields
in a record with a single method call. The RecordFormat class allows the
program to describe data that makes up a DataQueueEntry, ProgramCall
parameter, Record level database access, or any buffer of AS/400 data. The

64 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Record class allows the program to convert the contents of the record and
access the data by field name.

3.2.2 AS/400 Data Types
This set of classes represent AS/400 data as Java data types to simplify the
handling of AS/400 data for Java programmers. Each class converts data
between the AS/400 representation and the Java representation of the data.
Each class implements the AS400DataType interface that defines common
functions for converting data between representations.

Public Class Description

AS400Bin2 Convert between a signed two-byte
AS/400 number and a Java Integer
object.

AS400Bin4 Convert between a signed four-byte
AS/400 number and a Java Integer
object.

AS400UnsignedBin2 Convert between an unsigned two-byte
AS/400 number and a Java Integer
object.

AS400UnsignedBin4 Convert between an unsigned four-byte
AS/400 number and a Java Long object.

AS400Float4 Convert between a signed four-byte
floating point AS/400 number and a Java
Float object.

AS400Float8 Convert between a signed eight-byte
floating point AS/400 number and a Java
Double object.

AS400PackedDecimal Convert between a byte packed decimal
AS/400 number and a Java BigDecimal
object.

AS400ZonedDecimal Convert between a zoned decimal
AS/400 number and a Java BigDecimal
object.

AS400Text Converts character data between an
EBCDIC code page and character set
(CCSID), and unicode.

AS400ByteArray Convert between two byte arrays. This
is useful because the converter correctly
zero-fills and pads the target buffer.

AS400Array Allows the Java program to work with
an array of data types.

AS400Structure Allows the Java program to work with a
structure of data types.

3.2.3 Record Level Conversions
This set of classes represent AS/400 data to a Java program in a way similar to
how it is defined on the AS/400 system. These classes provide a way to build
aggregates of data.

Public Class Description

Chapter 3. AS/400 Toolbox for Java 65

This soft copy for use by IBM employees only.

FieldDescription Abstract class that describes a field of
data from an AS/400 system. Can be a
DDS field or program described data.
Contains an AS400DataType, length, and
name. The following field description
classes are provided:

BinaryFieldDescription
CharacterFieldDescription
DBCSEitherFieldDescription
DBCSGraphicFieldDescription
DBCSOnlyFieldDescription
DBCSOpenFieldDescription
DateFieldDescription
FloatFieldDescription
HexFieldDescription
PackedDecimalFieldDescription
TimeFieldDescription
TimestampFieldDescription
ZonedFieldDescription

RecordFormat General purpose class that describes a
structure of fields. It may represent a
record from an AS/400 file, or a
structure of data returned by a program,
data queue, and so on. A RecordFormat
object contains FieldDescriptions.

Record Holds the actual data described by a
RecordFormat object. Data is accessed
in a Record object using field names
defined by the FieldDescription objects
of the associated RecordFormat object.

3.2.4 JDBC Specification
The public classes and methods for the JDBC driver are implementations of the
interface defined by the Javasoft JDBC specification. The JDBC driver and
supporting classes are completely written in Java, and do not require any other
client code. As illustrated in the following diagram, the JDBC driver provided by
the toolbox can be used instead of a JDBC/ODBC bridge driver.

Figure 20. JDBC Interface to AS/400 System

66 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

No unique public interfaces are defined by the AS/400 Toolbox for Java
implementation of the interface. These classes use the database servers to
access the AS/400 system.

Public Class Description

AS400JDBCCallableStatement Used to execute SQL stored procedures.

AS400JDBCConnection Represents a session with a specific
DB2/400 database. Within the context of
a Connection, SQL statements are
executed and results are returned.

AS400JDBCDatabaseMetaData Provides information about the database
as a whole.

AS400JDBCDriver Represents the AS/400 Toolbox for Java
JDBC driver for interacting with the
JDBC DriverManager.

AS400JDBCPreparedStatement Class that stores and executes a
pre-compiled SQL statement.

AS400JDBCResultSet Provides access to the data generated
when an SQL statement is executed.

AS400JDBCResultSetMetaData Used to find out about the types and
properties of the columns in a ResultSet.

AS400JDBCException Provides information on database
access errors, including a string that
describes the error.

AS400JDBCStatement Used to execute a static SQL statement
and obtain the result set produced when
the statement is executed.

AS400JDBCWarning An extension of SQLWarning. Used to
report JDBC warnings through the
getWarnings() method.

3.2.5 Record-Level File Access
AS/400 physical files can be accessed a record at a time using the public
interface of these classes. Files and members can be created, read, deleted,
and updated. The record format can be defined by the programmer at
application development time, or can be retrieved at runtime by the AS/400
Toolbox for Java support. These classes use the DDM server to access the
AS/400 system. To use the host DDM server through a TCP/IP interface, some
special PTFs are required. At the time this redbook was published, the required
PTF numbers were SF42337 (V3R2) and SF42338 (V3R7). Check the AS/400
Toolbox for Java documentation for the latest PTF numbers and set up
instructions.

The following public classes are defined and implemented:

Public Class Description

AS400File Represents an AS/400 physical or
logical file.

SequentialFile Represents an AS/400 file that is to be
accessed by relative record number.

Chapter 3. AS/400 Toolbox for Java 67

This soft copy for use by IBM employees only.

KeyedFile Represents an AS/400 file that contains
key fields and is to be accessed by key.
This class can be used to create a
physical file, access the data in a file
using a key, write data by key, and
delete a file.

3.2.6 Integrated File System (IFS)
The file system classes allow access to file objects that are in the AS/400
integrated file system. The original intent was to extend the file classes that are
in the Java.io package but this was prohibited by the design and implementation
of the Java.io classes. Instead, new classes were created to represent a file
object in the integrated file system. A program can open an input or output
stream on a file object or read/write data from/to any specified location in the
file. These classes use the Bytestream server to access the AS/400 system.

Public Class Description

IFSFile Represents an object in the AS/400
integrated file system. Similar to
java.io.File.

IFSFileDescriptor A file handle that references an open
file. Similar to java.io.FileDescriptor.

IFSFileInputStream Used to read (open an input stream on)
an object in the integrated file system.
Similar to java.io.FileInputStream.

IFSFileOutputStream Used to write to (open an output stream
on) a file in the integrated file system.
Similar to java.io.FileOutputStream.

IFSKey Provides byte range locking on a file.

IFSRandomAccessFile Allows reading and writing of data from
or to any specified location of a file in
the integrated file system. Similar to
java.io.RandomAccessFile.

3.2.7 Print
The print support in the Java language does not make it possible to plug in as a
print provider. The existing Java print classes use the client's native print
provider. The toolbox print support provides a set of classes that are similar to
the native Java classes, but use the AS/400 print services instead of the native
print provider.

In addition, some print management classes are provided to enable
management of printers, output queues, and spooled files. These classes are
listed below. All classes use the Network Print server to access the AS/400
system.

The toolbox print support requires additional function in the Network Print server.
This function is provided by PTFs. At the time this redbook was published, the
PTFs were:

SF42334 and SF42515 (V3R2)

SF42316 and SF42516 (V3R7)

68 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Public Class Description

AFPResource Class for working with AS/400 AFP
resources (page segments, overlays,
fonts, and so on).

AFPResourceList List of AFP resources

OutputQueue Represents an AS/400 output queue

OutputQueueList List of output queues

Printer Represents an AS/400 printer device

PrinterFile Represents an AS/400 printer file

PrinterFileList List of printer files

PrinterList List of AS/400 printer devices

SpooledFile Represents an AS/400 spooled file

SpooledFileList List of AS/400 spooled files

SpooledFileMessage Represents a message that an AS/400
spooled file is waiting on

SpooledFileOutputStream Used to write data to a new AS/400
spooled file

WriterJob Represents an AS/400 printer writer

WriterJobList List of spoolwriter jobs

3.2.8 Command
Any AS/400 batch command can be run using this support. A list of AS/400
messages that were generated when the command was run can be retrieved
after the command completes. These classes use the Distributed Program Call
server to access the AS/400 system.

Public Class Description

CommandCall Used to specify and run an AS/400
command string.

AS400Message Used to retrieve messages that were
generated when a command was run on
an AS/400 system.

3.2.9 Program Call
Any AS/400 program can be called using this support. Parameters may be
passed to the AS/400 program and data can be returned by the AS/400 program
to the Java calling program. These classes use the Distributed Program Call
server to access the AS/400 system.

Public Class Description

ProgramCall Used to call an AS/400 program, passing
parameters to the program and
receiving returned data from the
program. The program runs under the
DPC server job. When the program
exits, data is returned to the calling
Java program as byte data.

Chapter 3. AS/400 Toolbox for Java 69

This soft copy for use by IBM employees only.

ProgramParameter Represents a parameter that can be
passed to an AS/400 program. The
parameter can be an input parameter,
an output parameter, or and
input/output parameter.

AS400Message Used to retrieve messages that were
generated when a program call failed on
an AS/400 system.

3.2.10 Data Queue
Both keyed and sequential data queues can be accessed using the public
interfaces of the data queues classes. Entries can be put on a data queue or
removed. Data queues can be created or deleted on the AS/400 system. These
classes use the Data Queues server to access the AS/400 system.

The following public classes are defined and implemented:

Public Class Description

DataQueue Represents an AS/400 data queue that
is accessed sequentially.

KeyedDataQueue Represents an AS/400 data queue that
is accessed using a key.

DataQueueEntry Represents data that is read from a
sequential data queue. The data can be
accessed as byte data or as a string.

KeyedDataQueueEntry Represents data that is read from a
keyed data queue. The returned data
and the key can be accessed as byte
data or as a string.

3.3 How Does the AS/400 System Fit into This Picture?
The AS/400 system can be a repository for data, programs, HTML documents,
applets, and Java applications. An HTTP server running on your AS/400 system
can be used to serve Web pages and applets. The class files for Java
applications can reside in the integrated file system of the AS/400 system and
accessed using a mapped drive.

When an HTML document containing an applet is served from the AS/400
system, the class files are loaded from that AS/400 system. The applet can
access only that AS/400 system. For applications, the class files are located
using the CLASSPATHenvironment variable. On a Network station (or comparable
hardware) the CLASSPATH variable can be set to include the toolbox class files.
On a Windows (or other client operating system) workstation, there are two
options. The workstation can have a mapped drive to the AS/400 system (this
requires Client Access) or the class files can be copied to the client. In either
case, the CLASSPATH environment variable must be appropriately set to locate
the class files.

No new function is needed on the AS/400 system to use the AS/400 Toolbox for
Java because the existing OS/400 servers are used.

These servers are used:

70 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Database Servers
Distributed Program Call Server
Data Queue Server
Network Print Server
Bytestream Server
Sign-on Server
Central Server
DDM Server

From the perspective of the AS/400 Toolbox for Java, the servers are a black box
interface to perform functions on the AS/400 system. All requests directed
toward data or resources on the AS/400 system funnel through the servers.

3.3.1 Security
Each connection to the AS/400 system is validated for user ID and password.
The Toolbox classes enable single sign on for multiple connections to the AS/400
system. Password expiration warnings and changing a password are supported.

AS/400 security is enforced using the same security model as Client Access/400.
The user must have a valid AS/400 sign on, and proper authority to the AS/400
objects or resources. User ID and password are prompted if one was not
provided by the user. The user ID and password are verified on the AS/400
system and all passwords are encrypted prior to sending them to the AS/400
system. To ensure additional security, passwords are not passed between
classes except between the sign on GUI and the security class.

The servers run with the authorities of the userid that is passed when the
connection is made. No authorities are adopted.

Note: At the initial release of the AS/400 Toolbox for Java, the AS/400 system
has a SSL(secure sockets layer) interface,but the toolbox cannot take advantage
of this encryption support until the OS/400 servers are enhanced to use secure
sockets. Application developers must use caution when sending data through
the network because there is no encryption of data. When SSL is available in
the servers, the AS/400 Toolbox for Java is changed to take advantage of this
support. Using a digital signature to secure the AS/400 Toolbox for Java code is
also being investigated.

3.3.2 National Language Support
The AS/400 Toolbox for Java uses the internationalization support available with
JDK 1.1. Translatable information resides in property files at run time and
resource bundles are used to retrieve the proper text depending on the locale.
Java internationalization support is built on Java Locale objects that are defined
by a country code, a language code, and a variant. The country codes are the
two-letter ISO-3166 standard and the language codes are the two-letter ISO-390
standard. JDK 1.1 supports 27 different locales including both single-byte and
double-byte locales, but no right-to-left languages. The AS/400 Toolbox for Java
does not attempt to add additional locales and is limited to the locales that Java
supports.

Chapter 3. AS/400 Toolbox for Java 71

This soft copy for use by IBM employees only.

3.3.3 Save/Restore Considerations
The Java classes and applets can reside in the IFS. There are no unique
considerations for save and restore of these entities.

3.3.4 Install and Run-Time Considerations
The AS/400 Toolbox for Java class files are used at development time by the
compiler and at application or applet run time. The JDK has set a precedent for
how class files are accessed at run time. It is based on a thin client/browser
model, that is, the class files reside on a server and are brought to the client
when an applet or application is loaded. There is no functional requirement to
install the class files on the client.

For applets and applications loaded locally, the class files are located using the
codebase applet tag. When the HTML document containing the applet is served
from the AS/400 (through the HTTP server), the class files are loaded from that
AS/400 system. The applet can access only that AS/400 system.

3.3.5 Error Recovery Considerations
The Java model for error processing is to throw exceptions instead of returning
return codes. The AS/400 Toolbox for Java follows this model. When an AS/400
Toolbox for Java class discovers an error it throws an exception. Some
exceptions contain a documented return code value. Some exceptions allow
retrieving text that describes the error. The description for each AS/400 Toolbox
for Java API includes a list of exceptions that can be thrown by the API. The
application can catch these exceptions and handle them based on the API and
exception returned.

The AS/400 Toolbox for Java handles errors such that the degree of success of
an API is obvious to the application. This is a data integrity statement. The
application knows the state of the data of an API call based on the exception (or
lack of exception) generated.

In addition to throwing an exception, an error is logged to the AS/400 Toolbox for
Java error log in some cases. An error is logged for unexpected conditions (for
FFDC), severe errors, and other places a message can help the user recover
from the error. Errors will only be logged if logging is turned on by the Java
program.

3.4 Introduction to Application Examples
The remainder of this chapter covers application examples. It covers the
following examples:

AS/400 Database access:

− JDBC
− JDBC stored procedures
− DDM Record Level Access
− via Distributed Program Call
− via Data Queues

Network Print

Integrated File System

72 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

3.5 AS/400 Database Access
The database access example applications shown in the remainder of this
chapter are for the most part functionally equivalent. They allow retrieval of a
records from a PARTS file on the AS/400 system. Some examples allow an
update to the current record in the window. All support the display of the entire
PARTS file in a list box.

The PARTS file is defined as:

Field Name Field Description Length Decimals Type

PARTNO Part Number 5 0 Zoned

PARTDS Description 25 Char

PARTQY Quantity 5 0 Packed

PARTPR Price 6 2 Packed

PARTDT Part Shipment
Date

10 Date

A start time and end time is updated on the window so that different AS/400
access methods can be compared for performance.

The examples were built using IBM's VisualAge for Java development
environment.

The list box widget used in all the examples is from Taligent. The
MultiColumnListbox class widget is available from Taligent's Web site,
http://www.taligent.com. Version 1.0 is used.

Complete listings of all RPG and DDS source code can be found in Appendix B,
“AS/400 Source Listings” on page 219. Listings for the Java source code can be
found in Appendix C, “AS/400 Toolbox Example Java Code” on page 225.

3.5.1 JDBC Interface
The AS/400 Toolbox for Java implements the standard JDBC interface for access
to data. JDBC defines a consistent set of classes and interfaces for
communication with a database server.

The advantages of using JDBC are that it is an industry standard and is easy to
use. Being an industry standard allows the AS/400 developer to use generic
Java applets and objects and point them to the AS/400 system for data storage
and retrieval. Additionally, the Java developer can use the use the AS/400
system as a server without worrying about AS/400 specific implementation
issues. JDBC can be easier to use than the other classes in the AS/400 toolbox
because the driver takes care of all data conversion issues. AS/400 data types
are automatically mapped to Java data types. The Java developer need not be
concerned with the actual data representation on the AS/400 system.

When using JDBC, you need to reference the following interfaces under the
java.sql package:

Driver - creates the connection and returns information about the driver
version.
Connection - represents a connection to a specific database.
Statement - runs SQL statements and obtains the results.

Chapter 3. AS/400 Toolbox for Java 73

This soft copy for use by IBM employees only.

PreparedStatement - runs precompiled SQL statements.
CallableStatement - runs SQL stored procedures.
ResultSet - provides access to a table of data generated by running a SQL
statement or DatabaseMetaData catalog method.
ResultSetMetaData - determines the types and properties of the columns in a
ResultSet.
DatabaseMetaData - provides catalog methods which provide information
about the database.

Accessing data on the AS/400 system using JDBC in your application involves
the following steps:

Register the AS/400 JDBC driver.
Connect to the database.
Define and Prepare SQL statements.
Execute SQL statements.
Obtain and process results of the statements.
Close the statements.
Close the database connection.

3.5.2 JDBC Performance Tips
JDBC from a Java program communicates with the same server program on the
AS/400 system as the Client Access/400 ODBC driver. Any server side tuning
suggestions for ODBC apply to JDBC. For more information on ODBC
performance related issues, please refer to redbook AS/400 Client/Server
Performance Using the Windows Clients, SG24-4526-01.

JDBC allows SQL statements to be sent to the AS/400 system for execution. If
an SQL statement is run more than one time, use a PreparedStatement object to
execute the statement. A PreparedStatement compiles the SQL once, so that
subsequent executions run quickly. If a plain Statement object is used, the SQL
must be compiled and run every time it is executed. Use Extended Dynamic
support; it caches the SQL statements in SQL packages on the AS/400 system.
Also turn on package cache ; it caches SQL statements in memory.

Do not use a PreparedStatement object if an SQL statement is run only one time.
Compiling and running a statement at the same time has less overhead than
compiling the statement and running it in two separate operations.

Consider using JDBC stored procedures. In a client/server environment, stored
procedures can help reduce communication I/Os and thus help improve
response time.

Use a just-in-time (JIT) compiler for your Java execution environment if possible.
The latest JIT technology allows Java programs to perform almost as well as
native code written in C or C + + .

There are many properties that can be specified on the JDBC URL or in the
JDBC properties object. Several of these properties can significantly affect the
performance of a JDBC client/server application and should be utilized where
possible. The properties control record blocking, package caching, and
extended dynamic support. Selected properties and their settings are listed in
the following table and other non-performance properties can be found in the
Toolbox documentation.

74 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Performance
Properties

Property Description Required Choices Default

Block criteria Specifies the criteria for retrieving data from the
AS/400 server in blocks of records. Specifying a
non-zero value for this property reduces the
frequency of communication to the server, and
therefore increases performance.

Ensure that record blocking is off if the cursor is
going to be used for subsequent UPDATEs, or else
the row that is updated is not necessarily the current
row.

No 0 (no
record
blocking)

1
(block
if FOR
FETCH
ONLY
is
specified)

2
(block
unless
FOR
UPDATE
is
specified)

2

Block size Specifies the block size (in kilobytes) to retrieve
from the AS/400 server and cache on the client.
This property has no effect unless the block criteria
property is non-zero. Larger block sizes reduce the
frequency of communication to the server, and
therefore increase performance.

No 8, 16,
32, 64,
128,
256,
512

32

Prefetch Specifies whether to prefetch data upon executing a
SELECT statement. This increases performance
when accessing the initial rows in the ResultSet.

No True,
False

True

Extended dynamic Specifies whether to use extended dynamic support.
Extended dynamic support provides a mechanism for
caching dynamic SQL statements on the server. The
first time a particular SQL statement is run, it is
stored in a SQL package on the server. On
subsequent runs of the same SQL statement, the
server can skip a significant part of the processing
by using information stored in the SQL package. If
this is set to true , then a package name must be set
using the package property.

No True,
False

False

Package Specifies the base name of the SQL package.
Extended dynamic support works best when this is
derived from the application name. Note that only
the first seven characters are significant. This
property has no effect unless the extended dynamic
property is set to true . In addition, this property
must be set if the extended dynamic property is set
to true .

No SQL
package

""

Package library Specifies the library for the SQL package. This
property has no effect unless the extended dynamic
property is set to true .

No Library
for
SQL
package

QGPL

Package cache Specifies whether to cache SQL packages in
memory. Caching SQL packages locally reduces the
amount of communication to the server in some
cases. This property has no effect unless the
extended dynamic property is set to true .

No True,
False

False

Chapter 3. AS/400 Toolbox for Java 75

This soft copy for use by IBM employees only.

Performance
Properties

Package clear Specifies whether to clear SQL packages when they
become full. Clearing a SQL package results in
removing all SQL statements that have been stored
in the SQL package. This property has no effect
unless the extended dynamic property is set to true .

No True,
False

False

Package add Specifies whether to add statements to an existing
SQL package. This property has no effect unless the
extended dynamic property is set to true .

No True,
False

True

Package error Specifies the action to take when SQL package
errors occur. When a SQL package error occurs, the
driver optionally throws a SQLException or posts a
warning to the Connection, based on the value of
this property. This property has no effect unless the
extended dynamic property is set to true .

No Exception,
warning,
none

Warning

Lazy close Specifies whether to use lazy close support. Lazy
close support provides a mechanism for deferring
close requests until the next explicit communication
to the server. This normally improves performance,
but can cause concurrency problems in rare cases.

No True,
False

True

3.5.3 A JDBC Application Example

Figure 21. JDBC Application

This example uses JDBC to access records in an AS/400 database. The client
program requests data from the AS/400 database by sending SQL statements to
the OS/400 host database server. The host server executes the SQL statement
and returns the results to the client program in a SQL result set. The JDBC
support handles all data conversions.

76 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Figure 22. JDBC Application Get Part

Figure 23. JDBC Application All Parts

A single part record can be retrieved and updated or all part records can be
displayed in a list box. Two classes drive the application: JDBCExample and
JDBCExampleDisplayAll.

The JBCDExample class creates the main application window, connects and
disconnects the database, prepares the SQL statements, gets and displays a

Chapter 3. AS/400 Toolbox for Java 77

This soft copy for use by IBM employees only.

single part record. It instantiates a JDBCExampleDisplayAll object when the Get
All Parts button is pressed.

3.5.4 JDBCExample Class
In this section, we investigate the key methods of the JDBCExample class.

3.5.4.1 ConnectToDB Method
This method is called when the Connect button is pressed. String parameters
representing the AS/400 system name, user ID, and password are passed to the
method.

Class: JDBCExample Method: ConnectToDB

Let's dissect the method:

java.sql.DriverManager.registerDriver
(new COM.ibm.as400.access.AS400JDBCDriver());

This statement loads the JDBC driver into the Java virtual machine. The
fully-qualified name of the AS/400 JDBC driver class is passed as a parameter.

dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" +
systemName + "/apilib;naming=sql;errors=full;date format=iso",userid,
password);

This statement creates a java.sql.Connection object called dbConnect. The form
of the DriverManager's getConnection method used here takes a URL, user ID,
and password parameters. The URL is formatted:

jdbc:as400://systemName/defaultLibraryName;parameter1=value1;
parameter2=value2;...

The default library name is optional, as are the properties. We are using APILIB
as the default library, specifying use of ISO format for date fields, and error
messages are to contain all available information.

/**
* Connect to the AS/400 using JDBC
*/

public String connectToDB(String systemName, String userid, String password) {
try {

java.sql.DriverManager.registerDriver
(new COM.ibm.as400.access.AS400JDBCDriver());

dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" +
systemName + "/apilib;naming=sql;errors=full;date format=iso",userid,
password);

psSingleRecord = dbConnect.prepareStatement("SELECT * FROM PARTS WHERE
PARTNO = ?");

psAllRecord = dbConnect.prepareStatement("SELECT * FROM PARTS");

} catch (Exception e) {showException(e); return "Connect Failed."; };

return "Connected to AS/400.";
}

78 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

psSingleRecord = dbConnect.prepareStatement("SELECT * FROM PARTS WHERE
PARTNO = ?");

psAllRecord = dbConnect.prepareStatement("SELECT * FROM PARTS");

These statements create two preparedStatement objects. PreparedStatements
are precompiled SQL statements that are more efficient to execute than plain
Statements when run repeatedly. The "?" is used as a parameter marker, with
the value set prior to running the PreparedStatement. The first statement
creates an object that selects a record from the parts file that has a PARTNO
field equal to a value defined later. The second statement creates an object that
selects all records from the parts file.

3.5.4.2 GetRecord Method
This method is called when the Get Part button is pressed. A string parameter
containing the part number is passed, along with the TextField objects that are
used to display values of other fields in the part record.

Class: JDBCExample Method: getRecord

Let's dissect the method:

java.sql.ResultSet rs = null;

Declares a variable, rs, to reference a ResultSet object.

psSingleRecord.setInt(1, Integer.parseInt(partNo));

/**
* Retrieve a single record, using partNo as the key.
* @param partNo java.lang.String
* @param partDesc java.awt.TextField
* @param partQty java.awt.TextField
* @param partPrice java.awt.TextField
* @param partDate java.awt.TextField
*/

public String getRecord (String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty, java.awt.TextField partPrice,
java.awt.TextField partDate) {

java.sql.ResultSet rs = null;

try {
psSingleRecord.setInt(1, Integer.parseInt(partNo));

rs = psSingleRecord.executeQuery();

if (rs.next()) {
partDesc.setText(rs.getString("PARTDS"));
partQty.setText(Integer.toString(rs.getInt("PARTQY")));
partPrice.setText("$" + rs.getBigDecimal("PARTPR", 2).toString());
partDate.setText(rs.getDate("PARTDT").toString());

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
} catch (Exception e) {e.printStackTrace();showException(e); return null; }

return "Record found.";
}

Chapter 3. AS/400 Toolbox for Java 79

This soft copy for use by IBM employees only.

Uses the PreparedStatment method, setInt to set the value of parameter 1 to the
the integer value of the part number passed on the parameter list.

rs = psSingleRecord.executeQuery();

Executes the SQL defined by the psSingleRecord PreparedStatement object and
places the table of resulting records in a ResultSet object referenced by rs.

if (rs.next()) {

The next() method of the ResultSet attempts to position the cursor of the result
set to the next record from the result table. Because this is the first read from
the result set, the method positions to the first record from the result set and
returns true . If there are no records to retrieve, the method returns a false
value.

partDesc.setText(rs.getString("PARTDS"));
partQty.setText(Integer.toString(rs.getInt("PARTQY")));
partPrice.setText("$" + rs.getBigDecimal("PARTPR", 2).toString());
partDate.setText(rs.getDate("PARTDT").toString());

These lines retrieve values of database fields and place them in their
corresponding screen fields. The ResultSet object has getter methods for many
Java data types. Here we use:

getString. Returns the value of the column PARTDS as a String object
getInt. Returns the value of the column PARTQY as an integer
getBigDecimal. Returns the value of the PARTPR field as a BigDecimal
object ,
getDate. Returns the value of column PARTDT as a Date

3.5.4.3 UpdateRecord Method
This method is called when the Update button is pressed. String parameters
containing the values of all entry fields on the screen are passed in. These
values are used to update the part record designated by the value of the
parameter part number.

Class: JDBCExample Method: updateRecord

Let's dissect the method:

String tempPrice = partprice.indexOf('$') = = 0 ? partprice.substring(1) :
partprice;

public String updateRecord (String partno, String partdesc, String partqty,
String partprice, String partdate) {

// strip the leading dollar sign if it exists...
String tempPrice = partprice.indexOf('$') == 0 ? partprice.substring(1) :

partprice;

try {
java.sql.Statement s = dbConnect.createStatement();
String updatestring = "UPDATE PARTS SET PARTDS = '" + partdesc + "', PARTQY =

" + partqty + ", PARTPR = " + tempPrice + ", PARTDT = '" + partdate +
"' WHERE PARTNO= " + partno;

s.executeUpdate(updatestring);
} catch (Exception e) {showException(e); return "Update failed";}

return "Record Updated.";
}

80 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Strips the "$" character off the price field if it exists in the first position of the
String.

java.sql.Statemen t s = dbConnect.createStatement();

Creates a dynamic SQL statement object called s. We choose not to use a
PreparedStatement for the update function. A statement object is used to show
the use of an ad hoc SQL statement. Performance improves if the
PreparedStatement is used, assuming the update occurs more than one time
during the user session.

String updatestring = "UPDATE PARTS SET PARTDS = '" + partdesc + "',
PARTQY = " + partqty + ", PARTP R = " + tempPrice + ", PARTDT = '" + partdate
+ "' WHERE PARTNO = " + partno;

Builds a String value for the update SQL statement. Standard SQL syntax is
used to update part fields with values passed on the parameter list for the part
number requested.

s.executeUpdate(updatestring);

Runs the SQL update statement.

3.5.4.4 Dispose Method
This method is called when the application window is closed.

Class: JDBCExample Method: Dispose

Let's dissect the method:

psSingleRecord.close();
psAllRecord.close();

Releases the PreparedStatement's database and JDBC resources immediately.
This also closes the current ResultSet.

dbConnect.close();

Disconnects from the AS/400 system.

if (ivjDisplayAll != null) ivjDisplayAll.dispose();

If the JDBCExampleDisplayAll class is instantiated, call its dispose method to
shut it down.

super.dispose();

Call the super class' dispose method to make sure any resources used by the
Frame are properly freed.

public void dispose () {
try {

psSingleRecord.close();
psAllRecord.close();
dbConnect.close();
System.exit(0);
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};
if (ivjDisplayAll != null) ivjDisplayAll.dispose();
super.dispose();

return;
}

Chapter 3. AS/400 Toolbox for Java 81

This soft copy for use by IBM employees only.

3.5.4.5 JDBCExampleDisplayAll Class
In this section, we investigate the key methods of the JDBCExampleDisplayAll
Class.

3.5.4.6 Constructor Method
A non-default constructor has been created for the class that takes parameters
of a Connection object and a PreparedStatement object. This is so that the main
class (JDBCExample) can instantiate this class passing the database objects
already created.

Class: JDBCExampleDisplayAll Constructor

Let's dissect the constructor:

this();

Execute the default constructor to take care of the window set up and
initialization.

dbConnect = dbc;
psAllRecord = psAll;

Sets the instance variables for the database Connection and PreparedStatement
to reference the objects passed from JDBCExample.

this.setUpListBox();

Initializes column headings and widths for the listbox widget that is used to
display the parts records.

this.populateListBox();

Executes the database query and load the records to the list box. See the
method details in the following example.

this.show(true);

Display the window.

public JDBCExampleDisplayAll (java.sql.Connection dbc,
java.sql.PreparedStatement psAll) {

this();
dbConnect = dbc;
psAllRecord = psAll;
this.setUpListBox();
this.populateListBox();
this.show(true);

}

3.5.4.7 PopulateListBox Method
This method is called from the constructor. It runs the SQL statement to select
all records from the parts file.

82 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Class: JDBCExampleDisplayAll Method: populateListBox

Let's dissect the method:

rs = psAllRecord.executeQuery();

Executes the SQL defined by the psAllRecord PreparedStatement object, places
the table of resulting records in a ResultSet object referenced by rs.

while (rs.next()) {

The next() method of the ResultSet attempts to position the cursor of the result
set to the next record from the result table. The first time, the cursor is pointed
to the first record in the ResultSet and returns true . If there are no records to
retrieve, the method returns a false value. We will loop until next() returns a
false value.

array [0] = rs.getString("PARTNO");
array[1] = rs.getString("PARTDS");
array[2] = Integer.toString(rs.getInt("PARTQY"));
array[3] = "$" + rs.getBigDecimal("PARTPR", 2).toString();
array[4] = rs.getDate("PARTDT").toString();

These lines retrieve the field values from the current record in the ResultSet.
These values are converted to strings and placed into a string array for adding
to the multi-column list box. The list box places each element of the array in a
different column of the list box.

ivjMultiColumnListbox1.addRow(array);

Adds the string values of the current parts record as a new row at the end of the
list box.

public void populateListBox () {
java.sql.ResultSet rs = null;
String[] array = new String[5];

try {
rs = psAllRecord.executeQuery();
while (rs.next()) {

array[0] = rs.getString("PARTNO");
array[1] = rs.getString("PARTDS");
array[2] = Integer.toString(rs.getInt("PARTQY"));
array[3] = "$" + rs.getBigDecimal("PARTPR", 2).toString ();
array[4] = rs.getDate("PARTDT").toString();

ivjMultiColumnListbox1.addRow(array);
}

} catch (Exception e) {showException(e);}

return;
}

3.5.5 Reusable GUI Part
For the remainder of the database examples in this chapter, a reusable class is
used to handle the user interface. The advantage is that the user interface is
designed, programmed, and tested once, and then re-used in multiple
applications that demonstrate different methods of accessing resources on the
AS/400 system.

Chapter 3. AS/400 Toolbox for Java 83

This soft copy for use by IBM employees only.

The class is called ToolboxGUI . It is a subclass of java.awt.Panel and can be
dropped onto a Frame. ToolboxGUI communicates with its parent container
through a PartsContainer interface. This interface allows specific methods of the
parent to be invoked by the ToolboxGUI class to handle functions such as
connecting to the database, retrieving a part record, or adding part records to a
list box.

To use the ToolboxGUI, we create a new class that is a sub-class of
java.awt.Frame, and implements the PartsContainer interface. In the Visual
Composition Editor of VisualAge Java, we perform an Options ->Add Part
function and specify ToolboxGUI as the class name. The part is dropped on the
empty application window and re-sized to fit.

The PartsContainer interface designates methods to be implemented in the main
application class so that ToolboxGUI can make requests for database access.
The interface methods are:

connectToDB. Connect to the database server and return a String result.
getRecord. Retrieve a single record from the database and place the
resulting record field values in the TextFields passed.
populateListBox. Retrieve all records from the database and add values for
each record in the list box widget passed.
updateRecord. Update the database record with the values passed; return a
String result.

ToolboxGUI calls out to the parent method using the following format:

((PartsContainer)getParent()).connectToDB(systemName, userid, password);

The getParent() method returns the ToolboxGUI's container object. This object is
cast as an object that conforms to the PartsContainer interface. The
connectToDB method is invoked on the parent object. Similar code is used for
the other interface methods.

The ToolboxGUI also has a helper class, DisplayAllParts , to display and populate
the MultiColumnListbox. This class is instantiated when the Get All Parts button
is pressed. It uses the same mechanism defined previously to call out to the
parent's populateListBox method.

3.5.6 Stored Procedures
Using stored procedures with the Toolbox is an extension of the JDBC access
technique. Instead of using PreparedStatement and Statement objects to
execute SQL statements, a CallableStatement object is defined and executed.

The prepareCall method on the Connection object is used to create a
CallableStatement object. For example:

CallableStatement aCS = aConnection.prepareCall(
("CALL libraryName/procedureName(?, ?, ?");

Defines a CallableStatement object, aCS. When executed, aCS calls the
procedure in the specified library, passing three parameters. These parameters
can be input, output, or both. Output parameters must be registered using the
registerOutParameter method. For example:

aCS.registerOutParameter (3, java.sql.Types.INTEGER);

84 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Registers the third parameter (that is, the third question mark) as an output
parameter for the stored procedure of SQL type integer. After the procedure is
executed, the value of the parameter can be retrieved using aCS.getInt(3). Other
getters exist for each registered data type.

Input parameters must be set using the set method associated with the data
type. For example:

aCS.setInt(1, 500);

Sets the value of the first parameter to an integer value of 500.

Stored procedures can be executed using the execute or executeQuery methods.
The execute method is used when zero or more result sets are expected to be
returned. The executeQuery method can be used when exactly one result set is
returned.

Stored procedures are generally used for two reasons. First, native programs
written in RPG, COBOL, and others can be utilized by the Java application
through a standard interface. Second, stored procedures can greatly boost
performance of the application when compared with straight SQL.

3.5.7 A JDBC Stored Procedure Application Example

Figure 24. JDBC Application Stored Procedures

In this example, we use JDBC stored procedures to access records in an AS/400
database. The client program requests data from the AS/400 database by calling
an AS/400 stored procedure program. The host server passes the call to the
AS/400 program and returns the results to the client program in an SQL result
set. The JDBC support handles all data conversions.

Chapter 3. AS/400 Toolbox for Java 85

This soft copy for use by IBM employees only.

Class StoredProcedureExample is the main class in this application. It is
functionally equivalent to the JDBCExample application, but is implemented
using different techniques. The ToolboxGUI class is used to handle all user
interaction. A stored procedure is used instead of SQL statements. Record
update is not implemented in this example although it can be by using the same
updateRecord method as the JDBC example or by creating a stored procedure
that does the update.

86 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The program we use as a stored procedure is written in RPG and named
SPROC2 in library APILIB. The program takes two integer input parameters.
Parameter 1 is an action code. A value of 1 returns a single record in the result
set with the part number field matching the part number supplied in the second
parameter. A value of 2 in the first parameter returns all records from the parts
database in a result set. The second parameter is ignored in this case.

3.5.8 StoredProcedureExample Class
In this section, we investigate the key methods of the StoredProcedureExample
Class.

3.5.8.1 ConnectToDB Method
This method is called by the ToolboxGUI class when the Connect button is
pressed. String parameters representing the AS/400 system name, user ID, and
password are passed to the method.

/**
* Connect to the AS/400 using JDBC
* @param systemName java.lang.String
*/

public void connectToDB(String systemName, String userid, String password) throws Exception {
java.sql.DriverManager.registerDriver

(new COM.ibm.as400.access.AS400JDBCDriver());
dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName +

"/apilib;naming=sql;errors=full;date format=iso",userid,password);
try {dbConnect.createStatement().execute("drop procedure apilib.partqry2");
} catch (Exception e) {};
dbConnect.createStatement().execute("CREATE PROCEDURE APILIB.PARTQRY2 (INOUT P1

INTEGER, INOUT P2 INTEGER) EXTERNAL NAME APILIB.SPROC2 LANGUAGE RPG GENERAL");
callableStmt = dbConnect.prepareCall("CALL APILIB.PARTQRY2(?, ?)");

return;

}

Method highlights:

java.sql.DriverManager.registerDriver
(new COM.ibm.as400.access.AS400JDBCDriver());

dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName +
"/apilib;naming=sql;errors=full;date format=iso",userid,password);

Loads the JDBC driver and connects to the AS/400 system the same way as in
the preceding JDBCExample.

try {dbConnect.createStatement().execute("drop procedure apilib.partqry2");
} catch (Exception e) {};

Attempts to remove the stored procedure from the system catalog, if it exists. If
the procedure does not already exist in the catalog, an error is thrown, so we
catch it and do nothing.

dbConnect.createStatement().execute("CREATE PROCEDURE APILIB.PARTQRY2 (INOUT P1
INTEGER, INOUT P2 INTEGER) EXTERNAL NAME APILIB.SPROC2 LANGUAGE RPG GENERAL");

Executes an SQL statement to add our procedure to the system catalog. A new
statement object is created by the Connection object and the execute method is
used to run an ad hoc SQL statement to declare the RPG program to the catalog.
In a production environment, the procedure is added to the catalog once by a

Chapter 3. AS/400 Toolbox for Java 87

This soft copy for use by IBM employees only.

system administrator and not added on the fly by an application each time it
connects to the database.

Important Information

We show how to drop and create an AS/400 stored procedure from a Java
client here. In most cases, it is better to do this directly on the AS/400
system. You can do this on the AS/400 system by using interactive SQL or
through an application program. Creating the stored procedure needs to be
done only once. It is added to the system catalog, so it can be found and
reused. Creating a stored procedure from the client, as shown here, adds
extra overhead to a Java application.

callableStmt = dbConnect.prepareCall("CALL APILIB.PARTQRY2(?, ?)");

Creates a new CallableStatement object from the Connection object. The
statement declares the stored procedure and has markers for two parameters.
The parameters are input only, because no output parameters are registered.

3.5.8.2 GetRecord Method
This method is called by the ToolboxGUI class when the Get Part button is
pressed.

/**
* Retrieve a single record, using partNo as the key.
* @param partNo java.lang.String
* @param partDesc java.awt.TextField
* @param partQty java.awt.TextField
* @param partPrice java.awt.TextField
* @param partDate java.awt.TextField
*/

public String getRecord (String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception {

java.sql.ResultSet rs = null;
callableStmt.setInt(1, 1);
callableStmt.setInt(2, Integer.parseInt(partNo));

rs = callableStmt.executeQuery();
if (rs.next()) {

partDesc.setText(rs.getString(2));
partQty.setText(Integer.toString(rs.getInt(3)));
partPrice.setText("$" + rs.getBigDecimal(4, 2).toString());
partDate.setText(rs.getDate(5).toString());

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
return "Record found.";}

Class: StoredProcedureExample Method: getRecord

Method highlights:

java.sql.ResultSet rs = null;

88 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Declares a variable, rs, to reference a ResultSet object.

callableStmt.setInt(1, 1);
callableStmt.setInt(2, Integer.parseInt(partNo));

Uses the setInt method to set the value of parameter 1 to the integer value 1 to
tell the program to get a single part record. Then the setInt method is used to
set the value of parameter 2 to the integer value of the part number passed on
the parameter list.

rs = callableStmt.executeQuery();

Executes the stored procedure defined by the callableStatement object and
places the table of resulting records in a ResultSet object referenced by rs.

if (rs.next()) {

The next() method of the ResultSet attempts to position the cursor of the result
set to the next record from the result table. Because this is the first read from
the result set, the method positions to the first record from the result set and
return true:ex j.. If there are no records to retrieve, the method returns a
false value.

partDesc.setText(rs.getString(2));
partQty.setText(Integer.toString(rs.getInt(3)));
partPrice.setText("$" + rs.getBigDecimal(4, 2).toString());
partDate.setText(rs.getDate(5).toString());

These lines retrieve values of database fields and place them in their
corresponding screen fields. The ResultSet object has getter methods for many
Java data types. We use column indices instead of column names to reference
the values requested from the result set.

3.5.8.3 PopulateListBox Method
This method is called from the constructor. It runs the SQL statement to select
all records from the parts file.

Chapter 3. AS/400 Toolbox for Java 89

This soft copy for use by IBM employees only.

Class: StoredProcedureExample Method: PopulateListBox

Method highlights:

callableStmt.setInt(1, 2);
callableStmt.setInt(2, 0);

Uses the setInt method to set the value of parameter 1 to the integer value 2 to
tell the program to get all part records. Then the setInt method is used to set
the value of parameter 2 to the integer value of 0 so that a null value is not
passed to the procedure.

rs = callableStmt.executeQuery();

Executes the stored procedure defined by the CallableStatement object, places
the table of resulting records in a ResultSet object referenced by rs.

while (rs.next()) {

The next() method of the ResultSet attempts to position the cursor of the result
set to the next record from the result table. The first time the cursor is pointed
to the first record in the ResultSet and returns true . If there are no records to
retrieve, the method returns a false value. We will loop until next() returns a
false value.

array [0] = rs.getString(1);
array[1] = rs.getString(2);
array[2] = Integer.toString(rs.getInt(3));
array[3] = "$" + rs.getBigDecimal(4, 2).toString();
array[4] = rs.getDate(5).toString();

These lines retrieve the field values from the current record in the ResultSet.
These values are converted to strings and placed into a string array for adding
to the multi-column list box. The list box places each element of the array in a

/**
* This method was created by a SmartGuide.
* @param aListBox com.taligent.widget.MultiColumnListbox
*/

public void populateListBox (com.taligent.widget.MultiColumnListbox aListBox)
throws java.lang.Exception {

java.sql.ResultSet rs = null;
String[] array = new String[5];

callableStmt.setInt(1, 2);
callableStmt.setInt(2, 0);

rs = callableStmt.executeQuery();
while (rs.next()) {

array[0] = rs.getString(1);
array[1] = rs.getString(2);
array[2] = Integer.toString(rs.getInt(3));
array[3] = "$" + rs.getBigDecimal(4, 2).toString();
array[4] = rs.getDate(5).toString();

aListBox.addRow(array);
}

return;
}

90 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

different column of the list box. Column indices are used here instead of column
names.

aListBox.addRow(array);

Adds the String values of the current parts record as a new row at the end of the
list box.

3.5.8.4 Dispose Method
This method is called when the application window is closed.

Class: StoredProcedureExample Method: Dispose

Method highlights:

callableStmt.close();

Releases the CallableStatement's database and JDBC resources immediately.
This also closes the current ResultSet.

dbConnect.close();

Disconnects from the AS/400 system:

super.dispose();

Call the super class dispose method to make sure any resources used by the
frame are properly freed.

public void dispose () {
try {

callableStmt.close();
dbConnect.close();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};
super.dispose();
System.exit(0);

return;
}

3.5.9 A DDM Record Level Access Application Example

Figure 25. DDM Record Level Access

Chapter 3. AS/400 Toolbox for Java 91

This soft copy for use by IBM employees only.

In this example, we use DDM Record Level Access to access records in an
AS/400 database named Parts. The client program requests data from the
AS/400 database by interfacing with the host DDM server. The DDM server
accesses the database and returns the results to the client program. We
demonstrate using the DDM server to retrieve the format of the Parts file from
the AS/400 system. This makes it very easy to work with the file by field name.

92 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Class RLExample is the main class in this application. The ToolboxGUI class is
used to handle all user interaction.

3.5.10 RLExample Class
In this section, we investigate the key methods of the RLExample Class.

3.5.10.1 Instance Variables
The following instance variables are declared for the class:

private AS400 as400;
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;
private KeyedFile myKeyedFile;

3.5.10.2 ConnectToDB Method
This method is called by the ToolboxGUI class when the Connect button is
pressed. String parameters representing the AS/400 system name, user ID, and
password are passed to the method.

Chapter 3. AS/400 Toolbox for Java 93

This soft copy for use by IBM employees only.

public void connectToDB(String systemName, String userid, String password) throws Exception {
as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);
QSYSObjectPathName fileName = new QSYSObjectPathName("APILIB",

"PARTS",
"*FILE",
"MBR");

myKeyedFile = new KeyedFile(as400, fileName.getPath());
try{

as400.connectService(AS400.RECORDACCESS);}
catch(Exception e){

System.out.println("Unable to connect");
System.exit(0);
}

RecordFormat partsFormat = null;
try
{

AS400FileRecordDescription recordDescription = new
AS400FileRecordDesccription(as400, "/QSYS.LIB/APILIB.LIB/PARTS.FILE");
partsFormat = recordDescription.retrieveRecordFormat()[0];

// Indicate that PARTNO is a key field
partsFormat.addKeyFieldDescription("PARTNO");

}
catch(Exception e)
{

System.out.println("Unable to retrieve record format");
e.printStackTrace();
System.exit(0);

}
try{

myKeyedFile.setRecordFormat(partsFormat);
// Open the file.

myKeyedFile.open(AS400File.READ_WRITE, 0,
AS400File.COMMIT_LOCK_LEVEL_NONE);}

catch(Exception e){
System.out.println("Unable to open file");
System.exit(0);

}
return;
}

Method highlights:

as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);

Creates a new AS400 connection object. System name, user ID, and password
are passed through the constructor.

QSYSObjectPathName fileName = new QSYSObjectPathName("APILIB",
"PARTS",
"*FILE",
"MBR");

myKeyedFile = new KeyedFile(as400, fileName.getPath());

Creates a keyed file object that represents the file we will access on the AS/400
system. We use a QSYSObectPathName object to get the name of the file into
the correct format.

as400.connectService(AS400.RECORDACCESS);

Connect to the AS/400 DDM server. This is not required. If a service connection
is needed and does not already exist, the service is connected automatically.

94 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

We choose to place the connection overhead in the connect method as opposed
to connecting the first time the user requests a part record.

AS400FileRecordDescription recordDescription = new
AS400FileRecordDesccription(as400, "/QSYS.LIB/APILIB.LIB/PARTS.FILE");

Create the Record Description object for accessing the file. The record
description will be the same as the record format for file APILIB/PARTS.

partsFormat = recordDescription.retrieveRecordFormat() [0] ;

We retrieve the record format. There is only one record format for the file, so
we use the first (and only) element of the RecordFormat array returned as the
record format for the file.

partsFormat.addKeyFieldDescription("PARTNO");

We make the PARTNO field the key field.

myKeyedFile.setRecordFormat(partsFormat);

We set the record format with the format description that we retrieved from the
AS/400 system.

myKeyedFile.open(AS400File.READ_WRITE, 0,
AS400File.COMMIT_LOCK_LEVEL_NONE);}

We open the file for both read and write. Since we are open for update, the
blocking factor (0), doesn't matter. It is ignored and no blocking is done. If we
are reading records only, we can specify a blocking factor on the open to help
achieve better performance. We are not using commitment control.

3.5.10.3 GetRecord Method
This method is called by the ToolboxGUI class when the Get Part button is
pressed.

Chapter 3. AS/400 Toolbox for Java 95

This soft copy for use by IBM employees only.

public String getRecord(String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty, java.awt.TextField partPrice,
java.awt.TextField partDate) throws Exception {

Object[] theKey = new Object[1];

theKey[0] = new java.math.BigDecimal(partNo);

// Read the first record matching theKey
Record data = myKeyedFile.read(theKey);

// If the record was not found, null is returned.
if (data != null)
{
partDesc.setText((String)data.getField("PARTDS"));
partQty.setText(((BigDecimal)data.getField("PARTQY")).toString());
partPrice.setText("$" + ((BigDecimal)data.getField("PARTPR")).toString(
partDate.setText((String)data.getField("PARTDT"));
return "Record found.";

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
}

Method highlights:

Object [] theKey = new Object [1] ;
theKey[0] = new java.math.BigDecimal(partNo);

Create the key for reading the records. The key for a keyed file is specified as
an object.

Record data = myKeyedFile.read(theKey);

Read the first record matching the key. Null is returned if the record is not
found.

partDesc.setText((String)data.getField("PARTDS"));
partQty.setText(((BigDecimal)data.getField("PARTQY")).toString());
partPrice.setText("$" + ((BigDecimal)data.getField("PARTPR")).toString(
partDate.setText((String)data.getField("PARTDT"));
return "Record found.";

If the record is found, we use the field names to retrieve the data and populate
the return values. This will cause the fields to be displayed on the screen.

3.5.10.4 PopulateListBox Method
This method is called from the constructor. It requests all records from the parts
file.

96 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Method highlights:

Record record = myKeyedFile.readFirst();

We use the readFirst method to read the first record.

array [0] =((BigDecimal)record.getField("PARTNO")).toString();
array[1] =(String)record.getField("PARTDS");
array[2] =((java.math.BigDecimal)record.getField("PARTQY")).toString();
array[3]="$"+((BigDecimal)record.getField("PARTPR")).toString();
array[4] =(String)record.getField("PARTDT");

We use the field names to retrieve the data fields and move them to the array
elements.

aListBox.addRow(array);

We use the addRow method to add a new row to the listbox.

record = myKeyedFile.readNext();

We read the next record in the file.

public void populateListBox(com.taligent.widget.MultiColumnListbox
aListBox) throws Exception {

String[] array = new String[5];
try

{

// Display each record in the file

Record record = myKeyedFile.readFirst();
while (record != null)
{

array[0] =((BigDecimal)record.getField("PARTNO")).toString();
array[1] =(String)record.getField("PARTDS");
array[2] =((java.math.BigDecimal)record.getField("PARTQY")).toString();
array[3]="$"+((BigDecimal)record.getField("PARTPR")).toString();
array[4] =(String)record.getField("PARTDT");

aListBox.addRow(array);
record = myKeyedFile.readNext();

}
}

catch(Exception e){
System.out.println("unable to get all");
System.exit(0);

}
return;}

3.5.10.5 Dispose Method
This method is called when the application window is closed.

Chapter 3. AS/400 Toolbox for Java 97

This soft copy for use by IBM employees only.

Class: RLExample Method: Dispose

Method highlights:

myKeyedFile.close();

Closes the open database file.

as400.disconnectAllServices();

Releases all connections to the AS/400 system and releases resources
associated with server jobs processing requests for the client.

super.dispose();

Call the super class dispose method to make sure any resources used by the
frame are properly freed.

public void dispose() {
try {
// All done with the file

myKeyedFile.close();
as400.disconnectAllServices();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};

super.dispose();
System.exit(0);

return;
}

3.5.11 Distributed Program Call Feature
The Program Call feature of the AS/400 Toolbox allows a Java program to
directly execute any non-interactive program object (*PGM) on the AS/400
system. It passes input data as parameters and returns results through
parameters.

The Java developer must use the data conversion classes from the Toolbox to
convert input parameters from Java format to an AS/400 data type and convert
output parameters from AS/400 format to a Java format.

The advantage of using the Distributed Program Call class is that native AS/400
non-interactive programs can be executed from a Java application unchanged.
Native program calls can also result in better performance of a Java application
when compared with JDBC. Additionally, this interface can call programs on the
AS/400 system that do more than just database access. For example, a Java
application can call a program that starts nightly job processing, saves libraries
to tape, or sends or receives data through communication lines.

Calling a native AS/400 program involves the following steps:

1. Connect to the AS/400 system by creating an AS400 object.
2. Create a ProgramCall object.
3. Define and initialize a ProgramParameter array for passing parameters

to/from the called program.
4. Use the Data Conversion classes to convert input parameter values from

Java to AS/400 format.
5. Use the setProgram method to specify the qualified name of the program to

call and parameters to use, if not declared on the ProgramCall constructor.

98 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

6. Execute the program using the run method.
7. If the run method fails, obtain detailed error information through

AS400Message objects.
8. Retrieve output parameters using getOutputData method of the

ProgramParameter object.
9. Convert output parameter values using the data conversion classes.

3.5.12 A Distributed Program Call (DPC) Application Example

Figure 26. Distributed Program Call Example

In this example, we use the Distributed Program Call (DPC) interface to allow a
client program to call an AS/400 program. The client program requests data
from the AS/400 database by calling a AS/400 program. Information is passed
between the programs using parameters. It is up to the application implementer
to handle data conversions.

Chapter 3. AS/400 Toolbox for Java 99

This soft copy for use by IBM employees only.

The client program requests data from the server program by calling it and
passing it parameters. The input parameters are a flag and a part number. For
example, S12301 is a request for a single record (Flag = S) of part number
12301. If requesting all parts (Flag=A), the part number is not necessary. The
server program, DPCXRPG searches the database for the requested information.
The result is passed back in output parameters.

100 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Class DPCExample is the main class in this application. It is functionally
equivalent to the StoredProcedureExample application, but is implemented using
different techniques. The ToolboxGUI class is used to handle all user
interaction. A native RPG program is called on the AS/400 system to access and
return data. Record update is not implemented in this example, although it can
be by changing the RPG program to accept a changed record on the parameter
list and updating the record in the database.

3.5.12.1 RPG Program Background
Library: APILIB

Program Name: DPCXRPG

Parameters:

Sequence Description Length Type Input/Output Values

1 Action flag 1 character I/O Input
S - Retrieve single
record
A - Position to
start of file
F - Fetch next
record
Output
Y - operation
succeeded
X - operation
failed or EOF
found

2 Part Number 5.0 packed I/O Part number to
retrieve (input) or
retrieved (output)

3 Description 25 character O

4 Quantity 5.0 packed O

5 Price 6.2 packed O

6 Ship Date 10 date O

3.5.13 DPCExample Class
In this section, we investigate the key methods of the DPCExample class.

3.5.13.1 Instance Variables
The following instance variables are declared for the class:

private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;
private AS400 as400;
private ProgramCall pgm;
private String progName = "/QSYS.LIB/APILIB.LIB/DPCXRPG.PGM";

Chapter 3. AS/400 Toolbox for Java 101

This soft copy for use by IBM employees only.

3.5.13.2 ConnectToDB Method
This method is called by the ToolboxGUI class when the Connect button is
pressed. String parameters representing the AS/400 system name, user ID, and
password are passed to the method.

public void connectToDB(String systemName, String userid, String password) throws Exception {
as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);
as400.connectService(AS400.COMMAND);
pgm = new ProgramCall(as400);
return;

}

Class: DPCExample Method: connectToDB

Method highlights:

as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);

Creates a new AS400 connection object. System name, user ID, and password
are passed through the constructor.

as400.connectService(AS400.COMMAND);

Connect to the AS/400 program call and command call server. This is not
required. If a service connection is needed and does not already exist, the
service is connected automatically. We choose to place the connection
overhead in the connect method as opposed to connecting the first time the user
requests a part record.

pgm = new ProgramCall(as400);

Creates a new ProgramCall object for the AS/400 defined in the as400 object.
The program and parameter information are supplied later.

3.5.13.3 GetRecord Method
This method is called by the ToolboxGUI class when the Get Part button is
pressed.

102 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

public String getRecord (String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception {

// Setup the parameters
ProgramParameter[] parmlist = new ProgramParameter[.6];

// First parameter is to input action
AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("S") , 1);

// Second parameter is to input PartNo
AS400PackedDecimal asPartNo = new AS400PackedDecimal(5,0);
parmlist[1] = new ProgramParameter(asPartNo.toBytes(new ja va.math.BigDecimal(partNo)) ,3);

// Third parm is output description
parmlist[2] = new ProgramParameter(25);

// Fourth parm is quantity
parmlist[3] = new ProgramParameter(3);

// Fifth parm is price
parmlist[4] = new ProgramParameter(4);

// Sixth parm is date
parmlist[5] = new ProgramParameter(10);

// Set the program name and parameter list
pgm.setProgram(progName, parmlist);

// Run the program
if (pgm.run() != true) {

// Note that there was an error
System.out.println("program failed:" + progName);
// Show the messages
AS400Message[] messagelist = pgm.getMessageList();
for (int i=0; i messagelist.length; i++) {

// show each message
System.out.println(messagelist[i]);

}
return "Program call failed!";

}
else {

if (((String)(asFlag.toObject(parmlist[0].getOutputData(),0))).equals("Y")) {
partDesc.setText((String)(new AS400Text(25)).toObject(parmlist[2].getOutputData(),0));
partQty.setText(((java.math.BigDecimal)(

new AS400PackedDecimal(5,0)).toObject(parmlist[3]
.toString());

partPrice.setText("$" + ((java.math.BigDecimal)(
new AS400PackedDecimal(6,2)).toObject(parmlist[4]
.getOutputData(),0)).toString());

partDate.setText((String)(new AS400Text(10)).toObject(parmlist[5].getOutputData(),0));
}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
}

return "Record found.";
}

Class: DPCExample Method: getRecord

Method highlights:

ProgramParameter [] parmlist = new ProgramParameter&l bracket.6] ;

Chapter 3. AS/400 Toolbox for Java 103

This soft copy for use by IBM employees only.

Declares a ProgramParameter array for six parameters.

AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("S") , 1);

The first parameter is an action code of one character. An object of type
AS400Text with a length of one is created and called asFlag. The asFlag object
is used to convert a Java String object with a value of S to its AS/400 equivalent
and returned as an array of bytes. This byte array is used as the input for a
program parameter. The second parameter of the ProgramParameter
constructor is an integer declaring the number of bytes expected to be returned
by the program after execution.

// Second parameter is to input PartNo
AS400PackedDecimal asPartNo = new AS400PackedDecimal(5,0);
parmlist[1]=new ProgramParameter(asPartNo.toBytes(

new java.math.BigDecimal(partNo)),3);

The second parameter is a part number and is both input and output. An
AS400PackedDecimal conversion object is created to convert the part number to
its AS/400 format. An output buffer of three bytes is reserved for the value
returned by the called program.

// Third parm is output description
parmlist[2] = new ProgramParameter(25);
// Fourth parm is quantity
parmlist[3] = new ProgramParameter(3);
// Fifth parm is price
parmlist[4] = new ProgramParameter(4);
// Sixth parm is date
parmlist[5] = new ProgramParameter(10);

The next four paramters are output only and require that the number of output
bytes be declared.

pgm.setProgram(progName, parmlist);

Associates a program name and parameter list with the ProgramCall object.

if (pgm.run() != true) {

Uses the run method of the ProgramCall object to execute the program on the
AS/400. The method returns true if successful and false if a problem occurred.

AS400Message [] messagelist = pgm.getMessageList();
for (int i=0; i messagelist.length; i++) {

// show each message
System.out.println(messagelist[i]);

}

If an error ocurred on the run(), obtain the error messages from the ProgramCall
object and print each message on the console.

if (((String)(asFlag.toObject(parmlist [0] .getOutputData(),0))).equals("Y")) {

This statement checks the value of the action parameter returned by the
program to see if the part record was retrieved successfully.
parmlist [0] .getOutputData() returns an array of bytes for the first parameter in
AS/400 format. The toObject method is used on the AS400Text object, asFlag, to
convert the byte array to a Java object. Since toObject returns an object of type
Object, it must be typecast as a string object to use string methods.

104 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

partDesc.setText((String)(new AS400Text(25)).toObject
(parmlist[2].getOutputData(),0));

partQty.setText(((java.math.BigDecimal)(new AS400PackedDecimal(5,0)).toObject(
(parmlist[3].getOutputData(),0)).toString());

partPrice.setText("$" + ((java.math.BigDecimal)(new AS400PackedDecimal(6,2)).
toObject(parmlist[4].getOutputData(),0)).toString());

partDate.setText((String)(new AS400Text(10)).toObject(
(parmlist[5].getOutputData(),0));

The same technique is used to retrieve and convert parameter values from
AS/400 format to Java objects. The string representation of each output
parameter is used to set the text property of the associated TextFields on the
window.

3.5.13.4 PopulateListBox Method
This method is called from the constructor. It runs the RPG program multiple
times to retrieve all records from the PARTS file.

public void populateListBox (com.taligent.widget.MultiColumnListbox aListBox)
throws java.lang.Exception {

String[] array = new String[5];

// Setup the parameters
ProgramParameter[] parmlist = new ProgramParameter[.6];

// First parameter is to input action
AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("A") , 1);

// Second parameter is to output PartNo
parmlist[1] = new ProgramParameter(3);

// Third parm is output description
parmlist[2] = new ProgramParameter(25);

// Fourth parm is quantity
parmlist[3] = new ProgramParameter(3);

// Fifth parm is price
parmlist[4] = new ProgramParameter(4);

// Sixth parm is date
parmlist[5] = new ProgramParameter(10);

// Set the program name and parameter list
pgm.setProgram(progName, parmlist);

String flag = null;

Class: DPCExample Method: populateListBox

Chapter 3. AS/400 Toolbox for Java 105

This soft copy for use by IBM employees only.

if (pgm.run() != true) {
// Note that there was an error
System.out.println("program failed:" + progName);
// Show the messages
AS400Message[] messagelist = pgm.getMessageList();
for (int i=0; i messagelist.length; i++) {

// show each message
System.out.println(messagelist[i]);

}
return;

}
else {

flag = (String)(asFlag.toObject(parmlist[0].getOutputData(),0));
if (flag.equals("Y")) {

parmlist[0] = new ProgramParameter(asFlag.toBytes("F") , 1);
pgm.setProgram(progName, parmlist);

do {

if (pgm.run() != true) {

// Note that there was an error
System.out.println("program failed:" + progName);
// Show the messages
AS400Message[] messagelist = pgm.getMessageList();
for (int i=0; i messagelist.length; i++) {
// show each message
System.out.println(messagelist[i]);
}

return;
}
else {

flag = (String)(asFlag.toObject(parmlist[0].getOutputData(),0));

if (flag.equals("Y")) {
array[0] =(((java.math.BigDecimal)(new

AS400PackedDecimal(5,0)).toObject(parmlist[1].
getOutputData(),0)).toString());

array[1] =(String)(new AS400Text(25)).toObject(pa rmlist[2].getOutputData(),0);
array[2] =((java.math.BigDecimal)(new

AS400PackedDecimal(5,0)).toObject(parmlist[3].g
etOutputData(),0)).toString();

array[3] = "$" + ((java.math.BigDecimal)(new AS40 0PackedDecimal(6,2))
.toObject(parmlist[4]getOutputData(),0)).toString();

array[4] =(String)(new AS400Text(10)).toObject(pa rmlist[5].getOutputData(),0);

aListBox.addRow(array);
}

}
} while (flag.equals("Y"));

}
}

return;
}

Class: DPCExample Method: populateListBox

Method highlights:

106 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The program parameter list is defined and initialized in the same manner as in
the getRecord method. Here, the first parameter is set to A to tell the program to
retrieve all records from the parts file.

pgm.setProgram(progName, parmlist);

Associate the program name and parameter list with the ProgramCall object.

if (pgm.run() != true) {

Call the program the first time to open the parts file and position the read
pointer to the first record in the file.

flag = (String)(asFlag.toObject(parmlist [0] .getOutputData(),0));
if (flag.equals(Y)) {

If the initial call to the program was successful, retrieve the value of the first
parameter and check for an operation succeeded code (Y).

parmlist [0] = new ProgramParameter(asFlag.toBytes(" F") , 1);

Change the value of the first parameter to an F to tell the program to fetch the
next record from the file.

Execute the program inside a do loop until the value returned in the first
parameter is not a Y. , meaning that there are no more records to retrieve from
the file. Upon each successful call to the program, use the same techniques as
in the getRecord method to retrieve the values of output parameters and place
their Java String converted value into a string array for addition to the list box.

3.5.13.5 Dispose Method
This method is called when the application window is closed.

Class: DPCExample Method: dispose

Method highlights:

as400.disconnectAllServices();

Releases all connections to the AS/400 system and releases resources
associated with server jobs processing requests for the client.

super.dispose();

Call the super class dispose method to make sure any resources used by the
Frame are properly freed.

public void dispose () {
try {

as400.disconnectAllServices();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};
super.dispose();
System.exit(0);

return;
}

Chapter 3. AS/400 Toolbox for Java 107

This soft copy for use by IBM employees only.

3.5.14 Data Queues
The Data Queue classes allow a Java program to create, delete, write, and read
data queues on the AS/400 system.

The DataQueue classes allow a Java program to interact with AS/400 data
queues. AS/400 data queues have the following characteristics:

The data queue is a fast means of communications between jobs. Therefore,
it is an excellent way to synchronize and pass data between jobs.

Many jobs can access them simultaneously.

Messages on a data queue are free format. Fields are not required as in
database files.

The data queue can be used for either synchronous or asynchronous
processing.

The messages on a data queue can be ordered in one of three ways:

− Last in, first out (LIFO). The last (newest) message placed on the data
queue is the first message taken off the queue.

− First in, first out (FIFO). The first (oldest) message placed on the data
queue is the first message taken off the queue.

− Keyed. Each message on the data queue has a key associated with it.
A message can only be taken off the queue by specifying the key that is
associated with it.

Data queues allow for time independent applications. The client and server
applications are not communicating directly and can work independent of
each other.

The DataQueue class provides a complete set of interfaces to access AS/400
data queues from a Java program. It is an excellent way to communicate
between Java programs and AS/400 programs. The AS/400 program can be
written in any language.

A required parameter of the DataQueue constructor is the AS400 object that
represents the AS/400 system that has the data queue or where the data queue
is to be created. The DataQueue constructor requires the integrated file system
path name of the data queue.

Two types of data queues are supported: keyed and non-keyed. Methods
common to both types of queues are in the BaseDataQueue class. This class is
extended by the DataQueue class to complete the implementation of non-keyed
data queues. The BaseDataQueue class is extended by the KeyedDataQueue
class to complete the implementation of keyed data queues.

When data is read from a data queue, it is placed in a DataQueueEntry object.
This object holds the data for both keyed and non-keyed data queues. Additional
data available when reading from a keyed data queue is placed in a
KeyedDataQueueEntry object that extends the DataQueueEntry class. For
example:

// Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

// Create the DataQueue object
DataQueue dq = new DataQueue(sys, "/QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ");

108 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

// read data from the queue
DataQueueEntry dqData = dq.read();

// get the data out of the DataQueueEntry object
// as a byte array
byte[] data = dqData.getByteData();

// ... process the data

// Disconnect since I am done using data queues
sys.disconnectService("data queue");

The data queue classes do not alter data written to or read from the AS/400 data
queue. It is up to the Java program to correctly format the data. The data
conversion classes provide methods for converting data.

3.5.14.1 Keyed Data Queues
The BaseDataQueue and KeyedDataQueue classes provide the following
methods for working with keyed data queues:

Create a keyed data queue on the AS/400 system. The Java program must
specify key length and maximum size of an entry on the queue. The Java
program can optionally specify authority information, save sender
information, force to disk, and provide a queue description.

Peek at an entry that matches the specified key without removing it from the
queue. The Java program can wait or return immediately if no entry is
currently on the queue that matches the specified key. The program can
receive the entry as a string or as a byte array.

Read an entry off the queue that matches the specified key. The Java
program can wait or return immediately if no entry is available on the queue
that matches the specified key. The program can read the entry as a string
or as a byte array.

Write an entry to the queue.

Clear all entries that match the specified key.

Delete the queue.

The BaseDataQueue and KeyedDataQueue classes also provide additional
methods for retrieving the attributes of the data queue.

3.5.14.2 Non-Keyed Data Queues
Entries on a non-keyed AS/400 data queue are removed in FIFO or LIFO
sequence. The BaseDataQueue and DataQueue classes provide the following
methods for working with non-keyed data queues:

Create a data queue on the AS/400 system. The Java program can
optionally specify queue parameters (FIFO versus LIFO, save sender
information, and so on) when the queue is created.

Peek at an entry on the data queue without removing it from the queue. The
Java program can wait or return immediately if no entry is currently on the
queue, and can receive the entry as a string or as a byte array.

Read an entry off the queue. The Java program can wait or return
immediately if no entry is available on the queue, and can read the entry as
a string or as a byte array.

Chapter 3. AS/400 Toolbox for Java 109

This soft copy for use by IBM employees only.

Write an entry to the queue.

Clear all entries from the queue.

Delete the queue.

The BaseDataQueue and DataQueue classes also provide additional methods for
retrieving the attributes of the data queue.

3.5.15 A Data Queue Application Example

Figure 27. Data Queue Application

In this example we use, the Data Queue interface to allow a client program to
interface with an AS/400 program. The client program requests data from the
AS/400 database by placing requests on an input AS/400 data queue. A host
program monitors the input data queue for a request. If a request is received,
the host program uses it to retrieve records from the AS/400 database. The
output information is placed in an output data queue that is monitored by the
client program. When using data queues, it is up to the application implementer
to handle data conversions.

110 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Class DataQueueExample is the main class in this application. It is functionally
equivalent to the StoredProcedureExample application, but is implemented using
different techniques. The ToolboxGUI class is used to handle all user
interaction. A native RPG program waits for a request on an input data queue
(APILIB/DQINPT) and places results on an output data queue (APILIB/DQOUPT).
Record update is not implemented in this example although it can be by

Chapter 3. AS/400 Toolbox for Java 111

This soft copy for use by IBM employees only.

changing the RPG program to accept a changed record on the input data queue
and update the record in the database.

3.5.15.1 Data Queue Server Program Background
An input queue and output queue were created with the commands:

CRTDTAQ DTAQ(APILIB/DQINPT) MAXLEN(6) TEXT('Data Queue for Parts Input')
CRTDTAQ DTAQ(APILIB/DQOUPT) MAXLEN(48) TEXT('Data Queue for Parts Output')

Program Name: APILIB/DQXRPG

Data queue, DQINPT layout:

Queue Position Description Length Type Values

1 - 1 Action flag 1 character S - Retrieve single
record
A - Position to start of
file

2 - 6 Part Number 5.0 zoned Part number to retrieve

Data queue, DQOUPT layout:

Queue Position Description Length Type Values

1 - 1 Action flag 1 character Y - operation succeeded
X - record not found or
EOF

2 - 6 Part Number 5.0 zoned Part number to
retrieved

7 - 31 Description 25 character

32 - 34 Quantity 5.0 packed

35 - 38 Price 6.2 packed

39 - 48 Ship Date 10 character

3.5.16 DataQueueExample Class
In this section, we investigate the key methods of the DataQueueExample Class.

3.5.16.1 Instance Variables
The following instance variables are declared for the class:

private COM.ibm.as400.access.AS400 as400;
private COM.ibm.as400.access.DataQueue dqInput;
private COM.ibm.as400.access.DataQueue dqOutput;
private COM.ibm.as400.access.RecordFormat rfInput;
private COM.ibm.as400.access.RecordFormat rfOutput;

3.5.16.2 ConnectToDB Method
This method is called by the ToolboxGUI class when the Connect button is
pressed. String parameters representing the AS/400 system name, user ID, and
password are passed to the method.

112 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

/**
* Connect to the AS/400 using JDBC
* @param systemName java.lang.String
*/

public void connectToDB(String systemName, String userid, String password) throws Exception {
as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);
dqInput = new COM.ibm.as400.access.DataQueue(as400, "/QSYS.LIB/APILIB.LIB/DQINPT.DTAQ");
dqOutput = new COM.ibm.as400.access.DataQueue(as400, "/QSYS.LIB/APILIB.LIB/DQOUPT.DTAQ");

return;
}

Class: DataQueueExample Method: connectToDB

Method highlights:

as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);

Creates a new AS400 connection object. System name, user ID, and password
are passed through the constructor.

Note: If you import the COM.ibm.as400.access classes, you don't have to fully
qualify the class name. You could write it as: as400 = new
AS400(systemName,userid,password);

dqInput = new COM.ibm.as400.access.DataQueue(as400,
"/QSYS.LIB/APILIB.LIB/DQINPT.DTAQ");

dqOutput = new COM.ibm.as400.access.DataQueue(as400,
"/QSYS.LIB/APILIB.LIB/DQOUPT.DTAQ");

Creates new DataQueue objects for the input and output queues. The
fully-qualified IFS name of the data queues are passed in the constructor.

3.5.16.3 GetRecord Method
This method is called by the ToolboxGUI class when the Get Part button is
pressed.

Chapter 3. AS/400 Toolbox for Java 113

This soft copy for use by IBM employees only.

public String getRecord (String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception {

if (rfInput == null) initRecordFormat();
// set values of the input record ...

Record rInput = rfInput.getNewRecord();
rInput.setField("flag","S");
rInput.setField("partno",new java.math.BigDecimal(partNo));

dqInput.write(rInput.getContents());
DataQueueEntry dqe = dqOutput.read();

Record rOutput = rfOutput.getNewRecord(dqe.getByteData());

if (((String)rOutput.getField("flag")).equals("Y")) {
partDesc.setText((String)rOutput.getField("partds"));
partQty.setText(((java.math.BigDecimal)rOutput.getField("partqy")).toString());
partPrice.setText("$" + ((java.math.BigDecimal)rOutput.getField("partpr")).toString());
partDate.setText((String)rOutput.getField("partdt"));

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
return "Record found.";

}

Class: DataQueueExample Method: getRecord

Method highlights:

if (rfInput == null) intRecordFormat();

Uses lazy initialization to create the input and output record format objects. See
the initRecordFormat method for details.

Record rInput = rfInput.getNewRecord();

Creates a new input record object from the input record format. A RecordFormat
is only a description of a record. A record is an object that can have field
values.

rInput.setField(flag,S);
rInput.setField("partno",new java.math.BigDecimal(partNo));

Set the value of the flag field in the record to S to tell the server program to
retrieve a single record from the database. Set the value of the part field to the
part number passed on the parameter list.

dqInput.write(rInput.getContents());

Write the input record to the input data queue. The getContents method returns
a byte array of the value of the record in AS/400 format.

DataQueueEntry dqe = dqOutput.read();

Read the next entry off the output data queue. This returns a data queue entry
object.

Record rOutput = rfOutput.getNewRecord(dqe.getByteData());

114 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Creates a new output record, using the output record format and setting field
values using the array of bytes returned by the getByte method of the data
queue entry object.

if (((String)rOutput.getField("flag")).equals("Y")) {

This statement checks the value of the flag field in the record format to see if the
part record was retrieved successfully. The getField method uses an object of
type Object; it must be typecast as a string object to use string methods.

partDesc.setText((String)rOutput.getField("partds"));
partQty.setText(((java.math.BigDecimal)rOutput.getField("partqy")).toString());
partPrice.setText("$" + ((java.math.BigDecimal)rOutput.getField(

"partpr")).toString());
partDate.setText((String)rOutput.getField("partdt"));

The same technique is used to retrieve and field values from the output record
object to Java objects. The string representation of each output parameter is
used to set the text property of the associated TextFields on the window.

3.5.16.4 InitRecordFormat Method
This method initializes the input and output record format objects. It is called by
the getRecord and populateListBox methods if the record formats are not
already initialized.

public void initRecordFormat () {
CharacterFieldDescription asFlag = new CharacterFieldDescription(new AS400Text(1),"flag");
ZonedDecimalFieldDescription asPartNo = new ZonedDecimalFieldDescription(

new AS400ZonedDecimal(5,0),"partno");
CharacterFieldDescription asPartDS = new CharacterFieldDescription(new AS400Text(25),"partds");
PackedDecimalFieldDescription asPartQy = new PackedDecimalFieldDescription(

new AS400PackedDecimal(5,0),"partqy");
PackedDecimalFieldDescription asPartPR = new PackedDecimalFieldDescription(

new AS400PackedDecimal(6,2),"partpr");
DateFieldDescription asPartDt = new DateFieldDescription(new AS400Text(10),"partdt");

// set up the input record format....
rfInput = new RecordFormat();
rfInput.addFieldDescription(asFlag);
rfInput.addFieldDescription(asPartNo);

// set up the output record format....
rfOutput = new RecordFormat();
rfOutput.addFieldDescription(asFlag);
rfOutput.addFieldDescription(asPartNo);
rfOutput.addFieldDescription(asPartDS);
rfOutput.addFieldDescription(asPartQy);
rfOutput.addFieldDescription(asPartPR);
rfOutput.addFieldDescription(asPartDt);

return;
}

Class: DataQueueExample Method: initRecordFormat

Method highlights:

Chapter 3. AS/400 Toolbox for Java 115

This soft copy for use by IBM employees only.

CharacterFieldDescription asFlag = new CharacterFieldDescription(
new AS400Text(1),"flag");

ZonedDecimalFieldDescription asPartNo = new ZonedDecimalFieldDescription(
new AS400ZonedDecimal(5,0),"partno");

CharacterFieldDescription asPartDS = new CharacterFieldDescription(
new AS400Text(25),"partds");

PackedDecimalFieldDescription asPartQy = new PackedDecimalFieldDescription(
new AS400PackedDecimal(5,0),"partqy");

PackedDecimalFieldDescription asPartPR = new PackedDecimalFieldDescription(
new AS400PackedDecimal(6,2),"partpr");

DateFieldDescription asPartDt = new DateFieldDescription(
new AS400Text(10),"partdt");

These statements create field description objects for the data fields that make up
the input and output record formats. The field description constructor takes an
AS/400 data type object and a field name.

rfInput = new RecordFormat();
rfInput.addFieldDescription(asFlag);
rfInput.addFieldDescription(asPartNo);

Create the input record format by adding field descriptions to a new
RecordFormat object.

rfOutput = new RecordFormat();
rfOutput.addFieldDescription(asFlag);
rfOutput.addFieldDescription(asPartNo);
rfOutput.addFieldDescription(asPartDS);
rfOutput.addFieldDescription(asPartQy);
rfOutput.addFieldDescription(asPartPR);
rfOutput.addFieldDescription(asPartDt);

Create the output record format by adding field descriptions to a new
RecordFormat object.

3.5.16.5 PopulateListBox Method
This method is called from the constructor. It sends a message on the input
data queue to request all records from the parts file. It receives from the output
data queue multiple times until all the parts records have been returned by the
server program.

116 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

public void populateListBox (com.taligent.widget.MultiColumnListbox aListBox)
throws java.lang.Exception {

String[] array = new String[5];

if (rfInput == null) initRecordFormat();

// set values of the input record ...
Record rInput = rfInput.getNewRecord();
rInput.setField("flag","A");

dqInput.write(rInput.getContents());
String flag = null;
do {

Record rOutput = rfOutput.getNewRecord(dqOutput.read().getByteData());
flag = (String)rOutput.getField("flag");

if (flag.equals("Y")) {
array[0] =((java.math.BigDecimal)rOutput.getField("part no")).toString();
array[1] =(String)rOutput.getField("partds");
array[2] =((java.math.BigDecimal)rOutput.getField("part qy")).toString();
array[3] = "$" + ((java.math.BigDecimal)rOutput.getFiel d("partpr")).toString();
array[4] =(String)rOutput.getField("partdt");

aListBox.addRow(array);
}

} while (flag.equals("Y"));

return;
}

Class: DataQueueExample Method: populateListBox

Method highlights:

if (rfInput == null) initRecordFormat();

The input and output record formats are initialized, if needed.

Record rInput = rfInput.getNewRecord();

A new input record object is created from the input record format.

rInput.setField("flag","A");

The flag field in the input record is set to an "A" to request all records from the
parts file.

dqInput.write(rInput.getContents());

Put the current value of the input record format on the input data queue.

Record rOutput = rfOutput.getNewRecord(dqOutput.read().getByteData());

Read the next entry from the output data queue and use the array of bytes
returned to initialize a new output record object.

Execute the read inside a do loop until the value returned in the flag field is not
a "Y", meaning that there are no more records to retrieve from the file. Upon
each successful read from the data queue, use the same techniques as the
getRecord method to retrieve the values of output record fields and place their
Java String converted value into a string array for addition to the list box.

Chapter 3. AS/400 Toolbox for Java 117

This soft copy for use by IBM employees only.

3.5.16.6 Dispose Method
This method is called when the application window is closed.

Class: DataQueueExample Method: dispose

Method highlights:

as400.disconnectAllServices();

Releases all connections to the AS/400 system and releases resources
associated with server jobs processing requests for the client.

super.dispose();

Call the super class dispose method to make sure any resources used by the
frame are properly freed.

public void dispose () {
try {

as400.disconnectAllServices();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};
super.dispose();
System.exit(0);

return;
}

3.6 Network Print
The network print classes provide the following functions:

Read and write AS/400 spooled files.

Generate SCS data streams.

Manage print resources:

− List, hold, and release spooled files.
− List, hold, and release output queues.
− Start and stop AS/400 writer jobs.
− List and retrieve attributes of printer devices.
− List and read AFP resources.

Using the Network Print classes involves the following steps:

Establish a connection.
Create a spooled file list.
Set the user filter.
Open the spooled file list.
Retrieve entries.
Close the spooled file list.
Close the connection.

118 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

3.6.1 A Print Example

Figure 28. AS/400 Toolbox for Java Print

In this example, we use the SpooledFileList feature of the AS/400 Toolbox to
allow a Java program to directly access spooled files on the AS/400 system.
Spooled files can be created, deleted, held, and released. Spooled files can
also be filtered by user name.

Toolbox classes used:

AS400(String, String, String):

Constructor for class COM.ibm.as400.access.AS400. Constructs an AS/400
object for the specified system, user ID, and password.

SpooledFileList(AS400):

Constructor for class COM.ibm.as400.access.SpooledFileList. Constructs a
SpooledFileList to an AS/400 system.

SpooledFile():

Constructor for class COM.ibm.as400.access.SpooledFile. Constructs a
spooled file object.

SpooledFileList methods used:

openSynchronously():

Builds the list synchronously. This method does not return until the list has
been built completely.

getObject(int index):

Returns one object from the list.

close():

Closes the spooled file list.

Chapter 3. AS/400 Toolbox for Java 119

This soft copy for use by IBM employees only.

This application was built using VisualAge for Java and the AS/400 Toolbox
classes. The spooled file list retrieval application allows us to retrieve a list of
spooled files of the current logged on user, but any user name can be used. We
use the Taligent multi-column list box to display the spooled files. The Taligent
MultiColumnListbox is downloadable from their Web site. This window shows
the spooled files for the current logged on user.

3.6.2 SpooledFileListExample Class
In this section, we investigate the key methods of the SpooledFileListExample
class.

3.6.2.1 Connect Method
This method is called when the Connect button is pressed. String parameters
representing the AS/400 system name, user ID, and password are passed to the
method.

120 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Method highlights:

as400 = new AS400(systemName, userid, password);

Creates a new AS400 connection object. System name, user ID, and password
are passed through the constructor.

as400.connectService(AS400.PRINT);

Connect to the AS/400 Program Call and Print Service server. This is not a
required call. If a service connection is needed and does not already exist, the
service is connected automatically. We choose to place the connection
overhead in the connect method as opposed to connecting the first time the user
requests a spooled file.

public void connect (String systemName, String userid, String password)
{ try{

as400 = new AS400(systemName, userid, password);

as400.connectService(AS400.PRINT);

} catch (Exception e) { return "Exception " + e; }
return "Connected";

}
}

3.6.2.2 FormatSpooledFile Method

Method highlights:

This method is called to format the Print objects so they can be added to the
Multi-column list box. It is called by the getSpooledFilesForUser method. It is
called with a SpooledFile Object as input. It retrieves the attributes of the object
and returns a string array that contains the formatted attributes of the object.

public String []
formatSpooledFile(SpooledFile theFile) throws Exception

{
String result[] new String[6];

result[0] =
theFile.getStringAttribute(PrintObject.ATTR_SPOOLFILE);

result[1] =
theFile.getStringAttribute(PrintObject.ATTR_JOBUSER);

result[2] =
theFile.getStringAttribute(PrintObject.ATTR_USERDATA);

result[3] =
theFile.getStringAttribute(PrintObject.ATTR_SPLFSTATUS);

String date = theFile.getStringAttribute(PrintObject.ATTR_DATE);
result[4] =

date.substring(3,5) + "/" + date.substring(5,7) + "/" +
date.substring(1,3);

String time = theFile.getStringAttribute(PrintObject.ATTR_TIME);
result[5] =

time.substring(0,2) + ":" + time.substring(2,4) + ":" +
time.substring(4,6);

return result;
}

}
}

Chapter 3. AS/400 Toolbox for Java 121

This soft copy for use by IBM employees only.

3.6.2.3 GetSpooledFilesForUser (String User)

Method highlights:

New SpooledFileList (as400):

Constructs a spooled file list object using the system object. The default list
shows all spooled files for the current user on the specified system.

list.setUserFilter (String user name):

Specifies the user data the spooled file must have in order for it to be
included in the list. The value can be any specific value or the special *ALL
value. The value cannot be greater than 10 characters. The default is *ALL.

list.openSynchronously():

Builds the list synchronously. This method does not return until the list has
been built completely. The caller may then call the getObjects method to get
an enumeration of the list.

list.size():

Returns the current size of the list.

currentFile = (SpooledFile)list.getObject(x):

Returns one object from the list.

getMultiColumnListbox1().addRow(formatSpooledFile(currentFile),
currentFile);

Calls formatSpooledFile to retrieve the attributes of the object and then adds
it to the list box.

list.close():

Closes the list so that objects in the list can be garbage collected.

public String getSpooledFilesForUser(String user)
{

SpooledFileList list;
try { clearListbox();

list = new SpooledFileList(as400);
list.setUserFilter(user.toUpperCase());
list.openSynchronously();
int listsize = list.size();
SpooledFile currentFile;
for (int x=0; x< listsize; x++)

{
currentFile = (SpooledFile)list.getObject(x);
getMultiColumnListbox1().addRow(formatSpooledFile(currentFile),

currentFile);
}

} catch (Exception e) {return "An exception occurred" + e;}
list.close();
getMultiColumnListbox1().repaint();
return "SpooledFileList Retrieved Successfully";

}
}

122 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

3.7 Integrated File Systems Access
The Integrated File System support allows access to files in the AS/400 system's
Integrated File Systems as a stream of bytes. It provides function similar to the
java.io package, plus the ability to:

Specify a file sharing mode to deny access to the file while it is in use.
Specify a file creation mode to open, create, or replace the file.
Lock a section of the file to deny access to that part of the file while it is in
use.
List the contents of a directory more efficiently.
Determine the number of bytes available on the AS/400 system.
Get detailed information on why an operation failed.

The Integrated File System Stream File classes were created because the java.io
package does not provide file redirection. The Integrated File System Stream
File classes also provide functions not in the java.io package. The function
provided by the Integrated File System Stream File classes is a superset of the
function provided by the file IO classes in the java.io package. All methods in
java.io InputStream, OutputStream, and RandomAccessFile are in the Integrated
File System Stream File classes.

The Integrated File System Stream File classes also allow a Java applet to write
files to the AS/400 file system. Java applets cannot use the java.io package to
write to the file system.

A Java program can still use the java.io package, but a method of redirection
must be provided by the client operating system. For example, if the Java
program were running on a Windows 95 or Windows NT personal computer, the
network drives function of AS/400 Client Acces for 32-bit Windows is required for
java.io calls to the AS/400 system. With the Integrated File System Stream File
classes, Client Access is not required.

Integrated File System Stream File classes require the hierarchical name of the
object in the integrated file system. Use the forward slash as the path separator
character. For example, to access FILE1 in directory path DIR1/DIR2, the name
is:

/DIR1/DIR2/FILE1

3.7.1 An IFS Example

Chapter 3. AS/400 Toolbox for Java 123

This soft copy for use by IBM employees only.

Figure 29. AS/400 Toolbox for Java IFS

In this example, we use the Integrated File System classes of the AS/400 Toolbox
to allow a Java program to interface with the OS/400 host servers to gain access
to files in the AS/400 Integrated File System.

Toolbox classes used:

AS400(String, String, String):

Constructor for class COM.ibm.as400.access.AS400. Constructs an AS/400
object for the specified system, user ID, and password.

IFSFile(AS400, String):

Constructor for class COM.ibm.as400.access.IFSFile. Constructs an object
referring to an IFS File on the AS400 system.

IFSFileInputStream(AS400, IFSFile, int):

Constructor for class COM.ibm.as400.access.IFSFileInputStream. Constructs
an input stream to read contents of the file.

IFS methods used:

list():

Method in class COM.ibm.as400.access.IFSFile. If the IFSFile Object
represents a directory or folder, this method returns an array of strings that
holds the list of all files and directories within.

getSystem():

Method in class COM.ibm.as400.access.IFSFile. Returns the AS400 object
this IFSFile was created from.

getName():

Method in class COM.ibm.as400.access.IFSFile. Returns a string with the
name of the IFSFile.

isDirectory() and isFile(): Methods in class COM.ibm.as400.access.IFSFile.

Return booleans to determine whether the IFSFile object represents a file or
directory.

length():

Method in class COM.ibm.as400.access.IFSFile.

Returns the length (in bytes) of the file.

124 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

lastModified():

Method in class COM.ibm.as400.access.IFSFile.

Returns the last date the file was modified (as a long).

available():

Method in class COM.ibm.as400.access.IFSFileInputStream. Returns the
number of available bytes in the file.

read(byte[]):

Method in class COM.ibm.as400.access.IFSFileInputStream. Reads the
number of bytes available and stores in the byte array.

close():

Method in class COM.ibm.as400.access.IFSFileInputStream. Closes the input
stream.

This application was built using VisualAge for Java and the AS/400 Toolbox. In
this example, we use the IFS classes of the AS/400 Toolbox to allow a Java
program to retrieve a list of files from the AS/400 Integrated File System. If a
text file is selected from the list of files, its contents are displayed. We use the
Taligent multi-column list box to display the list of files. This window shows the
files stored in the IFS for the path entered in the window's text box.

Chapter 3. AS/400 Toolbox for Java 125

This soft copy for use by IBM employees only.

Application flow:

Establish a connection.
Set IFS Path to view.
Create an IFSFile Object.
Retrieve list.
Open an IFSFileInputStream.
Read file contents.
Close the connection.

3.7.2 IFSExample Class
In this section, we investigate the key methods of the IFSExample class.

3.7.2.1 Connect Method
This method is called when the Connect button is pressed. String parameters
representing the AS/400 system name, user ID, and password are passed to the
method.

public void connect (String systemName, String userid, String password)
throws Exception {

getStatus().setText("Connecting....");

as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);

as400.connectService(COM.ibm.as400.access.AS400.FILE);
getStatus().setText("Connected to AS400");
return;

}

Method highlights:

as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);

Creates a new AS400 connection object. System name, user ID, and password
are passed through the constructor.

as400.connectService(AS400.COM.ibm.as400.access.AS400.FILE);

Connect to the AS/400 host file server. This is not a required call. If a service
connection is needed and does not already exist, the service is connected
automatically. We choose to place the connection overhead in the connect
method as opposed to connecting the first time the user requests to access a
file.

3.7.2.2 PopulateList Method
This method is called when the Get Dirs/Files button is pressed. A string
parameter representing the IFS path is passed to the method.

126 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

public void populateList(String IFSPath) {
COM.ibm.as400.access.IFSFile aFile;
String[] files;
Object[] rowData = new Object[4];
Object rowKey;
.
.
try {

// Create the IFSFile object given the system and path.
aFile = new COM.ibm.as400.access.IFSFile(as400, IFSPath);
// Get a String array list of files and directories.
files = aFile.list();
// Loop for each item in the list to get name, size, type, and modified data
for (int i=0; i<files.length; i++) {

aFile = new COM.ibm.as400.access.IFSFile(as400,IFSPath, files[i]);
// The IFSFile object is added to the MultiColumnListbox as a key
rowKey = aFile;
rowData[0] = files[i];
rowData[1] = String.valueOf(aFile.length());

if (aFile.isDirectory()) {
rowData[2] = "Directory";

} else {
rowData[2] = "File";

}

rowData[3]= new java.util.Date(aFile.lastModified());
getMultiColumnListbox1().addRow(rowData, rowKey);

}
} catch (java.io.IOException ex) {

System.out.println("Error Receiving Files: "+ex);
}
....

}

}

Method highlights:

aFile = new COM.ibm.as400.access.IFSFile(as400, IFSPath);

Creates a new IFSFile object using the as400 object and the IFS path as
parameters.

files = aFile.list();

Uses the IFSFile list method to return an array of strings that holds a list of files
and directories held in the IFSFile object.

for (int i=0; i<files.length; i++) {
aFile = new COM.ibm.as400.access.IFSFile(as400,IFSPath, files[i]);
.
.

Loops through the list of file objects stored in the string array named files and
builds an object array that contains the name of the file, the size, the type, and
the last modified date.

getMultiColumnListbox1().addRow(rowData, rowKey);

Adds a new entry to the multi-column list box for the file object.

Chapter 3. AS/400 Toolbox for Java 127

This soft copy for use by IBM employees only.

3.7.2.3 Readfile() Method
This method reads the contents of a file as a stream of bytes and stores them in
a byte array.

Method highlights:

IFSFileInputStream in = new IFSFileInputStream(_file.getSystem(), _file,
IFSFileInputStream.SHARE_ALL);

Creates a new IFSFileInputStream object that is used to read the contents of a
file.

int len = in.available();

Uses the IFSFileInputStream method available to determine the number of bytes
contained in the file.

data = new byte [len] ;

Allocates a byte array to hold the data of the size returned previously.

in.read(data);

Uses the IFSFileInputStream method read to read the stream of bytes into the
byte array.

protected void readFile() {
byte[] data=null;

// Determine if the file extension is .txt
String name = _file.getName();

.

.

.
try {

IFSFileInputStream in = new IFSFileInputStream(_file.getSystem(), _file,
IFSFileInputStream.SHARE_ALL);

int len = in.available();
data = new byte[len];
in.read(data);
in.close();

} catch (Exception ex) {
System.err.println("Error reading file: "+ex);

}
String t = new String(data, 0);
getFileContents().setText(t);

}
}

128 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Chapter 4. Overview of the CPW Application

In this chapter, we cover the CPW (Commercial Processing Workload)
Benchmark order entry application. The CPW benchmark includes interactive
and batch work and is used by the Rochester Development Lab to determine
performance ratings of the various AS/400 processor features. The CPW
benchmark itself is a modified implementation of the TPC-C (Transaction
Processing Commercial-benchmark C) workload. Since CPW is not the actual
TCP-C benchmark, performance metrics based upon CPW applications are not
representative of IBM's or other vendor's optimized implementations.

However, CPW is representative of sophisticated commercial applications and
industry standard benchmarks and is more complex than the original AS/400
performance rating RAMP-C benchmark, which was used in AS/400 releases
prior to November 1996.

This section introduces the application and specifies the database layout. In
Chapter 6, “Developing AS/400 Java Applets” on page 155, we build the CPW
order entry application as an Internet-based applet that uses the JDBC interface
to access the AS/400 database.

4.1 Overview of the Application
This section provides an overview of the application and a description of how the
application database is used.

4.1.1 The Company
The Company is a wholesale supplier with one warehouse and 10 sales districts.
Each district serves 3000 customers (30 000 total customers for the company).
The warehouse maintains stock for the 100 000 items sold by the Company.

The following diagram illustrates the company structure (warehouse, district, and
customer).

ÚÄÄÄÄÄÄÄÄÄÄÄ¿
³ Company ³
ÀÄÄÄÄÄÂÄÄÄÄÄÙ

³
³

ÚÄÄÄÄÄÁÄÄÄÄÄ¿
³ Warehouse ³
ÀÄÄÄÄÄÂÄÄÄÄÄÙ

³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³ ³

ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿
³ District-1 ³ ³ District-2 ³ ³ District-10 ³
ÀÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ

³ ³ ³
ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿
³ 30K Customers ³ ³ 30K Customers ³ ³ 30K Customers ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 30. Company Structure

 Copyright IBM Corp. 1997 129

This soft copy for use by IBM employees only.

4.1.1.1 The Company Database
The company runs its business with a database. This database is used in a
mission critical, OLTP (online transaction processing) environment. The
database includes tables with the following data:

District information (next available order number, tax rate, and so on).
Customer information (name, address, telephone number, and so on).
Order information (date, time, shipper, and so on).
Order line information (quantity, delivery date, and so on).
Item information (name, price, item ID, and so on).
Stock information (quantity in stock, warehouse ID, and so on.)

4.1.1.2 A Customer Transaction
1. Customers telephone one of the 10 district centers to place an order.
2. The district customer service representative answers the telephone, gets the

following information, and enters it into the application:
a. Customer number
b. Item Numbers of the items the customer wants to order
c. The quantity required for each item

3. The customer service representative enters the district number into the
application.

4. The application then:
a. From the Customer Table, reads the customer last name, customer

discount rate, and customer credit status.
b. From the Item Table, reads the item names, item prices, and item data

for each item ordered by the customer.
c. Reads the District Table for the district tax and the next available district

order number. The next available district order number is incremented
by one and updated.

d. Inserts a new row into both the New Order Table and the Order Table to
reflect the creation of the new order.

e. Checks if the quantity of ordered items is in stock by reading the quantity
in the Stock Table. The quantity is reduced by the quantity ordered and
the new quantity is written into Quantity.

f. A new row is inserted into the Order Line Table to reflect each item in
the order.

g. Writes a shipping record of the order (used to ship order).

4.1.1.3 Database Table Structure
The CSDB database has nine tables:

Warehouse
District
Customer
New order
Order
Order line
Item
Stock
History (not used)

The relationships among these tables are shown in the following diagram:

130 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Warehouse ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄH³ Districts ³
³ 1 table ³ ³ 10 records ³
ÀÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ

³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
³ ³ History ³ ³
³ ³ 30K+ records ³ IÄ¿ ³
³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
↓ ³ ↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Stock ³ ³ New-Order ³ ³ Customer ³
³ 100k records ÃÄ¿ ³ 9k+ records ³ ³ 30K records ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ

↑ ³ ↑ ³
³ ³ ÀÄÄÄÄÄÄÄ¿ ³
³ ³ ³ ↓

ÚÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Item ³ ÀÄÄH³ Order-line ³IÄ´ Order ³
³ 100k records ³ ³ 300K+records ³ ³ 30K+records ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 31. CSDB Database Table Relationships

4.2 CPW Benchmark Database Layout
The sample application uses the following tables of the CPW benchmark
database:

District
Customer
Order
Order line
Stock
Item (catalog)

The following sections describe in detail the layout of the database tables.

4.2.1 District
Table 1. District Table Layout (DSTRCT)

Field Name Real Name Type Length

DID District ID Decimal 3

DWID Warehouse ID Character 4

DNAME District Name Character 10

DADDR1 Address Line 1 Character 20

DADDR2 Address Line 2 Character 20

DCITY City Character 20

DSTATE State Character 2

DZIP Zip Code Character 10

DTAX Tax Decimal 5

DYTD Year to Date Balance Decimal 13

DNXTOR Next Order Number Decimal 9

Note: Primary Key: DID, DWID

Chapter 4. Overview of the CPW Application 131

This soft copy for use by IBM employees only.

4.2.2 Customer
Table 2. Customer Table Layout (CSTMR)

Field Name Real Name Type Length

CID Customer ID Character 4

CDID District ID Decimal 3

CWID Warehouse ID Character 4

CFIRST First Name Character 16

CINIT Middle Initials Character 2

CLAST Last Name Character 16

CLDATE Date of Last Order Numeric 8

CADDR1 Address Line 1 Character 20

CCREDT Credit Status Character 2

CADDR2 Address Line 2 Character 20

CDCT Discount Decimal 5

CCITY City Character 20

CSTATE State Character 2

CZIP Zip Code Character 10

CPHONE Phone Number Character 16

CBAL Balance Decimal 7

CCRDLM Credit Limit Decimal 7

CYTD Year To Date Decimal 13

CPAYCNT Quantity Decimal 5

CDELCNT Quantity Decimal 5

CLTIME Time of Last Order Numeric 6

CDATA Customer Information Character 500

Note: Primary Key: CID, CDID, CWID

4.2.3 Order
Table 3 (Page 1 of 2). Orders Table Layout (ORDERS)

Field Name Real Name Type Length

OWID Warehouse ID Character 4

ODID District ID Decimal 3

OCID Customer ID Character 4

OID Order ID Decimal 9

OENTDT Order Date Numeric 8

OENTTM Order Time Numeric 6

OCARID Carrier Number Character 2

132 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Table 3 (Page 2 of 2). Orders Table Layout (ORDERS)

Field Name Real Name Type Length

OLINES Number of Order Lines Decimal 3

OLOCAL Local Decimal 1

Note: Primary Key: OWID, ODID, OID

4.2.4 Order Line
Table 4. Order Line Table Layout (ORDLIN)

Field Name Real Name Type Length

OLOID Order ID Decimal 9

OLDID District ID Decimal 3

OLWID Warehouse ID Character 4

OLNBR Order Line Number Decimal 3

OLSPWH Supply Warehouse Character 4

OLIID Item ID Character 6

OLQTY Quantity Ordered Numeric 3

OLAMNT Amount Numeric 7

OLDLVD Delivery Date Numeric 8

OLDLVT Delivery Time Numeric 6

OLDSTI District Information Character 24

Note: Primary Key: OLWID, OLDID, OLOID, OLNBR

4.2.5 Item (Catalog)
Table 5. Item Table Layout (ITEM)

Field Name Real Name Type Length

IID Item ID Character 6

INAME Item Name Character 24

IPRICE Price Decimal 5

IDATA Item Information Character 50

Note: Primary Key: IID

4.2.6 Stock
Table 6 (Page 1 of 2). Stock Table Layout (STOCK)

Field Name Real Name Type Length

STWID Warehouse ID Character 4

STIID Item ID Character 6

STQTY Quantity in Stock Decimal 5

Chapter 4. Overview of the CPW Application 133

This soft copy for use by IBM employees only.

Table 6 (Page 2 of 2). Stock Table Layout (STOCK)

Field Name Real Name Type Length

STDI01 District Information Character 24

STDI02 District Information Character 24

STDI03 District Information Character 24

STDI04 District Information Character 24

STDI05 District Information Character 24

STDI06 District Information Character 24

STDI07 District Information Character 24

STDI08 District Information Character 24

STDI09 District Information Character 24

STDI010 District Information Character 24

STYTD Year To Date Decimal 9

STORDRS Quantity Decimal 5

STREMORD Quantity Decimal 5

STDATA Item Information Character 50

Note: Primary Key: STWID, STIID

4.3 Database Terminology
This redbook concentrates on the use of the AS/400 system as a database server
in a client/server environment. In some cases, we use SQL to access the
AS/400 databases; in other cases, we use native database access.

The terminology used for the database access is different in both cases. In
Table 7, you find the correspondence between the different terms.

Table 7. Database Terminology

AS/400 Native SQL

Library Collection

Physical File Table

Field Column

Record Row

Logical File View or Index

134 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Chapter 5. Enterprise Access Builder For Data (DAX)

The VisualAge for Java Enterprise edition includes the following components:

1. Database access:

This allows access to any relational data base that supports either an ODBC
driver or a JDBC driver.

2. CICS access:

This allows CICS transactions to be wrapper'd and used within a Java
application.

3. C + + Server access:

This component allows access to C + + services by generating JavaBeans
and C + + code to allow interoperability between Java and C + + .

4. Remote Method Invocation (RMI) access:

RMI allows a Java object running on one virtual machine to send messages
to another Java object running on a another Java virtual machine. These
objects can even be on different systems.

This chapter focuses entirely on the Database Access Builder (DAX) component
of the VisualAge Java Enterprise Edition.

5.1 Enterprise Access Builder for Data (DAX)
Enterprise Access Builder for Data (referred to as Data Access Builder or DAX)
is part of the VisualAge Java Enterprise edition that allows you to generate data
access classes based on existing relational database tables.

You use Data Access Builder to generate the Java source code (classes) to
access data. These generated Java classes, which are JavaBeans, can be used
directly in your Java programs or within the VisualAge for Java Visual
Composition Editor. Some of the key features of Data Access Builder are:

JDBC access to data

Data Access Builder generates classes that use JDBC to access databases.
You can use the JDBC driver that is part of the AS/400 Toolbox for Java to
access the databases.

RAD but yet still object-oriented

Data Access Builder can generate Java source code in a matter of minutes
that allows you to add, update, delete, and retrieve rows from a database.
Data Access Builder generates the code in a consistent, extendable,
object-oriented fashion enabling the benefits of object-oriented programming.

Generated JavaBeans

Data Access Builder generates JavaBeans. JavaBeans are a standard Java
class architecture that allows generated classes to be used in any
JavaBeans compliant IDE or utility.

Stored procedures

 Copyright IBM Corp. 1997 135

This soft copy for use by IBM employees only.

You can use Data Access Builder to generate code that calls JDBC stored
procedures. Stored Procedures often provides better performance than
JDBC data access.

Commitment control and connection

Services are provided for connecting to your databases. In addition, commit
and rollback methods are also generated for transactions.

5.2 Building an Application Using the Data Access Builder (DAX)
This section describes how to create an application using the VisualAge for Java
Data Access Builder.

5.2.1 Application Requirements
The application we build is for the ABC Parts Supply Company, a fictitious parts
wholesaler. The application allows ABC employees to enter orders by selecting
a customer, the part being ordered, and then entering the quantity of the part
being ordered.

The application uses three DB2/400 database tables that are described in the
following table.

The layout of the three DB2/400 database tables are described in the following
tables.

.

Table 8. Database Tables

Table/File Name Description Comments

Parts Contains the parts that
can be ordered

Keyed by part id (IID)

Customer Contains the company's
customers

Keyed by customer id
(CID)

Orders Contains order
information

keyed by the order
timestamp (ORDERTMSP)
customer id (CUSTID).

Table 9. Database Tables Layout (Customer)

Field/Column
Name

Description Type Length

CID Uniquely identifies
a customer

CHAR 4

CFNAME First Name CHAR 20

CLNAME Last Name CHAR 20

CADDRESS ADDRESS CHAR 30

CCITY City CHAR 30

CSTATE State CHAR 2

CZIPCODE ZipCode CHAR 15

CBAL Customer Balance
(not used)

PACKED 8,2

CPHONE Phone Number CHAR 20

136 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Table 10. Database Tables Layout (PARTS)

Field/Column
Name

Description Type Length

IID Uniquely identifies
a part

CHAR 4

INAME Part Name CHAR 20

ICOMMENT Comment About
the Part

CHAR 30

IPRICE Price of Part PACKED 6,2

ICOST Cost of Part PACKED 6,2

IIMAGE Image of Part (Not
Used)

CHAR 40

ISOUND Sound File of Part
(Not Used)

CHAR 40

IQTY Quantity in
Inventory

BINARY 4

ISOLD Quantity of Part
Sold

BINARY 4

Table 11. Database Tables Layout (ORDERS)

Field/Column
Name

Description Type Length

ORDERTMSP Timstamp When
Order Was
Created

TIMESTAMP N/A

CUSTID Customer Id Field CHAR 4

PARTID Part Id Field CHAR 4

QUANTITY Quantity of Part
Ordered

BINARY 4

Chapter 5. Enterprise Access Builder For Data (DAX) 137

This soft copy for use by IBM employees only.

Figure 32. The Parts Order Management Window

The application we create is shown in the preceding figure. It allows the user to
view a list of parts and customers and to create orders. The user must sign on
and connect to the database using the Connection menu option before any
processing can occur.

The following processing occurs when the "Display Records" push button is
clicked.

1. All of the customer records are read from the database and placed in the
Customer multi-column list box.

2. All the parts records are read from the database and placed in the Parts
multi-column list box.

The following processing occurs when the "Place Order" push button is clicked.

1. The parts record field IQTY is reduced by the quantity ordered and the ISOLD
field is incremented by the quantity sold.

2. The parts record is updated in the database file.

3. A new order, which includes the customer id, part id, and quantity ordered is
inserted into the database.

138 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Figure 33. The Parts Configuration Window

The Parts Ordering Application "Parts Configuration" frame is shown in the
preceding figure. It allows specifying a URL, JDBC driver, User Id, password,
and commitment control option. The user uses this window to connect to the
AS/400 system.

5.3 Generating the Application Using DAX
In this section, we build the complete ABC Part Ordering System application
using DAX.

5.3.1 Understanding Our Software Design
A key feature of Java is its support of object-oriented programming (OOP).
Please refer to Chapter 1, “Object-Oriented Technology Overview” on page 1 for
a more detailed discussion of object-oriented programming. Here, we use and
discuss elementary elements of OOP. The following diagram illustrates the use
of Unified Methodology Language (UML) to describe our object model. UML is
basically a diagramming language to describe object data properties, actions,
and relationships with other objects. Refer to www.rational.com for more
information on UML. An object model is produced with UML through
object-oriented analysis and design (OOA OOD).

The goal of OOP is to increase programmer productivity and the quality of the
software produced. To achieve this goal, we design software that:

1. Models the real world:

OOP allows us to create objects and classes that are the same as their real
world counterparts. This makes software simpler and more understandable.

2. Promotes re-usability:

Objects can be created in an abstract way and then sub-classed or extended
using inheritance. This allows object properties and operations to be
reused.

The following UML object model illustrates the software design we used for
constructing our sample application.

Chapter 5. Enterprise Access Builder For Data (DAX) 139

This soft copy for use by IBM employees only.

UML uses a rectangle with three compartments to describe a class. The top
compartment simply contains the class name. The middle compartment contains
the attributes or properties of the class while the bottom compartment contains
the operations or methods that this class can perform.

Figure 34. UML Object Model

140 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The following table describes all of the classes previously illustrated.

Table 12. Application Classes

Class Description

Company Company is the main integrating class.
It contains all of the manager classes
and is responsible for creating new
orders.

OrderManager OrderManager is responsible for
selecting and managing a collection of
order objects. The OrderManager class
is contained within the Company class.

CustomerManager CustomerManager is responsible for
selecting and managing a collection of
customer objects. The
CustomerManager class is contained
within the Company class.

PartsManager PartsManager is responsible for
selecting and managing a collection of
parts objects. The PartsManager class
is contained within the Company class.

Order An order represents one single order.
The order contains data properties such
as customer id, part number, quantity,
and the timestamp of the order.

Parts A parts object represents one single
part that can be ordered from the
company. The parts object contains
data properties such as Part id, name,
price, and cost.

Customer A customer object represents one single
customer. The customer object contains
data properties such as Customer id,
firstName, lastName, address, and so
on.

defaultDatastore This object represents the connection to
a server. It contains data properties
such as URL, user id, password, and
commitment control.

5.3.2 Building the Application
Without the use of the Data Access Builder, we must create all of the classes
manually as well as coding all the logic to select, update, and insert records into
the database. With the use of the Data Access Builder, much of the code is
generated for us. First we start by creating a VisualAge project and package to
hold the classes we are about to create. We can start the Data Access Builder
by choosing the Selected menu option and then selecting Tools-Data
Access-Create Data Access Beans from VisualAge for Java Workbench menu.
This brings up a Data Access Builder session window.

Selecting Map Schema from the file menu starts the database to Java object
mapping process. Selecting the ODBC Data Source that represents the target
system identifies the location of the data source. From this point, clicking the
"Get Tables" button retrieves the available tables and views from the target

Chapter 5. Enterprise Access Builder For Data (DAX) 141

This soft copy for use by IBM employees only.

system. Selecting a particular file such as the CUSTOMER file results in a
window similar to following figure:

Figure 35. The DAX Generation Window

The Data Access Builder has at this point accessed the database that was
specified and retrieved all the fields (or columns) available in the database file.
DAX creates a Java class named Customer and adds variables for each field in
the file as well as the Java methods to retrieve and set the variables value. For
example, the database contains a field named czipcode. DAX generates an
instance variable named czipcode and a method named getczipcode to get the
value and a method called setczipcode that is capable of setting the value of this
instance variable. You can change the names of the instance variables to
something more descriptive such as zipCode instead of czipcode. This can be
done from the attributes settings of the Customer class shown in the following
table. The data identifier, which is the field or fields that identify a record, can
also be specified in this window.

We make the following changes by selecting Attributes from the Customer
pop-up menu:

Table 13 (Page 1 of 2). Customer Table

Database Field
Name

JavaBean
Attribute Name

Data Identifier Comments

cid CustomerId YES ID Number of
Customer

cfname firstName No Customer's First
Name

clname lastName No Customer's Last
Name

caddress Address No Customer's
Address

ccity City No Customer's City

cstate State No Customer's State

142 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Note: We change CustomerId to be the data identifier. The data identifier is
taken from the primary key of the table. If the table does not have a primary key
specified, you may have to manually specify the data identifier as we do here.
Having a data identifier allows DAX to generate delete, update, and retrieve
methods.

In addition to the generated Customer class, several additional classes are
generated including a CustomerManager. The CustomerManager class is
capable of retrieving and instaniating a collection of Customer objects.

The DAX generation process starts when you specify "Save and Generate" from
the file menu pull-down. This takes a few minutes while DAX actually creates
the classes with the appropriate methods and variables.

Upon completion of the generation process, the following classes are generated
by DAX and placed in the Java package:

Table 13 (Page 2 of 2). Customer Table

czipcode Zipcode No Customer's
Zipcode

cbal Balance No Customer's
Balance

cphone Phone No Customer's
Telephone
Number

Chapter 5. Enterprise Access Builder For Data (DAX) 143

This soft copy for use by IBM employees only.

Figure 36. The Dax Generated Customer Window

144 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The following table describes each generated class (bean).

Table 14 (Page 1 of 2). Generated Classes

DAX Generated Class Description

Customer This represents a single instance of a
customer and maps to one record from
the customer database file.

CustomerAccessApp This is a sample application that can be
used to test the other classes. It has
notebook pages for viewing all records,
updating, deleting, and inserting
records.

CustomerBeanInfo All the classes generated are
JavaBeans. This is the JavaBeans
information file associated with the
Customer class.

CustomerDataId This object is the same as the Customer
object, but only contains the key fields
or data identifier variables for the
customer object. Data identifiers can be
specified in the attributes table within
DAX. For the Customer object, the data
identifier is the cid (customer id) field.

CustomerDataIdBeanInfo This is the JavaBean information for the
CustomerDataId class.

CustomerDataIdForm This is a GUI panel for displaying the
CustomerDataId fields.

CustomerDataIdManager This class is responsible for selecting,
updating, deleting, and creating new
CustomerDataId objects. This class
"manages" CustomerDataId objects.

CustomerDataIdManagerBeanInfo This is the JavaBean information for the
CustomerDataIdManager class.

CustomerDataIdMap This is an internal DAX object that is
used to automatically retrieve fields
from the SQL/JDBC cursor and puts
them into a CustomerDataId object.

CustomerDataIdResultForm This is a GUI container that contains a
multi-column list box for displaying a list
of keys. This can be used in a case
where you wanted to allow a user to
select a customer based on an id. When
the id is selected, a select operation can
retrieve the full customer object for
viewing of detailed customer
information.

CustomerDatastore This class is responsible for handling the
connection to a data source such as
DB2/400. It contains such properties as
URL, user id, password, and connection
status.

CustomerDatastoreBeanInfo This is the JavaBean information for the
CustomerDatastore class.

CustomerForm This is a GUI panel for displaying the
Customer fields.

Chapter 5. Enterprise Access Builder For Data (DAX) 145

This soft copy for use by IBM employees only.

Note: xxxDataIdxxx classes are only generated if a data identifier field is
specified during the generation process.

These generated classes are the reusable elements that we use to build the
application.

We then follow the same process to generate classes for the Order file and the
Parts file. This results in classes such as Order, OrderManager,
OrderResultForm, Parts, PartsManager, and PartsResultForm.

We set the attributes for these classes in the following figure.

Table 14 (Page 2 of 2). Generated Classes

CustomerManager This class is responsible for selecting,
updating, deleting, and creating new
Customer objects. This class "manages"
Customer objects.

CustomerManagerBeanInfo This is the JavaBean information for the
CustomerManager class.

CustomerMap This is an internal DAX object that is
used to automatically retrieve fields
from the SQL/JDBC cursor and put them
into a Customer object.

CustomerResultForm This is a GUI container that contains a
multi-column list box for displaying a list
of customers.

Figure 37. The Parts Attributes Window

146 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Table 15. Parts Table

Database Field
Name

Java Bean
Attribute Name

Data Identifier Comments

iid PartId YES Part ID Number

iname Name No Name of Part

icomment Comment No A description of
the part

iprice Price No Price of part

icost Cost No Cost of part

iqty Quantity No Quantity in Stock

isold NumSold No Number of parts
Sold

Table 16. Orders Table

Database Field
Name

Java Bean
Attribute Name

Data Identifier Comments

ordertmsp Ordertmsp YES Timestamp of
Order

custid CustomerId YES Customer
ordering part

partid PartId No ID of part ordered

quantity Quantity No Number of parts
ordered

5.4 Building the Company Class
The Company class handles the processing for a new order. It contains the
following objects:

PartsManager object
OrderManager object
CustomerManager object

The Company class integrates the xxxManager classes and has the ability to
create orders. The xxxManager classes are generated for us by DAX, but we
must create the Company class because it is part of our object model that DAX
knows nothing about. To create the Company class, we simply create a class
within one of the Java packages.

The following figure shows the Company class created within a package called
SalesCompany. It shows partsManager, orderManager, and customerManager
instance variables created as private variables. Along with these variables are
methods to get the values of these variables. For example, the
customerManager variable has a getCustomerManager methods that returns the
value of the variable. The returned value is an instance of a CustomerManager
object. These variables do not have associated set methods because there is no
need in this application to set these variables.

The import statements allow you to use classes and objects that exist in a
different package. The defaultDatastore variable is used to hold our connection
object. This connection object, which is generated by DAX, contains the URL,

Chapter 5. Enterprise Access Builder For Data (DAX) 147

This soft copy for use by IBM employees only.

connection status, and methods to connect and disconnect from the database.
The defaultDatastore variable has a "getter" method to return the datastore
object.

Figure 38. The DAXProject Window

The following methhod is used to get the customerManager object. This sample
code uses a technique called lazy initialization. Lazy initialization tests and sets
the value of a variable when it is accessed. In this case, if the customerManager
variable is null, it is set to a new instance of the CustomerManager class. The
getDefaultDatastore method is used to assign the defaultDatastore as the
datastore of the CustomerManager instance. The methods for getOrderManager
and getPartsManager are the same except they return instances of
OrderManager and PartsManager respectively.

public CustomerManager getCustomerManager() {
if (customerManager = = null) {
customerManager = (new

CustomerManager(getDefaultDatastore()));
}
return customerManager;

}

148 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The getDefaultDatastore() method that is shown in the following figure can return
any of the xxxxxxdatastore objects. This is because DAX generated three
datastore objects called PartsDatastore, OrderDatastore, and
CustomerDatastore. Since they all reference the same URL and datastore
information, they are all the same. We simply use PartsDatastore.

The newOrder (Parts aPart, Customer aCustomer, String aQuantity) method
shown in the following figure is our most important method. It is called when the
user clicks the "Place Order" button after selecting a customer, a part, and
specifying a quantity. This method accepts the three objects in the parameter
list. The method then:

1. Creates a new order object and sets the appropriate data in it.

2. Updates the part object by reducing the inventory and incrementing the
number sold.

3. Adds the order record to the database.

public DatastoreJDBC getDefaultDatastore() {
if (defaultDatastore = = null) {
defaultDatastore = (new

PartsDatastore());
}
return defaultDatastore;

}

Chapter 5. Enterprise Access Builder For Data (DAX) 149

This soft copy for use by IBM employees only.

public void newOrder(Parts aPart , Customer aCustomer,
String aQuantity) {

/* convert the input string aQuantity to a short value. It comes in a string because it comes from the user
interface */

short quantitySold = (new
Short(aQuantity)).shortValue();

/* Create a new order and populate the order
data */

Orders newOrder = new Orders();

newOrder.setQuantity(quantitySold);

newOrder.setCustomerId(aCustomer.getCustomerId());

newOrder.setPartId(aPart.getPartId());

newOrder.setOrdertmsp(new

java.sql.Timestamp(System.currentTimeMillis())); // sets the timestamp to the current clock timestamp

/* Update the part inventory quantity and amount
sold. */

short newQuantity =
(short)(aPart.getQuantity().shortValue() -
quantitySold);

aPart.setQuantity(new
Short(newQuantity));

short newNumSold =
(short)(aPart.getNumSold().shortValue() +
quantitySold);

aPart.setNumSold(new Short(newNumSold));

/** There is a bug in the EAB that prevents the update() methods from running. Instead of using update()
methods we will delete the part record and re-add it with the updated inventory quantity */

Parts aNewPart = (Parts) aPart.clone(); //Create a copy of the part record.

/* Delete and re-add the part */

try {

aPart.delete();

aNewPart.add();

} catch(Exception e) {

System.out.println("Error updating part "+e) ;

}

/** Add the new order to the database */

try {

newOrder.add();

} catch(Exception problem) {

System.out.println("error

adding order " + problem);

}

}

150 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

5.5 Building a Custom GUI Using DAX Objects
The last task is to create a user interface for our ABC parts ordering system.
Basically, we just assemble and connect the classes that DAX created for us
along with our custom Company class.

We first create a new class named OrderMainFrame that extends from
java.awt.Frame that we use to compose our GUI windows.

Figure 39. The OrderMainApp Composition Editor Window

We then use the Visual Composition Editor to:

Add the visual parts.
Add the non-visual parts.
Add the connections.

Chapter 5. Enterprise Access Builder For Data (DAX) 151

This soft copy for use by IBM employees only.

The following parts or classes are used:

After assembling the previously built classes, the OrderMainFrame looks similar
to the following figure:

Table 17. Application Parts

Classes to Be Added Comments

Company This is main object and is composed of
the datastore, order, customer, and
parts managers objects.

Display Records and Order Push Buttons Display Records display both customers
and parts records.

PartsResultForm This is the table that displays the parts.
This was generated for us by DAX.

CustomerResultsForm This is the table that displays the
customers. This was generated for us
by DAX.

Quantity label and entry field. Allows entry of a order quantity.

"Connection" menu When clicked brings up the
"OrderConfiguration" window.

"Sign On" menuitem Added under the Connection menu.

"Order Configuration " Frame Frame that allows entry of configuration
info as shown in the following figure.

Connection Panel (IConnectPanel) This is a VisualAge generated reusable
connection panel bean as shown in the
following figure. Add this to the
preceding Frame.

The following figure shows how your "Order Configuration" window will look.

152 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Figure 40. Order Configuration Composition Editor

Since the Company class contains the PartsManager and CustomerManager
attributes, we use the "Tear off Property" popup menu item from the Company
object. This allows connections to be made to the Parts and Customer Manager
objects that are contained within the Company object. The following connections
complete the application.

Table 18 (Page 1 of 2). Application connections

From Object From Feature Target Object Target Feature

Company defaultDatastore IConnectPanel dataStore

Sign On Menu Item actinoPerformed Order Configuration
Frame

show()

Display Records Push
Button

actionPerformed PartsManager select() method. Ignore
the dotted line. In this
case, the select method
optionally accepts a
parameter but does not
require it.

Display Records Push
Button

actionPerformed CustomerManager select() method. Ignore
the dotted line. In this
case, the select method
optionally accepts a
parameter but does not
require it.

PartsManager items PartsResultForm elements()

CustomerManager items CustomerResultFrom elements()

Chapter 5. Enterprise Access Builder For Data (DAX) 153

This soft copy for use by IBM employees only.

Table 18 (Page 2 of 2). Application connections

Order pushbutton actionPerformed Company newOrder(), use the
quantity,
SelectedObjects from
the PartsResultForm
and
CustomerResultForm as
the parameters.

5.6 The Completed Application
The following window shows the completed application. Refer to the VisualAge
for Java online documentation for further information about DAX.

Figure 41. The Completed Application

5.7 Summary
In summary, the benefit of using DAX over custom coding data access classes is
the significant time-savings. DAX can generate, in minutes, what can take
several days to duplicate with custom coding. In addition, DAX generated
classes can be extended and customized by the programmer. Many advanced
capabilities such as asynchronous processing through threads are also
generated for your use. DAX should be considered for any serious programming
efforts. The DAX support is only available with the Enterprise Edition of
VisualAge for Java.

154 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Chapter 6. Developing AS/400 Java Applets

This chapter discusses developing AS/400 client/server applications that run as
Java applets under the control of a Web browser.

The topics covered here include:

Java Applets
HTML for Applets
Limitations of Applets
Building the AS/400 "Shopping Cart" applet
JAR files

We investigate an AS/400 Internet-based shopping application as an example
throughout this chapter. Before we go into the details of the Internet shopping
application, we provide an overview of Java applets.

6.1 Applet Class Structure
The Java Development Toolkit, which is available from Sun Microsystems, Inc.,
supplies a number of packages that provide the base support for Java. We refer
to it as the JDK. The latest release of the JDK is JDK 1.1 with version 1.1.1
being the latest version available. The earlier release of the JDK is called JDK
1.0, with JDK 1.0.2 being its latest version. In this chapter, we use JDK 1.0 to
refer to the latest version of JDK 1.0 and JDK 1.1 to refer to the latest version of
JDK 1.1.

In the JDK 1.1, the Applet class definition is:

public class MyAppletClass extends java.applet.Applet
implements java.awt.event.ActionListener

Applet extends (sub-classes) the class java.applet.Applet and implements the
interface java.awt.event.ActionListener. Being a sub-class of java.applet.Applet,
it inherits from Panel, Container, and Component. It inherits all the methods and
interfaces of its ancestors.

For example, Methods inherited include:

getCodebase() method, which returns the URL from which the Applet is
loaded.

add() method, which allows other GUI components to be added to your
Applet.

We go through some of the essential methods. More can be found by reading
the ancestors' classes.

A Java interface is the same as an abstract class. It allows us to define methods
without actually implementing them. We can then implement the interface in a
class. Since Java allows a class to have only one super class, we do not have
the concept of multiple inheritance. Implementing interfaces allows us to get
around this restriction.

An interface is a collection of the method's structure definition. Interfaces:

Define the names of methods supported.

 Copyright IBM Corp. 1997 155

This soft copy for use by IBM employees only.

Provide the input and output parameters definitions (type).

Internet browsers are designed based on the fact that because all applets are
extended from java.applet.Applet, they can use the methods inherited from the
Applet class to control an Applet. They mainly use init(), start(), stop(), and
destroy(). Some other methods you normally encounter are update(), paint(),
and repaint().

The ActionListener interface is the way that the JDK 1.1 implements the Event
model; it allows the browsers to notify the Applet of any events (such as Mouse
Move, Clicked, Enter). An example of how ActionListener works is when the
user clicks a button, an Action Event is sent to the actionPerformed() method.
Then it is up to the actionPerformed() method to determine what to do with this
event.

The Action Event is an object that provides further information such as who
generates the event. It can also sub-divide the Event into different types
(left-clicked, double-clicked). Java programmers can define their own type of
event and listener interface. VisualAge for Java provides some common events
and listeners that the programmer can implement.

A Java applet goes through a life cycle of being loaded by a user in a browser,
having users leave and return to the applet's page, and finally having the user
end the browser. When the browser loads the applet, an instance of the applet
sub-class is created. The applet gets initialized and the browser starts running
it. The browser does so by calling the constructor of the applet class, where the
constructor of the applet is the name of the class. For example, if the applet is
named "MyApplet", the constructor is the method "MyApplet(...)". Next, the init()
method is called. The init() method is where you can initialize your own
variables and objects. You can also initialize your variables in the first
declaration of the variables. Finally the start() method is called to start running
the applet. Sometimes, especially in simple applets, it is not necessary to write
code for all these methods.

When users leave the applet's page (for example, when the user minimizes the
window) the applet stops running. When the user reopens the window, it starts
running again. The browsers do this by calling Start() whenever the user
maximizes or reopens the Applet window or browser window. It calls the Stop()
method whenever the user minimizes the applet or browser window. The Start()
and Stop() methods are also used to control threads.

Finally, when the user exits the browser, the applet stops and it does some final
cleanup before the browser exits. The browser calls the stop() and then the
destroy() methods. Destroy() is used to deallocate resources such as AS/400
connections, server programs, and for releasing non-Java resources. This ends
the life of the applet.

6.1.1 Applet Limitations
Because applets are run inside a Web browser and the user may load an applet
from an external Web site, restrictions must be placed on the capabilities of an
applet. Without restrictions, an applet can damage the user's system by doing
things such as loading viruses or deleting files. The following restrictions apply
to applets:

1. Applets cannot make network connections except to the host that it was
loaded from.

156 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

2. An applet cannot load libraries or define native methods.

3. An applet cannot ordinarily read or write files on the host that is executing it.

4. Applets cannot start any program on the host that is executing it.

5. Applets cannot read certain system properties.

Each browser has a SecurityManager object that implements its security
policies. When a SecurityManager detects a violation, it throws a
SecurityException. An applet can catch this SecurityException and react
appropriately.

Some of the preceding limitations can be relaxed by using Signed Applet
support, which provides key encryption, or by running a trusted applet that is
downloaded from a trusted host.

6.1.2 Applet Capabilities
1. Applets running within a Web browser can easily cause HTML documents to

be loaded.

2. Applets can invoke public methods of other applets on the same page.

3. Applets that are loaded from the local file system (from a directory in the
user's CLASSPATH) have none of the restrictions that applets loaded over
the network do.

4. Although most applets stop running once you leave their page, they do not
have to.

6.1.3 HTML Tags for Applets
JAR files are used to compress and package applets. A JAR file can contain all
the classes required by an applet. It can also contain any supporting files (for
example, image files). Because JAR files are compressed, the number of bytes
that must be transferred when loading an applet in a browser is significantly
reduced. JAR support is only available with the JDK 1.1.

<HTML>
<applet code="ToolboxApplet.ToolboxApplet"
width=500 height=400 archive="applets.jar">
<hr>
This Applet is only seen
on JDK1.1 compatible Browser
<hr>
</applet><p>

This is the HTML tag for an applet in a JAR file. We discuss how to compress
files using JDK 1.1's JAR utility later. If you do not use JAR files, you can omit
the "archive=" parameter. The browser then tries to load the class in the
Package directory where the Homepage is loaded from. The HTML tag is the
same for the JDK 1.1 or 1.0. The only difference is that only a JDK 1.1
enabled-browser understands the "archive=" tag.

In this example, the browser loads the file "ToolboxApplet\ToolboxApplet.class"
and sets its size to 500 x 400 pixels. Using layouts allows the applet to re-size
itself according to the HTML tag. Otherwise, if the height and width tag in the
HTML tag are not set properly, part of the applet may be hidden. We do not
cover layout definitions in this redbook, but you can reference it in other Java
Text books.

Chapter 6. Developing AS/400 Java Applets 157

This soft copy for use by IBM employees only.

Remember that a Package name is case sensitive. Although the Windows 95
directory name is not case sensitive, directory names may be case sensitive on
other platforms. In the preceding example, the class is loaded from Home Page
directory\ToolboxApplet .

6.1.4 Browser Versioning
One of the problems that you can encounter when writing applets is that not all
browsers support the latest version of the JDK. In this section, we discuss which
browsers support JDK 1.1 and can run JDK 1.1 applets. We also discuss the key
differences between JDK 1.0 and JDK 1.1.

Here is a list of some of the more popular browsers and what level of applets
they support:

HotJava 1.0:

− Supports the JDK 1.1.
− Can run JDK 1.1 applets.

Netscape Communicator Preview Release 4.0:

− Does not fully support the JDK 1.1:
.

- Cannot run any of the JDK 1.1 GUI applets.
- Some important Java Packages are missing.

Netscape Communicator Preview Release 5.0:

.
− Does not fully support the JDK 1.1:

- Can run some JDK 1.1 GUI applets.

Microsoft Internet Explorer 4.0:

− Does not support the JDK 1.1.
− Cannot run any the JDK 1.1 GUI applets.

During the development of this redbook, the JDK 1.1 had just become available.
Therefore, we found that most JDK 1.1 products were available as test versions
only. We found that all the applet work we did and have documented here can
be run in Sun's JDK 1.1, the HotJava Browser, as well as VisualAge for Java.
Other browsers such as Netscape Communicator are starting to implement
support for the JDK 1.1, so in the future, all the examples shown here should be
able to run with many other browsers.

6.1.5 JDK 1.1 Applets versus JDK 1.0 Applets
In this section, we discuss developing applets with the JDK 1.1 and JDK 1.0 and
the compatibility issues involved when using a mixture of JDK 1.1 and JDK 1.0
applets. If you are developing new applets, the JDK 1.1 is the best choice. The
JDK 1.1 provides many bug fixes and enhancements over version 1.0. It also
uses the new Event model. This is the main reason for its incompatibility with
version 1.0. Some of the older browsers do not support the new event models
and, thus, cannot run version 1.1 applets. Even when every browser available
supports the JDK 1.1, users will take time to switch to the new browsers. Until
everyone has switched, you probably want to supply 1.0-compliant applets. As
long as you take care to provide backward compatibility, you can use 1.1
features and still provide applets that most browsers can display.

158 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

When designing Applets, you have to consider supporting browsers with limited
capabilities. The following ways are common in dealing with the compatibility
problem.

One applet, mixed code:

− Write a single program that encloses the JDK 1.1 API calls in try/catch
statements.

− The code is not elegant.

− This technique does not let you take advantage of every new feature,
since you cannot put class and method definitions in try/catch
statements.

Switcher applet, dynamically loaded code:

− Specify a "switcher" applet in your APPLET tag.

− The switcher applet determines whether the 1.1 applet or 1.0 applet is
loaded.

− It displays the 1.1 or 1.0 applet, treating it the same as a panel.

− Write a switcher, 1.0, and 1.1 applet.

Two applets, two HTML pages:

− If neither of the preceding techniques suit you, you can always provide
two pages, one for each version of the applet.

More details on applet compatibility can be found on the following Web page:

http://java.sun.com/products/jdk/1.1/compatible/index.html

This finishes the applet overview part of the chapter. We now show developing
an Internet-based shopping applet that uses the AS/400 system as a database
server.

6.2 Internet Shopping Application Example Introduction
In this section of the chapter, we investigate the shopping applet. It is actually a
set of three applets. These applets use the CPW databases that are described in
Chapter 4, “Overview of the CPW Application” on page 129. The databases are
AS/400 databases and are accessed using JDBC. This suite of applets allow
customers to select items from the Items database, place and confirm orders,
and to check on the status of orders. Chapter 3, “AS/400 Toolbox for Java” on
page 61 shows how Java can used to build traditional AS/400 client/server
applications, while here we show how the application can be implemented as an
Internet-based applet. The first two applets are the ToolboxApplet and
CartApplet.

ToolboxApplet

− An Applet for querying the items database and selecting items to be
ordered

CartApplet

− For checking on what items have been selected
− For placing and confirming an order for those items

Normally the ToolboxApplet works in conjunction with the CartApplet. The third
applet is independent of the preceding two applets.

Chapter 6. Developing AS/400 Java Applets 159

This soft copy for use by IBM employees only.

StatusApplet

− For checking the status of an order

6.2.1 Shopping Application User Interface
We investigate three different applets as shown in the following figures.

(The images shown were captured when running in the Applet Viewer from
Sun's JDK 1.1.)

"ToolboxApplet" -- the Product Catalog Searching Engine: The preceding figure
is the "ToolboxApplet", which is the first applet we investigate. It queries the
ITEMS database for product information and puts the results in the list box
shown. Customers can then select the items they want and put them into a
"Shopping Cart". Later, they can use the "CartApplet" to check on their selected
items and confirm them for ordering. They can also use the "StatusApplet" to
check on the status of their orders.

160 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

"CartApplet" -- the Shopping Cart Where You Place an Order: The preceding
shopping cart applet is expected to be in a frame that always shows in the
browser until the customer leaves the shop. Items in the cart are shown
together with the total amount of the items selected. Customers confirm their
order by typing in a valid customer number. If the customer number is valid, the
"Confirm Order" button is enabled so that the customer can confirm the order.
On confirmation of the order, the system returns an "Order Number" that can be
used to keep track of the order status.

Chapter 6. Developing AS/400 Java Applets 161

This soft copy for use by IBM employees only.

"StatusApplet" -- an Applet Where You Can Check for the Order Status: The
preceding applet allows customers to check their order status by typing in the
"Order Number" they received when they confirmed the order.

The Shopping Application has the following limitations. These limitations can
easily be eliminated by adding additional function to the applets.

The Toolbox applet only allows you to order a quantity of one.

The CartApplet does not allow you to delete items in the cart.

6.3 Shopping Application Objects and Classes

We have a project named "AppletWorkshop" that holds our package
"ToolboxApplet" and our classes, which include:

"ToolboxApplet" -- the product catalog searching engine.
"CartApplet" -- the shopping cart where you place an order.
"StatusApplet" -- an applet where you can check for the order status.
"ItemsDb" -- a class for accessing the AS/400 database for this application; it
is used by all the preceding applet classes.
"SelectedItems" -- a class for storing items you selected; the applets can put
things into the cart or see what is in the cart.

We built the "ItemsDb" and "SelectedItems" classes for others to use instead of
writing the same code for every application or program. When you do your own
design, you may decide to implement more generic classes that can be reused
more readily.

162 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The preceding screen shows the VisualAge "WorkBench". The "runner"
superscript on the top right hand corner of a class means that it is a runnable
Java application or applet.

We also use several other classes:

A simple MultiColumnListbox created by Taligent that is used to display the
selected items.

The AS/400 Toolbox classes that allow access to the AS/400 system.

The JAVA classes in Java Classes Library.

For some of the background of the MultiColumnListbox from Taligent:

It is available at www.taligent.com.

We used a beta version of it and created our own sub-classes: MyListbox
and MyImage.

We placed it in the itsc.taligent.widget package.

Chapter 6. Developing AS/400 Java Applets 163

This soft copy for use by IBM employees only.

MyListbox class:

Is a sub-class of the MultiColumnListbox.

It over rides the reshape() method to allow forced repaint without passing
any graphics object parameters. This allows you to refresh the list box
anytime you want to.

MyImage class:

A simple support class containing the Image object and also the list box
object.

When the image in the list box finishes loading in its own thread, the list box
is repainted.

We do not cover how to modify it in the redbook, but we provide all the source in
the appendix.

One other class that may be a little bit complicated is java.util.Vector:

Vector is a collection of different objects.
The difference between a vector and an array is:
− An array is a collection of the same type of objects.
− A vector is a collection of different or the same type of objects.
VectorEnumeration is a support class:

− It allows you to scroll through the entire list of objects inside a Vector.

− It provides two main methods:

- getNextElement()
- hasmoreElements()

Elements can be of different types in a vector; you have to type cast the
element to the proper type before using:

− For example, ImageExample = (Image) getNextElement()

− Provided that you know the next element is an image.

164 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

6.4 Testing the Applets
You can run the ToolboxApplet and the StatusApplet inside the VisualAge for
Java IDE. The CartApplet must be exported and run outside the IDE.

We used the Sun JDK 1.1 applet viewer to test outside the IDE.

To run the applets outside the VisualAge IDE, you have to export the applet
classes to the proper directory. We use C:\mytest as the directory in this
example. Export the following classes to the package directory
(C:\mytest\ToolboxApplet):

ToolboxApplet
CartApplet
StatusApplet
ItemsDb
SelectedItems

You need to put all the homepage(*.htm files) in "C:\mytest". The homepage
(*.htm files) refers to the applet class files in the package directory with the
APPLET tag. Any applet viewer or browser tries to find them in "ToolboxApplet"
under the current directory where you load your homepage(*.htm). The AS/400
Toolbox classes and any third party classes should be placed under "\MYTEST"
followed by the package name as the sub-directory.

The preceding procedures are necessary because Java applications look into the
CLASSPATH directory to find the appropriate classes. But when you write
applets, assume that the browsers or AppletViewers do not know about the
classes that do not come with the JDK. Therefore, you must put them under the
directory tree in this way so they are found.

Have the Path set up so that Sun JDK's Appletviewer can be called from
anywhere.

When you want to test your applet with Sun JDK's Applet Viewer, type:

AppletViewer TestHomePage

This should open your TestHomePage.htm in the current directory (C:\MYTEST).
Three HTM files are required to run the applets:

All the HTM files point to the class files in the Package directory.

This is the HTM tag for Order.htm:

<HTML>
<applet code="ToolboxApplet.CartApplet" width=700 height=400>

<hr>
This Applet would only be seen on JDK1.1 compatible Browser
<hr>
</applet><p>

<applet code="ToolboxApplet.ToolboxApplet" width=700 height=400>

"AppletViewer Order.htm" -- which runs both "ToolboxApplet" and
"CartApplet"

"AppletViewer Order1.htm" -- which only runs "ToolboxApplet"

"AppletViewer status.htm" -- which runs "StatusApplet"

Chapter 6. Developing AS/400 Java Applets 165

This soft copy for use by IBM employees only.

<hr>
This Applet would only be seen on JDK1.1 compatible Browser
<hr>

</applet><p>

This is the HTM tag for Order1.htm:

<HTML>
<applet code="ToolboxApplet.ToolboxApplet" width=500 height=400>

<hr>
This Applet would only be seen on JDK1.1 compatible Browser
<hr>
</applet><p>

This is the HTM tag for Status.htm:

<HTML>
<applet code="ToolboxApplet.StatusApplet" width=600 height=400>

<hr>
This applet is only seen on JDK1.1 compatible Browser
<hr>
</applet><p>

6.5 The "SelectedItems" Class
We investigate the "SelectedItems" class for use with the "ToolboxApplet" and
the "CartApplet".

"SelectedItems" acts as a buffer class that stores items selected by the
customer. As the customer views items that are available, they can select items
and place them in their "Shopping Cart". Later, they can view the items they
selected. The selected items are stored in the "SelectedItems" class.

"SelectedItems" contains a STATIC vector named "wanted" that contains all the
items selected. This is the "shopping cart" where we keep the selected items. It
also contains a STATIC BigDecimal "totalAmount" that stores the total dollar
amount of items selected. We use STATIC because we want other classes to
share these variables.

6.5.1 Writing the Class
The class definition is as follows:

import java.util.Vector;

import java.math.BigDecimal;

/**

* This Class was generated by a SmartGuide.

*

*/

public class SelectedItems extends java.lang.Object {

private static Vector wanted;

static BigDecimal totalAmount;

}

166 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The two import statements tell the compiler which package is used. The
BigDecimal class is in the java.math package, and Vector is in the java.util
package.

In some cases, generic import statements are used where instead of writing
"import java.math.BigDecimal;", we can write "import java.math.*;" so that all
classes in the java.math package are known to the compiler.

We recommend using the previous specific import statement rather than the
generic one, as specific imports can also let others know exactly what other
classes are used in the code. This facilitates modifying code and packaging the
application using JAR files.

6.5.2 Writing the Methods
First we write the getVector() Method to let others access the Vector "wanted" ,
as we intentionally made it private. Making the variables private lets the class
owner have more flexibility for future changes because other class users can
only access them through the public method and not access the variables
directly. Also, if no one instantiates the Vector, we do so here. This is called
lazy initialization so that later if the Vector is disposed, it is regenerated when
needed.

Second, we write the clear() method so the other applets can clear the cart and
remove selections from the cart.

Finally, we write the addSelectedRows() method to allow items to be added to
the Vector "wanted" that we previously created. An object array is used as the
input parameter.

We must add the object array to our vector and then add the price of the item to
the totalAmount. We have put the price of the items in the third element of the
input Object Array; that is, Object[2] .(remember all arrays start with 0). You can
also check out the BigDecimal Class we used to see what other calculation
methods are available. Because we may not have initialized the "totalAmount",
we set it to zero if it is empty.

public Vector getVector () {

i f (wanted==nul l) wanted=new Vector();

return wanted;

}

public void clear () {

wanted=null;

}

public void addSelectedRow (Object[] row) {

getVector().addElement(row);

i f(totalAmount==null) totalAmount=new BigDecimal("0");

totalAmount=totalAmount.add(new
BigDecimal((String)row[2]));

}

Chapter 6. Developing AS/400 Java Applets 167

This soft copy for use by IBM employees only.

6.6 The "ItemsDb" Class
ItemsDb class is the database access class we use. All the GUI front-end
applets use this class to access the AS/400 databases.

The class structure is as follows:

Basically, the class definition declares all the variables that we use in this class.

Important Information

To run the shopping cart applets, you must change the variables used for
system name, user ID and password to values that work with your AS/400
system.

A basic explanation of the variables follows:

import java.math.*;

import java.util.*;

public class ItemsDb extends java.lang.Object {

private java.sql.Connection dbConnect;

private java.sql.PreparedStatement psItem;

private java.sql.PreparedStatement psItemRange;

private java.sql.PreparedStatement psCustomerDb;

private java.sql.PreparedStatement psQuantityInHand;

private java.sql.Statement sGetInetOrderNo;

private String systemName = new String("TCPASM02");

private String userid = new String("UUUUUUUU");

private String password = new String("PPPP");

private java.sql.ResultSet rs = null;

public String itemId;

public String itemName;

public BigDecimal itemPriceBigDecimal;

public String itemPrice;

public String itemInfo;

public String validCustomerId = null;

}

Variables Description

java.sql.Connection dbConnect The connection to AS/400

java.sql.PreparedStatement psItem Optimized Query - see connect() for def
(Prepared Statements).

java.sql.PreparedStatement
psItemRange

Optimized Query - see connect() for def.

java.sql.PreparedStatement
psCustomerDb

Optimized Query - see connect() for def.

java.sql.PreparedStatement
psQuantityInHand

Optimized Query - see connect() for def.

168 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

java.sql.Statement sGetInetOrderNo Dynamic Query - used to get Internet
Order Number. (slower than Prepared
Statement, but has more flexibility
where SQL can be changed on the fly.)

String systemName Stores the AS/400 system name to
connect to (Internet server name - for
example, www.as400.com).

String user ID Stores the Default User Id for logon
from Internet shopping applications.

String password Stores the password for the Default
User Id.

java.sql.ResultSet rs As a temporary variable for the Query
Result Set returned.

String itemId Store the item Id value of the current
record.

- IID of ITEM database in CSDB library

String itemName Store the itemName INAME value of the
current record.

BigDecimal itemPriceBigDecimal Store the itemPrice IPRICE of the
current record in BigDecimal format for
caculation.

String itemPrice itemPrice in String format

String itemInfo itemInfo - IDATA field of ITEM database

String validCustomerId The Valid Customer Id for ordering
through Internet.

6.6.1 Common Methods All Applets Use
ItemsDb has some methods that are used by all the GUI applets.

6.6.1.1 Connect()
Connect() is the method that connects to the AS/400 system with the system
name, user id, and password defined in the class variables. It also prepares the
JDBC statements that are used to access the AS/400 databases.

Chapter 6. Developing AS/400 Java Applets 169

This soft copy for use by IBM employees only.

public String connect () {

try{

Class.forName("COM.ibm.as400.access.AS400JDBCDriver");

dbConnect =
java.sql.DriverManager.getConnection("jdbc:as400://" +
systemName +

"/csdb;naming=system;errors=full;date
format=iso",userid,password);

psItem = dbConnect.prepareStatement("SELECT * FROM
CSDB/ITEM WHERE IID = ?");

psItemRange = dbConnect.prepareStatement("SELECT * FROM
CSDB/ITEM WHERE IID = ? AND IID = ?");

psCustomerDb = dbConnect.prepareStatement("SELECT CID
FROM CSDB/CSTMR WHERE CID = ? AND CDID=001 AND
CWID='0001'");

psQuantityInHand = dbConnect.prepareStatement("SELECT
STQTY FROM CSDB/STOCK WHERE STWID= '0001' AND STIID=?");

} catch (Exception e) {

System.out.println("connect(): "+e) ;

e.printStackTrace();

return "Connect: " + e ; }

return "Connect Successfully";

}

6.6.1.2 Disconnect()
Disconnect() is the method for closing all AS/400 connections.

.

public void disconnect () throws Exception {

dbConnect.close();

psItem.close();

psItemRange.close();

psCustomerDb.close();

psQuantityInHand.close();

return;

}

6.6.1.3 Finalize()
Finalize() automates the disconnect(), so that every time the ItemsDb class is
disposed, it disconnects from the AS/400 system and release all resources
allocated.

.

protected void finalize() {

try { disconnect();super.finalize(); } catch(Throwable t)
{System.out.println(t);}

}

170 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

6.6.2 Methods Used by ToolboxApplet
ItemsDb has some methods that are used only by the ToolboxApplet.

6.6.2.1 FetchNextItem()
FetchNextItem() fetches the next record from the current result set and puts the
corresponding field values to the public class variables. It returns itself (this), for
cascading of methods.

.

public ItemsDb fetchNextItem () {

try {

if (rs.next()) {

itemId=rs.getString("IID");

itemName=rs.getString("INAME");

itemPriceBigDecimal=rs.getBigDecimal("IPRICE",2);

itemPrice=itemPriceBigDecimal.toString();

itemInfo=rs.getString("IDATA");

}

else {

itemId=null;

itemName=null;

itemPriceBigDecimal=null;

itemPrice=null;

itemInfo=null;

}

} catch (Exception e) {System.out.println("fetchnext
fail: "+e) ; }

return this;

}

6.6.2.2 GetItem()
GetItem() querys item information from the ITEM database with the itemno, and
uses fetchNextItem() to load the data into the class variables.

public ItemsDb getItem (String itemno) {

try {

psItem.setString(1, itemno);

rs = psItem.executeQuery();

fetchNextItem();

} catch (Exception e) {System.out.println("getItem fail:
"+e) ; }

return this;

}

Chapter 6. Developing AS/400 Java Applets 171

This soft copy for use by IBM employees only.

6.6.2.3 GetItems()
GetItems() querys item information from the ITEM database with the range of
itemno, and users use fetchNextItem() to load the data into the class variables. If
there are no more records, the class variables are set to null.

public ItemsDb getItems (String itemnoMin, String
itemnoMax) {

if(itemnoMax.length()==0) {

getItem(itemnoMin);

}

else {

try {

psItemRange.setString(1, itemnoMin);

psItemRange.setString(2, itemnoMax);

rs = psItemRange.executeQuery();

} catch (Exception e) {System.out.println("getItemS fail:
"+e) ; }

}

return this;

}

6.6.3 Methods Used by CartApplet
ItemsDb provides some methods that are only used by the CartApplet.

6.6.3.1 QuantityInHand()
QuantityInHand() returns the Quantity in Stock of a particular item with item
number itemNo.

public BIgDecimal quantityInHand (String itemNo){

try{

// Get next Order No. and the Inet YTD Balance

psQuantityInHand.setString(1,itemNo);

rs = psQuantityInHand.executeQuery();

rs.next();

return rs.getBigDecimal("STQTY",0);

} catch(Exception e) {System.out.printIn(e)}

return null;

}

6.6.3.2 VerifyCustomer()
VerifyCustomer() checks whether the customerId provided is a valid one, and
returns true or false depending on the result of the check. If the customerId is
valid, it saves it in the class variable validCustomerId.

172 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

public boolean verifyCustomer (String customerId) {

boolean isvalid=false;

try {

psCustomerDb.setString(1, customerId);

rs = psCustomerDb.executeQuery();

if(rs.next()) { isval id=true; validCustomerId=customerId;}

} catch (Exception e) { validCustomerId=null;}

return isvalid;

}

6.6.3.3 ConfirmOrder()
The confirmOrder() method creates an order from the items inside the
SelectedItems class. The customer Id should be validated by the
verifyCustomer() method before hand.

When confirming the order, it gets the next order number DNXTOR from the
district database DSTRCT, increments it by one, and writes it back to the
database. In a real life application, locking records, optimistic record locking, or
stored procedures should be considered to provide database integrity. See
Appendix D, “Internet Shopping Applet Code Listings” on page 245 for a
complete listing of the confirmOrder method.

The confirmOrder method uses JDBC to access the AS/400 databases. It
contains the following logic:

Checks to see is there are items in the cart.

Retrieves the next order number and district YTD balance from the AS/400
district file.

Updates the district YTD balance with the new order total.

Increments the district next order number by one.

Inserts an order record to the AS/400 order file.

Updates the stock balance in the AS/400 stock file.

Inserts an order line record in the AS/400 order line file for each item
ordered.

Returns the order number used.

Clears out the items from the cart.

6.6.4 Methods Used by the StatusApplet
ItemsDb provides some methods that are used only by the StatusApplet.

6.6.4.1 CheckOrderStatus()
The checkOrderStatus() method takes in an order ID orderIdString and then does
all the queries and finally returns a Vector orderStatus containing all the details
about the order. Please refer to Appendix D, “Internet Shopping Applet Code
Listings” on page 245 for a complete listing of this method.

Chapter 6. Developing AS/400 Java Applets 173

This soft copy for use by IBM employees only.

public Vector checkOrderStatus (String orderIdString) {

Vector orderStatus=new Vector();

if(orderIdString.length()>9 || orderIdString.length()==0) return null

t ry{

sGetInetOrderNo = dbConnect.createStatement();

rs=sGetInetOrderNo.executeQuery("SELECT OCID,OLINES FROM CSDB/ORDER

rs.next();

String customerId=rs.getString("OCID");

BigDecimal orderLines=rs.getBigDecimal("OLINES",0);

rs=sGetInetOrderNo.executeQuery("SELECT CFIRST,CLAST FROM CSDB/CSTMR

rs.next();

String lastName=rs.getString("CLAST");

String firstName=rs.getString("CFIRST");

orderStatus.addElement(lastName);

orderStatus.addElement(firstName);.

.

.

return orderStatus;

6.7 The "ToolboxApplet" Applet
This applet connects to the AS/400 system when it is being initialized.
Customers can press the "Query Range of Items" button to get the items where
the range is specified by TextField 1 and 2. The item information is displayed in
the list box. It uses the ItemsDb class that does all the AS/400 Database
accesses. It also uses the MyListbox class from Taligent for displaying the query
result.

6.7.1.1 Basic Class Definition
We show the basic class structure, class variables, and the GUI part. The class
structure was generated by using the Applet Wizard in the toolbar of the
Workbench.

174 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

We define the SelectedItems class and instantiate it. Because it uses static
variables, they are, therefore, shared by all classes that instantiated it.

We also define the imagePath for loading the product GIF images.

import com.taligent.util.*;

import com.taligent.widget.*;

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

import java.net.URL;

import java.util.*;

public class ToolboxApplet extends java.applet.Applet
implements java.awt.event.ActionListener {

static ToolboxApplet.SelectedItems selected = new
SelectedItems();

private String imagePath = "file:/C:/mytest/solution/";

//... ...(the above image path is where you find the
product image, 000001.GIF, ...)

//... ...(which may change according to setup. It also
accept http://www....)

6.7.1.2 Building the Visual Parts:

Labels - "Product Catalog", "Select the items...", and "Message:" are text labels.
You can also change their font and color setting by double-clicking them.

Buttons - the "Query Range of Items" and "Put Selection to Cart" buttons; you
can change the button text by ALT-Clicking on them.

Chapter 6. Developing AS/400 Java Applets 175

This soft copy for use by IBM employees only.

Text Fields - the two entry fields allow the customer to query a range of items to
be displayed in the list box.

List box - used to display the items returned by the query.

6.7.2 MyInit()
The MyInit method initializes the list box by adding column names, setting
column widths, and setting row heights.

For this method, getListbox() returns the object we built in the Visual Editor
named "Listbox". We use getColumnInfo() to get the Column references so we
can set the column's width. We also set other attributes of the list box such as
MultipleSelections and RowHeight. Reshape() refreshes the list box.

/**

* This method was created by a SmartGuide.

*/

public void MyInit () {

String columns[] = {"Item No.","Item
Name","Price","Image","Details"};

getListbox().addColumns(columns);

getListbox().getColumnInfo(0).setWidth(100);

getListbox().getColumnInfo(1).setWidth(250);

getListbox().getColumnInfo(2).setWidth(100);

getListbox().getColumnInfo(3).setWidth(100);

getListbox().getColumnInfo(4).setWidth(100);

getListbox().setMultipleSelections(true);

getListbox().setPreferedRowHeight(50);

getListbox().reshape();

}

6.7.3 AddAllRows()
The addListboxRow() method is used by the addAllRows() method to populate
the list box.

176 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

We get the "Item id", "Item Name", "Item Price" from ItemsDb by using
getItemsDb().PublicVariables. Look back into the ItemsDb Class Definition to see
what public variables are available.

We also get an image from the imagePath defined in the class definition.
MyImage(.Image,Listbox) loads the image and puts it into the list box
automatically. You can look into the coding of MyImage Class in the Appendix to
learn how to load an image URL. (It is inside the Package itsc.taligent.widget.)

/**

public void addListboxRow () {

Object myObject[] = n e w Object[5] ;

myObject[0] =getItemsDb().itemId;

myObject[1] =getItemsDb().itemName;

myObject[2] =getItemsDb().itemPrice;

// URL baseURL=getCodeBase();

String imageName=getItemsDb().itemId+".GIF";

try {URL baseURL=new URL(imagePath);

myObject[3] = n e w
MyImage(getImage(baseURL,imageName),getListbox());}

catch(Exception e){ myObject[3] ="No t Loaded";

myObject[4] =getItemsDb().itemInfo;

getListbox().addRow(myObject);

return; }

myObject[4] =getItemsDb().itemInfo;

getListbox().addRow(myObject);

}

6.7.4 AddAllRows()

The addAllRows() method loops and gets all the items from the resultset. It calls
addListboxRow to build the list box and finally it repaints the list box.

/**

* This method was created by a SmartGuide.

*/

public void addAllRows () {

while(getItemsDb().fetchNextItem().itemId!=null) {

addListboxRow();

getListbox().repaint();

}

return;

}

Chapter 6. Developing AS/400 Java Applets 177

This soft copy for use by IBM employees only.

6.7.5 GetSelectedIndexes()
The getSelectedIndexes() method determines which list box indexes are
selected. It then adds the selected rows of the list box to the SelectedItems
class named selected . In other words, it puts the selected items in the "cart".

public void getSelectedIndexes() {

int[] indexes=getListbox().getSelectedIndexes();

for(int i=0; i indexes. length; i++) {

selected.addSelectedRow(getListbox().getRow(indexes[i]));

}

}

6.7.6 Checking the Connections

If you are viewing the applet in the Visual Builder, you can check how we link
the user interface to our class and methods.

We use the following connections in this applet:

Initialization event of the ToolboxApplet:

− MyInit - to initialize the list box

178 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Start event of the ToolboxApplet:

− ItemsDb - connect method
− Connect the normal result to the message label.

Query range of items button:

− Clear the list box.

− ItemsDb - getItems

− AddAllRows

Put selections in cart button:

− GetSelectedIndexes

6.8 The "CartApplet" Applet
Next, we view the "CartApplet" that shows the selected items. Also, we have to
allow the customer to confirm the selections and write the order to the order
database.

In the design of the "CartApplet", we implement a button "Look into Cart" to
refresh the shopping cart. We could implement an Event for the automatic
refresh of the cart whenever an item is put into the cart. But for simplicity, we
choose to implement the "Look into Cart" button.

6.8.1 Writing the Class
Basic Class Definition:

import java.applet.*;

import java.awt.*;

import java.util.*;

public class CartApplet extends java.applet.Applet
implements java.awt.event.ActionListener,

= =
ToolboxApplet.SelectedItems cart = new SelectedItems();
= =
}

In the class definition, we create a SelectedItems object and named it cart.
Actually, this is shared with the ToolboxApplet. The ToolboxApplet puts items in
the cart and here we make the order from the items in the cart.

The visual parts:

Chapter 6. Developing AS/400 Java Applets 179

This soft copy for use by IBM employees only.

Labels - "My Shopping Cart", "Total Amount:", and "Customer No." are text
labels. You can change their font and color setting by double-clicking them.

Buttons - the "Look into Cart" and "Confirm Order" buttons. You can change the
button text by ALT-Clicking them.

Text Fields - the Entry Field for entering customer number.

List box - for displaying selected items.

ItemsDb visual part - for accessing the databases.

MessageBox visual part - for displaying messages.

6.8.2 Viewing the Methods
First, we view the MyInit() for the list box.

And this time, we want the following columns in it:

"Item No.", "Item Name", "Price", "Qty in Stock", "Image", and "Details".

180 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Next, we view the showCart() method.

We use an object array of 6 (that is, Object[6]) to store the elements from the
vector where there are five object (columns) in it. We insert the quantity in stock
of the item to the 4th element (that is, Object[3]) where the quantity in stock can
be obtained by calling a method in ItemsDb. We change it to String for display.

We then add the fourth and fifth element of the vector to the fifth and sixth object
of our array.

Finally, we add our object array as a row to the list box, display the total amount
in our label where we assume it is Label3, and then have the list box repaint
itself.

public void MyInit () {

// To initialize the MultiColumnListBox

String columns[] = {"Item No.","Item Name","Price","Qty
in Stock","Image","Details"};

getListbox().addColumns(columns);

getListbox().getColumnInfo(0).setWidth(100);

getListbox().getColumnInfo(1).setWidth(250);

getListbox().getColumnInfo(2).setWidth(100);

getListbox().getColumnInfo(3).setWidth(100);

getListbox().getColumnInfo(4).setWidth(100);

getListbox().getColumnInfo(5).setWidth(100);

getListbox().setPreferedRowHeight(50);

getListbox().reshape();

}

Chapter 6. Developing AS/400 Java Applets 181

This soft copy for use by IBM employees only.

public void showCart () {

Object myObject[] = n e w Object[6] ;

try {

if(cart.getVector()!=null) {

Enumeration enum=cart.getVector().elements();

while(enum.hasMoreElements()) { Object[] element=((Object[])enum.nextElement());

myObject[0] =element [0] ; //ItemId

myObject[1] =element [1] ; //ItemNam

myObject[2] =element [2] ; //Price

//[4] is qty in stock.

myObject[3] =(getItemsDb().quantityInHand(((String)eleent[0]))).toString();

myObject[4] =element [3] ; // Image

myObject[5] =element [4] ; //Details

getListbox().addRow(myObject);

};

getLabel3().setText("Total Amount:
"+cart.totalAmount.toString());

getListbox().repaint();

return;

}

} catch(Exception e)

{e.printStackTrace();System.out.println(e); }

return;

}

182 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

6.8.2.1 Viewing the Connections

Init Event of the Applet:

The Init Event of the Applet is connected to "Event to Script" MyInit() method.
The Init Event of the Applet is also connected to the ItemsDb visual part's
connect() method.

Look into Cart button:

The "Look into Cart" button is first connected to the list box visual part's
clear() method. It is then connected to the "Event to Script" showCart()
method.

Validate Customer Number:

We validate the Customer number field so that the "confirm Order" button is
only enabled if the customer number is entered correctly. We have built a
verifyCustomer() method in ItemsDb to use. We connect it with the
KeyReleased event of the Customer Number Entry Field and the Confirm
Order button. It enables the Confirm Order button if the Customer Number in
Entry Field is found in Database.

Confrim Order button:

We link the "confirm Order" button to the ItemsDb Part confirmOrder()
method, with "cart" as the input parameters (Hint: set it using Open Setting
and then Set Parameters). And the output should be sent to the
MessageBox's show() method.

Chapter 6. Developing AS/400 Java Applets 183

This soft copy for use by IBM employees only.

Finally, we connect the "confirm Order" button to list box visual part's clear()
method, so that after confirming the order, items in the list box are cleared.

6.9 The Check Order Status Applet
In the Class definition, we need:

The Visual parts:

import itsc.taligent.widget.*;

import java.applet.*;

import java.awt.*;

import java.net.URL;

import java.util.*;

public class StatusApplet extends java.applet.Applet {

private java.lang.String imagePath =
"file:/C:/mytest/solution/";

//... ...(the above image path is where you find the
product image, 000001.GIF, ...)

//... ...(which may change according to setup. It also
accept http://www....)

.

Labels - "ORDER STATUS", and "Order Number" text labels; you can change
their font and color setting by double-clicking them..

184 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Button - the "Query" button; you can change the button text by ALT-Clicking on it.

Text Fields - the Entry Field for entering Order number.

List box - for displaying the items.

ItemsDb visual part - for database access.

To implement the Check Order Status Applet, two user-written methods are
used.

fillListbox(OrderId String) that calls the getItemsDb().checkOrderStatus()
method with OrderId as the parameter. If the order is found, it puts the
items ordered in the list box to display. The checkOrderStatus method
returns a vector that contains lastname, firstname, and an array of order
detail. See Appendix D, “Internet Shopping Applet Code Listings” on
page 245 for a complete listing of this method.

MyInit(), which initializes the MyListbox Class with proper Columns,
headings, and sizes.

public void fillListbox (String orderId) {

Vector orderStatus=getItemsDb().checkOrderStatus(orderId);

i f(orderStatus==null) {

getLabel2().setText("Order No. "+o rde r I d+ " Not Found !!!");

return; }

Enumeration detailLine=orderStatus.elements();

String lastName=((String)detailLine.nextElement());

String firstName=((String)detailLine.nextElement());

getLabel2().setText("Order "+o rde r I d+ " was Ordered by "+ f i rs tName+" " + l a

while(detailLine.hasMoreElements()) {

Object[] deta i l= ((Object[])detailLine.nextElement());

String imageString=((String)detail[3]);

try {

URL baseURL=new URL(imagePath);

detail[3] = n e w MyImage(getImage(baseURL,imageString),getListbox());

} catch (Exception e) {detail[3] ="No t Loaded";}

.

.

.

Chapter 6. Developing AS/400 Java Applets 185

This soft copy for use by IBM employees only.

public void MyInit () {

String columns[] = {"Item Name","Qty ordered","Total
Amount","Image"};

getListbox().addColumns(columns);

getListbox().getColumnInfo(0).setWidth(250);

getListbox().getColumnInfo(1).setWidth(100).setAlignment(ListboxColumn.RIGHT);

getListbox().getColumnInfo(2).setWidth(100).setAlignment(ListboxColumn.RIGHT);

getListbox().getColumnInfo(3).setWidth(100);

getListbox().setPreferedRowHeight(50);

getListbox().reshape();

return;

}

6.9.1.1 Viewing the Connections

Init Event of the Applet:

The Init Event of the Applet is connected to "Event to Script" MyInit() method.
The

Init Event of the applet is also connected to the ItemsDb visual part's
connect() method.

Query button:

186 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

The "Query" button is connected to the list box visual part's clear() method.
It is also connected to the "Event to Script" fillListbox() method. Finally, the
Text Entry Field's text property is connected to the previous connection's
orderId parameter.

Note: The most important thing here is the format of the Vector returned
from checkOrderStatus(), and how you organize it and put it into the
Mylistbox class. You need to check out and understand how to use Vector,
Vector enumeration, elements(), and hasMoreElements() of the Vector
classes in the java.util package.

6.9.2 Using JAR Files
In this section, we discuss using the JAR support of JDK 1.1 to compress and
package Applets.

You can simply run "JAR" without any parameter to see the documentation.

One thing to remember is that Java is a case-sensitive language, so when typing
in a package name such as "ToolboxApplet", "itsc", and "COM", capitalization
should be followed strictly. Or else browsers that try to open classes in the jar
file throw a ClassNotFound exception.

Looking at what is being put into our "applets.jar", you learn that some of the
classes are actually unnecessary they are there because they are in the
directory. JAR works the same as a ZIP or other compression utilities in that it
compresses everything; it does not determine what is needed and what is not.
So it is your responsibility to JAR only those items needed (ONLY Class files and
GIF files you have used).

MANIFEST.MF file is for other JDK 1.1 compliance tools or browsers to find out
what is inside of a JAR file.

If needed, you can provide your own MANIFEST.MF file during compression as
shown in the following example.

jar cvfm applets.jar meta-inf/manifest.mf ToolboxApplet COM Applets in JAR

When an Applet is in a JAR file, the HTML code is shown in the following
example:

jar cvf applets.jar ToolboxApplet itsc
COM

This compresses all files under the
directory "ToolboxApplet", "itsc", and
"COM".

jar tvf applets.jar This displays what is inside "applets.jar".

jar xvf applets.jar This extracts all files according to the
original directory information.

In addition, it also extracts the manifest
file and appends the content to the

"META-INF\MANIFEST.MF" file

Chapter 6. Developing AS/400 Java Applets 187

This soft copy for use by IBM employees only.

<HTML>
<applet code="ToolboxApplet.ToolboxApplet"
width=500 height=400 archive="applets.jar">
<hr>
This Applet would only be seen
on JDK1.1 compatible Browser
<hr>
</applet><p>

You can try to open the preceding homepage with the HotJava 1.0 browser,
which supports JDK1.1. You have to set the HotJava Preference to medium
security for unsigned applet so that you can connect from a PC to the AS/400
system.

188 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Chapter 7. JavaBeans

This chapter is designed to help you understand what a JavaBean (also referred
to as a bean throughout) is and how they are created. We first discuss what a
JavaBean is made of and go on to discuss why JavaBeans are so appealing.
You then learn what makes a good JavaBean and when to use them. Finally, I'll
guide you step-by-step to create a simple JavaBean.

Java code snippets are scattered throughout followed by several complete
working examples that you can compile and try on your own.

What Do I Need and Need to Know?

To create and use a JavaBean, you need a Java 1.1 compatible development
tool such as Visual Age for Java or a 1.1 Java Development Kit and a text editor.

You do not need to be a Java expert to understand this chapter. Although there
are some portions that require some basic Java and object oriented skills, there
is still a lot that can be learned even for someone with no Java knowledge.

This chapter is not meant to teach every last detail about JavaBeans, but
provides enough information for you to understand and create
simple-to-intermediate JavaBeans. We also tell you what JavaBeans are
capable of and what additional information to gather for your specific needs.

7.1 What Do JavaBeans Offer?
Before you spend days reading documentation and tutorials, we discuss some of
the benefits of using JavaBeans.

Reuse, Reuse, Reuse

Probably the largest benefit gained from using beans is the ability to use a bean
over and over because a bean is a component. How many graphical
applications have you used that have buttons? Probably every single one. The
same is true for text boxes, scrollbars, and menus. These components are so
common and used in so many applications that the time saved by programmers
who can use the standard Java button rather than create their own is
unimaginable. But this does not only apply to graphical components. A bean
can be something as complex as a grammar and spelling checker, but can also
be reused because of the large number of word processing applications.

Visual Manipulation and Building

Using a good Java builder tool, it is possible to import and connect several
beans together to make a complete application without writing a single line of
Java code. Of course, someone has to create the beans to begin with, but many
beans can be bought and reused and many builder tools actually allow creation
of beans without writing any Java code. Even if your bean is not a graphical
one, it can be much faster to draw connection lines and have the builder tool
write the Java code and send the correct parameters than to write everything
yourself and wind up with several syntax errors.

Everything Java Offers and More

 Copyright IBM Corp. 1997 189

This soft copy for use by IBM employees only.

Many cautious or skeptical developers want to make sure they are making a
good investment before completely jumping into the world of beans. The main
thing to remember is that JavaBeans are 100% Java and simply an extension of
Java, so JavaBeans offers everything Java offers and more. The data
processing industry has seen incredible growth and support for Java in the past
couple of years and there seems to be no stopping point yet, so as with Java,
JavaBeans is not expected to die any time soon. Because beans are Java, they
are relatively simple to program. Beans give you all the benefits of an
object-oriented programming model. Beans are also Internet/intranet ready and
are perfect for distributed applications. They also inherit all of the built-in
security Java offers.

Easy Packaging and Distributing

Java JAR files make it easy to package up the several class files that make up a
bean or several beans into one easy-to-ship JAR file. Most builder tools have a
wizard that allows the user to import a JAR file and select which beans inside to
use. Because of introspection and the beans standards, the builder tool can also
inform the user of the beans properties, methods, and events without the user
having to read any documentation or look through a code to determine a
method's parameters.

7.2 The Basics of JavaBeans
The definition of a JavaBean is: A reusable software component that can be
visually manipulated in a builder tool.

That definition is pretty general because the beans specification itself is quite
general leaving a lot of room for variety and customizing. Therefore, beans can
come in a wide variety of shapes and sizes, and perform a number of different
tasks and still conform to the JavaBeans specification.

To begin understanding JavaBeans, we first discuss some basic JavaBeans
concepts and terminology used. We then learn what is done to create a simple
JavaBean without any complex BeanInfo knowledge (found in 7.3, “Creating a
Simple JavaBean” on page 192.

What Does it Actually Mean to be a Bean?

Any object can be a bean. Almost any Java object is already a bean or can be
quickly changed to follow the beans rules. To be a bean really means that the
class follows the few simple rules and naming conventions. There is no class
that a bean must extend or interfaces that must be implemented although some
are offered to help with complex beans.

Another important thing to remember is that just because the definition says that
a bean can be visually manipulated, all beans are not graphical. Many
components such as buttons and textfields can be beans, but another example of
a bean is a text convertor or a credit card number verifier. All of the
components we just listed have one task that is general enough to be used in
many applications, but not all are graphical. Most builder tools allow the user to
have an icon that represents the bean while designing the application, which is
invisible at run time.

JavaBean Terminology

190 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Property :
A property is a piece of information about a particular bean that is used to give,
get, or pass information to and from a bean. Suppose we have a bean that
represents a person. One property is age. This is an example of a readable
property because you can ask for someone's age, but there is not way to change
it. Another property is hair color. This is a readable/writable property because
we can change their hair color.

The JavaBean specification suggests a naming convention to be used when
creating properties. First, a property should be private or protected and public
methods (getters and setters) should be created to give other classes access to
the property if necessary. The method names should be getXXX and setXXX
where XXX is the property name. The following Java code sample is for an age
property.

Method :
A method for a bean is nothing different from any regular Java method. It is
simply an interface by which beans can communicate by passing parameters
and getting values or objects back.

There are a couple things to keep in mind when creating methods. Name the
methods descriptive enough so someone else using your bean has an idea of
what a method does simply by seeing the name. Also, unless you specify
exactly which methods to show and which ones to name in a BeanInfo class
(Advanced JavaBeans concepts), all public methods are displayed using
Introspection, so only make public the methods you want other objects to invoke.

Events :
Events are a way for beans to communicate by allowing a bean to let other
beans know when something has occurred. For example, a button must be able
to let other beans know if it has been pushed. There are several events already
built in to Java such as events for mouse movements, windows being opened or
minimized, and so on. New events can also be created and used by a bean to
allow almost anything to be communicated. For example, a database access
bean can fire (inform other beans of) an event if the database connection has
closed so the rest of the application can take the appropriate actions.

Introspection :
Introspection is one of the concepts that make JavaBeans easy to use and be
used by others. Introspection means that a builder tool or person analyses the
bean first to determine what properties, methods, and events the bean has.

Customization :
Customization is exactly as it is sounds, the ability to change a bean to better
suit your application's needs. Customization makes beans powerful and
reusable by giving a developer an easy way to change the look or functionality of
a bean so new development does not have to take place. The JavaBeans
specification gives us two ways to do this. First, property editors can be created

private int age;
public int getAge() {

return age;
}
public void setAge(int newAge) {

age = newAge;
}

Chapter 7. JavaBeans 191

This soft copy for use by IBM employees only.

to make changing a bean property easier and more robust by checking to make
sure a property's value is being set within a valid range, and so on. Second, a
Customizer class can be created, which can be a wizard to take a developer
step-by-step through using the bean, so say good-bye to manuals because
documentation can be shipped right within the bean.

Persistence :
Persistence means that your data exists even after you close the program or
shut off the computer. This is important when using customizable beans. If you
customize a bean with a builder tool, the state of the bean can be saved to disk
and brought back later.

7.3 Creating a Simple JavaBean
In this section we create a simple bean named FancyLabel . It demonstrates how
we can externalize methods and properties. The function of this bean is to allow
us to add a label to our application that can sense when the mouse moves over
it and changes color accordingly. The code for the bean is shown in the
following example; it was written using VisualAge for Java.

When we run the application, the label named Fancy Label is shown in red when
the mouse passes over it and green when the mouse is not over it.

We have three properties that we make available for others to use:

mouseInsideColor
mouseOutsideColor
mouseInside

We only implement two methods:

mouseEntered
mouseExited

192 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

public class FancyLabel extends java.awt.Label implements java.awt.event.MouseListener {

// Properties

public java.awt.Color mouseInsideColor = java.awt.Color.red;

public java.awt.Color mouseOutsideColor = java.awt.Color.green;

public boolean mouseInside = false;

public FancyLabel() {

super();}

public FancyLabel(String text) {

super(text);}

public FancyLabel(String text, int alignment) {

super(text, alignment);}

// Property Get and Set methods

public java.awt.Color getMouseInsideColor() {

return mouseInsideColor;}

public java.awt.Color getMouseOutsideColor() {

return mouseOutsideColor;}

public boolean isMouseInside() {

return mouseInside;}

public void setMouseInsideColor(java.awt.Color newInsideColor) {

mouseInsideColor = newInsideColor;

repaint();}

public void setMouseOutsideColor(java.awt.Color newOutsideColor) {

mouseOutsideColor = newOutsideColor;

repaint();}}

Mouse Listener Methods

public void mouseClicked(java.awt.event.MouseEvent e) {

repaint();}

public void mouseEntered(java.awt.event.MouseEvent e) {

mouseInside = true;

paint(java.awt.Graphics);}

public void mouseExited(java.awt.event.MouseEvent e) {

mouseInside = false;

paint(java.awt.Graphics);}

public void mousePressed(java.awt.event.MouseEvent e) { }

public void mouseReleased(java.awt.event.MouseEvent e) { }

// Sets the color and calls the java.awt.Label's paint method

public void paint(java.awt.Graphics g) {

if (isMouseInside())

setForeground(mouseInsideColor);

else

setForeground(mouseOutsideColor);

super.paint(g);}

Chapter 7. JavaBeans 193

This soft copy for use by IBM employees only.

Because our label is a bean, we can use a tool such as VisualAge for Java to
display its methods, properties and events.

To make the bean work with our application, we make two connections:

Event mouseEntered to the mouseEntered method

Event mouseExited to the mouseExited method

7.4 Making ItemsDb a JavaBean
In this section of the chapter, we show a more practical use of JavaBeans. We
change the ItemsDb class that we used in the shopping cart applet in Chapter 6,
“Developing AS/400 Java Applets” on page 155 into a bean.

To make "ItemsDb" a simple bean, we publicize the methods, properties, and
Events of "ItemsDb". Actually, we do not need to do anything with all the public
methods; they are automatically seen.

We only need to set up the properties that are the values of "systemName",
"userid", and "password", and the Event of "ItemsDb", which is the new
"Connected" event.

7.4.1 Review of Current "ItemsDb"
We first review the current "ItemsDb" class. We open the "ToolboxApplet"
Applet and find the "ItemsDb" in the Visual Builder. We choose "connect" and
then "All features" by right-clicking it.

194 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

In the preceding window, notice that ItemsDb has no properties or events.

When we finish this section, you can see the preceding window with the new
properties and events.

7.4.1.1 Adding Properties
We add the properties for "systemName", "userId", and "password" to "ItemsDb".

We open the "ItemsDb" class and create the getter and setter methods for the
properties that we want to externalize.

We add the new method getSystemName() to it as follows:

Add the new method setSystemName() as follows:

public String getSystemName () {

return systemName;

}

Chapter 7. JavaBeans 195

This soft copy for use by IBM employees only.

Notice that "systemName" is the variable where we store the AS/400 server
name.

We next add getter and setter methods for userId and password.

getPassword()
setPassword()
getUserId()
setUserId()

Note: For the bean to recognize a property, the only thing you need to do is add
two new public methods, the getProperty() and setProperty(). The property can
be any name you want, not necessarily equal to the variable name.

After saving all of the methods, we open the "ToolboxApplet" visual builder.

public void setSystemName(String tSysname) {

systemName=tSysname;

return;

}

196 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

We right-click on "ItemsDb" and select "Refresh Interface" to get the new
properties into the Visual Builder. You can check the properties by right-clicking
the "ItemsDb", select "Connect", and then "All Features". Also, you can now set
or change the property by double-clicking "ItemsDb" ("properties").

7.4.1.2 Adding Events
To finish this bean, we add all of the events to the "ItemsDb"class. We open the
"ItemsDb" class again and click the "BeanInfo" tab.

Chapter 7. JavaBeans 197

This soft copy for use by IBM employees only.

We select "Features" from the menu bar, and then select "New Event Set
Feature..."

We use the drop down list box to choose "connection" as the "Event name" and
COM.ibm.ivj.eab.data.ConnectionListener as the Event listener. We then click on
"Next".

198 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

We fill in the information as shown in the preceding figure where the display
name and short description let you recognize the events easily. We then click
on Finish.

Now, the previous events and other methods are added automatically.

Chapter 7. JavaBeans 199

This soft copy for use by IBM employees only.

Also, the preceding methods are created as the support functions for firing an
event. Whenever you want to fire an event, you use the fireEvent() function. To
illustrate, we fire the "Connected" event at the end of the ItemsDb "Connect()"
method.

200 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

We add the following statement:

" fireConnected(new COM.ibm.ivj.eab.data.ConnectionEvent(this," ")); "

to the end of the "Connect()" method as previously shown, just before the last
return statement, so that if the connection and all prepare statements are done
successfully, we fire the "Connected" event with "this" as the source of the
event.

public String connect () {

try{

Class.forName("COM.ibm.as400.access.Driver");

dbConnect =

java.sql.DriverManager.getConnection("jdbc:as400: .//" +
systemName +
"/csdb;naming=system;errors=full;date
format=iso",userid,password);

psItem = dbConnect.prepareStatement("SELECT * FROM
CSDB/ITEM WHERE IID = ?");

psItemRange = dbConnect.prepareStatement("SELECT *
FROM CSDB/ITEM WHERE IID = ? AND IID = ?");

psCustomerDb = dbConnect.prepareStatement("SELECT
CID FROM CSDB/CSTMR WHERE CID = ? AND CDID=001 AND
CWID='0001'");

psQuantityInHand =
dbConnect.prepareStatement("SELECT STQTY FROM CSDB/STOCK
WHERE STWID= '0001' AND STIID=?");

} catch (Exception e) {

System.out.println("connect(): "+e) ;

e.printStackTrace();

return "Connect: " + e ; }

fireConnected(new
COM.ibm.ivj.eab.data.ConnectionEvent(this," "));

return "Connect Successfully";

}

Chapter 7. JavaBeans 201

This soft copy for use by IBM employees only.

Finally, we choose "Features", "Generate", and "BeanInfo Class" to generate a
complete "ItemsDbBeanInfo" Class to make "ItemsDb" a real and complete
JavaBean.

We have finished all of the definitions for our "ItemsDb" Bean. To show the
advantage of using JavaBeans, we modify the "ToolboxApplet" class. In fact,
without any modification, the "ToolboxApplet" still works.

202 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

7.4.2 Modification of "ToolboxApplet" Class

The "ToolboxApplet" class now looks similar to the preceding figure. We are
making the following change:

The normal result of the connection ToolboxApplet,start() to ItemsDb,connect is
currently connected to the Message textbox. If the connection method runs
successfully, we display the return value "Connect Successfully" in the text box.

The new connection is as follows:

We connect the firing of the ConnectionEvent, which we added to the connection
method. We connect ItemsDb,connection.connected to Label3,setText()

We connect the "Connected" event to the Text and set the text parameter to
whatever we want (for example "We did it").

Chapter 7. JavaBeans 203

This soft copy for use by IBM employees only.

7.4.2.1 Additional Modifications

We can now make some additional changes to the "ToolboxApplet" to make
advantage of the new capabilities of the "ItemsDb" class.

We change the connection "start() -- connect()" to a button named Connect
that we connect to the ItemsDb connect method, so that we can manually
start the connection rather than connecting when the applet starts.

We change the "Query Range of Items" button so that when the applet is
loaded, the button is disabled and we enable the button only when we
connect successfully to the AS/400 system. We use the firing of the
"connected" event to enable the button.

We pass in the System Name, UserID, and Password from screen-text fields
rather than storing them in variables.

Because we can use the "CONNECTED" event, we have more control over the
interaction of the parts. We can make changes without changing code. Because
of the bean, we have all the "Methods", "Properties", and "Events" available in
the visual Editor of any Bean-enabled development environment. This makes is
easy to reuse the capabilities of the object without having to read source code or
documentation.

204 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

7.5 Advanced JavaBeans Concepts
BeanInfo class
If a bean creator does not want to leave property, method, and event finding up
to the Introspector or wants to add more advanced features such as custom
property editors or bean customizers, a BeanInfo file can be created to let a user
or builder tool know what to make public.

A BeanInfo file must have the same name as the bean with BeanInfo appended
to the end. For example, our Fancy Label bean can have a class called
FancyLabelBeanInfo. This BeanInfo class must either implement the
java.beans.BeanInfo interface or extend the java.beans.SimpleBeanInfo class.
The java.beans.SimpleBeanInfo class implements the java.beans.BeanInfo
interface and is there to make it easier for a developer to quickly add only some
BeanInfo by overriding the methods already present in the SimpleBeanInfo class.

Note: Some builder tools do not use the Introspection if a BeanInfo file is
present, so you must list all properties, methods, and events you want visible in
the BeanInfo class if you list any.

Advanced Properties
For an application or applet to be built well graphically, the beans need to have
effective communication between them. In addition to methods and regular
events, beans allow two special property types: Bound and Constrained.

Bound properties
A bound property is the same as any other property we discussed earlier with
an additional feature. Bound properties make an announcement to any
interested listener that its value has changed. To let a builder tool know a
property is bound, a BeanInfo class must be created and a couple of methods
need to be added to the main class to support bound property listeners.

Contrained properties
A contrained or vetoable property is similar to a bound property, but not only are
listeners notified when the property has changed, they have the opportunity to
disallow a change to occur. For example, a person might ask a loan bean to
change the interest rate to 10%, but a bank bean that contains the loan bean
does not allow interest rates below 15%. The bank is informed of the possible
change in the interest rate and vetoes the change.

Indexed properties
Another special property is the Indexed property. An indexed property works the
same as an array. It not only lets you to send all of the contents of the property
at once, but allows you to read and write one item in the array at a time. The
following example is an indexed property and also shows the BeanInfo data to
accompany it.

Chapter 7. JavaBeans 205

This soft copy for use by IBM employees only.

Methods
You can also use the BeanInfo file to let the builder tool know which methods to
make available to the bean user. You can also provide more information about
a method this way, such as a better description of what the method does and
better descriptions of the method's parameters.

private String [] names = {};

public void setNames(String [] allNames) {
names = allNames;

}
public String [] getNames() {

return names;
}
public void setIndexNames(int index, String name) {

names[index] = name;
}
public String getIndexNames(int index) {

return names [index] ;
}

import java.beans.*;

public class BeanName BeanInfo extends SimpleBeanInfo {

public PropertyDescriptor [] getPropertyDescriptors() {
try {

IndexedPropertyDescriptor pd = new IndexedPropertyDescriptor("names",
BeanName, "getNames", "setNames", "getIndexNames", "setIndexNames");

PropertyDescriptor allDescriptors [] = { pd };
return allDescriptors;

} catch (Exception e) {
return null;

}
}

}

7.5.1 What Makes a Good JavaBean
Before going out and converting/updating all of your Java classes to beans, you
should decide which Java classes are best suited to become beans. The basic
question to ask yourself is this: "Is this class discrete or general enough to be
reused?" If you have a class that pulls data from a particular database, it is
probably not worth making it a bean. On the other hand, with just a little work, a
customizer can be added to that class to let a user select which database and
fields to retrieve. Then you have a bean that can be reused in several
applications.
Another thing to be aware of is that Introspection itself might be enough to make
a good bean. For example, a standard Java button is a bean that does not have
a BeanInfo file or customizer. All of its properties (text, color) simply have get
and set methods. So, if you follow the naming conventions when making any
object, less work must be done to make your object a bean.

206 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

7.5.2 References and More Information
JavaBeans For Dummies. Emily Vander Veer.

Sun Website: http://java.sun.com/beans

Chapter 7. JavaBeans 207

This soft copy for use by IBM employees only.

208 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Chapter 8. Java on AS/400 System

The focus of this redbook has been on developing AS/400 client/server
applications in which the client code is developed using Java. Currently we can
only run Java on the client. The reason for this is that there is not a generally
available Java Virtual Machine (JVM) for the AS/400 system.

In the future, this will change; IBM has announced plans to support Java on the
AS/400 system. In this chapter, we provide a preview of what the Java support
on the AS/400 system will be.

8.1 Java on the AS/400 System
The current status of Java running on the AS/400 system is:

Currently there is a JDK 1.0.2 available from IBM Hursley Lab:

− Initially without AWT GUI classes.
− Available as a "Technology preview" to get you started:

AVAILABLE @ www.hursley.ibm.com/javainfo

In the future, there will be a JDK 1.1 implementation:

− It will provide a JVM that runs in the AS/400 System Licensed Internal
Code.

− An AS/400 Java compiler will also be provided.

The AS/400 Toolbox classes will be available on the AS/400 system for Java
application development.

VisualAge for Java will be able to produce both client and AS/400 Java
applications and applets.

Any Java development tool can be used to write programs that run in the
AS/400 system JVM. VisualAge for Java will provide unique support for the
AS/400 system.

 Copyright IBM Corp. 1997 209

This soft copy for use by IBM employees only.

8.2 AS/400 Java Virtual Machine

Figure 42. AS/400 JVM

This picture shows the AS/400 architecture. At the bottom, we have the AS/400
hardware platform. Originally, this platform was implemented on a CISC
processor. With the announcement of the PowerPC RISC Technology, the
hardware platform is now implemented on a Power PC processor.

Above the processor is the System Licensed Internal Code (SLIC). It is
sometimes called the microcode. This is a layer of software that implements the
basic functions of the operating system such as task management, memory
management, and data management.

The Technology Independent Machine Interface (TIMI) provides the interface to
the SLIC layer. This is sometimes referred to as the machine interface (MI).
Nothing below this layer is public and applications cannot access functions
hidden by this interface. This is how the AS/400 system provides for a seamless
technology transition without any impact to applications.

Above the machine interface is the operating system itself. Because the
operating system is above the MI, most of it is portable and technology
independent.

Above the operating system are the applications. They are independent of the
underlying technology.

The Java Virtual Machine is ported to many hardware and software platforms. It
provides a uniform, platform independent interface for Java applications. This
interface is implemented through the Java APIs. Java applications only use this
set of APIs; they never see the underlying physical implementation.

Java applications sit on top of the Java Virtual Machine. Compiled Java
applications are in the form of byte-codes. The byte-codes are interpreted by the
Java Virtual Machine.

210 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

To run Java applications on the AS/400 system, we have to implement a Java
Virtual Machine. The AS/400 JVM is implemented inside the microcode as an
extension to the SLIC. This provides for good performance for the JVM and also
maintains the technology independence of the AS/400 system. The AS/400
system can present both its TIMI and Java interface to others.

8.3 Java on the AS/400 Server
Java programs can run on the AS/400 system as either:

Interpreted byte-codes
Native AS/400 Java compiled programs

A new CRTJVAPGM command allows for interpreted and compiled modes. A
compiled version should perform well. Java byte-codes are encapsulated in
hidden AS/400 *SRVPGM objects. They are associated with Java class files in
the IFS.

Native AS/400 Java compiler:

This creates an AS/400 *SRVPGM object and links it to the Java class
(bytecodes) produced by any Java programming tool. The compiler has the
capability to create two flavors of a Java Program. The first type is
interpreted by the native Java Virtual Machine (JVM) running inside the
System Licensed Internal Code (SLIC). The second encapsulates the
byte-codes into native AS/400 instructions to provide for a much faster
execution. The compiler is invoked by a command such as CRTJVAPGM.
This command requires parameters such as:

− CLSF (class file name):

The name of the IFS file containing the Java class file.

− GENTYPE (type of AS/400 program to be created):

- *COMPILED
- *INTERPRET

− Other parameters such as the ones found on other CRTxxxPGM
commands:

- OPTIMIZE (optimization level)
- REPLACE (whether to replace an existing program)
- ENBPFRCOL(whether collection of performance data is enabled).

A hidden AS/400 *SRVPGM object is created. Java is and will be IFS based.
That is, all Java files such as a source file (java suffix) or bytecodes (class
suffix) are stream files stored in the IFS. They are not QSYS type objects.
The compiler will create an AS/400 *SRVPGM object. Unlike any other
AS/400 *SRVPGM type object, it will not appear in any library, thus it is not
directly accessible. The compiler provides a pointer into the Java class file
and the *SRVPGM object is only accessible through this pointer. The
*SRVPGM object associated with a Java class file is saved and restored
automatically when the Java class file is saved and restored through the use
of standard IFS SAV and RST commands.

Chapter 8. Java on AS/400 System 211

This soft copy for use by IBM employees only.

8.4 Java Applications on Server
Java applications on the server can:

Call AS/400 ILE C + + service programs

− Using the Java built-in Native Method Invocation.

Run as batch programs (no GUI operations):

− Remote AWT classes may allow GUI support.

Use the AS/400 Toolbox for Java classes.

Interface with client-based Java programs:

− Using the Java Remote Method Invocation interface.
− Using the Java sockets support.

Now let's look at some of the capabilities this is going to offer.

Call AS/400 ILE C programs:

The Java Virtual Machine implementation will enable a Java program to call
an ILE C program. This will make use of the standard Java Native Method
Invocation (NMI) capability. It provides for a tight integration of Java
applications with existing applications.

Note: The ability to call RPG or COBOL programs using JNI may be
provided with some restrictions due to thread safety issues. The goal is to
make this support available with no restrictions.

Batch programs (no GUI operation):

It does not make sense to have an AS/400 program try to perform graphical
user interface operations because the AS/400 system has no native GUI
capable devices. The remote AWT support may be used to provide a "thin"
client/server implementation. That is, the program logic resides on the
server with only the graphical user interface done on the client.

AS/400 Toolbox class interface:

In this redbook, we cover all of the functions that a Java application (or
applet) can be enabled to when using the AS/400 Toolbox for Java classes.
As these classes are 100% pure Java classes, they can also be executed on
the AS/400 system. Having the AS/400 Toolbox for Java classes available on
the AS/400 system provides all AS/400 based (server) applications with the
same functions and capabilities of client/server applications. For example,
they can execute batch commands, call existing AS/400 programs, use data
queues, and interface to the printing support.

JDBC:

The JDBC interface to AS/400 databases or stored procedures is also
available. Rather than using the toolbox classes, it uses native AS/400
support.

212 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

8.5 AS/400 Java Remote Method Invocation

Figure 43. RMI

This chart illustrates how distributed client/server JAVA applications are
implemented with the AS/400 system using Java Remote Method Invocation.
The AS/400 server is on one side. The Java enabled client is on the other side.
When starting a program on the client, this program makes uses of standard
JDK 1.1 classes. Among these classes are the Remote Method Invocation
classes. RMI classes are capable of opening a Sockets connection to a server.
If the client is running a Java application, this can be any server in the network.
If it is running an applet, it can only be the server the applet was downloaded
from. Once the connection is granted, the RMI classes on the client start
communicating with their equivalent classes on the server side. In turn, the RMI
classes on the server invoke a Java program on the AS/400 system. Because
the AS/400 Toolbox for Java classes are 100% pure Java classes, they also run
on the AS/400 system, thus, providing the AS/400 side Java applications with
easy access to any AS/400 resources.

Chapter 8. Java on AS/400 System 213

This soft copy for use by IBM employees only.

8.6 AS/400 Java Proxy Interface

Figure 44. Proxy

Here we show how a distributed Java client/server application behaves when it
uses the proxy concept. First, we need a server on the network. This can be an
AS/400 system. Somewhere in the network, we have a Java-enabled client.

On the client, we start a Java application or a Java applet. This application
needs to communicate with some other object to perform some task. As far as
the application is concerned, everything looks as if the object was resident on
the same machine as the rest of the Java application. In reality, only a proxy of
the real object (that is, some sort of shadow) is present on the client side. This
proxy can be automatically created by the Proxy Builder included with VisualAge
for Java Enterprise Edition.

When the Java application actually needs to communicate with the remote object
(for example, to invoke a method of the remote object), it, in fact, invokes the
method. This is intercepted by the proxy and the remote invocation call is sent
on the network using the Remote Method Invocation API to the server. On the
server side, the counter part (called the server bean) receives the Method
Invocation Call sent by the Proxy bean on the client side. It then passes the
method call to the real object that resides on the server side. The real object
executes the request. If needed, information such as return value can be passed
back using the same technique to the requesting application back on the client
side. This is quite simple and effective. It allows the application developers to
distribute objects on the network without changing the application.

When compared to the Remote Method Invocation technique, the main difference
is that the application is not aware of the fact that the object it is communicating
with is now a remote object instead of being a local object. The proxy concept is
really powerful in a distributed client/server environment.

214 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

8.7 VisualAge for Java - AS/400 Feature

Figure 45. VA for Java - AS/400 Feature

VisualAge for Java is available today. An AS/400 feature will be added to the
next release of VisualAge for Java. It will include AS/400 specific functions to
help AS/400 programmers develop both client and server Java programs that
target the AS/400 system. Functions available in the AS/400 feature are:

CoOperative Debugger enabled for AS/400 Java programs (same debugger
in VisualAge C + + / 4 0 0 and CODE/400)

AS/400 Toolbox support for AS/400 Java applications/applets

Integration with AS/400 Java compiler ("export SmartGuide")

AS/400-programmer-unique documentation and samples

AS/400 legacy access bean-builder SmartGuides

Display file (DDS) to Java AWT conversion

Performance analysis tool for server Java

One of the key components of the AS/400 Feature is a debugger that allows
AS/400 Java applications to run under the control of a graphical user interface
client-based debugger. This will allow application developers to set breakpoints,
view and modify program variables, and change Java code interactively.

The AS/400 Toolbox for Java classes that are available today for client-based
programs will be available for server based programs. They will be included
with the VisualAge for Java - AS/400 Feature and fully integrated with VisualAge
for Java's Integrated Development Environment.

The AS/400 system will provide a special Java compiler to allow Java programs
to be compiled into AS/400 *PGM objects. This is to allow Java programs to
perform more efficiently on the AS/400 platform. It allows the interpretive nature
of the Java Virtual Machine to be bypassed. VisualAge for Java - AS/400

Chapter 8. Java on AS/400 System 215

This soft copy for use by IBM employees only.

Feature will provide integration between the VisualAge for Java development
environment and the AS/400 Java compiler.

For more information see:

www.software.ibm.com/ad/as400/vajava

8.8 Java on the AS/400 Conclusions
Java is a good fit with AS/400 architecture:

− JVM interpreted layer similar to MI:

- Abstraction layer between hardware and applications
- Single level store good for persistent objects

− Brings new application development toolset:

Any Java tool can produce AS/400 applications.

− Helps solve portability problems.

− Compiled Java will perform and scale.

− Provides integration with RPG/COBOL programs.

Java is a good fit for the AS/400 architecture. The concept of a Java Virtual
Machine is similar to the AS/400 Machine Interface. Both offer a level of
abstraction to shield application developers from the real operating system. The
AS/400 system is designed using an object-based architecture. Its use of a
single level store concept will be good for maintaining persistent objects.

Java on the AS/400 system will make new and more modern application
development tools available to application developers. Java is an
object-oriented language and when used properly, provides all of the inherent
benefits of object-oriented application development. One of the main benefits of
Java is its portability. Application developers can embrace one programming
language for all of the platforms they need to support.

One of the biggest concerns of Java application developers is performance.
Java is an interpreted language and this implies slow performance. The AS/400
system, by providing compiled Java support, can overcome the interpreted
nature of Java.

Java on the AS/400 system will provide full integration with the AS/400 Toolbox
for Java classes. This will give application developers access to the full range of
AS/400 resources including already existing programs.

216 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Appendix A. Example Programs

The Java client programs and the AS/400 programs and libraries used in this
redbook are available to be downloaded through the Internet. These examples
were developed using VisualAge for Java Enterprise edition. OS/400 V3R2, V3R7
or later is required. The following VisualAge for Java projects are available:

AppletWorkshop

Internet "Shopping" applets, see Chapter 6, “Developing AS/400 Java
Applets” on page 155.

AppletWorkshopListbox

Multi-column listbox for "Shopping" applet.

DaxPartsProject

Dax example "Parts Ordering" application, see Chapter 5, “Enterprise
Access Builder For Data (DAX)” on page 135.

Taligent

Multi-column listbox for Toolbox examples.

TeamLabs

Toolbox examples for JDBC Stored Procedures, DDM Record Level access,
Data Queue, Distributed Program Call, Integrated File System, and Print, see
Chapter 3, “AS/400 Toolbox for Java” on page 61.

JavaBean Fancy Label example, see Chapter 7, “JavaBeans” on page 189.

Workshop

Toolbox examples for JDBC, see Chapter 3, “AS/400 Toolbox for Java” on
page 61.

Important Information

These example programs have not been subjected to any formal testing.
They are provided "AS-IS"; they should be used for reference only. Please
refer to the Special Notices section at the back of this document for more
information.

A.1 Downloading the Files from the Internet Web Site
To use these files, you must download them to your personal computer from the
Internet Web site. A file named README.TXT is included. It contains
instructions for restoring the AS/400 libraries, the VisualAge for Java examples
and runtime notes.

The URL to access is: www.redbooks.ibm.com

Click on Downloads and then select directory SG242152. In the SG242152
directory, click on readme.txt.

 Copyright IBM Corp. 1997 217

This soft copy for use by IBM employees only.

218 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Appendix B. AS/400 Source Listings

This appendix contains source listings for the following AS/400 programs used in
the example programs.

PARTS/PF

SPROC2/SQLRPGLE

DPCXRPG/RPGLE

DQXRPG/RPGLE

B.1 PARTS/PF
A UNIQUE
A R PARTR
A PARTNO 5S 0 COLHDG('Part Number')
A PARTDS 25 COLHDG('Part Description')
A PARTQY 5 0 COLHDG('Part Qty-on-Hand')
A PARTPR 6 2 COLHDG('Part Price')
A PARTDT L DATFMT(*ISO)
A COLHDG('Part Shipment Date')
A K PARTNO

B.2 SPROC2/SQLRPGLE
D*
D* Defines PART ID As a Integer (Binary 4.0)
D*
D #PRTDS DS
D #PART 1 4B 0
D #OPTDS DS
D #OPT 1 4B 0
C *ENTRY PLIST
C PARM #OPTDS
C PARM #PRTDS
C* Copy PART NUMBER to RPG Native Variable With Same Attributes Of
C* Field In PARTS Master File (5,0) For Performance Issues
C Z-ADD #PART PART 5 0
C #OPT CASEQ 1 ONEREC
C #OPT CASEQ 2 ALLREC
C CAS BADOPT
C ENDCS
C*
C ONEREC BEGSR
C/Exec Sql Declare C1 Cursor For
C+ Select
C+ PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT
C+
C+ From PARTS -- From PART Master File

 Copyright IBM Corp. 1997 219

This soft copy for use by IBM employees only.

C+
C+ Where PARTNO = :PART
C+
C+
C+ For Fetch Only -- Read Only Cursor
C/End-Exec
C*
C/Exec Sql
C+ Open C1
C/End-Exec
C*
C/Exec Sql
C+ Set Result Sets Cursor C1
C/End-Exec
C*
C RETURN
C ENDSR
C*
C ALLREC BEGSR
C/Exec Sql Declare C2 Cursor For
C+ Select
C+ PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT
C+
C+ From PARTS -- From PART Master File
C+
C+
C+ Order By PARTNO -- Sort By PARTNO
C+
C+ For Fetch Only -- Read Only Cursor
C/End-Exec
C*
C/Exec Sql
C+ Open C2
C/End-Exec
C*
C/Exec Sql
C+ Set Result Sets Cursor C2
C/End-Exec
C RETURN
C ENDSR
C*--
C* SUBROUTINE BADOPT
C*
C* AN UNRECOGNIZED OPTION PARAMETER WAS SET - RETURN 'U' FOR
C* UNKNOWN.
C*
C*--
C BADOPT BEGSR
C MOVE 3 #OPT
C RETURN
C ENDSR
C*

220 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

B.3 DPCXRPG/RPGLE
H* DPCXRPG
H*
H* This program is called from the client via the Distributed
H* Program Call API or as a stored procedure via ODBC. It
H* returns data to the client from the PARTS database file.
H*--
H
FPARTS IF E K DISK
C*---
C* MAIN PROGRAM
C*
C* Take action depending on the 'option' parameter:
C* Option Action
C* S Retrieve a single record for supplied key
C* A Position to start of file
C* F Fetch the next record based on cursor posn.
C* E End the program
C*--
C *ENTRY PLIST
C PARM OPTION 1
C PARM PARTNO
C PARM PARTDS
C PARM PARTQY
C PARM PARTPR
C PARM PARTDT
C OPTION CASEQ 'S' ONEREC
C OPTION CASEQ 'A' ALLREC
C OPTION CASEQ 'F' NXTREC
C OPTION CASEQ 'E' ENDPRG
C CAS BADOPT
C ENDCS
C*--
C* SUBROUTINE - ONEREC
C* This subroutine attempts to find the requested part in the
C* PARTS file. If the record is found, set the OPTION parameter
C* to 'Y', otherwise to 'X' to indicate record not found, then
C* return.
C*--
C ONEREC BEGSR
C* Return only one record
C PARTNO CHAIN PARTR 40
C *IN40 IFEQ '1'
C MOVE 'X' OPTION
C ELSE
C MOVE 'Y' OPTION
C ENDIF
C RETURN
C ENDSR
C*--
C* SUBROUTINE - ALLREC
C* This subroutine re-positions the cursor to the start of the
C* PARTS file anticipating subsequent calls to fetch the records
C* sequentially. If the SETLL operation fails, set the option
C* parameter to 'X', otherwise 'Y'.
C*--
C ALLREC BEGSR
C *LOVAL SETLL PARTS 50

Appendix B. AS/400 Source Listings 221

This soft copy for use by IBM employees only.

C *IN50 IFEQ '1'
C MOVE 'X' OPTION
C ELSE
C MOVE 'Y' OPTION
C ENDIF
C RETURN
C ENDSR
C*--
C* SUBROUTINE - NXTREC
C* This subroutine retrieves the next sequential record in the
C* PARTS file. If the record is found, set the option parameter
C* to 'Y', otherwise 'X'.
C*--
C NXTREC BEGSR
C READ PARTS 60
C *IN60 IFEQ '0'
C MOVE 'Y' OPTION
C ELSE
C MOVE 'X' OPTION
C ENDIF
C RETURN
C ENDSR
C*--
C* SUBROUTINE ENDPRG
C*
C* This subroutine terminates the program.
C*
C*--
C ENDPRG BEGSR
C MOVE 'Y' OPTION
C SETON LR
C RETURN
C ENDSR
C*--
C* SUBROUTINE BADOPT
C*
C* An unrecognised option parameter was set - return 'U' for
C* unknown.
C*
C*--
C BADOPT BEGSR
C MOVE 'U' OPTION
C RETURN
C ENDSR

B.4 DQXRPG/RPGLE
H* DQXRPG
H*
H* This is a never-ending-program that runs in the background
H* as a batch job. It checks the data queue DQINPT for
H* any queue entries received. Once an entry arrives in the
H* data queue, the program retrieves and processes it.
H*
H* This program should be submitted with the SBMJOB command
H* and terminated with ENDJOB OR WRKACTJOB commands, or by
H* placing an entry starting with 'E' on the DQINPT data queue.
H*--

222 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

H
FPARTS IF E K DISK
D*---
D* DATA STRUCTURES
D*
D* DATAI - input data record 6 bytes
D* DATAO - output data record 48 bytes
D*---
D DATAI DS
D OPTION 1 1
D INPNO 2 6 0
D DATAO DS
D RESULT 1 1
D PARTNO 2 6 0
D PARTDS 7 31
D PARTQY 32 34P 0
D PARTPR 35 38P 2
D PARTDT 39 48D
D*---
D* CONSTANTS
D*
D* DQINPT - data queue used for receiving input records
D* DQOUPT - data queue used for sending records
D* APILIB - library name
D*--
D DQINPT C CONST('DQINPT ')
D DQOUPT C CONST('DQOUPT ')
D LIBL C CONST('APILIB ')
C*---
C* MAIN PROGRAM
C*
C* Loop on read to data queue. Action depends on the 'option'
C* flag:
C* Option Action
C* S Retrieve a single record for supplied key
C* A Retrieve all records in file
C* E End the program
C*--
C EXSR RCVDQ
C OPTION DOWNE 'E'
C EXSR READR
C EXSR RCVDQ
C ENDDO
C SETON LR
C*--
C* SUBROUTINE RCVDQ
C*
C* This subroutine performs the QRCVDTAQ function. Notice that
C* the wait parameter is set to a negative value to force it
C* to wait until a queue entry is available.
C*
C RCVDQ BEGSR
C MOVE DQINPT QUEUEI 10
C MOVE LIBL LIBLD 10
C Z-ADD 6 FLDDL 5 0
C Z-ADD -9 WAIT 5 0
C CALL 'QRCVDTAQ'
C PARM QUEUEI
C PARM LIBLD

Appendix B. AS/400 Source Listings 223

This soft copy for use by IBM employees only.

C PARM FLDDL
C PARM DATAI
C PARM WAIT
C ENDSR
C*--
C* SUBROUTINE - READR
C* This subroutine retrieves the part number from the data queue
C* DQINPT, searches the data base file PARTS using the part number
C* just received. If the record is found, send the record to the
C* data queue DQOUPT. If option 'A' is received, send all records
C* to the data queue DQOUPT.
C*
C* The 'result' flag is set as follows
C* Result Meaning
C* Y Record found and being returned
C* X Record not found or eof
C*--
C READR BEGSR
C OPTION IFEQ 'A'
C* Return all records in the file
C *LOVAL SETLL PARTS
C READ PARTS 60
C *IN60 DOWEQ '0'
C MOVE 'Y' RESULT
C EXSR SNDDQ
C READ PARTS 60
C ENDDO
C MOVE 'X' RESULT
C EXSR SNDDQ
C ELSE
C* Return only one record
C INPNO CHAIN PARTR 98
C *IN98 IFEQ '1'
C MOVE 'X' RESULT
C ELSE
C MOVE 'Y' RESULT
C ENDIF
C EXSR SNDDQ
C ENDIF
C ENDSR
C*--
C* SUBROUTINE SNDDQ
C*
C* This subroutine performs the QSNDDTAQ function.
C*
C SNDDQ BEGSR
C MOVE DQOUPT QUEUEO 10
C MOVE LIBL LIBLD
C Z-ADD 48 FLDDL
C CALL 'QSNDDTAQ'
C PARM QUEUEO
C PARM LIBLD
C PARM FLDDL
C PARM DATAO
C ENDSR

224 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Appendix C. AS/400 Toolbox Example Java Code

This appendix has the following code:

JDBCExample.java

JDBCExampleDisplayAll.java

ToolboxGUI.java

DisplayAllParts.java

PartsContainer.java

StoredProcedureExample.java

DPCExample.java

DataQueueExample.java

RLExample.java

C.1 JDBCExample.java
package WorkShop;

public class JDBCExample extends java.awt.Frame
implements java.awt.event.ActionListener {

private java.sql.Connection dbConnect;
private java.awt.Button ivjButton1 = null;
private java.awt.Button ivjButton11 = null;
private java.awt.Button ivjButton12 = null;
private java.awt.Button ivjButton2 = null;
private java.awt.Button ivjButton3 = null;
private java.util.Date ivjDateFactory = null;
private WorkShop.JDBCExampleDisplayAll ivjDisplayAll = null;
private COM.ibm.ivj.javabeans.IMessageBox ivjIMessageBox1 = null;
private java.awt.Label ivjLabel1 = null;
private java.awt.Label ivjLabel11 = null;
private java.awt.Label ivjLabel12 = null;
private java.awt.Label ivjLabel13 = null;
private java.awt.Label ivjLabel14 = null;
private java.awt.Label ivjLabel141 = null;
private java.awt.Label ivjLabel1411 = null;
private java.awt.Label ivjLabel15 = null;
private java.awt.Label ivjLabel151 = null;
private java.awt.Label ivjLabel152 = null;
private java.awt.TextField ivjTextField1 = null;
private java.awt.TextField ivjTextField11 = null;
private java.awt.TextField ivjTextField12 = null;
private java.awt.TextField ivjTextField13 = null;
private java.awt.TextField ivjTextField14 = null;
private java.awt.TextField ivjTextField141 = null;
private java.awt.TextField ivjTextField142 = null;
private java.awt.TextField ivjTextField1421 = null;
private java.awt.TextField ivjTextField15 = null;
private java.awt.TextField ivjTextField151 = null;
private java.awt.TextField ivjTextField152 = null;
private java.sql.PreparedStatement psAllRecord;
private java.sql.PreparedStatement psSingleRecord;

 Copyright IBM Corp. 1997 225

This soft copy for use by IBM employees only.

public String connectToDB(String systemName, String userid, String password) {
try { java.sql.DriverManager.registerDriver

(new COM.ibm.as400.access.AS400JDBCDriver());

dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName +
"/apilib;naming=sql;errors=full;date format=iso",userid,password);

psSingleRecord = dbConnect.prepareStatement("SELECT * FROM PARTS WHERE PARTNO = ?");
psAllRecord = dbConnect.prepareStatement("SELECT * FROM PARTS");

} catch (Exception e) {showException(e); return "Connect Failed."; };

return "Connected to AS/400.";
}
/**

* This method was created by a SmartGuide.
*/

public void dispose () {
try {

psSingleRecord.close();
dbConnect.close();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};
if (ivjDisplayAll != null) ivjDisplayAll.dispose();
super.dispose();

return;
}
/**

* This method was created by a SmartGuide.
* @param aDate java.util.Date
*/

public String formatDate (java.util.Date aDate) {
java.text.DateFormat formatter = new java.text.SimpleDateFormat("hh:mm:ss a");
return formatter.format(aDate);

}
public String getRecord (String partNo, java.awt.TextField partDesc,

java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) {

java.sql.ResultSet rs = null;

try {
psSingleRecord.setInt(1, Integer.parseInt(partNo));

rs = psSingleRecord.executeQuery();

if (rs.next()) {
partDesc.setText(rs.getString("PARTDS"));
partQty.setText(Integer.toString(rs.getInt("PARTQY")));
partPrice.setText("$" + rs.getBigDecimal("PARTPR", 2).toString());
partDate.setText(rs.getDate("PARTDT").toString());

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
} catch (Exception e) {e.printStackTrace();showException(e); return null; }

return "Record found.";
}
public String updateRecord (String partno, String partdesc, String partqty,

226 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

String partprice, String partdate) {

// strip the leading dollar sign if it exists...
String tempPrice = partprice.indexOf('$') == 0 ? partprice.substring(1) : partprice;

try {
java.sql.Statement s = dbConnect.createStatement();
String updatestring = "UPDATE PARTS SET PARTDS = '" + partdesc

+ "',PARTQY = " + partqty +
", PARTPR = " + tempPrice + ", PARTDT = '" + partdate + "'
WHERE PARTNO= " + partno;

s.executeUpdate(updatestring);
} catch (Exception e) {showException(e); return "Update failed";}

return "Record Updated.";
}
}

C.2 JDBCExampleDisplayAll.java
package WorkShop;

public class JDBCExampleDisplayAll extends java.awt.Frame
implements java.awt.event.ActionListener {

private java.sql.Connection dbConnect;
private java.awt.Button ivjButton1 = null;
private COM.ibm.ivj.javabeans.IMessageBox ivjIMessageBox1 = null;
private com.taligent.widget.MultiColumnListbox ivjMultiColumnListbox1 = null;
private java.sql.PreparedStatement psAllRecord;

/**
* Constructor that utilizes an existing database connection and precompiled statement.
* @param dbConnect java.sql.Connection
* @param psAll java.sql.PreparedStatement
*/

public JDBCExampleDisplayAll (java.sql.Connection dbc,
java.sql.Prepared Statement psAll) {

this();
dbConnect = dbc;
psAllRecord = psAll;
this.setUpListBox();
this.populateListBox();
this.show(true);

}
public static void main(java.lang.String[] args) {

try {
WorkShop.JDBCExampleDisplayAll aJDBCExampleDisplayAll =

new WorkShop.JDBCExampleDisplayAll();
aJDBCExampleDisplayAll.setUpListBox();
aJDBCExampleDisplayAll.show(true);

} catch (java.lang.Throwable exception) {
System.err.println("Exception occurred in main() of JDBCExampleDisplayAll");
System.err.println(exception);

}
}
/**

* This method was created by a SmartGuide.
*/

public void populateListBox () {
java.sql.ResultSet rs = null;
String[] array = new String[5];

try {
rs = psAllRecord.executeQuery();

Appendix C. AS/400 Toolbox Example Java Code 227

This soft copy for use by IBM employees only.

while (rs.next()) {

array[0] = rs.getString("PARTNO");
array[1] = rs.getString("PARTDS");
array[2] = Integer.toString(rs.getInt("PARTQY"));
array[3] = "$" + rs.getBigDecimal("PARTPR", 2).toString();
array[4] = rs.getDate("PARTDT").toString();

ivjMultiColumnListbox1.addRow(array);
}

} catch (Exception e) {showException(e);}

return;
}
/**

* This method was created by a SmartGuide.
*/

public void setUpListBox () {

ivjMultiColumnListbox1.showBorder().showHorizontalSeparator().
.showVerticalSeparator();

ivjMultiColumnListbox1.addColumn("Part#").setWidth(50);
ivjMultiColumnListbox1.addColumn("Description").setWidth(200);
ivjMultiColumnListbox1.addColumn("Qty").setWidth(50).setAlignment(2);
ivjMultiColumnListbox1.addColumn("Price").setWidth(50).setAlignment(2);
ivjMultiColumnListbox1.addColumn("Received").setWidth(75).setAlignment(2);

return;
}
/**

* This method was created by a SmartGuide.
* @param e java.lang.Exception
*/

public void showException (Exception e) {
try {

getIMessageBox1().showException(e);
} catch (java.lang.Throwable exception) {}

return;
}
}

C.3 ToolboxGUI.java
package WorkShop;

public class ToolboxGUI extends java.awt.Panel implements
java.awt.event.ActionListener {

private WorkShop.DisplayAllParts aDisplayAllParts = null;
protected java.util.Vector aToolboxGUIListener = null;
private java.sql.Connection dbConnect;
private java.awt.Button ivjButton1 = null;
private java.awt.Button ivjButton11 = null;
private java.awt.Button ivjButton12 = null;
private java.awt.Button ivjButton2 = null;
private java.awt.Button ivjButton3 = null;
private java.util.Date ivjDateFactory = null;
private COM.ibm.ivj.javabeans.IMessageBox ivjIMessageBox1 = null;
private java.awt.Label ivjLabel1 = null;
private java.awt.Label ivjLabel11 = null;
private java.awt.Label ivjLabel12 = null;
private java.awt.Label ivjLabel13 = null;
private java.awt.Label ivjLabel14 = null;
private java.awt.Label ivjLabel141 = null;
private java.awt.Label ivjLabel1411 = null;

228 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

private java.awt.Label ivjLabel15 = null;
private java.awt.Label ivjLabel151 = null;
private java.awt.Label ivjLabel152 = null;
private java.awt.TextField ivjTextField1 = null;
private java.awt.TextField ivjTextField11 = null;
private java.awt.TextField ivjTextField12 = null;
private java.awt.TextField ivjTextField13 = null;
private java.awt.TextField ivjTextField14 = null;
private java.awt.TextField ivjTextField141 = null;
private java.awt.TextField ivjTextField142 = null;
private java.awt.TextField ivjTextField1421 = null;
private java.awt.TextField ivjTextField15 = null;
private java.awt.TextField ivjTextField151 = null;
private java.awt.TextField ivjTextField152 = null;

/**
* Connect to the AS/400 using JDBC
* @param systemName java.lang.String
*/

public String connectToDB(String systemName, String userid, String password) {
try {

((PartsContainer)getParent()).connectToDB(systemName, userid, password);

} catch (Exception e) {showException(e); return "Connect Failed."; };

return "Connected to AS/400.";
}
/**

* This method was created by a SmartGuide.
*/

public void displayAll () {
try {

aDisplayAllParts = new WorkShop.DisplayAllParts((PartsContainer)(this.getParent()));
} catch (java.lang.Exception e) {showException(e);}
return;

}
/**

* This method was created by a SmartGuide.
*/

public String getPart (String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) {
String retString = null;

try { retString =
((PartsContainer)getParent()).getRecord(partNo, partDesc, partQty,partPrice, partDate);

} catch (Exception e) {showException(e);}

return retString;
}
/**

* This method was created by a SmartGuide.
* @return java.lang.String
* @param aParameter int
*/

public String updatePart (String partno, String partdesc,
String partqty, String partprice, String partdate) {

String retString = null;

try {retString=((PartsContainer)getParent()).updateRecord(partno,
partdesc, partqty, partprice,partdate);

} catch (Exception e) {showException(e);}

Appendix C. AS/400 Toolbox Example Java Code 229

This soft copy for use by IBM employees only.

return retString;
}
}

C.4 DisplayAllParts.java
package WorkShop;

public class DisplayAllParts extends java.awt.Frame implements
java.awt.event.ActionListener {

private java.awt.Button ivjButton1 = null;
private COM.ibm.ivj.javabeans.IMessageBox ivjIMessageBox1 = null;
private com.taligent.widget.MultiColumnListbox ivjMultiColumnListbox1 = null;

/**
* Constructor
* @return java.awt.Frame
*/

public DisplayAllParts() {
super();
setLayout(null);
setBackground(new java.awt.Color(192, 192, 192));
reshape(20, 20, 466, 427);
setTitle("All Parts");
this.add("ivjButton1", getButton1());
this.add("ivjMultiColumnListbox1", getMultiColumnListbox1());
initConnections();

}
/**

* Constructor that utilizes an existing database connection and precompiled statement.
* @param dbConnect java.sql.Connection
* @param psAll java.sql.PreparedStatement
*/

public DisplayAllParts (PartsContainer aContainer) {
this();
this.setUpListBox();
try {

aContainer.populateListBox(ivjMultiColumnListbox1);
this.show(true);

} catch (Exception e) {showException(e);}

}
/**

* Method to handle events for the ActionListener interface.
* @param e java.awt.event.ActionEvent
*/

public void actionPerformed(java.awt.event.ActionEvent e) {
if ((e.getSource() == getButton1())) {

conn0(e);
}

}
/**

* conn0: (Button1.action.actionPerformed -- DisplayAllParts.dispose())
* @param e java.awt.event.ActionEvent
*/

private void conn0(java.awt.event.ActionEvent e) {
try {

this.dispose();
} catch (java.lang.Throwable exception) {
}

}
/**

* Return the Button1 property value.
* @return java.awt.Button

230 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

*/
private java.awt.Button getButton1() {

if (ivjButton1 == null) {
try {

ivjButton1 = new java.awt.Button("Close");
ivjButton1.setName("PBclose");
ivjButton1.reshape(166, 380, 125, 30);

} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Button1");

}
};
return ivjButton1;

}
/**

* Return the IMessageBox1 property value.
* @return COM.ibm.ivj.javabeans.IMessageBox
*/

private COM.ibm.ivj.javabeans.IMessageBox getIMessageBox1() {
if (ivjIMessageBox1 == null) {

try {
ivjIMessageBox1 = new COM.ibm.ivj.javabeans.IMessageBox();

} catch (java.lang.Throwable exception) {
System.err.println("Exception creating IMessageBox1");

}
};
return ivjIMessageBox1;

}
/**

* Return the MultiColumnListbox1 property value.
* @return com.taligent.widget.MultiColumnListbox
*/

private com.taligent.widget.MultiColumnListbox getMultiColumnListbox1() {
if (ivjMultiColumnListbox1 == null) {

try {
ivjMultiColumnListbox1 = new com.taligent.widget.MultiColumnListbox();
ivjMultiColumnListbox1.setName("LBallParts");
ivjMultiColumnListbox1.reshape(18, 46, 426, 320);
ivjMultiColumnListbox1.setBackground(new java.awt.Color(255, 255, 255));

} catch (java.lang.Throwable exception) {
System.err.println("Exception creating MultiColumnListbox1");

}
};
return ivjMultiColumnListbox1;

}
/**

* Method to handle old AWT events
* @return boolean
* @param evt java.awt.Event
*/

public boolean handleEvent(java.awt.Event evt) {
/* Note: Changes to this method will not be overwritten when code is re-generated */
if (evt.id == java.awt.Event.WINDOW_DESTROY) {

dispose();
if (getParent() == null) {

java.lang.System.exit(0);
};
return true;

}
return super.handleEvent(evt);

}
/**

* Initializes connections
*/

private void initConnections() {
/* Initialize the connections for the part */

Appendix C. AS/400 Toolbox Example Java Code 231

This soft copy for use by IBM employees only.

getButton1().addActionListener(this);
}
/**

* main entrypoint - starts the part when it is run as an application
* @param args java.lang.String[]
*/

public static void main(java.lang.String[] args) {
/* Note: Changes to this method will not be overwritten when code is re-generated */
try {

WorkShop.DisplayAllParts aDisplayAllParts = new WorkShop.DisplayAllParts();
aDisplayAllParts.show(true);

} catch (java.lang.Throwable exception) {
System.err.println("Exception occurred in main() of DisplayAllParts");

}
}
/**

* This method was created by a SmartGuide.
*/

public void setUpListBox () {
ivjMultiColumnListbox1.showBorder().showHorizontalSeparator().showVerticalSeparator();
ivjMultiColumnListbox1.addColumn("Part#").setWidth(50);
ivjMultiColumnListbox1.addColumn("Description").setWidth(200);
ivjMultiColumnListbox1.addColumn("Qty").setWidth(50).setAlignment(2);
ivjMultiColumnListbox1.addColumn("Price").setWidth(50).setAlignment(2);
ivjMultiColumnListbox1.addColumn("Received").setWidth(75).setAlignment(2);

return;
}
/**

* This method was created by a SmartGuide.
* @param e java.lang.Exception
*/

public void showException (Exception e) {
try {

getIMessageBox1().showException(e);
} catch (java.lang.Throwable exception) {}

return;
}
}

C.5 PartsContainer.java
package WorkShop;

/**
* This Interface was generated by a SmartGuide.
*
*/

public interface PartsContainer {

/**
* This method was created by a SmartGuide.
* @param aParameter int
*/

public void connectToDB(String systemName, String userid, String password)
throws Exception;

/**
* This method was created by a SmartGuide.
* @param aParameter int
*/

public String getRecord (String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception;

/**

232 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

* This method was created by a SmartGuide.
* @param aListBox COM.taligent.widget.MultiColumnListbox
*/

public void populateListBox (com.taligent.widget.MultiColumnListbox aListBox)
throws java.lang.Exception;

/**
* This method was created by a SmartGuide.
* @param aParameter int
*/

public String updateRecord (String partno, String partdesc, String partqty,
(String partno, String paString partprice, String partdate) throws Exception;

}

C.6 StoredProcedureExample.java
package WorkShop;

public class StoredProcedureExample extends java.awt.Frame implements
WorkShop.PartsContainer {

private java.sql.CallableStatement callableStmt;
private java.sql.Connection dbConnect;
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;

/**
* Constructor
* @return java.awt.Frame
*/

public StoredProcedureExample() {
super();
setLayout(null);
setBackground(new java.awt.Color(192, 192, 192));
reshape(20, 20, 588, 437);
setTitle("Stored Procdure Example");
this.add("ivjToolboxGUI1", getToolboxGUI1());

}
/**

* Connect to the AS/400 using JDBC
* @param systemName java.lang.String
*/

public void connectToDB(String systemName, String userid, String password)
throws Exception {

java.sql.DriverManager.registerDriver
(new COM.ibm.as400.access.AS400JDBCDriver());

dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName +
"/apilib;naming=sql;errors=full;date format=iso",userid,password);

try {dbConnect.createStatement().execute("drop procedure apilib.partqry2");
} catch (Exception e) {};
dbConnect.createStatement().execute("CREATE PROCEDURE APILIB.PARTQRY2

(INOUT P1 INTEGER, INOUT P2 INTEGER)
EXTERNAL NAME APILIB.SPROC2 LANGUAGE RPG GENERAL");

callableStmt = dbConnect.prepareCall("CALL APILIB.PARTQRY2(?, ?)");

return;

}
/**

* This method was created by a SmartGuide.
*/

public void dispose () {
try {

callableStmt.close();
dbConnect.close();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};

Appendix C. AS/400 Toolbox Example Java Code 233

This soft copy for use by IBM employees only.

super.dispose();
return;
}
/**

* Retrieve a single record, using partNo as the key.
* @param partNo java.lang.String
* @param partDesc java.awt.TextField
* @param partQty java.awt.TextField
* @param partPrice java.awt.TextField
* @param partDate java.awt.TextField
*/

public String getRecord (String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception {

java.sql.ResultSet rs = null;
callableStmt.setInt(1, 1);
callableStmt.setInt(2, Integer.parseInt(partNo));

rs = callableStmt.executeQuery();
if (rs.next()) {

partDesc.setText(rs.getString(2));
partQty.setText(Integer.toString(rs.getInt(3)));
partPrice.setText("$" + rs.getBigDecimal(4, 2).toString());
partDate.setText(rs.getDate(5).toString());

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
return "Record found.";}

/**
* Return the ToolboxGUI1 property value.
* @return WorkShop.ToolboxGUI
*/

private WorkShop.ToolboxGUI getToolboxGUI1() {
if (ivjToolboxGUI1 == null) {

try {
ivjToolboxGUI1 = new WorkShop.ToolboxGUI();
ivjToolboxGUI1.reshape(4, 1, 584, 435);

} catch (java.lang.Throwable exception) {
System.err.println("Exception creating ToolboxGUI1");

}
};
return ivjToolboxGUI1;

}
/**

* Method to handle old AWT events
* @return boolean
* @param evt java.awt.Event
*/

public boolean handleEvent(java.awt.Event evt) {
if (evt.id == java.awt.Event.WINDOW_DESTROY) {

dispose();
if (getParent() == null) {

java.lang.System.exit(0);
};
return true;

}

234 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

return super.handleEvent(evt);
}
/**

* main entrypoint - starts the part when it is run as an application
* @param args java.lang.String[]
*/

public static void main(java.lang.String[] args) {
try {

WorkShop.StoredProcedureExample aStoredProcedureExample =
new WorkShop.StoredProcedureExample();

aStoredProcedureExample.show(true);
} catch (java.lang.Throwable exception) {

System.err.println("Exception occurred in main() of StoredProcedureExample");
}

}
/**

* This method was created by a SmartGuide.
* @param aListBox com.taligent.widget.MultiColumnListbox
*/

public void populateListBox (com.taligent.widget.MultiColumnListbox aListBox)
throws java.lang.Exception {

java.sql.ResultSet rs = null;
String[] array = new String[5];

callableStmt.setInt(1, 2);
callableStmt.setInt(2, 0);

rs = callableStmt.executeQuery();
while (rs.next()) {

array[0] = rs.getString(1);
array[1] = rs.getString(2);
array[2] = Integer.toString(rs.getInt(3));
array[3] = "$" + rs.getBigDecimal(4, 2).toString();
array[4] = rs.getDate(5).toString();

aListBox.addRow(array);
}

return;
}
/**

* Update the part record with values pass in parameters. partno is the key field.
* @return java.lang.String
* @param partno java.lang.String
* @param partdesc java.lang.String
* @param partqty java.lang.String
* @param partprice java.lang.String
* @param partdate java.lang.String
*/

public String updateRecord (String partno, String partdesc, String partqty,
String partprice, String partdate) throws Exception {

return "Update is not implemented via stored procedure. Record not updated.";
}
}

C.7 DPCExample.java
package WorkShop;

import COM.ibm.as400.access.*;
public class DPCExample extends java.awt.Frame implements PartsContainer {
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;
private AS400 as400;

Appendix C. AS/400 Toolbox Example Java Code 235

This soft copy for use by IBM employees only.

private ProgramCall pgm;
private String progName = "/QSYS.LIB/APILIB.LIB/DPCXRPG.PGM";

/**
* Constructor
* @return java.awt.Frame
*/

public DPCExample() {
super();
setLayout(null);
setBackground(new java.awt.Color(192, 192, 192));
reshape(20, 20, 578, 433);
setTitle("Distributed Program Call Example");
this.add("ivjToolboxGUI1", getToolboxGUI1());

}
/**

* Connect to the AS/400 using AS400 object
* @param systemName java.lang.String
*/

public void connectToDB(String systemName, String userid, String password)
throws Exception {

as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);
as400.connectService(AS400.COMMAND);
pgm = new ProgramCall(as400);
return;

}
/**

* This method was created by a SmartGuide.
*/

public void dispose () {
try {

as400.disconnectAllServices();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};
super.dispose();

return;
}
/**

* Retrieve a single record, using partNo as the key.
* @param partNo java.lang.String
* @param partDesc java.awt.TextField
* @param partQty java.awt.TextField
* @param partPrice java.awt.TextField
* @param partDate java.awt.TextField
*/

public String getRecord (String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception {

// Setup the parameters
ProgramParameter[] parmlist = new ProgramParameter[6];

// First parameter is to input action
AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("S") , 1);

// Second parameter is to input PartNo
AS400PackedDecimal asPartNo = new AS400PackedDecimal(5,0);
parmlist[1] = new ProgramParameter(asPartNo.toBytes

(new java.math.BigDecimal(partNo)) ,3);
// Third parm is output description

parmlist[2] = new ProgramParameter(25);
// Fourth parm is quantity

parmlist[3] = new ProgramParameter(3);
// Fifth parm is price

parmlist[4] = new ProgramParameter(4);
// Sixth parm is date

236 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

parmlist[5] = new ProgramParameter(10);

// Set the program name and parameter list
pgm.setProgram(progName, parmlist);

// Run the program
if (pgm.run() != true) {

// Note that there was an error
System.out.println("program failed:" + progName);
// Show the messages
AS400Message[] messagelist = pgm.getMessageList();
for (int i=0; i messagelist.length; i++) {

// show each message
System.out.println(messagelist[i]);

}
return "Program call failed!";

}
else {

if (((String)(asFlag.toObject(parmlist[0].getOutputData(),0))).equals("Y")) {
partDesc.setText((String)(new AS400Text(25)).toObject(parmlist[2].

OutputData(),0));
partQty.setText(((java.math.BigDecimal)(new AS400PackedDecimal(5,0)).

toObject(parmlist[3].getOutputData(),0)).
toString());

partPrice.setText("$" + ((java.math.BigDecimal)(new AS400PackedDecimal(6,2)).
toObject(parmlist[4].
getOutputData(),0)).toString());

partDate.setText((String)(new AS400Text(10)).toObject(parmlist[5].
getOutputData(),0));

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
}

return "Record found.";
}
/**

* Return the ToolboxGUI1 property value.
* @return WorkShop.ToolboxGUI
*/

private WorkShop.ToolboxGUI getToolboxGUI1() {
if (ivjToolboxGUI1 == null) {

try {
ivjToolboxGUI1 = new WorkShop.ToolboxGUI();
ivjToolboxGUI1.reshape(2, 1, 571, 428);

} catch (java.lang.Throwable exception) {
System.err.println("Exception creating ToolboxGUI1");

}
};
return ivjToolboxGUI1;

}
/**

* Method to handle old AWT events
* @return boolean
* @param evt java.awt.Event
*/

public boolean handleEvent(java.awt.Event evt) {
/* Note: Changes to this method will not be overwritten when code is re-generated */
if (evt.id == java.awt.Event.WINDOW_DESTROY) {

dispose();

Appendix C. AS/400 Toolbox Example Java Code 237

This soft copy for use by IBM employees only.

if (getParent() == null) {
java.lang.System.exit(0);

};
return true;

}
return super.handleEvent(evt);

}
/**

* main entrypoint - starts the part when it is run as an application
* @param args java.lang.String[]
*/

public static void main(java.lang.String[] args) {
/* Note: Changes to this method will not be overwritten when code is re-generated */
try {

WorkShop.DPCExample aDPCExample = new WorkShop.DPCExample();
aDPCExample.show(true);

} catch (java.lang.Throwable exception) {
System.err.println("Exception occurred in main() of DPCExample");

}
}
/**

* This method was created by a SmartGuide.
* @param aListBox com.taligent.widget.MultiColumnListbox
*/

public void populateListBox (com.taligent.widget.MultiColumnListbox aListBox)
throws java.lang.Exception {

String[] array = new String[5];

// Setup the parameters
ProgramParameter[] parmlist = new ProgramParameter[6];

// First parameter is to input action
AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("A") , 1);

// Second parameter is to output PartNo
parmlist[1] = new ProgramParameter(3);

// Third parm is output description
parmlist[2] = new ProgramParameter(25);

// Fourth parm is quantity
parmlist[3] = new ProgramParameter(3);

// Fifth parm is price
parmlist[4] = new ProgramParameter(4);

// Sixth parm is date
parmlist[5] = new ProgramParameter(10);

// Set the program name and parameter list
pgm.setProgram(progName, parmlist);

String flag = null;

if (pgm.run() != true) {
// Note that there was an error
System.out.println("program failed:" + progName);
// Show the messages
AS400Message[] messagelist = pgm.getMessageList();
for (int i=0; i messagelist.length; i++) {

// show each message
System.out.println(messagelist[i]);

}
return;

}
else {

flag = (String)(asFlag.toObject(parmlist[0].getOutputData(),0));
if (flag.equals("Y")) {

parmlist[0] = new ProgramParameter(asFlag.toBytes("F") , 1);
pgm.setProgram(progName, parmlist);

238 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

do {

if (pgm.run() != true) {

// Note that there was an error
System.out.println("program failed:" + progName);
// Show the messages
AS400Message[] messagelist = pgm.getMessageList();
for (int i=0; i messagelist.length; i++) {
// show each message
System.out.println(messagelist[i]);
}

return;
}
else {

flag = (String)(asFlag.toObject(parmlist[0].getOutputData(),0));

if (flag.equals("Y")) {
array[0] =(((java.math.BigDecimal)(new AS400PackedDecimal(5,0)).toObject

(parmlist[1].
getOutputData(),0)).toString());

array[1] =(String)(new AS400Text(25)).toObject(parmlist[2].getOutputData(),0);
array[2] =((java.math.BigDecimal)(new AS400PackedDecimal(5,0)).toObject(parmlist[3].

getOutputData(),0)).toString();
array[3] = "$" + ((java.math.BigDecimal)(new AS400PackedDecimal(6,2)).toObject(parmlist[4]

getOutputData(),0)).toString();
array[4] =(String)(new AS400Text(10)).toObject(parmlist[5].getOutputData(),0);

aListBox.addRow(array);
}

}
} while (flag.equals("Y"));

}
}

return;
}
}

C.8 DataQueueExample.java
package WorkShop;
import COM.ibm.as400.access.*;
public class DataQueueExample extends java.awt.Frame implements WorkShop.PartsContainer {
private COM.ibm.as400.access.AS400 as400;
private COM.ibm.as400.access.DataQueue dqInput;
private COM.ibm.as400.access.DataQueue dqOutput;
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;
private COM.ibm.as400.access.RecordFormat rfInput;
private COM.ibm.as400.access.RecordFormat rfOutput;

/**
* Constructor
* @return java.awt.Frame
*/

public DataQueueExample() {
super();
setLayout(null);
setBackground(new java.awt.Color(192, 192, 192));
reshape(20, 20, 588, 452);
setTitle("DataQueue Example");
this.add("ivjToolboxGUI1", getToolboxGUI1());

}
/**

* Connect to the AS/400 using JDBC

Appendix C. AS/400 Toolbox Example Java Code 239

This soft copy for use by IBM employees only.

* @param systemName java.lang.String
*/

public void connectToDB(String systemName, String userid, String password)
throws Exception {

as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);
dqInput=new COM.ibm.as400.access.DataQueue(as400,"/QSYS.LIB/APILIB.LIB/DQINPT.DTAQ");
dqOutput=new COM.ibm.as400.access.DataQueue(as400,"/QSYS.LIB/APILIB.LIB/DQOUPT.DTAQ");

return;

}
/**

* This method was created by a SmartGuide.
*/

public void dispose () {
try {

as400.disconnectAllServices();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};
super.dispose();

return;
}
/**

* Retrieve a single record, using partNo as the key.
* @param partNo java.lang.String
* @param partDesc java.awt.TextField
* @param partQty java.awt.TextField
* @param partPrice java.awt.TextField
* @param partDate java.awt.TextField
*/

public String getRecord (String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception {

if (rfInput == null) initRecordFormat();
// set values of the input record ...

Record rInput = rfInput.getNewRecord();
rInput.setField("flag","S");
rInput.setField("partno",new java.math.BigDecimal(partNo));

dqInput.write(rInput.getContents());
DataQueueEntry dqe = dqOutput.read();

Record rOutput = rfOutput.getNewRecord(dqe.getByteData());

if (((String)rOutput.getField("flag")).equals("Y")) {
partDesc.setText((String)rOutput.getField("partds"));
partQty.setText(((java.math.BigDecimal)rOutput.getField("partqy")).toString());
partPrice.setText("$" + ((java.math.BigDecimal)rOutput.getField("partpr")).

toString());
partDate.setText((String)rOutput.getField("partdt"));

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
return "Record found.";

}
/**

* Return the ToolboxGUI1 property value.
* @return WorkShop.ToolboxGUI
*/

private WorkShop.ToolboxGUI getToolboxGUI1() {

240 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

if (ivjToolboxGUI1 == null) {
try {

ivjToolboxGUI1 = new WorkShop.ToolboxGUI();
ivjToolboxGUI1.reshape(2, 3, 585, 446);

} catch (java.lang.Throwable exception) {
System.err.println("Exception creating ToolboxGUI1");

}
};
return ivjToolboxGUI1;

}
/**

* Method to handle old AWT events
* @return boolean
* @param evt java.awt.Event
*/

public boolean handleEvent(java.awt.Event evt) {
/* Note: Changes to this method will not be overwritten when code is re-generated */
if (evt.id == java.awt.Event.WINDOW_DESTROY) {

dispose();
if (getParent() == null) {

java.lang.System.exit(0);
};
return true;

}
return super.handleEvent(evt);

}
/**

* This method was created by a SmartGuide.
*/

public void initRecordFormat () {
CharacterFieldDescription asFlag = new CharacterFieldDescription(

new AS400Text(1),"flag");
ZonedDecimalFieldDescription asPartNo = new ZonedDecimalFieldDescription(

new AS400ZonedDecimal(5,0),"partno");
CharacterFieldDescription asPartDS = new CharacterFieldDescription(

new AS400Text(25),"partds");
PackedDecimalFieldDescription asPartQy = new PackedDecimalFieldDescription(

new AS400PackedDecimal(5,0),"partqy");
PackedDecimalFieldDescription asPartPR = new PackedDecimalFieldDescription(

new AS400PackedDecimal(6,2),"partpr");
DateFieldDescription asPartDt = new DateFieldDescription(

new AS400Text(10),"partdt");

// set up the input record format....
rfInput = new RecordFormat();
rfInput.addFieldDescription(asFlag);
rfInput.addFieldDescription(asPartNo);

// set up the output record format....
rfOutput = new RecordFormat();
rfOutput.addFieldDescription(asFlag);
rfOutput.addFieldDescription(asPartNo);
rfOutput.addFieldDescription(asPartDS);
rfOutput.addFieldDescription(asPartQy);
rfOutput.addFieldDescription(asPartPR);
rfOutput.addFieldDescription(asPartDt);

return;
}
/**

* main entrypoint - starts the part when it is run as an application
* @param args java.lang.String[]
*/

public static void main(java.lang.String[] args) {
/* Note: Changes to this method will not be overwritten when code is re-generated */
try {

WorkShop.DataQueueExample aDataQueueExample = new WorkShop.DataQueueExample();

Appendix C. AS/400 Toolbox Example Java Code 241

This soft copy for use by IBM employees only.

aDataQueueExample.show(true);
} catch (java.lang.Throwable exception) {

System.err.println("Exception occurred in main() of DataQueueExample");
}

}
/**

* This method was created by a SmartGuide.
* @param aListBox com.taligent.widget.MultiColumnListbox
*/

public void populateListBox (com.taligent.widget.MultiColumnListbox aListBox)
throws java.lang.Exception {

String[] array = new String[5];

if (rfInput == null) initRecordFormat();

// set values of the input record ...
Record rInput = rfInput.getNewRecord();
rInput.setField("flag","A");

dqInput.write(rInput.getContents());
String flag = null;
do {

Record rOutput = rfOutput.getNewRecord(dqOutput.read().getByteData());
flag = (String)rOutput.getField("flag");

if (flag.equals("Y")) {
array[0] =((java.math.BigDecimal)rOutput.getField("partno")).toString();
array[1] =(String)rOutput.getField("partds");
array[2] =((java.math.BigDecimal)rOutput.getField("partqy")).toString();
array[3] = "$" + ((java.math.BigDecimal)rOutput.getField("partpr")).toString();
array[4] =(String)rOutput.getField("partdt");

aListBox.addRow(array);
}

} while (flag.equals("Y"));

return;
}
}

C.9 RLExample.java
import java.math.*;
import java.io.*;
import java.util.*;
import COM.ibm.as400.access.*;
public class RLExample extends java.awt.Frame implements

java.awt.event.WindowListener, WorkShop.PartsContainer {
private AS400 as400;
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;
private KeyedFile myKeyedFile;
}

public void connectToDB(String systemName, String userid, String password) throws Exception {
as400 = new COM.ibm.as400.access.AS400(systemName, userid, password);
QSYSObjectPathName fileName = new QSYSObjectPathName("APILIB",

"PARTS",
"*FILE",
"MBR");

myKeyedFile = new KeyedFile(as400, fileName.getPath());
try{

as400.connectService(AS400.RECORDACCESS);}
catch(Exception e){

242 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

System.out.println("Unable to connect");
System.exit(0);
}

RecordFormat partsFormat = null;
try
{

AS400FileRecordDescription recordDescription = new
AS400FileRecordDesccription(as400, "/QSYS.LIB/APILIB.LIB/PARTS.FILE");
partsFormat = recordDescription.retrieveRecordFormat()[0];

// Indicate that PARTNO is a key field
partsFormat.addKeyFieldDescription("PARTNO");

}
catch(Exception e)
{

System.out.println("Unable to retrieve record format");
e.printStackTrace();
System.exit(0);

}
try{

myKeyedFile.setRecordFormat(partsFormat);
// Open the file.

myKeyedFile.open(AS400File.READ_WRITE, 0,
AS400File.COMMIT_LOCK_LEVEL_NONE);}

catch(Exception e){
System.out.println("Unable to open file");
System.exit(0);

}
return;
}

public String getRecord(String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty, java.awt.TextField partPrice,
java.awt.TextField partDate) throws Exception {

Object[] theKey = new Object[1];

theKey[0] = new java.math.BigDecimal(partNo);

// Read the first record matching theKey
Record data = myKeyedFile.read(theKey);

// If the record was not found, null is returned.
if (data != null)
{
partDesc.setText((String)data.getField("PARTDS"));
partQty.setText(((BigDecimal)data.getField("PARTQY")).toString());
partPrice.setText("$" + ((BigDecimal)data.getField("PARTPR")).toString(
partDate.setText((String)data.getField("PARTDT"));
return "Record found.";

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}
}

public void populateListBox(com.taligent.widget.MultiColumnListbox
aListBox) throws Exception {

String[] array = new String[5];
try

Appendix C. AS/400 Toolbox Example Java Code 243

This soft copy for use by IBM employees only.

{

// Display each record in the file

Record record = myKeyedFile.readFirst();
while (record != null)
{

array[0] =((BigDecimal)record.getField("PARTNO")).toString();
array[1] =(String)record.getField("PARTDS");
array[2] =((java.math.BigDecimal)record.getField("PARTQY")).toString();
array[3]="$"+((BigDecimal)record.getField("PARTPR")).toString();
array[4] =(String)record.getField("PARTDT");

aListBox.addRow(array);
record = myKeyedFile.readNext();

}
}

catch(Exception e){
System.out.println("unable to get all");
System.exit(0);

}
return;}

public void dispose() {
try {
// All done with the file

myKeyedFile.close();
as400.disconnectAllServices();
System.out.println("Disconnected from AS/400 OK.");

} catch (Exception e) {};

super.dispose();
System.exit(0);

return;
}

244 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Appendix D. Internet Shopping Applet Code Listings

This apppendix has the following listings:

SelectedItems.java ItemsDb.java

ItemsDbBeanInfo.java

ToolboxApplet.java

CartApplet.java

StatusApplet.java

MyListbox.java

MyImage.java

D.1 SelectedItems.java
package ToolboxApplet;
import java.util.*;
import java.math.BigDecimal;
/**
* This Class was generated by a SmartGuide.
*
*/
public class SelectedItems extends java.lang.Object {
private static Vector wanted;
static BigDecimal totalAmount;
/**
* This method was created by a SmartGuide.
* @param row java.lang.Object[]
* @param key java.lang.Object
*/
public void addSelectedRow (Object[] row) {
getVector().addElement(row);
if(totalAmount==null) totalAmount=new BigDecimal("0");
totalAmount=totalAmount.add(new BigDecimal((String)row[2]));
return;
}
/**
* This method was created by a SmartGuide.
*/
public void clear () {
wanted.removeAllElements();
return;
}
/**
* This method was created by a SmartGuide.
* @return java.util.Vector
*/
public Vector getVector () {
if(wanted==null) wanted=new Vector();
return wanted;

 Copyright IBM Corp. 1997 245

This soft copy for use by IBM employees only.

}
}

D.2 ItemsDb.java
package ToolboxApplet;
import java.math.*;
import java.util.*;
/**
* This Class was generated by a SmartGuide.
*
*/
public class ItemsDb extends java.lang.Object {
private java.sql.Connection dbConnect;
private java.sql.PreparedStatement psItem;
private java.sql.PreparedStatement psItemRange;
private java.sql.PreparedStatement psCustomerDb;
private java.sql.PreparedStatement psQuantityInHand;
private java.sql.Statement sGetInetOrderNo;
private String systemName = new String("SYSASM02");
private String userid = new String("UUUUUUUU");
private String password = new String("PPPPPP");
private java.sql.ResultSet rs = null;
public String itemId;
public String itemName;
public BigDecimal itemPriceBigDecimal;
public String itemPrice;
public String itemInfo;
public Object[] row;
public String validCustomerId = null;
protected java.util.Vector aConnectionListener = null;
/**
* Add a COM.ibm.ivj.eab.data.ConnectionListener.
*/
public void
addConnectionListener(COM.ibm.ivj.eab.data.ConnectionListener
newListener) {
if (aConnectionListener == null) {
aConnectionListener = new java.util.Vector();
};
aConnectionListener.addElement(newListener);
}
/**
* This method was created by a SmartGuide.
* @return java.lang.Object[]
* @param OrderIdString java.lang.String
*/
public Vector checkOrderStatus (String orderIdString) {
// return Vector contains CustomerLastName,
CustomerFirstName,Object[],Object[],...
// where Object[] is OrderLineDetail =
[ItemId,ItemName,QtyOrdered,Amount]
Vector orderStatus=new Vector();
if(orderIdString.length()9]] orderIdString.length()==0)
return null;
try{
sGetInetOrderNo = dbConnect.createStatement();
rs=sGetInetOrderNo.executeQuery("SELECT OCID,OLINES FROM
CSDB/ORDERS WHERE OWID='0001' AND ODID=001 AND OID="+orderIdString);
rs.next();
String customerId=rs.getString("OCID");
BigDecimal orderLines=rs.getBigDecimal("OLINES",0);
rs=sGetInetOrderNo.executeQuery("SELECT CFIRST,CLAST FROM
CSDB/CSTMR WHERE CWID='0001' AND CDID=001 AND CID='"+customerId+"'");
rs.next();

246 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

String lastName=rs.getString("CLAST");
String firstName=rs.getString("CFIRST");
orderStatus.addElement(lastName);
orderStatus.addElement(firstName);
// Loop for every Order Line Detail
for(int i=1;i = orderLines.intValue();i++) {
Object[] detail=new Object[4];
rs=sGetInetOrderNo.executeQuery("SELECT OLIID,OLQTY,OLAMNT FROM
CSDB/ORDLIN WHERE OLWID='0001' AND OLDID=001 AND
OLOID="+orderIdString+" AND OLNBR="+i);
rs.next();
String itemId=rs.getString("OLIID");
BigDecimal quantity=rs.getBigDecimal("OLQTY",0);
BigDecimal amount=rs.getBigDecimal("OLAMNT",2);
rs=sGetInetOrderNo.executeQuery("SELECT INAME FROM CSDB/ITEM WHERE
IID='"+itemId+"'");
rs.next();
String itemName=rs.getString("INAME");
detail[0]=itemName;
detail[1]=quantity.toString();
detail[2]=amount.toString();
detail[3]=itemId+".GIF";
orderStatus.addElement(detail);
}
System.out.println("CheckOrd: Closed");
sGetInetOrderNo.close();
} catch(Exception e) {
System.out.println("checkOrderStatus: "+e);
return null;}
return orderStatus;
}
/**
* This method was created by a SmartGuide.
*/
public String confirmOrder (SelectedItems cart) {
// Hasn't consider multiple users environment.
// Should consider locking of records, triggers, or stored
Procedure
BigDecimal inetYTD;
BigDecimal nextOrderNo;
String updateString;
Date date;
String sdate;
String stime;
try{
// Any thing in Cart ?
if (cart.getVector()==null) return "Nothing in Cart";
Enumeration enum=cart.getVector().elements();
// Get next Order No. and the Inet YTD Balance
sGetInetOrderNo = dbConnect.createStatement();
rs=sGetInetOrderNo.executeQuery("SELECT DYTD,DNXTOR FROM
CSDB/DSTRCT WHERE DID=001 AND DWID='0001'");
rs.next();
inetYTD=rs.getBigDecimal("DYTD",2);
nextOrderNo=rs.getBigDecimal("DNXTOR",0);
// Add Inet YTD Balance.
inetYTD=inetYTD.add(cart.totalAmount).setScale(2);
// Increment OrderNo. by 1
updateString="UPDATE CSDB/DSTRCT SET DYTD = "+inetYTD+", DNXTOR =
"+ nextOrderNo.add(new BigDecimal("1")).setScale(0)+" WHERE DID=001
AND DWID='0001'";
sGetInetOrderNo.executeUpdate(updateString);
// Insert Order Line
// get the Current Date(8 chars) and Time (6 chars)
date=new Date();
sdate="19"+((date.getYear()10)?

Appendix D. Internet Shopping Applet Code Listings 247

This soft copy for use by IBM employees only.

("0"+date.getYear()):Integer.toString(date.getYear()))
+((date.getMonth()10)?
("0"+(date.getMonth()+1)):Integer.toString((date.getMonth()+1)))
+((date.getDate()10)?
("0"+date.getDate()):Integer.toString(date.getDate()));
stime=((date.getHours()10)?
("0"+date.getHours()):Integer.toString(date.getHours()))
+((date.getMinutes()10)?
("0"+date.getMinutes()):Integer.toString(date.getMinutes()))
+((date.getSeconds()10)?
("0"+date.getSeconds()):Integer.toString(date.getSeconds()));
updateString="INSERT INTO CSDB/ORDERS (OWID, ODID, OCID, OID,
OENTDT, OENTTM, OLINES, OLOCAL) VALUES ('0001',001,'"
+validCustomerId+"',"+nextOrderNo+","+sdate+","+stime+","+cart.getVector().size()+",2)";
sGetInetOrderNo.executeUpdate(updateString);
// Update Stock Info and Insert Order Line Details one by one.
int orderLineNo=1;
while(enum.hasMoreElements()) {
Object[] element=((Object[])enum.nextElement());
// Add Order Line
updateString="INSERT INTO CSDB/ORDLIN
(OLOID,OLDID,OLWID,OLNBR,OLSPWH,OLIID,OLQTY,OLAMNT,OLDSTI) VALUES ("
+nextOrderNo+",001, '0001',"+orderLineNo+",'0001','"
+element[0]+"',"+"001,"+element[2]+",'Internet Applet Order')";
sGetInetOrderNo.executeUpdate(updateString);
orderLineNo+=1;
// Decrease Qty in Hand in Stock
rs=sGetInetOrderNo.executeQuery("SELECT STQTY FROM CSDB/STOCK
WHERE STWID='0001' AND STIID='"+element[0]+"'");
rs.next();
BigDecimal quantityInHand=rs.getBigDecimal("STQTY",0).subtract(new
BigDecimal("1"));
updateString="UPDATE CSDB/STOCK SET
STQTY="+quantityInHand.toString()
+", STYTD="+sdate+" WHERE STWID='0001' AND
STIID='"+element[0]+"'";
sGetInetOrderNo.executeUpdate(updateString);
};
// CleanUp Selected Items and Clear Listbox in Cart.
cart.clear();
// Release resources
sGetInetOrderNo.close();
return "Order No.:"+nextOrderNo+"\n (Remember this Order Number
for Checking Order Status)";
} catch(Exception e)
{System.out.println("confirmOrder:"+e);e.printStackTrace();}
return "Exception Occured, check Java Console";
}
/**
* This method was created by a SmartGuide.
* @return java.lang.String
*/
public String connect () {
try{
Class.forName("COM.ibm.as400.access.AS400JDBCDriver");
dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" +
systemName +
"/csdb;naming=system;errors=full;date
format=iso",userid,password);
psItem = dbConnect.prepareStatement("SELECT * FROM CSDB/ITEM WHERE
IID = ?");
psItemRange = dbConnect.prepareStatement("SELECT * FROM CSDB/ITEM
WHERE IID = ? AND IID = ?");
psCustomerDb = dbConnect.prepareStatement("SELECT CID FROM
CSDB/CSTMR WHERE CID = ? AND CDID=001 AND CWID='0001'");
psQuantityInHand = dbConnect.prepareStatement("SELECT STQTY FROM

248 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

CSDB/STOCK WHERE STWID= '0001' AND STIID=?");
} catch (Exception e) {
System.out.println("connect(): "+e);
e.printStackTrace();
return "Connect: "+e;}
fireConnected(new COM.ibm.ivj.eab.data.ConnectionEvent(this," "));
return "Connect Successfully";
}
/**
* This method was created by a SmartGuide.
*/
public void disconnect () throws Exception {
dbConnect.close();
psItem.close();
psItemRange.close();
psCustomerDb.close();
psQuantityInHand.close();
fireDisconnected(new COM.ibm.ivj.eab.data.ConnectionEvent(this));
return;
}
/**
* This method was created by a SmartGuide.
* @return ToolboxApplet.ItemsDb
*/
public ItemsDb fetchNextItem () {
try {
if (rs.next()) {
itemId=rs.getString("IID");
itemName=rs.getString("INAME");
itemPriceBigDecimal=rs.getBigDecimal("IPRICE",2);
itemPrice=itemPriceBigDecimal.toString();
itemInfo=rs.getString("IDATA");
}
else {
itemId=null;
itemName=null;
itemPriceBigDecimal=null;
itemPrice=null;
itemInfo=null;
}
} catch (Exception e) {System.out.println("fetchnext fail: "+e);}
return this;
}
/**
* This method was created by a SmartGuide.
*/
protected void finalize() {
try { disconnect();super.finalize(); } catch(Throwable t)
{System.out.println(t);}
return;
}
/**
* Fire (signal) the cancelled event.
*/
protected void fireCancelled(COM.ibm.ivj.eab.data.ConnectionEvent
arg1) {
if (aConnectionListener == null) {
return;
};
int currentSize = aConnectionListener.size();
COM.ibm.ivj.eab.data.ConnectionListener tempListener = null;
for (int index = 0; index currentSize; index++){
tempListener =
(COM.ibm.ivj.eab.data.ConnectionListener)aConnectionListener.elementAt(index);
if (tempListener != null) {
tempListener.cancelled(arg1);

Appendix D. Internet Shopping Applet Code Listings 249

This soft copy for use by IBM employees only.

};
};
}
/**
* Fire (signal) the committed event.
*/
protected void fireCommitted(COM.ibm.ivj.eab.data.ConnectionEvent
arg1) {
if (aConnectionListener == null) {
return;
};
int currentSize = aConnectionListener.size();
COM.ibm.ivj.eab.data.ConnectionListener tempListener = null;
for (int index = 0; index currentSize; index++){
tempListener =
(COM.ibm.ivj.eab.data.ConnectionListener)aConnectionListener.elementAt(index);
if (tempListener != null) {
tempListener.committed(arg1);
};
};
}
/**
* Fire (signal) the connected event.
*/
protected void fireConnected(COM.ibm.ivj.eab.data.ConnectionEvent
arg1) {
if (aConnectionListener == null) {
return;
};
int currentSize = aConnectionListener.size();
COM.ibm.ivj.eab.data.ConnectionListener tempListener = null;
for (int index = 0; index currentSize; index++){
tempListener =
(COM.ibm.ivj.eab.data.ConnectionListener)aConnectionListener.elementAt(index);
if (tempListener != null) {
tempListener.connected(arg1);
};
};
}
/**
* Fire (signal) the disconnected event.
*/
protected void
fireDisconnected(COM.ibm.ivj.eab.data.ConnectionEvent arg1) {
if (aConnectionListener == null) {
return;
};
int currentSize = aConnectionListener.size();
COM.ibm.ivj.eab.data.ConnectionListener tempListener = null;
for (int index = 0; index currentSize; index++){
tempListener =
(COM.ibm.ivj.eab.data.ConnectionListener)aConnectionListener.elementAt(index);
if (tempListener != null) {
tempListener.disconnected(arg1);
};
};
}
/**
* Fire (signal) the executedSQL event.
*/
protected void
fireExecutedSQL(COM.ibm.ivj.eab.data.ConnectionEvent arg1) {
if (aConnectionListener == null) {
return;
};
int currentSize = aConnectionListener.size();

250 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

COM.ibm.ivj.eab.data.ConnectionListener tempListener = null;
for (int index = 0; index currentSize; index++){
tempListener =
(COM.ibm.ivj.eab.data.ConnectionListener)aConnectionListener.elementAt(index);
if (tempListener != null) {
tempListener.executedSQL(arg1);
};
};
}
/**
* Fire (signal) the rolledback event.
*/
protected void fireRolledback(COM.ibm.ivj.eab.data.ConnectionEvent
arg1) {
if (aConnectionListener == null) {
return;
};
int currentSize = aConnectionListener.size();
COM.ibm.ivj.eab.data.ConnectionListener tempListener = null;
for (int index = 0; index currentSize; index++){
tempListener =
(COM.ibm.ivj.eab.data.ConnectionListener)aConnectionListener.elementAt(index);
if (tempListener != null) {
tempListener.rolledback(arg1);
};
};
}
/**
* This method was created by a SmartGuide.
* @return ToolboxApplet.ItemsDb
* @param itemno java.lang.String
*/
public ItemsDb getItem (String itemno) {
try {
psItem.setString(1, itemno);
rs = psItem.executeQuery();
fetchNextItem();
} catch (Exception e) {System.out.println("getItem fail: "+e);}
return this;
}
/**
* This method was created by a SmartGuide.
* @return ToolboxApplet.ItemsDb
* @param partnoMin java.lang.String
* @param partnoMax java.lang.String
*/
public ItemsDb getItems (String itemnoMin, String itemnoMax) {
if(itemnoMax.length()==0) {
getItem(itemnoMin);
}
else {
try {
psItemRange.setString(1, itemnoMin);
psItemRange.setString(2, itemnoMax);
rs = psItemRange.executeQuery();
} catch (Exception e) {System.out.println("getItemS fail: "+e);}
}
return this;
}
/**
* This method was created by a SmartGuide.
* @return java.lang.String
*/
public String getPassword () {
return password;
}

Appendix D. Internet Shopping Applet Code Listings 251

This soft copy for use by IBM employees only.

/**
* This method was created by a SmartGuide.
* @return java.lang.String
*/
public String getSystemName () {
return systemName;
}
/**
* This method was created by a SmartGuide.
* @return java.lang.String
*/
public String getUserId () {
return userid;
}
/**
* This method was created by a SmartGuide.
* @return java.math.BigDecimal
* @param itemNo java.lang.String
*/
public BigDecimal quantityInHand (String itemNo) {
try{
// Get next Order No. and the Inet YTD Balance
psQuantityInHand.setString(1,itemNo);
rs=psQuantityInHand.executeQuery();
rs.next();
return rs.getBigDecimal("STQTY",0);
} catch(Exception e) {System.out.println(e);}
return null;
}
/**
* Add a COM.ibm.ivj.eab.data.ConnectionListener.
*/
public void
removeConnectionListener(COM.ibm.ivj.eab.data.ConnectionListener
newListener) {
if (aConnectionListener != null) {
aConnectionListener.removeElement(newListener);
};
}
/**
* This method was created by a SmartGuide.
* @param tPassword java.lang.String
*/
public void setPassword (String tPassword) {
password=tPassword;
return;
}
/**
* This method was created by a SmartGuide.
* @param sysname java.lang.String
*/
public void setSystemName(String tSysname) {
systemName=tSysname;
return;
}
/**
* This method was created by a SmartGuide.
* @param tUserId java.lang.String
*/
public void setUserId (String tUserId) {
userid=tUserId;
return;
}
/**
* This method was created by a SmartGuide.
* @return java.lang.String

252 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

*/
public String toString () {
// for debugging purpose
return "["+itemId+"] ["+itemName+"] ["+itemPrice+"]
["+itemInfo+"]";
}
/**
* This method was created by a SmartGuide.
* @return java.lang.Boolean
* @param CustomerId java.lang.String
*/
public boolean verifyCustomer (String customerId) {
boolean isvalid=false;
try {
psCustomerDb.setString(1, customerId);
rs = psCustomerDb.executeQuery();
if(rs.next()) {isvalid=true; validCustomerId=customerId;}
} catch (Exception e) { validCustomerId=null;}
return isvalid;
}
}

D.3 ToolboxApplet.java
import itsc.taligent.util.*;
import itsc.taligent.widget.*;
import java.applet.*;
import java.awt.*;
import java.awt.image.*;
import java.net.URL;
import java.util.*;
public class ToolboxApplet extends java.applet.Applet implements
java.awt.event.ActionListener {
private java.lang.String imagePath = "file:/C:/mytest/solution/";
private java.awt.Button ivjButton1 = null;
private java.awt.Button ivjButton2 = null;
private ToolboxApplet.ItemsDb ivjItemsDb = null;
private java.awt.Label ivjLabel1 = null;
private java.awt.Label ivjLabel2 = null;
private itsc.taligent.widget.MyListbox ivjListbox = null;
private java.awt.TextField ivjTextField1 = null;
private java.awt.TextField ivjTextField2 = null;
static ToolboxApplet.SelectedItems selected = new SelectedItems();
/**
* Method to handle events for the ActionListener interface.
* @param e java.awt.event.ActionEvent
*/
public void actionPerformed(java.awt.event.ActionEvent e) {
if ((e.getSource() == getButton1())) {
conn8(e);
}
if ((e.getSource() == getButton1())) {
conn1(e);
}
if ((e.getSource() == getButton1())) {
conn12(e);
}
if ((e.getSource() == getButton2())) {
conn7(e);
}
if ((e.getSource() == getButton2())) {

Appendix D. Internet Shopping Applet Code Listings 253

This soft copy for use by IBM employees only.

conn19(e);
}
}
/**
* This method was created by a SmartGuide.
*/
public void addAllRows () {
while(getItemsDb().fetchNextItem().itemId!=null) {
addListboxRow();
getListbox().repaint();
};
return;
}
/**
* This method was created by a SmartGuide.
*/
public void addListboxRow () {
Object myObject[]=new Object[5];
myObject[0]=getItemsDb().itemId;
myObject[1]=getItemsDb().itemName;
myObject[2]=getItemsDb().itemPrice;
// URL baseURL=getCodeBase();
String imageName=getItemsDb().itemId+".GIF";
try {URL baseURL=new URL(imagePath);
myObject[3]=new
MyImage(getImage(baseURL,imageName),getListbox());}
catch(Exception e){ myObject[3]="Not Loaded";
myObject[4]=getItemsDb().itemInfo;
getListbox().addRow(myObject);
return; }
myObject[4]=getItemsDb().itemInfo;
getListbox().addRow(myObject);
return;
}
/**
* conn1: (Button1.action.actionPerformed --
ItemsDb.getItems(java.lang.String, java.lang.String))
* @return ToolboxApplet.ItemsDb
* @param e java.awt.event.ActionEvent
*/
private ToolboxApplet.ItemsDb conn1(java.awt.event.ActionEvent e)
{
ToolboxApplet.ItemsDb conn1Result = null;
try {
conn1Result = getItemsDb().getItems(getTextField1().getText(),
getTextField2().getText());
} catch (java.lang.Throwable exception) {
}
return conn1Result;
}
/**
* conn12: (Button1.action.actionPerformed --
ToolboxApplet.addAllRows()V)
* @param e java.awt.event.ActionEvent
*/
private void conn12(java.awt.event.ActionEvent e) {
try {
this.addAllRows();
} catch (java.lang.Throwable exception) {

254 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

}
}
/**
* conn16: (ToolboxApplet.init() -- ToolboxApplet.MyInit()V)
*/
private void conn16() {
try {
this.MyInit();
} catch (java.lang.Throwable exception) {
}
}
/**
* conn19: (Button2.action.actionPerformed --
Listbox.deselectAllRows())
* @return itsc.taligent.widget.MultiColumnListbox
* @param e java.awt.event.ActionEvent
*/
private itsc.taligent.widget.MultiColumnListbox
conn19(java.awt.event.ActionEvent e) {
itsc.taligent.widget.MultiColumnListbox conn19Result = null;
try {
conn19Result = getListbox().deselectAllRows();
} catch (java.lang.Throwable exception) {
}
return conn19Result;
}
/**
* conn7: (Button2.action.actionPerformed --
ToolboxApplet.getSelectedIndexes()Ljava.lang.String;)
* @return java.lang.String
* @param e java.awt.event.ActionEvent
*/
private java.lang.String conn7(java.awt.event.ActionEvent e) {
java.lang.String conn7Result = null;
try {
conn7Result = this.getSelectedIndexes();
} catch (java.lang.Throwable exception) {
}
return conn7Result;
}
/**
* conn8: (Button1.action.actionPerformed -- Listbox.clear())
* @return itsc.taligent.widget.MultiColumnListbox
* @param e java.awt.event.ActionEvent
*/
private itsc.taligent.widget.MultiColumnListbox
conn8(java.awt.event.ActionEvent e) {
itsc.taligent.widget.MultiColumnListbox conn8Result = null;
try {
conn8Result = getListbox().clear();
} catch (java.lang.Throwable exception) {
}
return conn8Result;
}
/**
* conn9: (ToolboxApplet.init() -- ItemsDb.connect())
* @return java.lang.String
*/
private java.lang.String conn9() {

Appendix D. Internet Shopping Applet Code Listings 255

This soft copy for use by IBM employees only.

java.lang.String conn9Result = null;
try {
conn9Result = getItemsDb().connect();
} catch (java.lang.Throwable exception) {
}
return conn9Result;
}
/**
* Handle the Applet destroy method.
*/
public void destroy() {
/* Handle the Applet destroy method. */
super.destroy();
}
/**
* Information about this applet.
* @return java.lang.String
*/
public java.lang.String getAppletInfo() {
return
"ToolboxApplet\n" +
"\n" +
"This applet was generated by a VisualAge SmartGuide.\n" +
"";
}
/**
* Return the Button1 property value.
* @return java.awt.Button
*/
private java.awt.Button getButton1() {
if (ivjButton1 == null) {
try {
ivjButton1 = new java.awt.Button("Query Range of Items");
ivjButton1.reshape(9, 59, 185, 28);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Button1");
}
};
return ivjButton1;
}
/**
* Return the Button2 property value.
* @return java.awt.Button
*/
private java.awt.Button getButton2() {
if (ivjButton2 == null) {
try {
ivjButton2 = new java.awt.Button("Put Selection to Cart");
ivjButton2.reshape(11, 274, 136, 30);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Button2");
}
};
return ivjButton2;
}
/**
* Return the ItemsDb property value.
* @return ToolboxApplet.ItemsDb
*/

256 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

private ToolboxApplet.ItemsDb getItemsDb() {
if (ivjItemsDb == null) {
try {
ivjItemsDb = new ToolboxApplet.ItemsDb();
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating ItemsDb");
}
};
return ivjItemsDb;
}
/**
* Return the Label1 property value.
* @return java.awt.Label
*/
private java.awt.Label getLabel1() {
if (ivjLabel1 == null) {
try {
ivjLabel1 = new java.awt.Label("Product Catalog");
ivjLabel1.setFont(new java.awt.Font("", 1, 30));
ivjLabel1.reshape(14, 6, 290, 25);
ivjLabel1.setForeground(new java.awt.Color(0, 0, 255));
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Label1");
}
};
return ivjLabel1;
}
/**
* Return the Label2 property value.
* @return java.awt.Label
*/
private java.awt.Label getLabel2() {
if (ivjLabel2 == null) {
try {
ivjLabel2 = new java.awt.Label("Select the items you want, then
put it into your cart.");
ivjLabel2.reshape(14, 33, 297, 19);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Label2");
}
};
return ivjLabel2;
}
/**
* Return the Listbox property value.
* @return itsc.taligent.widget.MyListbox
*/
private itsc.taligent.widget.MyListbox getListbox() {
if (ivjListbox == null) {
try {
ivjListbox = new itsc.taligent.widget.MyListbox();
ivjListbox.reshape(9, 89, 599, 181);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Listbox");
}
};
return ivjListbox;
}
/**

Appendix D. Internet Shopping Applet Code Listings 257

This soft copy for use by IBM employees only.

* This method was created by a SmartGuide.
* @return java.lang.String
*/
public String getSelectedIndexes() {
int[] indexes=getListbox().getSelectedIndexes();
for(int i=0;iindexes.length;i++) {
selected.addSelectedRow(getListbox().getRow(indexes[i]));
}
return "Selected:"+selected.getVector().toString();
}
/**
* Return the TextField1 property value.
* @return java.awt.TextField
*/
private java.awt.TextField getTextField1() {
if (ivjTextField1 == null) {
try {
ivjTextField1 = new java.awt.TextField("000001");
ivjTextField1.reshape(198, 59, 125, 30);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating TextField1");
}
};
return ivjTextField1;
}
/**
* Return the TextField2 property value.
* @return java.awt.TextField
*/
private java.awt.TextField getTextField2() {
if (ivjTextField2 == null) {
try {
ivjTextField2 = new java.awt.TextField("000010");
ivjTextField2.reshape(322, 59, 125, 30);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating TextField2");
}
};
return ivjTextField2;
}
/**
* Method to handle events for the Applet interface.
*/
public void init() {
/* Method to handle events for the Applet interface. */
super.init();
try {
setLayout(null);
reshape(14, 8, 615, 327);
this.add("ivjButton1", getButton1());
this.add("ivjTextField1", getTextField1());
this.add("ivjTextField2", getTextField2());
this.add("ivjButton2", getButton2());
this.add("ivjLabel1", getLabel1());
this.add("ivjLabel2", getLabel2());
this.add("ivjListbox", getListbox());
conn16();
conn9();
initConnections();

258 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

} catch (java.lang.Throwable exception) {
System.err.println("Exception occurred in init() of
ToolboxApplet");
}
}
/**
* Initializes connections
*/
private void initConnections() {
/* Initialize the connections for the part */
getButton1().addActionListener(this);
getButton2().addActionListener(this);
}
/**
* main() is executed when your applet is run standalone.
*/
public static void main (String args[]) {
//ToolboxApplet applet = new ToolboxApplet();
//uvm.applet.AppletFrame frame = new
uvm.applet.AppletFrame("Applet");
// frame.add("Center", applet);
// frame.resize(350, 250);
// frame.show();
// applet.init();
// applet.start();
}
/**
* This method was created by a SmartGuide.
*/
public void MyInit () {
String columns[] = {"Item No.","Item
Name","Price","Image","Details"};
getListbox().addColumns(columns);
getListbox().getColumnInfo(0).setWidth(100);
getListbox().getColumnInfo(1).setWidth(250);
getListbox().getColumnInfo(2).setWidth(100);
getListbox().getColumnInfo(3).setWidth(100);
getListbox().getColumnInfo(4).setWidth(100);
getListbox().setMultipleSelections(true);
getListbox().setPreferedRowHeight(50);
getListbox().reshape();
return;
}
/**
* Handle the Applet start method.
*/
public void start() {
/* Handle the Applet start method. */
super.start();
}
/**
* Handle the Applet stop method.
*/
public void stop() {
/* Handle the Applet stop method. */
super.stop();
}
}

Appendix D. Internet Shopping Applet Code Listings 259

This soft copy for use by IBM employees only.

D.4 CartApplet.java
import java.applet.*;
import java.awt.*;
import java.util.*;
public class CartApplet extends java.applet.Applet implements
java.awt.event.ActionListener, java.awt.event.KeyListener {
ToolboxApplet.SelectedItems cart = new SelectedItems();
private java.awt.Button ivjButton1 = null;
private java.awt.Button ivjButton2 = null;
private ToolboxApplet.ItemsDb ivjItemsDb = null;
private java.awt.Label ivjLabel1 = null;
private java.awt.Label ivjLabel2 = null;
private java.awt.Label ivjLabel3 = null;
private itsc.taligent.widget.MyListbox ivjListbox = null;
private COM.ibm.ivj.javabeans.IMessageBox ivjMessageBox = null;
private java.awt.TextField ivjTextField1 = null;
/**
* Method to handle events for the ActionListener interface.
* @param e java.awt.event.ActionEvent
*/
public void actionPerformed(java.awt.event.ActionEvent e) {
if ((e.getSource() == getButton1())) {
conn29(e);
}
if ((e.getSource() == getButton1())) {
conn0(e);
}
if ((e.getSource() == getButton2())) {
conn17(e);
}
if ((e.getSource() == getButton2())) {
conn9(e);
}
if ((e.getSource() == getButton2())) {
conn10(e);
}
}
/**
* conn0: (Button1.action.actionPerformed --
CartApplet.showCart()V)
* @param e java.awt.event.ActionEvent
*/
private void conn0(java.awt.event.ActionEvent e) {
try {
this.showCart();
} catch (java.lang.Throwable exception) {
}
}
/**
* conn1: (CartApplet.init() -- CartApplet.MyInit()V)
*/
private void conn1() {
try {
this.MyInit();
} catch (java.lang.Throwable exception) {
}
}
/**

260 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

* conn10: (Button2.action.actionPerformed -- Listbox.clear())
* @return itsc.taligent.widget.MultiColumnListbox
* @param e java.awt.event.ActionEvent
*/
private itsc.taligent.widget.MultiColumnListbox
conn10(java.awt.event.ActionEvent e) {
itsc.taligent.widget.MultiColumnListbox conn10Result = null;
try {
conn10Result = getListbox().clear();
} catch (java.lang.Throwable exception) {
}
return conn10Result;
}
/**
* conn17: (Button2.action.actionPerformed --
ItemsDb.confirmOrder(ToolboxApplet.SelectedItems))
* @return java.lang.String
* @param e java.awt.event.ActionEvent
*/
private java.lang.String conn17(java.awt.event.ActionEvent e) {
java.lang.String conn17Result = null;
try {
conn17Result = getItemsDb().confirmOrder(cart);
conn8(conn17Result);
} catch (java.lang.Throwable exception) {
}
return conn17Result;
}
/**
* conn18: (TextField1.key.keyReleased --
CartApplet.validateCustomerNo(Ljava.lang.String;Ljava.awt.Component;)V)
* @param e java.awt.event.KeyEvent
*/
private void conn18(java.awt.event.KeyEvent e) {
try {
this.validateCustomerNo(getTextField1().getText(), getButton2());
} catch (java.lang.Throwable exception) {
}
}
/**
* conn29: (Button1.action.actionPerformed -- Listbox.clear())
* @return itsc.taligent.widget.MultiColumnListbox
* @param e java.awt.event.ActionEvent
*/
private itsc.taligent.widget.MultiColumnListbox
conn29(java.awt.event.ActionEvent e) {
itsc.taligent.widget.MultiColumnListbox conn29Result = null;
try {
conn29Result = getListbox().clear();
} catch (java.lang.Throwable exception) {
}
return conn29Result;
}
/**
* conn30: (CartApplet.init() -- ItemsDb.connect())
* @return java.lang.String
*/
private java.lang.String conn30() {
java.lang.String conn30Result = null;

Appendix D. Internet Shopping Applet Code Listings 261

This soft copy for use by IBM employees only.

try {
conn30Result = getItemsDb().connect();
} catch (java.lang.Throwable exception) {
}
return conn30Result;
}
/**
* conn8: ((Button2,action.actionPerformed --
ItemsDb,confirmOrder(ToolboxApplet.SelectedItems)).normalResult
-- MessageBox.show(java.lang.String))
* @param conn17Result java.lang.String
*/
private void conn8(java.lang.String conn17Result) {
try {
getMessageBox().show(conn17Result);
} catch (java.lang.Throwable exception) {
}
}
/**
* conn9: (Button2.action.actionPerformed -- TextField1.text)
* @param e java.awt.event.ActionEvent
*/
private void conn9(java.awt.event.ActionEvent e) {
try {
getTextField1().setText("");
} catch (java.lang.Throwable exception) {
}
}
/**
* Handle the Applet destroy method.
*/
public void destroy() {
/* Handle the Applet destroy method. */
super.destroy();
}
/**
* Information about this applet.
* @return java.lang.String
*/
public java.lang.String getAppletInfo() {
return
"CartApplet\n" +
"\n" +
"This applet was generated by a VisualAge SmartGuide.\n" +
"";
}
/**
* Return the Button1 property value.
* @return java.awt.Button
*/
private java.awt.Button getButton1() {
if (ivjButton1 == null) {
try {
ivjButton1 = new java.awt.Button("Look into Cart");
ivjButton1.reshape(7, 8, 125, 30);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Button1");
}
};

262 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

return ivjButton1;
}
/**
* Return the Button2 property value.
* @return java.awt.Button
*/
private java.awt.Button getButton2() {
if (ivjButton2 == null) {
try {
ivjButton2 = new java.awt.Button("Confirm Order");
ivjButton2.reshape(476, 249, 125, 30);
ivjButton2.setEnabled(false);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Button2");
}
};
return ivjButton2;
}
/**
* Return the ItemsDb property value.
* @return ToolboxApplet.ItemsDb
*/
private ToolboxApplet.ItemsDb getItemsDb() {
if (ivjItemsDb == null) {
try {
ivjItemsDb = new ToolboxApplet.ItemsDb();
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating ItemsDb");
}
};
return ivjItemsDb;
}
/**
* Return the Label1 property value.
* @return java.awt.Label
*/
private java.awt.Label getLabel1() {
if (ivjLabel1 == null) {
try {
ivjLabel1 = new java.awt.Label("Customer No.");
ivjLabel1.reshape(388, 218, 86, 30);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Label1");
}
};
return ivjLabel1;
}
/**
* Return the Label2 property value.
* @return java.awt.Label
*/
private java.awt.Label getLabel2() {
if (ivjLabel2 == null) {
try {
ivjLabel2 = new java.awt.Label("My Shopping Cart");
ivjLabel2.setFont(new java.awt.Font("", 1, 30));
ivjLabel2.reshape(288, 4, 313, 34);
ivjLabel2.setForeground(new java.awt.Color(0, 0, 255));
} catch (java.lang.Throwable exception) {

Appendix D. Internet Shopping Applet Code Listings 263

This soft copy for use by IBM employees only.

System.err.println("Exception creating Label2");
}
};
return ivjLabel2;
}
/**
* Return the Label3 property value.
* @return java.awt.Label
*/
private java.awt.Label getLabel3() {
if (ivjLabel3 == null) {
try {
ivjLabel3 = new java.awt.Label("Total Amount:");
ivjLabel3.reshape(6, 221, 339, 29);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Label3");
}
};
return ivjLabel3;
}
/**
* Return the Listbox property value.
* @return itsc.taligent.widget.MyListbox
*/
private itsc.taligent.widget.MyListbox getListbox() {
if (ivjListbox == null) {
try {
ivjListbox = new itsc.taligent.widget.MyListbox();
ivjListbox.reshape(8, 39, 592, 172);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Listbox");
}
};
return ivjListbox;
}
/**
* Return the MessageBox property value.
* @return COM.ibm.ivj.javabeans.IMessageBox
*/
private COM.ibm.ivj.javabeans.IMessageBox getMessageBox() {
if (ivjMessageBox == null) {
try {
ivjMessageBox = new COM.ibm.ivj.javabeans.IMessageBox();
ivjMessageBox.setTitle("Message Box");
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating MessageBox");
}
};
return ivjMessageBox;
}
/**
* Return the TextField1 property value.
* @return java.awt.TextField
*/
private java.awt.TextField getTextField1() {
if (ivjTextField1 == null) {
try {
ivjTextField1 = new java.awt.TextField(0);
ivjTextField1.reshape(477, 218, 125, 30);

264 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

} catch (java.lang.Throwable exception) {
System.err.println("Exception creating TextField1");
}
};
return ivjTextField1;
}
/**
* Method to handle events for the Applet interface.
*/
public void init() {
/* Method to handle events for the Applet interface. */
super.init();
try {
setLayout(null);
reshape(19, 10, 612, 324);
this.add("ivjButton1", getButton1());
this.add("ivjButton2", getButton2());
this.add("ivjTextField1", getTextField1());
this.add("ivjLabel1", getLabel1());
this.add("ivjLabel3", getLabel3());
this.add("ivjLabel2", getLabel2());
this.add("ivjListbox", getListbox());
conn1();
conn30();
initConnections();
} catch (java.lang.Throwable exception) {
System.err.println("Exception occurred in init() of CartApplet");
}
}
/**
* Initializes connections
*/
private void initConnections() {
/* Initialize the connections for the part */
getButton1().addActionListener(this);
getButton2().addActionListener(this);
getTextField1().addKeyListener(this);
}
/**
* Method to handle events for the KeyListener interface.
* @param e java.awt.event.KeyEvent
*/
public void keyPressed(java.awt.event.KeyEvent e) {
}
/**
* Method to handle events for the KeyListener interface.
* @param e java.awt.event.KeyEvent
*/
public void keyReleased(java.awt.event.KeyEvent e) {
if ((e.getSource() == getTextField1())) {
conn18(e);
}
}
/**
* Method to handle events for the KeyListener interface.
* @param e java.awt.event.KeyEvent
*/
public void keyTyped(java.awt.event.KeyEvent e) {
}

Appendix D. Internet Shopping Applet Code Listings 265

This soft copy for use by IBM employees only.

/**
* main entrypoint - starts the part when it is run as an
application
* @param args java.lang.String[]
*/
public static void main(java.lang.String[] args) {
/* Note: Changes to this method will not be overwritten when code
is re-generated */
try {
ToolboxApplet.CartApplet aCartApplet = new
ToolboxApplet.CartApplet();
java.awt.Frame frame = new java.awt.Frame(aCartApplet.toString());
frame.add("Center", aCartApplet);
try {
java.lang.Class aClass =
java.lang.Class.forName("uvm.abt.edit.ExitButton");
frame.add("South", (java.awt.Component)aClass.newInstance());
} catch (java.lang.Throwable exception) {
}
frame.resize(aCartApplet.size());
aCartApplet.init();
aCartApplet.start();
frame.show(true);
aCartApplet.destroy();
} catch (java.lang.Throwable exception) {
System.err.println("Exception occurred in main() of CartApplet");
}
}
/**
* This method was created by a SmartGuide.
*/
public void MyInit () {
// To initialize the MultiColumnListBox
String columns[] = {"Item No.","Item Name","Price","Qty in
Stock","Image","Details"};
getListbox().addColumns(columns);
getListbox().getColumnInfo(0).setWidth(100);
getListbox().getColumnInfo(1).setWidth(250);
getListbox().getColumnInfo(2).setWidth(100);
getListbox().getColumnInfo(3).setWidth(100);
getListbox().getColumnInfo(4).setWidth(100);
getListbox().getColumnInfo(5).setWidth(100);
getListbox().setPreferedRowHeight(50);
getListbox().reshape();
return;
}
/**
* paint() draws the text on the drawing area.
*/
public void paint (java.awt.Graphics g) {
}
/**
* This method was created by a SmartGuide.
* @return java.lang.String
*/
public void showCart () {
Object myObject[]=new Object[6];
try {
if(cart.getVector()!=null) {

266 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Enumeration enum=cart.getVector().elements();
while(enum.hasMoreElements()) {
Object[] element=((Object[])enum.nextElement());
myObject[0]=element[0]; //ItemId
myObject[1]=element[1]; //ItemName
myObject[2]=element[2]; //Price
//[4] is qty in stock.
myObject[3]=(getItemsDb().quantityInHand(((String)element[0]))).toString();
myObject[4]=element[3]; // Image
myObject[5]=element[4]; //Details
getListbox().addRow(myObject);
};
getListbox().repaint();
getLabel3().setText("Total Amount: "+cart.totalAmount.toString());
return;
}
} catch(Exception e) {e.printStackTrace();System.out.println(e); }
return;
}
/**
* Handle the Applet start method.
*/
public void start() {
/* Handle the Applet start method. */
super.start();
}
/**
* Handle the Applet stop method.
*/
public void stop() {
/* Handle the Applet stop method. */
super.stop();
}
/**
* This method was created by a SmartGuide.
* @param customerNo java.lang.String
*/
public void validateCustomerNo (String customerNo,Component
button) {
if(customerNo.length()==4) {
if(getItemsDb().verifyCustomer(customerNo))
button.enable();
}
else button.disable();
return;
}
}

D.5 StatusApplet.java
import itsc.taligent.widget.*;
import java.applet.*;
import java.awt.*;
import java.net.URL;
import java.util.*;
public class StatusApplet extends java.applet.Applet implements
java.awt.event.ActionListener {
private java.lang.String imagePath = "file:/C:/mytest/solution/";

Appendix D. Internet Shopping Applet Code Listings 267

This soft copy for use by IBM employees only.

private java.awt.Button ivjButton1 = null;
private ToolboxApplet.ItemsDb ivjItemsDb = null;
private java.awt.Label ivjLabel1 = null;
private java.awt.Label ivjLabel2 = null;
private itsc.taligent.widget.MyListbox ivjListbox = null;
private java.awt.Panel ivjPanel1 = null;
private java.awt.TextField ivjTextField1 = null;
/**
* Method to handle events for the ActionListener interface.
* @param e java.awt.event.ActionEvent
*/
public void actionPerformed(java.awt.event.ActionEvent e) {
if ((e.getSource() == getButton1())) {
conn13(e);
}
}
/**
* conn13: (Button1.action.actionPerformed --
StatusApplet.fillListbox(Ljava.lang.String;)V)
* @param e java.awt.event.ActionEvent
*/
private void conn13(java.awt.event.ActionEvent e) {
try {
this.fillListbox(getTextField1().getText());
} catch (java.lang.Throwable exception) {
}
}
/**
* conn24: (StatusApplet.init() -- StatusApplet.MyInit()V)
*/
private void conn24() {
try {
this.MyInit();
} catch (java.lang.Throwable exception) {
}
}
/**
* conn34: (StatusApplet.init() -- ItemsDb.connect())
* @return java.lang.String
*/
private java.lang.String conn34() {
java.lang.String conn34Result = null;
try {
conn34Result = getItemsDb().connect();
} catch (java.lang.Throwable exception) {
}
return conn34Result;
}
/**
* Handle the Applet destroy method.
*/
public void destroy() {
/* Handle the Applet destroy method. */
super.destroy();
}
/**
* This method was created by a SmartGuide.
* @param orderStatus java.util.Vector
*/

268 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

public void fillListbox (String orderId) {
Vector orderStatus=getItemsDb().checkOrderStatus(orderId);
if(orderStatus==null) {
getLabel2().setText("Order No. "+orderId+" Not Found !!!");
return; }
Enumeration detailLine=orderStatus.elements();
String lastName=((String)detailLine.nextElement());
String firstName=((String)detailLine.nextElement());
getLabel2().setText("Order "+orderId+" was Ordered by
"+firstName+" "+lastName);
while(detailLine.hasMoreElements()) {
Object[] detail= ((Object[])detailLine.nextElement());
String imageString=((String)detail[3]);
try {
URL baseURL=new URL(imagePath);
detail[3]=new MyImage(getImage(baseURL,imageString),getListbox());
} catch (Exception e) {detail[3]="Not Loaded";}
getListbox().addRow(detail);
}
getListbox().repaint();
return;
}
/**
* Gets the applet information.
* @return java.lang.String
*/
public java.lang.String getAppletInfo() {
return "ToolboxApplet.StatusApplet created using the VisualAge for
Java Version 1.0";
}
/**
* Return the Button1 property value.
* @return java.awt.Button
*/
private java.awt.Button getButton1() {
if (ivjButton1 == null) {
try {
ivjButton1 = new java.awt.Button("Search for the Order");
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Button1");
}
};
return ivjButton1;
}
/**
* Return the ItemsDb property value.
* @return ToolboxApplet.ItemsDb
*/
private ToolboxApplet.ItemsDb getItemsDb() {
if (ivjItemsDb == null) {
try {
ivjItemsDb = new ToolboxApplet.ItemsDb();
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating ItemsDb");
}
};
return ivjItemsDb;
}
/**

Appendix D. Internet Shopping Applet Code Listings 269

This soft copy for use by IBM employees only.

* Return the Label1 property value.
* @return java.awt.Label
*/
private java.awt.Label getLabel1() {
if (ivjLabel1 == null) {
try {
ivjLabel1 = new java.awt.Label("Check Order Status");
ivjLabel1.setFont(new java.awt.Font("", 1, 30));
ivjLabel1.setForeground(new java.awt.Color(0, 0, 255));
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Label1");
}
};
return ivjLabel1;
}
/**
* Return the Label2 property value.
* @return java.awt.Label
*/
private java.awt.Label getLabel2() {
if (ivjLabel2 == null) {
try {
ivjLabel2 = new java.awt.Label("Status of Order:");
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Label2");
}
};
return ivjLabel2;
}
/**
* Return the Listbox property value.
* @return itsc.taligent.widget.MyListbox
*/
private itsc.taligent.widget.MyListbox getListbox() {
if (ivjListbox == null) {
try {
ivjListbox = new itsc.taligent.widget.MyListbox();
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Listbox");
}
};
return ivjListbox;
}
/**
* Return the Panel1 property value.
* @return java.awt.Panel
*/
private java.awt.Panel getPanel1() {
java.awt.GridBagConstraints constraintsLabel1 = new
java.awt.GridBagConstraints();
java.awt.GridBagConstraints constraintsTextField1 = new
java.awt.GridBagConstraints();
java.awt.GridBagConstraints constraintsButton1 = new
java.awt.GridBagConstraints();
java.awt.GridBagConstraints constraintsLabel2 = new
java.awt.GridBagConstraints();
if (ivjPanel1 == null) {
try {
ivjPanel1 = new java.awt.Panel(new java.awt.GridBagLayout());

270 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

constraintsLabel1.gridx = 0; constraintsLabel1.gridy = 0;
constraintsLabel1.gridwidth = 1; constraintsLabel1.gridheight = 1;
constraintsLabel1.anchor = 10;
((java.awt.GridBagLayout)
getPanel1().getLayout()).setConstraints(getLabel1(),
constraintsLabel1);
getPanel1().add(getLabel1());
constraintsTextField1.gridx = 0; constraintsTextField1.gridy = 1;
constraintsTextField1.gridwidth = 1;
constraintsTextField1.gridheight = 1;
constraintsTextField1.fill = 2;
constraintsTextField1.anchor = 10;
constraintsTextField1.weightx = 100.0;
constraintsTextField1.weighty = 100.0;
((java.awt.GridBagLayout)
getPanel1().getLayout()).setConstraints(getTextField1(),
constraintsTextField1);
getPanel1().add(getTextField1());
constraintsButton1.gridx = 1; constraintsButton1.gridy = 1;
constraintsButton1.gridwidth = 1; constraintsButton1.gridheight =
1;
constraintsButton1.anchor = 10;
constraintsButton1.weightx = 100.0;
constraintsButton1.weighty = 100.0;
((java.awt.GridBagLayout)
getPanel1().getLayout()).setConstraints(getButton1(),
constraintsButton1);
getPanel1().add(getButton1());
constraintsLabel2.gridx = 0; constraintsLabel2.gridy = 2;
constraintsLabel2.gridwidth = 2; constraintsLabel2.gridheight = 1;
constraintsLabel2.fill = 2;
constraintsLabel2.anchor = 10;
constraintsLabel2.weightx = 100.0;
constraintsLabel2.weighty = 100.0;
((java.awt.GridBagLayout)
getPanel1().getLayout()).setConstraints(getLabel2(),
constraintsLabel2);
getPanel1().add(getLabel2());
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating Panel1");
}
};
return ivjPanel1;
}
/**
* Return the TextField1 property value.
* @return java.awt.TextField
*/
private java.awt.TextField getTextField1() {
if (ivjTextField1 == null) {
try {
ivjTextField1 = new java.awt.TextField(0);
} catch (java.lang.Throwable exception) {
System.err.println("Exception creating TextField1");
}
};
return ivjTextField1;
}
/**

Appendix D. Internet Shopping Applet Code Listings 271

This soft copy for use by IBM employees only.

* Method to handle events for the Applet interface.
*/
public void init() {
/* Method to handle events for the Applet interface. */
super.init();
try {
java.awt.GridBagConstraints constraintsPanel1 = new
java.awt.GridBagConstraints();
java.awt.GridBagConstraints constraintsListbox = new
java.awt.GridBagConstraints();
setLayout(new java.awt.GridBagLayout());
reshape(16, 16, 550, 298);
constraintsPanel1.gridx = 0; constraintsPanel1.gridy = 0;
constraintsPanel1.gridwidth = 1; constraintsPanel1.gridheight = 1;
constraintsPanel1.anchor = 17;
constraintsPanel1.weightx = 50.0;
constraintsPanel1.weighty = 50.0;
((java.awt.GridBagLayout)
this.getLayout()).setConstraints(getPanel1(), constraintsPanel1);
this.add(getPanel1());
constraintsListbox.gridx = 0; constraintsListbox.gridy = 1;
constraintsListbox.gridwidth = 3; constraintsListbox.gridheight =
1;
constraintsListbox.fill = 1;
constraintsListbox.anchor = 10;
constraintsListbox.weightx = 100.0;
constraintsListbox.weighty = 100.0;
((java.awt.GridBagLayout)
this.getLayout()).setConstraints(getListbox(), constraintsListbox);
this.add(getListbox());
conn24();
conn34();
initConnections();
} catch (java.lang.Throwable exception) {
System.err.println("Exception occurred in init() of
StatusApplet");
}
}
/**
* Initializes connections
*/
private void initConnections() {
/* Initialize the connections for the part */
getButton1().addActionListener(this);
}
/**
* main entrypoint - starts the part when it is run as an
application
* @param args java.lang.String[]
*/
public static void main(java.lang.String[] args) {
/* Note: Changes to this method will not be overwritten when code
is re-generated */
try {
ToolboxApplet.StatusApplet aStatusApplet = new
ToolboxApplet.StatusApplet();
java.awt.Frame frame = new
java.awt.Frame(aStatusApplet.toString());
frame.add("Center", aStatusApplet);

272 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

try {
java.lang.Class aClass =
java.lang.Class.forName("uvm.abt.edit.ExitButton");
frame.add("South", (java.awt.Component)aClass.newInstance());
} catch (java.lang.Throwable exception) {
}
frame.resize(aStatusApplet.size());
aStatusApplet.init();
aStatusApplet.start();
frame.show(true);
aStatusApplet.destroy();
} catch (java.lang.Throwable exception) {
System.err.println("Exception occurred in main() of
StatusApplet");
}
}
/**
* This method was created by a SmartGuide.
*/
public void MyInit () {
String columns[] = {"Item Name","Qty ordered","Total
Amount","Image"};
getListbox().addColumns(columns);
getListbox().getColumnInfo(0).setWidth(250);
getListbox().getColumnInfo(1).setWidth(100).setAlignment(ListboxColumn.RIGHT);
getListbox().getColumnInfo(2).setWidth(100).setAlignment(ListboxColumn.RIGHT);
getListbox().getColumnInfo(3).setWidth(100);
getListbox().setPreferedRowHeight(50);
getListbox().reshape();
return;
}
/**
* Handle the Applet start method.
*/
public void start() {
/* Handle the Applet start method. */
super.start();
}
/**
* Handle the Applet stop method.
*/
public void stop() {
/* Handle the Applet stop method. */
super.stop();
}
}

D.6 MyListbox.java
package itsc.taligent.widget;
/**
* This Class was generated by a SmartGuide.
*
*/
public class MyListbox extends MultiColumnListbox {
int thisa = 0;
int thisb = 0;
int thisc = 0;

Appendix D. Internet Shopping Applet Code Listings 273

This soft copy for use by IBM employees only.

int thisd = 0;
/**
* This method was created by a SmartGuide.
*/
public void reshape () {
super.reshape(thisa,thisb,thisc,thisd);
return;
}
/**
* This method was created by a SmartGuide.
* @param a int
* @param b int
* @param c int
* @param d int
*/
public void reshape (int a,int b,int c,int d) {
try {
thisa=a;
thisb=b;
thisc=c;
thisd=d;
super.reshape(a,b,c,d);
show();
}
catch (Throwable e)
{ System.out.println("Exception in MyListbox.reshape()");
e.printStackTrace(); System.out.println(e); }
return;
}
}

D.7 MyImage.java
package itsc.taligent.widget;
import java.awt.*;
import java.awt.image.*;
import java.net.URL;
/**
* This Class was generated by a SmartGuide.
*
*/
public class MyImage extends java.lang.Object implements
itsc.taligent.widget.Paintable, ImageObserver {
private Image image;
private MyListbox myListbox;
/**
* This method was created by a SmartGuide.
* @param imageIN java.awt.Image
*/
public MyImage (java.awt.Image imageIN) {
image=imageIN;
}
/**
* This method was created by a SmartGuide.
* @param imageIN java.awt.Image
* @param myListbox com.taligent.widget.MyListbox
*/
public MyImage (java.awt.Image imageIN, MyListbox listboxIN) {

274 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

image=imageIN;
myListbox=listboxIN;
}
/**
* This method was created by a SmartGuide.
* @return boolean
* @param image java.awt.Image
* @param infoflags int
* @param a int
* @param b int
* @param c int
* @param d int
*/
public boolean imageUpdate(Image image, int infoflags, int a, int
b, int c, int d) {
// infoflags will be set to ALLBITS if image loading is finished.
if((infoflags]ALLBITS) == ALLBITS) {myListbox.repaint();return
false;}
return true;
}
/**
* This method was created by a SmartGuide.
* @param g java.awt.Graphics
*/
public void paint(Graphics g) {
g.drawImage(image,0,0,this);
}
/**
* This method was created by a SmartGuide.
* @return java.awt.Dimension
*/
public Dimension size () {
return new Dimension(image.getWidth(null),image.getWidth(null));
}
}

Appendix D. Internet Shopping Applet Code Listings 275

This soft copy for use by IBM employees only.

276 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Appendix E. Special Notices

This publication is intended to help anyone with a need to understand how to
use Java to build AS/400 client/server applications. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by VisualAge for Java or the AS/400 Toolbox for Java. See the
PUBLICATIONS section of the IBM Programming Announcement for VisualAge
for Java for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Advanced Function Printing AFP
AIX Application System/400
AS/400 CICS
Client Access Client Access/400
DB2 DB2 /400
IBM OS/2
OS/400 PowerPC
S/370 VisualAge

 Copyright IBM Corp. 1997 277

This soft copy for use by IBM employees only.

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

400

278 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Appendix F. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

F.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 281.

AS/400 Client/Server Performance Using the Windows Clients, SG24-4526-01

F.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

F.3 Other Publications
These publications are also relevant as further information sources:

Java in a Nutshell, ISBN 1-56592-183-6

Java Developer's Reference, ISBN 1-57521-129-7

Object Oriented Technology: A Manager's Guide, ISBN 0-201-56358-4

 Copyright IBM Corp. 1997 279

This soft copy for use by IBM employees only.

280 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com .

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

PUBORDER — to order hardcopies in United States

GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

REDBOOKS category on INEWS

Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1997 281

This soft copy for use by IBM employees only.

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

Online Orders — send orders to:

Telephone orders

Mail Orders — send orders to:

Fax — send orders to:

1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

Direct Services - send note to softwareshop@vnet.ibm.com

On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

282 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

Z Invoice to customer number

Z Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 283

This soft copy for use by IBM employees only.

284 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

List of Abbreviations

AFP advanced function printing

APA all points addressable

CPW Commercial Processing
Workload

EAB Enterprise Access Builder

DAX Data Access Builder

DDM Distributed Data Management

DPC Distributed Program Call

FFST First Failure Support
Technology

HTML Hypertext Markup Language

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

ITSO International Technical
Support Organization

JAR Java archive

JDBC Java Database Connectivity

JDK Java Development Toolkit

JIT Just in Time Compiler

JVM Java Virtual Machine

MI Machine Interface

OOA Object Oriented Analysis

OOD Object Oriented Design

OOP Object Oriented Programming

PROFS Professional Office System

RAD Rapid Application
Development

RMI Remote Method Invocation

SCS SNA Character Set

SLIC System Licensed Internal
Code

SSL secure sockets layer

TIMI Technology Independent
Machine Interface

UML Unified Methodology
Language

URL Universal Resource Locator

WWW World Wide Web

 Copyright IBM Corp. 1997 285

This soft copy for use by IBM employees only.

286 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

Index

A
abbreviations 285
acronyms 285
advanced JavaBean concept 205
applet capability 157
applet class definition 155
applet limitation 156
application description 129
AS/400 data type 65
AS/400 Java virtual machine 210
AS/400 JVM 211
AS/400 toolbox 13
AS/400 toolbox for Java 61, 215

security 71

B
bibliography 279
browser

class 23
package 21
project 21

C
class 3, 25, 31
class browser 23
CLASSPATH 70
collaboration 6
command 69

CRTJVAPGM 211
component 7
component browser 20
composition 6
CPW benchmark 129
creating simple JavaBean 192
CRTJVAPGM command 211
CSDB database 130

D
data access builder (DAX) 57
data conversion 64
data queue 70, 108

DataQueue object 113
read 114, 117
write 114, 117

DAX 154
DAX (data access builder) 57
DAX (Enterprise Access Builder for Data) 135
DDM server 67, 92
distributed program call 98
distributed program call (DPC) 99

DPC 99
ProgramCall object 102
ProgramParameter 103

DPC (distributed program call) 99

E
EAB (enterprise access builders) 13, 57
encapsulation 3, 7
Enterprise Access Builder for Data (DAX) 135
enterprise access builders (EAB) 13, 57

F
field description object 116
framework 8

H
host server 64
HTML tags for applets 157
HTTP server 70

I
IDE (integrated development environment) 13, 14
IFS

available 128
connectService 126
IFSFile 127
IFSFileInputStream 128
list 127
read 128

integrated development environment (IDE) 13, 14
integrated file system 68
Integrated File System access 123
Internet shopping application 159

CartApplet applet 179
check order status applet 184
ItemsDb class 167
SelectedItems class 166
ToolboxApplet" applet 174

J
JAR (Java archive) 15
JAR file 187
Java applets 155
Java archive (JAR) 15
Java database connectivity (JDBC) 13
Java development toolkit 155

JDK 1.0 155
JDK 1.1 155

Java interface 155
ActionListener interface 156

 Copyright IBM Corp. 1997 287

This soft copy for use by IBM employees only.

Java native interface 15
Java on AS/400 system 209
Java virtual machine 210
JavaBean 190

advanced concept 205
BeanInfo class 205
bound property 205
contrained property 205
creating a simple 192
customization 191
events 191
indexed property 205
introspection 191
making ItemsDb 194
method 191
persistence 192
property 191

JavaBeans 25, 135, 189
JavaBeans API 15
JDBC 14, 66, 73, 135

CallableStatement object 84
connection object 78
executeQuery 79, 89
executeUpdate 81
extended dynamic 74
getConnection 78
next() method 79
package cache 74
performance tips 74
prepareCall 84, 88
prepareStatement 79
ResultSet 79, 89
stored procedures 84

JDBC (Java database connectivity) 13
JDBC application example 76
JDBC/ODBC bridge driver 66
JDK 1.1 13

M
machine interface (MI) 210
making ItemsDb JavaBean 194
MI (machine interface) 210

N
national language support 71
network print 118

O
object 3
object-oriented programming (OOP) 139
OOP (object-oriented programming) 139
order entry application description 129

P
package 30
package browser 21
PartsContainer interface 84
polymorphism 7
print 68

connectService 121
openSynchronously 122
setUserFilter 122
size 122
SpooledFileList 122

program call 69
project 29
project browser 21
proxy builder 56

R
record level conversion 65
record-level file access 67, 92
RecordFormat object 116
remote method invocation (RMI) 15
repository 44
reusable GUI part 83
RMI (remote method invocation) 15

S
SLIC (system licensed internal code) 210
smartguide 55
system licensed internal code (SLIC) 210

T
Taligent 73, 120, 163
technology independent machine interface

(TIMI) 210
TIMI (technology independent machine

interface) 210

U
UML (unified methodology language) 139
unified methodology language (UML) 139

V
vector 164
VectorEnumeration 164
version 43
visual builder

connection 27
visual composition editor 24

free-form surface 32
parts palette 32
smarticon 35

VisualAge for Java 11, 12
debugger 52
debugging code 41

288 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

VisualAge for Java (continued)
enterprise edition 44
inspector 54
Java applet viewer 47
professional edition 44
scrapbook 55
setting breakpoints 41
smartguide 49
system requirement 58
team development 43

VisualAge for Java - AS/400 Feature 215

W
workbench 17

Index 289

This soft copy for use by IBM employees only.

290 Accessing the AS/400 with Java

This soft copy for use by IBM employees only.

ITSO Redbook Evaluation

Accessing the AS/400 System with Java
SG24-2152-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

Use the online evaluation form found at http://www.redbooks.com
Fax this form to: USA International Access Code + 1 914 432 8264
Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 291



This soft copy for use by IBM employees only.

Printed in U.S.A.

SG24-2152-00

