

SG24-2163-00

Building AS/400 Applications with Java

February 1998

International Technical Support Organization

Building AS/400 Applications with Java

February 1998

SG24-2163-00

ÉÂÔ

 Take Note!

Before using this information and the product it supports, be sure to read the general information in Appendix D, “Special
Notices” on page 213.

First Edition (February 1998)

This edition applies to Version 4 Release 2 of AS/400 Developer Kit for Java (Product Number 5769-JV1) and Version 3 Release 2
of AS/400 Toolbox for Java (Program Number 5763-JC1) for use with Version 4 Release 2 of the OS/400 Operating System
(5769-SS1).

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . vii
The Team That Wrote This Redbook . vii
Comments Welcome . ix

Chapter 1. Introduction . 1

Chapter 2. Java Overview and AS/400 Implementation 5
2.1 Java Platform . 5

2.1.1 Java Virtual Machine (JVM) . 5
2.1.2 Java APIs . 7
2.1.3 Java Utilities . 10

2.2 AS/400 Java Implementation . 13
2.2.1 AS/400 Java Virtual Machine . 14
2.2.2 AS/400 Java APIs . 15
2.2.3 AS/400 Java Utilities . 15

2.3 AS/400 Specific Implementation . 19
2.3.1 The OS/400 Java Commands . 19
2.3.2 The QShell Interpreter . 25
2.3.3 The Remote AWT Support . 28

Chapter 3. Installation . 31
3.1 Installing Java on AS/400 System . 31

3.1.1 Checking What Software is Installed 33
3.2 Manually Installing Java Support on AS/400 System 41
3.3 Installing Java on Your Workstation . 53

3.3.1 Downloading JavaSoft JDK from Internet 54
3.4 Setting Up the Environment . 61

3.4.1 Setting Up the Environment On Your PC 61
3.4.2 Setting Up the Environment on the AS/400 System 66
3.4.3 Setting Up the Java Environment for CL Commands 67
3.4.4 Setting Up the Environment for QShell 69
3.4.5 Installing the AS/400 Toolbox for Java on Your Workstation 75

3.5 Using Remote AWT Support on Your Workstation 78
3.5.1 Setting Up the Remote AWT Environment 78
3.5.2 Starting Remote AWT Support On Your Workstation 79
3.5.3 Starting Remote AWT Support on the AS/400 System 81

Chapter 4. Java For RPG Programmers . 85
4.1 Object-Orientation and RPG . 85
4.2 Java . 87

4.2.1 What is Java? . 88
4.2.2 Java Syntax . 89
4.2.3 Object Creation . 90
4.2.4 Class Variables . 91
4.2.5 Class Methods . 91
4.2.6 Instance Variables . 91
4.2.7 Instance Methods . 91
4.2.8 Object Destruction . 91
4.2.9 Subclasses and Inheritance . 91
4.2.10 Overriding Methods . 92

 Copyright IBM Corp. 1998 iii

4.2.11 Compiling Java on the AS/400 System 92

Chapter 5. Overview of the Order Entry Application 93
5.1 Overview of the RPG Order Entry Application 93

5.1.1 The ABC Company . 93
5.2 Order Entry Application Database Layout 105

5.2.1 District . 105
5.2.2 Customer . 106
5.2.3 Order . 106
5.2.4 Order Line . 107
5.2.5 Item (Catalog) . 107
5.2.6 Stock . 107

5.3 Database Terminology . 108

Chapter 6. Migrating the User Interface to Java Client 109
6.1 Creating the Java Client Graphical User Interface 110
6.2 Overview of the Parts Order Entry Window 111
6.3 Application Flow through the Java Client Order Entry Window 112

6.3.1 Connecting to Database . 113
6.3.2 Program Interfaces . 117
6.3.3 Retrieving the Customer List . 117
6.3.4 Retrieving the Item List . 122
6.3.5 Verifying the Item and Adding It to the Order 126
6.3.6 Submitting the Order . 128

6.4 Changes to the Host Order Entry Application 135
6.4.1 Providing a Customer List . 135
6.4.2 Providing an Item List . 136
6.4.3 Verifying an Item . 137
6.4.4 Processing the Submitted Order . 137

6.5 Summary . 139

Chapter 7. Moving the Server Application to Java 141
7.1 Order Entry using Record Level Access (DDM) 143

7.1.2 Method Logic . 147
7.1.3 Cleaning Up . 158

7.2 Order Entry using JDBC . 159
7.2.1 Method Logic . 162
7.2.2 Cleaning Up . 169

7.3 Remote Method Invocation Support . 170
7.3.1 RMI Application Design . 171
7.3.2 Adding RMI Support to Server Classes 172
7.3.3 Adding RMI Support to the Client . 174
7.3.4 Creating a Client Class to Handle RMI 174
7.3.5 Conclusion . 176

Chapter 8. Performance . 177
8.1 Java Implementation . 177
8.2 Performance Red Flags . 178

8.2.1 Portablility and Interpreted Code . 179
8.3 Are Object-Oriented (OO) Designs Inherently Slower? 179

8.3.1 First Pass after Technology Preview 180
8.4 AS/400 Java Execution Steps . 181
8.5 Comparison with Main Frame Interactive (MFI) 182
8.6 Addressing Performance . 187

iv Building AS/400 Applications with Java

8.7 Work Management and Tuning . 189
8.7.1 Initiating the Batch Immediate Job 189
8.7.2 JAVA or RUNJVA Commands = QJVACMDSRV BCI Job 189
8.7.3 Running Java from QSHELL = QZSHSH BCI Job 191
8.7.4 Searching and Loading Classes . 193

8.8 Threads and Tuning . 195
8.8.1 Initial Thread . 196
8.8.2 Run Priorities . 196
8.8.3 Activity Level . 197
8.8.4 Time Slice . 197
8.8.5 PURGE . 198

8.9 Java Instruction Execution . 198
8.9.1 Compile Options JAVAC . 198
8.9.2 Explicit Java Transformer CRTJVAPGM (Optional) 198
8.9.3 Automatic Java Transformer . 199
8.9.4 Optimization Levels . 199
8.9.5 Automatic Garbage Collection . 200

Appendix A. Example Programs . 203
A.1 Downloading the Files from the Internet Web Site 203

Appendix B. Java/400 V4R2M0 PTF List . 205
B.1 SLIC PTFs Needed for Java 5769-999 205
B.2 XPF PTFs Needed for Java 5769-SS1 206
B.3 JV1 PTFs Needed for Java 5769-JV1 . 206
B.4 Miscellaneous Fixes . 207

Appendix C. Java Source Code Samples 209
C.1 checkToolbox Java Program . 209

Appendix D. Special Notices . 213

Appendix E. Related Publications . 215
E.1 International Technical Support Organization Publications 215
E.2 Redbooks on CD-ROMs . 215
E.3 Other Publications . 215

How to Get ITSO Redbooks . 217
How IBM Employees Can Get ITSO Redbooks 217
How Customers Can Get ITSO Redbooks . 218
IBM Redbook Order Form . 219

List of Abbreviations . 221

Index . 223

ITSO Redbook Evaluation . 225

 Contents v

vi Building AS/400 Applications with Java

 Preface

In the past year, Java has become the hot new programming language. The
reasons for Java's popularity are its portability, robustness, and its ability to
produce Internet enabled applications. This redbook is intended for customers and
service providers who have a need to install the AS/400 Developer Kit for Java,
and for application developers who want to develop Java applications on the
AS/400 system.

We cover how you can use Java and the AS/400 system to build server
applications and client/server applications for the new network computing paradigm.

This redbook provides many practical programming examples with detailed
explanations on how they work. We also describe how to take legacy RPG
applications and modernize them in a practical and evolutionary way using client
and server Java examples. These examples are available to download from our
Internet site. Tips are given on how to improve Java performance.

This redbook gives you a fast start on your way to using Java with the AS/400
system.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world working
at the International Technical Support Organization Rochester Center.

Neil Willis is a Senior Systems Engineer with IBM Australia, currently on
assignment at the ITSO Rochester. Neil has been with IBM for 12 years, working
with IBM customers on the S/38 and AS/400 platforms. His areas of specialty
include Performance Tuning, Capacity Planning, Application Development,
Communications, and the Internet. His professional qualifications include a degree
in Computer Science, a degree with honors in Electrical Engineering, and a
Masters Degree in Information Systems.

Bob Maatta is a Senior Software Engineer from the United States at the
International Technical Support Organization, Rochester Center. He writes
extensively and teaches IBM classes worldwide on all areas of AS/400
client/server. Before joining the ITSO 3 years ago, he worked in the U.S. AS/400
National Technical Support Center as a Consulting Market Support Specialist. He
has over 20 years of experience in the computer field and has worked with all
aspects of personal computers for the last 10 years.

Simon Coulter is a principal of FlyByNight Software, an Australian AS/400
consulting company specializing in data replication, data warehousing, AS/400
education, and programming services. Previously, he was a Software Engineer
with IBM Australia for 8 years and has 13 years experience in the computer
industry. He may be contacted through e-mail at shc@flybynight.com.au.

Jim Fair is a Staff Software Analyst at the IBM AS/400 Support Line Organization
in Rochester, MN. He has been working in the area of application support the past
9 years with specific focus on object-oriented technology for the last 4 years. He

 Copyright IBM Corp. 1998 vii

provides expert technical advice and support to IBM's Customers and Business
Partners in the area of application support and enablement.

Pierre Goudet is a Senior I/T Specialist at the AS/400 Technical Support Center in
Paris, France. He has worked for IBM for over 25 years and has held several
positions as a field technical support representative and as a Consultant in
Application Development. He provides expert technical advice to IBM's Customers
and Business Partners and teaches IBM classes on AS/400 Application
Development, Client/Server, Network Computing, and Java. Pierre is currently the
AS/400 Java Technical Support Specialist for EMEA West Region.

Leonardo Llames is a Senior Software Analyst at the IBM Advanced Technical
Support Organization in Rochester, MN. He has been working in the areas of
performance analysis, application, and database design for IBM customers for the
past 9 years and currently works in object-oriented technology and Java. Prior to
his move to Rochester, he was involved in application development with IBM
Business Partners.

Thanks to the following people for their invaluable contributions to this project:

Jennifer Bigus
IBM Rochester Laboratory

Phil Coulthard
IBM Toronto Laboratory

John Gojnich
Computer Results Team
Sydney, Australia

Greg Hoffa
IBM Rochester Laboratory

Mike Jacobs
IBM Rochester Laboratory

Mike McRoberts
IBM Rochester Laboratory

Mark Megerian
IBM Rochester Laboratory

Barbara Morris
IBM Toronto Laboratory

Gary Mullen-Schultz
IBM Rochester-Partners in Development

Conny Nordstrom
IBM Sweden

John Orbeck
IBM Rochester Laboratory

viii Building AS/400 Applications with Java

Pramod Patel
IBM Toronto Laboratory

Jon Peterson
IBM Rochester Laboratory

Pamela Tse
IBM Toronto Laboratory

Jerry Wille
IBM Rochester Laboratory

 Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

� Fax the evaluation form found in “ITSO Redbook Evaluation” on page 225 to
the fax number shown on the form.

� Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

� Send us a note at the following address:

 redbook@vnet.ibm.com

 Preface ix

x Building AS/400 Applications with Java

 Chapter 1. Introduction

In this redbook, we cover Java on the AS/400 system by focussing on three main
areas:

� An overview of Java on the AS/400 system
� Installation of Java on the AS/400 system
� Building AS/400 applications with Java

We first provide an overview of Java and its key components. We then cover how
Java is implemented on the AS/400 system and provide details about AS/400
specific considerations.

We next show details about how to install Java on the AS/400 system and how to
set up the Java environment.

Finally, we cover building AS/400 applications using Java. In this section, we cover
migrating an existing RPG Order Entry application to Java. In the migration
scenario, we first build a client-based Java graphical user interface program that
interfaces with the existing AS/400 RPG application. We then migrate the RPG
application to Java and use the Java remote method invocation feature to allow the
client Java program to interface with the AS/400 server Java program. The
migration scenario is shown in the following diagrams.

We start with an existing RPG order entry application. This application is described
in more detail in Chapter 5, “Overview of the Order Entry Application” on page 93.

 Copyright IBM Corp. 1998 1

Figure 1. RPG Order Entry Application

In the second version of the application, we develop a Java client graphical user
interface. We modify the AS/400 RPG application to allow it to interface with the
new Java client program, but still function through a 5250 interface. This scenario
is described in detail in Chapter 6, “Migrating the User Interface to Java Client” on
page 109.

2 Building AS/400 Applications with Java

Figure 2. Java Client Order Entry Application

Finally, we change the RPG order entry program to an AS/400 Java program. We
modify the client Java program to allow it to interface with the new Java server
program through the remote method invocation interface. This scenario is
described in detail in Chapter 7, “Moving the Server Application to Java” on
page 141.

 Chapter 1. Introduction 3

Figure 3. Java Client/Java Server Order Entry Application

To maximize the benefits from this book, certain skills are assumed. First, to install
Java on the AS/400 system and on your workstation, we assume that you have
general AS/400 operational skills and Windows 95 skills. Also, you need to be
proficient with a Web browser. Second, if you plan on developing Java based
applications, you need to be proficient in Java programming, object-oriented design
techniques, and AS/400 application development methods as well as DB2/400
skills.

This book is not designed to teach basic Java skills. There are many books freely
available and translated into many languages that teach Java. See Appendix E,
“Related Publications” on page 215 for details.

4 Building AS/400 Applications with Java

Chapter 2. Java Overview and AS/400 Implementation

In this chapter, we discuss the Java Platform architecture. First we look at the
Java Platform as it is defined by Sun Microsystems' JavaSoft Division and
implemented in their Java Development Kit (JDK). Then we present the Java
implementation on the AS/400 system and some of the AS/400 specific aspects of
this implementation.

 2.1 Java Platform
Java is a full fledged Object-Oriented (O-O) programming language. The Java
language syntax is similar to the syntax of C or C++ while its behavior is more
closely related to Smalltalk. Some features of the Java language such as strongly
typed data definitions, no direct memory addressing through pointers, or automatic
garbage collection make it well suited to develop robust, Enterprise core business
applications.

Although Java can be seen as yet another programming language, easy to learn,
simple to debug, and with a reduced maintenance cost, the main advantage of
Java is its cross-platform portability. Java's portability is achieved due to the core
Java APIs or Java classes that provide a rich set of platform neutral Application
Programming Interfaces (APIs). The existence of this set of Java APIs provides the
I/T industry with the capability of developing sophisticated, state-of-the-art,
client/server Internet enabled applications that can be deployed and run on any
Java enabled platform. Hence, Java is not only a new promising programming
language, it is a new software platform that can be implemented and run on any of
the existing hardware/software platforms.

The Java platform can be seen as the combination of three main components:

� The Java Virtual Machine (JVM)
� The Java APIs
� The Java Utilities

2.1.1 Java Virtual Machine (JVM)
The Java Virtual Machine is the center piece of the Java platform; it is the "engine"
of Java. As the JVM is responsible for running Java applications or applets in a
given hardware/software environment, it is platform dependent. Every company
that wants to implement Java on a given platform must implement the Java Virtual
Machine on its hardware/software platform. The Java Virtual Machine usually
includes the following components.

2.1.1.1 The Class Loader
The class loader is capable of dynamically locating and loading the various classes
that the application uses. This is a powerful feature as it allows programmers to
develop applications or applets that are made up of many classes that can be
provided by several different vendors. As the acceptance of Java grows in the
entire industry, many companies are developing standard, ready-to-use software
components or Java Beans that greatly simplify the job of application developers.
The dynamic nature of the class loader greatly simplifies the application packaging
process as it is no longer required to go through the complex and error prone
process of building the executable program. Each class can be compiled

 Copyright IBM Corp. 1998 5

separately from the other classes and can be loaded as required by the class
loader. However, for performance reasons, the developers tend to package related
classes together in what is known as jar files (Java Archive). A jar file is a
compressed (zipped) package that includes several classes. The process of
packaging an application into a jar file is simple and much easier than the
traditional building steps required when using more conventional languages such as
C or C++. Often all the classes that make up an application are packaged in a
single jar file. For instance, all the Java Core API classes are shipped within a
single file named classes.zip . The class loader is capable of finding the required
class within a jar file and expanding (unzipping) it on the fly.

 2.1.1.2 Bytecode Verifier
A main focus of Java is security. This is important in an open network environment
where one may run an applet from an unknown source. Before running a Java
program, this component of the JVM performs extensive checks to ensure that the
Java bytecodes have not been altered and that they still conform to the Java
security specifications. This involves such things as type matching. For instance,
when an arithmetic operation code is encountered, the bytecode verifier checks that
all the operands involved in the operation are of the integer type. If the bytecode
does not pass the verifier checks, the JVM throws a run-time exception and the
program is terminated.

 2.1.1.3 Bytecode Interpreter
This component of the JVM is responsible for reading the bytecodes and carrying
out the operations that they specify. The bytecodes are interpreted on the fly as
the Java application steps from one instruction to the next. This part of the Java
Virtual Machine is essential as it is key to the overall performance of the
implementation. As new versions of the JDK are introduced, the overall
performance of the bytecode interpreter is improved, thanks to new algorithms
being developed.

 2.1.1.4 Garbage Collector
Another feature of the Java Virtual Machine is the automatic garbage collection.
Unlike C++ where the programmer is responsible for allocating memory to store
new objects and freeing unused memory when objects are being discarded, Java
provides a fully-automated memory allocation and de-allocation known as automatic
garbage collection. This solves one of the main problems found in many C++
applications known as memory leaks. This is one of the most difficult bugs to deal
with when developing C++ applications, and often C++ applications fail with an "out
of memory" error because of poor memory management. In Java, it is the JVM
that allocates the necessary memory when a new object is created while a
background task running in a separate thread continuously scans the memory and
de-allocates space occupied by objects without an active reference in any of the
running classes. This is an important part of the Java Virtual Machine, and it is key
to both the performance and the reliability of Java programs.

2.1.1.5 Java To Native Method Interface (JNI)
This component can be viewed as some "glue" code that allows a Java program to
invoke a method written in another language than Java. Usually, the supported
languages are C or C++. This interface allows for inter-operation between Java
applications and legacy applications. However, using Native methods means losing
portability. By construction, Native methods are written to a specific execution
environment and are platform dependent. As soon as a Java application uses a

6 Building AS/400 Applications with Java

piece of code written in a different language, the entire application becomes
platform dependent. If portability is important to you, do not use JNI.

 2.1.1.6 Miscellaneous Components
Some Java implementations may include other components. One of the most
commonly found components is a Just-In-Time (JIT) compiler. This is often tightly
integrated with the bytecode interpreter. It performs additional tasks such as
setting aside in memory the real instructions corresponding to the bytecodes in
such a way that any further reference to a bytecode that was executed once results
in the execution of the corresponding real machine instruction that already exists.
This technique greatly enhances the overall performance of the Java Virtual
Machine. Just-In-Time compilers can also perform code optimization functions to
further improve the performances. Functions such as inlining (that is, including a
piece of code in another sequence rather than performing a branch or a call to a
subroutine and dynamic dead code elimination) are becoming common. In fact,
sophisticated compiler optimizing techniques are being implemented in Just-In-Time
compilers.

Other functions such as serialization or reflection are also found in a Java Virtual
Machine.

Reflection in Java refers to the ability of a Java class to reflect upon itself (that is,
to "look inside itself"). The reflection technique allows a Java program to inspect
and manipulate any Java Class. This is the technique that the JavaBeans
"introspection" mechanism uses to determine the properties, events, and methods
that are supported by a bean. Reflection can be used to query and set the values
of fields, to invoke methods, or to create new objects. Java does not allow
methods to be passed directly as data values but the reflection technique makes it
possible for methods passed by name to be invoked indirectly.

Serialization is the ability to write the complete state of an object (including any
object to which it refers) to an output stream, and then to re-create that object at a
later time by reading its serialized state from an input stream. This technique is
used as the basis for transferring objects through cut-and-paste and between a
client and a server or vice versa for remote method invocation. It can also be used
by Java Beans to provide pre-initialized serialized objects rather than a simple class
file. This technique is also used as an easy way to save users' preferences and
application states. Serialization includes information about the class version.
Obviously, an early version of a class may not be able to de-serialize a serialized
instance created by a newer version of the same class. See the serialver Java
utility in Section 2.1.3, “Java Utilities” on page 10.

 2.1.2 Java APIs
The Java Platform provides a set of Java classes or Application Programming
Interfaces (APIs) that mimic a complete modern, yet platform neutral operating
system. The current version of the Java Platform, which is based on the Java
Development Kit (JDK) version 1.1.4, is made of two sorts of APIs, the Core library
and the Standard Extension library.

Core library APIs belong to the minimal set of APIs that form the standard Java
platform. Core library APIs are available on the Java platform, regardless of the
underlying operating system. They can run on smaller, dedicated embedded

 Chapter 2. Java Overview and AS/400 Implementation 7

systems such as set-top boxes, printers, copiers, and cellular phones. The Core
library grows with each release of the JDK.

The Standard Extension library is a set of APIs outside the Core API for which
JavaSoft has defined and published an API standard.

 2.1.2.1 Core Library
The classes included in the Core library are grouped into several packages.
Currently, the Core library is made of the following packages:

� java.applet : This defines the environment in which applets are running. It
provides all the controls required for the Browser to manage the applet's
execution.

� java.awt : The Abstract Windowing Toolkit (AWT) provides the basic constructs
required to build and manage a graphical user interface (GUI).

� java.beans : Java Beans are reusable software components that conform to
the bean specification and are designed to be directly manipulated by visual
development tools.

� java.io : This provides all the constructs required to perform standard input and
output operations on UNIX style stream files.

� java.lang : This is the basic Java language package. This includes the
definition of all the Java data types as well as the execution behavior such as
multi-threading and exception handling.

� java.math : This enhances the basic language constructs by providing a
BigDecimal data type and a BigInteger data type and associated operations.

� java.net : This provides a TCP/IP connectivity environment that includes
sockets, URL, HTTP, and datagram management.

� java.rmi : (Remote Method Invocation) allows for inter-operation among
distributed Java objects.

� java.security : This provides the classes required for protecting data exchange
on the network by means of private and public key encryption, authentication
certificates, and electronic signatures.

� java.sql : This is also known as Java Database Connectivity (JDBC). It is the
Java equivalent of Open Database Connectivity (ODBC) and provides all the
constructs required to handle relational database accesses.

� java.text : This includes all the classes necessary to develop National
Language enabled applications.

� java.util : This provides basic U.S. English only date and time functions and a
set of utilities such as string tokenization, hash table, random number
generator, and so on.

Some of the previous packages are also known as the Enterprise APIs. Java
Enterprise APIs support connectivity to enterprise databases and legacy
applications. With these APIs, corporate developers are building distributed
client/server applets and applications in Java that run on any operating system or
hardware platform in the enterprise. Java Enterprise currently encompasses four
areas:

� JDBC, Java Database Connectivity (implemented in the java.sql package)

8 Building AS/400 Applications with Java

� RMI, Remote Method Invocation (implemented in java.rmi)

� IDL, Interface Definition Language, a Corba compliant set of Interfaces that
provide for seamless integration with Corba compliant distributed objects. To
provide sufficient time to standardize Java-to-CORBA connectivity through the
Object Management Group (OMG), Java IDL has been decoupled from the
JDK 1.1 release and will be available on a slightly delayed schedule.

� JNDI, Java Naming and Directory Interface provides a unified interface to
multiple naming and directory services in the enterprise.

JNDI is part of the Standard Extension library whereas JDBC, IDL, and RMI are
part of the Core library.

In a future release of the Java Development Kit (JDK), the Java Foundation
Classes (JFC) will incorporate several new features that further enhance a
developer's ability to deliver scaleable, commercial, mission-critical applications:

� New high-level graphical user interface (GUI) components
� Pluggable look and feel
� Accessibility support for people with disabilities

 � 2D APIs
 � Drag-and-drop

The Java Foundation classes will be part of the Core library of the Java platform
and will extend the original Abstract Windowing Toolkit (AWT) by adding a
comprehensive set of graphical user interface (GUI) class libraries that is portable
and compatible with all AWT-based applications.

2.1.2.2 The Standard Extension Library
The Standard Extension library includes all the Java APIs that have been defined
by JavaSoft and that are not part of the Java Core library. The following set of
APIs are currently defined:

� The Java Server APIs are an extensible framework that enables and eases the
development of a entire spectrum of Java-powered Internet and intranet
servers. The APIs provide uniform and consistent access to the server and
administrative system resources required for developers to quickly develop their
own Java servers.

� The Java Servlet APIs enable the creation of Java Servlets. This API enables
developers to incorporate the power of servlets into their existing Web
configurations. The Java Servlet Development Kit includes a servlet engine for
running and testing servlets, the java.servlet.* sources, and all of the API
documentation for java.servlet.* and sun.servlet.*.

� The Java Commerce APIs bring secure purchasing and financial management
to the Web. JavaWallet is the initial component that defines and implements a
client-side framework for credit card, debit card, and electronic cash
transactions.

� The JavaHelp APIs are the help system for the Java platform. It is a
Java-based, platform independent help system that enables Java developers to
incorporate online help for a variety of needs including Java components,
applications, applets, desktops, and HTML pages.

� The Java Media and Communications APIs meet the increasing demand for
multimedia in the enterprise by providing a unified, non-proprietary,

 Chapter 2. Java Overview and AS/400 Implementation 9

platform-neutral solution. This set of APIs supports the integration of audio and
video clips, animated presentations, 2D fonts, graphics, and images as well as
3D models and telephony. By providing standard players and integrating these
supporting technologies, the Java Media and Communications APIs enable
developers to produce and distribute compelling, media-rich content. The Java
Media and Communications APIs are made of the Java 2D APIs, Java 3D
APIs, Java Media Framework APIs, Java Sound APIs, Java Speech APIs, and
JavaTelephony APIs.

� The Java Management APIs provide a rich set of extensible Java objects and
methods for building applets that can manage an enterprise network over
Internet. It has been developed in collaboration with SunSoft and a broad
range of industry leaders including AutoTrol, Bay Networks, BGS, BMC, Central
Design Systems, Cisco Systems, Computer Associates, CompuWare,
LandMark Technologies; Legato Systems, Novell, OpenVision, Platinum
Technologies, Tivoli Systems, and 3Com.

� The PersonalJava APIs are designed for network-connectable applications on
personal consumer devices for home, office, and mobile use. Devices suitable
for PersonalJava include hand-held computers, set-top boxes, game consoles,
mobile hand-held devices, and smart phones to name a few.

� The EmbeddedJava APIs are designed for high-volume embedded devices
such as mobile phones, pagers, process control, instrumentation, office
peripherals, network routers, and network switches. EmbeddedJava
applications run on real-time operating systems and are optimized for the
constraints of small-memory footprints and diverse visual displays.

Some of the previously listed APIs may move from the Standard Extension library
to the Core library as new releases of the JDK are introduced.

This list gives you a flavor of the extensive set of functions provided by today's
Java platform and some of the directions where Java is going. It demonstrates that
Java is not another simple and easy to use programming language but a
sophisticated programming environment for developing today's and tomorrow's
applications.

 2.1.3 Java Utilities
The Java Utilities is a set of programmer's aids that covers the programming side
of the application development cycle. The following tools are provided:

 2.1.3.1 java
This command allows you to run a Java application. Note that any arguments that
appear after the class name on the command line are passed as parameters to the
main method of the class. The Java command expects the binary representation of
the class to be in a file called classname.class , which is generated by compiling
the corresponding source file with javac . All Java class files end with the file name
extension .class , which the compiler automatically adds when the class is
compiled. The class must contain a main method defined as follows:

class classname {
public static void main(String argv[]){
. . .

 }
 }

10 Building AS/400 Applications with Java

 2.1.3.2 javac
This tool invokes the Java compiler. The Java compiler checks the syntax of a
Java source file (.java file). It then compiles it and creates a Java bytecodes file
(.class file) that can be run using the previous Java command. Java source code
must be contained in files whose file names end with the .java extension. The file
name must be constructed from the class name such as classname.java if the
class is public or is referenced from another source file. For every class defined in
each source file compiled by javac , the compiler stores the resulting bytecodes in a
class file with a name of the form classname.class. Unless you specify the -d
option, the compiler places each class file in the same directory as the
corresponding source file.

 2.1.3.3 jdb
This command invokes the Java language debugger that helps you find and fix
bugs in Java programs. The Java debugger is a dbx-like command line debugger
for Java classes. It uses the Java Debugger API to provide inspection and
debugging of a local or remote Java interpreter. The same as dbx, there are two
ways jdb can be used for debugging. The most frequently used way is to have the
debugger start the Java interpreter with the class to be debugged. This is done by
typing jdb instead of java on the command line. The second way to use the
debugger is to attach it to a Java interpreter that is already running. For security
reasons, the Java interpreter can only be debugged if it is started with the -debug
option. When started with the -debug option, the Java interpreter prints out a
password that you must specify when starting the debugger with the jdb command.

 2.1.3.4 javah
This tools reads a Java .class file and creates a C language header file and stub
file to be included in a C source file. This utility provides the "glue code" that
allows the programmer to call native C or C++ methods from within a Java
program. The generated header and source files are used by C programs to
reference an object's instance variables from native source code. The .h file
contains a struct definition whose layout parallels the layout of the corresponding
class. The fields in the struct correspond to instance variables in the class. The
new native method interface, Java Native Interface (JNI), does not require header
information or stub files. The javah utility can still be used with the -jni option to
generate native method function prototypes needed for JNI-style native methods.
The result is placed in the .h file. Using native methods means that the application
is not 100% pure Java and, thus, is not directly portable across platforms. Native
methods are, by nature, platform or system specific.

 2.1.3.5 javap
This command invokes the Java disassembler. This Java tool disassembles a
.class file. Its output depends on the options used. If no options are used, javap
prints out the public fields and methods of the classes passed to it. javap prints its
output to stdout. This tool may be useful when the original source code is no
longer available and you need to reverse engineer a Java class. The use of this
tool may violate the license agreement for the class you are disassembling.

 Chapter 2. Java Overview and AS/400 Implementation 11

 2.1.3.6 javadoc
This command produces a standard documentation for your Java classes. The
documentation is in HTML format and can be viewed by any Browser. The
javadoc utility generates one .html file for each .java file and each package it
encounters. In addition, it produces a class hierarchy file named tree.html and an
index of the members called AllNames.html . If you want the javadoc tool to
produce additional information, you must use the special form of comments in your
Java source file. The javadoc type comments start with /** and ends with */. All
the text included between the opening /** tag and the ending */ tag is added to the
generated documentation.

 2.1.3.7 jar
The jar tool combines several Java .class files into a single Java ARchive (.jar
file). Java ARchive files are used to minimize Java applets download time and to
simplify the Java application's installation on distributed clients and servers. The
jar utility was designed mainly to facilitate the packaging of Java applets or
applications into a single archive. When the components of an applet or application
(.class files, images, and sounds) are combined into a single archive, they may be
downloaded by a Java agent such as a browser in a single HTTP transaction rather
than requiring a new connection for each piece. This dramatically improves
download times. The jar utility also compresses files using a zip like algorithm and
so further improves download time.

 2.1.3.8 javakey
This tool adds a digital signature to a jar file. This allows you to improve the
security of your Java applets as the users of your applets know that they are using
authenticated Java code originating from you. The primary use of this utility is to
generate digital signatures for archive files. A signature verifies that a file came
from a specified entity, a signer. To generate a signature for a particular file, the
signer must first have a public/private key pair associated with it, and also one or
more certificates authenticating its public key. Users of the authenticated archive
file are called identities. Identities are real-world entities such as people,
companies. or organizations that have a public key associated with them. An
identity may also have associated with it one or more certificates authenticating its
public key. A certificate is a digitally signed statement from one entity, saying that
the public key of some other entity has a particular value. Signers are entities that
have private keys in addition to corresponding public keys. Private keys differ from
public keys in that they can be used for signing. Prior to signing any file, a signer
must have a public and private key pair associated with it, and at least one
certificate authenticating its public key.

 2.1.3.9 appletviewer
This tool allows you to run a Java applet without using a browser. The tool fully
supports the 1.1.4 level of the JDK whereas most browsers do not support it yet. If
the HTML page you are viewing makes reference to several applets, each applet is
displayed in a separate window.

12 Building AS/400 Applications with Java

 2.1.3.10 rmic
This command generates a stub class file and a skeleton class file for Java objects
that implement the Remote Method Invocation interface. A stub is a proxy for a
remote object that is responsible for forwarding method invocations on remote
objects to the server where the actual remote object implementation resides. A
client's reference to a remote object is actually a reference to a local stub. The
stub implements only the remote interfaces, not any local interfaces that the remote
object also implements. Because the stub implements exactly the same set of
remote interfaces as the remote object itself, a client can use the Java language's
built-in operators for casting and type checking. A skeleton for a remote object is a
server-side entity that contains a method that dispatches calls to the actual remote
object implementation.

 2.1.3.11 rmiregistry
This command starts a remote object registry on a specified port. The remote
object registry is a bootstrap naming service that is used by RMI servers on a host
to bind remote objects to names. Clients can then look up remote objects and
make remote method invocations. The registry is typically used to locate the first
remote object on which an application needs to invoke methods. That object, in
turn, provides application-specific support for finding other objects.

 2.1.3.12 serialver
This command returns the serial version ID for one or more classes.

 2.1.3.13 native2ascii
This utility converts non-Unicode Latin-1 (source code or property) files to Unicode
Latin-1. The Java compiler and other Java tools can only process files that contain
Latin-1 and Unicode-encoded (\udddd notation) characters. The native2ascii utility
converts files that contain other character encodings into files containing Latin-1
and Unicode-encoded charaters.

For more details on this set of utilities and for the exact command syntax, please
refer to the JDK documentation. The documentation is provided as an HTML file
that can be viewed with any browser. The documentation is stored in the DOCS
subdirectory of the JDK1.1.4 directory and is called index.html.

2.2 AS/400 Java Implementation
Starting with V4R2 of OS/400, the AS/400 system implements the Java Platform.
This implementation fully complies with the Java Development Kit (JDK) 1.1.4 as
defined by JavaSoft. As in any other Java platform implementation, the AS/400
system provides the following components:

� The Java Virtual Machine (JVM)
� The Java APIs
� The Java Utilities

The AS/400 Java Implementation has the following enhancements:

� The JVM is integrated into the Systems Licensed Internal Code (SLIC).
� Static compilation of class files
� Dynamic class loading
� Remote Abstract Windowing Toolkit (AWT)
� Scaleable garbage collector

 Chapter 2. Java Overview and AS/400 Implementation 13

� DB2/400 JDBC driver
� Multi-process design point

Figure 4 shows a high level diagram of the AS/400 Java implementation.

2.2.1 AS/400 Java Virtual Machine

Figure 4. Schematic of AS/400 Java Virtual Machine and AS/400 Developer Kit for Java

On the AS/400 system, the Java Virtual Machine is implemented within the System
Licensed Internal Code (SLIC) below the Technology Independent Machine
Interface (TIMI), and it is an integral part of OS/400. This means that as soon as
you install OS/400 V4R2 on your machine, you have installed a standard Java
Virtual Machine on your system. The OS/400 Java Virtual Machine includes all the
components of a standard Java Virtual Machine described earlier in this chapter:

� The class loader
� The bytecode verifier
� The bytecode interpreter
� The garbage collector

The SLIC implementation of the Java Virtual Machine uses the native thread
support that is new with V4R2 of OS/400. It also supports JNI calls to user-written
ILE C or C++ native methods packaged in service programs (*SRVPGM).

14 Building AS/400 Applications with Java

 Important Note

Although there is no way to prevent a Java program from invoking a native ILE
C method, which, in turn, calls an RPG or COBOL program, this is not
supported in V4R2 as RPG and COBOL are not thread safe. Calling a
non-thread safe function from within a threaded environment may cause
unpredictable results to occur and should by all means be avoided. Future
releases of the RPG and COBOL compilers may eventually be able to produce
a thread enabled RPG or COBOL program.

As of V4R2, not all OS/400 system functions are thread safe. Thus, using the
JNI support to invoke a C function that calls a non-thread safe OS/400 system
API may also cause unpredictable results to occur. The System APIs
Reference manual has been updated to reflect the thread safe status of every
system API. Please refer to this manual before using any System API through
the Java JNI support of OS/400 V4R2.

2.2.2 AS/400 Java APIs
The Java Core Library APIs as defined in JavaSoft's Java Development Kit (JDK)
1.1.4 are packaged as a separate, no charge, licensed program product (LPP) that
you must install on your system to run Java applications on the AS/400 system.
This licensed program is called AS/400 Developer Kit for Java (5769-JV1) and can
be installed using the standard OS/400 Install Licensed Program procedures.
Chapter 3, “Installation” on page 31 contains all the details on how to install this
licensed program on your system.

This is a "skip release" licensed program product that follows Sun's JDK future
versions as closely as possible, independently from OS/400 versions and releases
whenever possible.

The java.io APIs are linked to the integrated file system (IFS) support of OS/400
and provide access to any UNIX or PC style stream file within the IFS. The
java.net APIs use the standard TCP/IP support provided by the TCP/IP
Connectivity Utilities for AS/400 (5769-TC1) licensed program product. You must
install this no charge LPP on your system before using Java on your AS/400
system. The java.sql APIs use the standard SQL Call Level Interface (CLI) of
OS/400 to access the AS/400 database. The java.awt APIs use the Remote AWT
support of the AS/400 Java Virtual Machine to route any GUI operation to a
workstation. This is because there are no graphical user interface capable devices
on the AS/400 system. Please see Section 2.3, “AS/400 Specific Implementation”
on page 19 for more details on Remote AWT.

2.2.3 AS/400 Java Utilities
Most Java utilities are supported on the AS/400 system. They are run from within
the QShell Interpreter.

The QShell Interpreter is a new option of OS/400 that you must install on your
AS/400 system to run any Java Utility on your system. Please refer to Chapter 3,
“Installation” on page 31 for more details on how to install this option on your
AS/400 system. See also Section 2.3, “AS/400 Specific Implementation” on
page 19 for more details on the QShell Interpreter.

As of V4R2, qsh supports the following Java utilities:

 Chapter 2. Java Overview and AS/400 Implementation 15

 � java
 � javac
 � javah
 � javap
 � javadoc
 � rmic
 � rmiregistry
 � serialver
 � jar
 � javakey

With the following exceptions, qsh supports the syntax and options of the Java
utilities as they are described in the standard JDK documentation.

 2.2.3.1 java
The Java utility runs Java programs associated with the specified Java class. The
AS/400 Developer Kit for Java version of this utility does not support the following
options:

� -cs,-checksource : Both of these options tell Java to check the modification
times on the specified class file and its corresponding source file. If the class
file cannot be found or if it is out of date, it is automatically recompiled from the
source.

� -debug : The AS/400 implementation provides the capability to debug Java
applications using the standard OS/400 debugging tools. Use the equivalent
OS/400 command (RUNJVA or JAVA) to debug a Java program. The
VisualAge for Java AS/400 feature provides a cooperative debugger capable of
debugging AS/400 Server Java applications from a workstation. This debugger
is the currently available Code/400 Cooperative debugger that has been
enhanced to support Java.

� -noasyncgc : The AS/400 implementation uses a highly scalable garbage
collector in lieu of the standard JDK garbage collector. The AS/400 garbage
collector can be tuned using the new special options.

� noclassgc : As previously mentioned, the AS/400 garbage collector uses its
own options. The standard java utility options do not apply.

� -help : To get help on how to use the java utility, use the OS/400 JAVA (or
RUNJVA) command from any OS/400 command entry line and use the
standard OS/400 prompt (F4) and help (F1) support.

� -prof : Output profiling information to a specified file or to the file java.prof in
the current directory. The AS/400 system has its own performance analysis
tools.

� -ss : Stack size does not apply to the AS/400 Java run-time environment
because of the AS/400 architecture. There is no such thing as maximum stack
size in the AS/400 environment.

� -oss : Again, there is no such thing as maximum stack size in the AS/400 Java
run-time environment.

� -t: Use standard OS/400 debug functions if you need to trace the execution of
a Java application. Depending on the optimization level you specified on the
CRTJVAPGM or the RUNJVA (JAVA) commands, tracing may not be available.

16 Building AS/400 Applications with Java

� -verify : The Java bytecodes are verified, then translated into AS/400 Risc
PowerPC machine instructions when you run the CRTJVAPGM or the RUNJVA
(JAVA) OS/400 commands. All the standard java utility verify options do not
apply to the AS/400 Java run-time environment.

� -verifyremote : See the preceding -verify option.

� -noverify : See the preceding -verify option.

� -verbosegc : The AS/400 garbage collector does not support this option as it
can result in a huge number of messages being put out given the large amount
of objects that can potentially be handled in the AS/400 system.

The AS/400 version of the Java tool supports specific AS/400 options as follows:

� -secure : This option tells the AS/400 Java Virtual Machine to check for public
write access to the directories specified in the CLASSPATH. A directory in the
CLASSPATH that has public write authority is a security exposure because
somebody may store a class file with the same name as the one you want to
run. Whichever class file is found first is run. A warning message is sent for
each directory in the CLASSPATH that has public write authority. If one or
more warning messages are sent, an escape message is sent and the Java
program is not run.

� -gcfrq : Specifies the AS/400 garbage collector collection frequency. It may or
may not be honored depending on the system release and model. Values
between 0 and 100 are allowed. A value of 0 means to run garbage collection
continuously, a value of 100 means to never run garbage collection, and a
value of 50 means to run garbage collection at the default or typical frequency.
The default value for this parameter is 50. The more often garbage collection
runs, the less likely the garbage collector will grow to the maximum heap size.
If a program reaches the maximum heap size, a performance degradation
occurs while garbage collection takes place.

� -gcpty : Specifies the AS/400 garbage collector collection priority. The lower
the number, the lower the priority. A low priority garbage collection task is less
likely to run because other higher priority tasks are running.

In most cases, gcpty should be set to the default (equal) value or the higher
priority value. Setting gcpty to the lower priority value can inhibit garbage
collection from occurring and result in all Java threads being held while the
garbage collector frees storage.

The default parameter value is 20. This indicates that the garbage collection
thread has the same priority as default user Java threads. A value of 30 gives
garbage collection a higher priority than default user Java threads. Garbage
collection is more likely to run. A value of 10 gives garbage collection a lower
priority than default user Java threads. Garbage collection is less likely to run.

� -opt : Specifies the optimization level of the AS/400 Java program that is
created if no Java program is associated with the Java class file. The created
Java program remains associated with the class file after the Java program is
run.

We expect that AS/400 programmers will prefer to use the OS/400 equivalent
command (RUNJVA or JAVA) to benefit from the standard OS/400 environment
such as prompting and online help they are used to. See Section 2.3.1, “The
OS/400 Java Commands” on page 19 for more details on OS/400 Java related
commands.

 Chapter 2. Java Overview and AS/400 Implementation 17

 2.2.3.2 javah
The AS/400 implementation supports only the JNI type of native method
invocations.

� -jni : This option causes javah to create an output file containing JNI-style
native method function prototypes in the current working directory. This option
does not have to be specified, but these -jni type files are always produced.

� -td. : If this option is specified, it is ignored by the AS/400 system. The
JNI-style C language header file is always created in the current working
directory. The header file is created as an AS/400 stream file (STMF) in the
Integrated File System current working directory. This stream file must be
copied to a Source Physical File Member in the QSYS.LIB file system before it
can be included in a C program on the AS/400 system. Use the Copy from
Stream File (CPYFRMSTMF) OS/400 command to do so.

� -stubs : If this option is specified, it is ignored by the AS/400 implementation.

� -trace : If this option is specified, it is ignored by the AS/400 implementation.

� -v: Verbose. This option is not supported.

 2.2.3.3 javap
The AS/400 implementation ignores the following options:

� -b: This option is for backward compatibility with previous releases of the JDK.
As the initial implementation of the JDK on the AS/400 system is version 1.1.4
of the JDK, it did not make sense to support this option on the AS/400 system.

� -verify : This option of javap will be removed in the next release of the JDK.
Thus, it did not make sense to support it on the AS/400 system.

2.2.3.4 Java Utilities Not Supported by AS/400 System
The V4R2 implementation of the JDK does not support the following Java utilities:

� jdb : To debug a Java program on the AS/400 system, you must use the
RUNJVA (or JAVA) command from any OS/400 command entry display.
Specify OPTION(*DEBUG) to start the OS/400 system debugger. Make sure
that you used the -g option when you created the Java bytecodes with the
javac utility. Do not use the optimization option -o when you compile your
Java source program into bytecodes. This causes the Java compiler to place
static, final and private methods inline; thus, the bytecodes are not the exact
representation of the source code. Also make sure that both the Java source
code (.java file) and the bytecodes (.class file) are stored in the same directory
in the AS/400 Integrated File System. This ensures that the AS/400 system
debugger finds all the source files associated with every class that is used.
The debugger assumes that the source file is contained in a .java file with the
same name as the class it is debugging.

� appletviewer : The AS/400 system cannot run applets as it does not have any
graphical user interface capable devices. Applets are intended to be small
Java applications that run embedded within a Web browser. It does not make
sense to run Applets on a server. However, you can run applets on the
AS/400 system using remote AWT.

18 Building AS/400 Applications with Java

2.3 AS/400 Specific Implementation
In this section, we explain some aspects of the Java implementation that are
specific to the AS/400 system. First, we look at the OS/400 commands that are
provided to help you perform some Java related functions in a standard AS/400
way where command prompting and online help text is available. Then we teach
you how to start the QShell Interpreter environment and how to use the qsh
window. Finally, we explain the Remote AWT support.

2.3.1 The OS/400 Java Commands
With V4R2 of OS/400, you can use OS/400 commands to perform certain Java
related functions. Some commands such as RUNJVA (or JAVA) are OS/400
equivalents to existing Java utilities such as java . The other commands
(CRTJVAPGM, DSPJVAPGM, and DTLJVAPGM) are specific to the AS/400
implementation.

 2.3.1.1 CRTJVAPGM
The AS/400 implementation of Java provides a unique component called the
bytecodes transformer. This system function preprocesses Java bytecodes
produced by any Java compiler on any platform and contained in a .class file, a
.jar file, or a .zip file to prepare them to run using the OS/400 Java Virtual
machine. The Java Transformer creates an optimized Java program object that is
persistent and is associated with the .class file, the .jar file, or the .zip file. This
program object contains Risc PowerPC 64-bit machine instructions. The optimized
program object is not interpreted by the bytecodes interpreter at run time, but
directly executes when the class is loaded.

No action is required to start the bytecodes transformer; it automatically starts the
first time that a Java class file is run on the system when you use the java
command from the QShell Interpreter or the RUNJVA OS/400 command.

It is especially important to use CRTJVAPGM on .jar and .zip files. Unless the
entire .jar or .zip file has been optimized using the CRTJVAPGM, each individual
class is optimized at run time and the resulting program objects are temporary.

Using the CRTJVAPGM command on a .jar or a .zip file causes all the classes
contained in that file to be optimized and the resulting optimized Java program
object to be persistent. This results in much better run-time performance.

The Create Java Program (CRTJVAPGM) command creates an AS/400 Java
program from a Java .class , .jar , or a .zip file. The resulting Java program object
becomes part of the class, jar, or zip file object, but cannot be modified directly.
When invoked by the RUNJVA or Run Java Program (JAVA) command, the Java
program is run. The size and performance of the Java program can be controlled
through the use of the OPTIMIZE parameter.

On this command, you specify the name of the Java .class file containing the
bytecodes of the Java program you want to create. You may also specify the
name of a .jar or .zip file that contains several classes packaged together. You
also specify the optimization level of the resulting AS/400 Java program. For
OPTIMIZE(*INTERPRET), the resulting Java program interprets the class file
bytecodes when invoked. For other optimization levels, the Java program contains

 Chapter 2. Java Overview and AS/400 Implementation 19

machine instruction sequences that are run when the Java program is invoked.
The possible values for the OPTIMIZE parameter are as follows:

� *INTERPRET: The Java program created is not optimized. When invoked, the
Java program interprets the class file byte codes. Variables can be displayed
and modified while debugging.

� 10: The Java program contains a compiled version of the class file bytecodes
but has only minimal additional compiler optimization. Variables can be
displayed and modified while debugging. This is the default value for
OPTIMIZE.

� 20: The Java program contains a compiled version of the class file bytecodes
and has some additional compiler optimization. Variables can be displayed but
not modified while debugging.

� 30: The Java program contains a compiled version of the class file bytecodes
and has more compiler optimization than optimization level 20. During a debug
session, user variables cannot be changed, but can be displayed. The given
values may not be the current values of the variables.

� 40: The Java program contains a compiled version of the class file bytecodes
and has more compiler optimization than optimization level 30. All call and
instruction tracing is disabled.

Another parameter, enable performance data collection (ENBPFRCOL), allows you
to specify whether performance data should be collected. Make sure you choose
the proper value if you want to analyze the performances of your Java application.
The default value of *NONE disables performance data collection for that class or
set of classes.

The possible values for this parameter are:

� *NONE: The collection of performance data is not enabled. No performance
data is to be collected.

� *ENTRYEXIT: Performance data is collected for procedure entry and exit.

� *FULL : Performance data is collected for procedure entry and exit.
Performance data is also collected before and after calls to external
procedures.

The REPLACE parameter allows you to specify whether an existing AS/400 Java
program should be replaced or not.

Figure 5 on page 21 shows the OS/400 prompt for the CRTJVAPGM command.

20 Building AS/400 Applications with Java

Figure 5. Create Java Program (CRTJVAPGM) Command

 2.3.1.2 DLTJVAPGM
The Delete Java Program (DLTJVAPGM) command deletes an AS/400 Java
program associated with a Java .class , .jar or .zip file. If no Java program is
associated with the class file specified, an informational message is sent and
command processing continues.

 2.3.1.3 DSPJVAPGM
The Display Java Program (DSPJVAPGM) command displays information about the
AS/400 Java program associated with a Java class file. If no Java program is
associated with the class file specified, an error message is sent and the command
is cancelled. The OUTPUT parameter allows you to specify where the output
should be directed to. Specify * to display the results and *PRINT to send the
results to a spooled file. You can specify the name of a .class , .jar , or .zip file.

Figure 6 on page 22 shows the output of the Display Java Program command.

 Chapter 2. Java Overview and AS/400 Implementation 21

Figure 6. Display Java Program (DSPJVAPGM) Command

2.3.1.4 RUNJVA (or JAVA)
The Run Java Program (JAVA) command runs the AS/400 Java program
associated with the specified Java class. If there is no *JVAPGM object associated
with the class file, one is created and associated permanently with the .class file. It
is used for executing the class file rather than interpreting the bytecodes.

If you specify the special value *VERSION instead of a valid Java class name, the
build version information for the Java Development Kit (JDK) and the Java Virtual
Machine (JVM) is displayed. No Java program is run.

The following parameters can be specified on the RUNJVA command:

� PARM: Specifies one or more parameter values that are passed to the Java
program. A maximum of 200 parameter values can be passed.

� CLASSPATH : Specifies the path used to locate classes. Directories are
separated by colons. If the special value *ENVVAR is used, the class path is
determined by the environment variable CLASSPATH . The CLASSPATH
environment variable can be set by the Add Environment Variable
(ADDENVVAR) command, be part of an export directive in the system wide
/etc/profile file, or specified at the user profile level with an expor t directive
contained in the .profile file in the home directory of each user. See
Chapter 3, “Installation” on page 31 for more details on setting up the
environment.

� CHKPATH : Specifies the level of warnings given for directories in the
CLASSPATH that have public write authority. A directory in the CLASSPATH
that has public write authority is a security exposure because it may contain a

22 Building AS/400 Applications with Java

class file with the same name as the one you want to run. Whichever class file
is found first is run. The possible values for this parameter are:

– *WARN - a warning message is sent for each directory in the CLASSPATH
that has public write authority.

– *SECURE - a warning message is sent for each directory in the
CLASSPATH that has public write authority. If one or more warning
messages are sent, an escape message is sent, and the Java program
does not run.

– *IGNORE - ignore the fact that directories in the CLASSPATH may have
public write authority. No warning messages are sent.

� OPTIMIZE: Specifies the optimization level of the AS/400 Java program that is
created if no Java program is associated with the Java class file. The created
Java program remains associated with the class file after the Java program is
run. The possible values for this parameter are identical and have the same
meaning as described on the CRTJVAPGM command. You can disable
optimization by specifying OPTIMIZE(*INTERPRET) on the RUNJVA command.
This requires that the classes be interpreted regardless of the optimization level
set in the associated Java program object. This is useful if you want to debug
a class that was optimized with an optimization level of 30 or 40.

� PROP: Specifies a list of values to assign to Java properties. Up to 100 Java
properties can have a value assigned.

� GCHINL: Specifies the initial size (in kilobytes) of the garbage collection heap.
This is used to prevent garbage collection from starting on small programs.

� GCHMAX: Specifies the maximum size (in kilobytes) that the garbage
collection heap can grow to. This is used to prevent runaway programs that
consume all of the available storage. Normally, garbage collection runs as an
asynchronous thread in parallel with other threads. If the maximum size is
reached, all other threads are stopped while garbage collection takes place.
This may adversely affect performance.

� GCFRQ: Specifies the AS/400 Garbage Collector collection frequency. It may
or may not be honored depending on the system release and model. Values
between 0 and 100 are allowed. A value of 0 means to run garbage collection
continuously, a value of 100 means to never run garbage collection, and a
value of 50 means to run garbage collection at the default or typical frequency.
The default value for this parameter is 50. The more often garbage collection
runs, the less likely the garbage collector will grow to the maximum heap size.
If a program reaches the maximum heap size, a performance degradation
occurs while garbage collection takes place.

� GCPTY: Specifies the AS/400 garbage collector collection priority. The lower
the number, the lower the priority. A low priority garbage collection task is less
likely to run because other higher priority tasks are running.

In most cases, gcpty should be set to the default (equal) value or the higher
priority value. Setting gcpty to the lower priority value can inhibit garbage
collection from occurring and result in all Java threads being held while the
garbage collector frees storage.

The default parameter value is 20. This indicates that the garbage collection
thread has the same priority as default user Java threads. A value of 30 gives
garbage collection a higher priority than default user Java threads. Garbage
collection is more likely to run. A value of 10 gives garbage collection a lower
priority than default user Java threads. Garbage collection is less likely to run.

 Chapter 2. Java Overview and AS/400 Implementation 23

� OPTION: Specifies special options used when running the Java class. The
possible values are *NONE (no special options are used when running the
Java class), *VERBOSE (a message is displayed each time a class file is
loaded), or *DEBUG (allows the AS/400 system debugger to be used for this
Java program).

Figure 7 and Figure 8 on page 25 show the RUNJVA command prompts.

Figure 7. Run Java Program (RUNJVA) Command (Display 1 of 2)

24 Building AS/400 Applications with Java

Figure 8. Run Java Program (RUNJVA) Command (Display 2 of 2)

2.3.2 The QShell Interpreter
The QShell Interpreter, qsh , is a command interpreter for the AS/400 system that is
based on POSIX and X/Open standards. The QShell Interpreter is based on the
POSIX 1003.2 standard and X/Open CAE Specification for Shell and Utilities. It
has many features that make it the same as the Korn shell (ksh) and it is upwardly
compatible with the Bourne shell (sh).

With qsh , you can:

� Run UNIX-like commands from either an interactive session or a script file.

� Write shell scripts that can be run without modification on other systems.

� Work with files in any file system supported by the Integrated File System.

� Run interactive threaded programs that do thread safe I/O operations.

� Write your own utilities to extend the capabilities provided by qsh .

qsh provides the following features:

� Quoting, including the escape character, literal quotes, and grouping quotes

� Parameters and variables including positional parameters and special
parameters

� Word expansion including tilde () expansion, parameter expansion, command
substitution, arithmetic expansion, field splitting, path name expansion, and
quote removal

 � Input/output redirection

� Commands, including pipelines, lists, and compound commands

 Chapter 2. Java Overview and AS/400 Implementation 25

The current implementation of qsh provides built-in utilities for:

 � Defining aliases
� Working with parameters and variables

 � Running commands
 � Managing jobs
� Developing Java programs

More utilities will be available in subsequent releases of OS/400.

To start the QShell Interpreter, use the STRQSH or the QSH OS/400 commands.
You can specify a QShell command to be run when you start qsh. Or you may
start an interactive qsh session if you leave the default value *NONE for the CMD
parameter on the STRQSH command.

Figure 9 shows the STRQSH command prompt.

Figure 9. Starting the Qshell Interpreter

If you use the STRQSH (or QSH) command in an interactive job, the command
starts an interactive shell session. If a shell session is not currently active for your
job, then using the STRQSH (or QSH) command does the following actions:

� Start a new shell session for your job.

� Display the shell terminal window on your display.

� Run the commands contained in the profile file of the /etc directory
(/etc/profile) if such a file exists in the /etc directory.

� Run the commands contained in the .profile file of your home directory if such
a file exists in your home directory.

26 Building AS/400 Applications with Java

If a shell session is already active for your job, the STRQSH (or QSH) command
simply reconnects you to the active shell session and displays the shell terminal
window on your display.

From the terminal window, you can enter shell commands and view output from the
commands you run. The terminal window has two parts, similar to the OS/400
command entry display:

� An input line located at the bottom of the display. This allows you to enter shell
commands.

� An output area that contains an echo of the commands you entered on the
input line and any output generated by the commands you entered. The output
area can be scrolled backward and forward.

Figure 10 shows the shell terminal window.

Figure 10. QSH Command Entry

The following function keys are available on the shell terminal window:

� F3=Exit: Closes the terminal window and ends the QShell Interpreter session.

� F5=Refresh: Re-displays the contents of the output area.

� F6=Print: Prints the entire contents of the output area to a spooled file.

� F7=Up / Page Up: Displays the previous page of the output area.

� F8=Down / Page Down: Displays the next page of the output area.

� F9=Retrieve: Retrieve a previous command. You can press this key multiple
times to retrieve any previous command. You can also select a specific
command to be run again by placing the cursor on that command on the output

 Chapter 2. Java Overview and AS/400 Implementation 27

area and pressing the F9=Retrieve key. This copies the selected command
from the output area back to the input line where you can modify it as required.

� F11=Wrap / Truncate: This key toggles the line wrap/truncate mode for the
output area. In line wrap mode, any output longer than the width of the
terminal window is wrapped to the next line. In truncate mode, the portion of
the output beyond the width of the terminal window is not shown.

� F12=Disconnect: Closes the terminal window and disconnects your workstation
from the QShell Interpreter session. The qsh session does not end and
remains active in the background. As soon as you use the STRQSH (or QSH)
command again, you are reconnected to the waiting shell session.

� F13=Clear: Removes all output from previous commands from the output area
of the shell terminal display.

� F17=Top: Displays the first page of output data.

� F18=Bottom: Displays the last page of output data.

� F19=Left: Scrolls the display to the left side of the output data.

� F20=Right: Scrolls the display to the right side of the output data.

� F21=CL command entry: Displays a pop-up command entry display where you
can enter OS/400 CL commands.

� SysReq-2: Interrupts the currently running shell command.

Please refer to the QShell Interpreter Reference, (at
http://as400bks.rochester.ibm.com) for a complete description of the AS/400 QShell
Interpreter features and functions.

2.3.3 The Remote AWT Support
The Remote Abstract Windowing Toolkit (Remote AWT) is an implementation of the
Java Abstract Windowing Toolkit (AWT) that allows Java applications that use the
Java AWT support to run unchanged on a host that does not have a graphical user
interface (GUI) such as the AS/400 system.

The Remote AWT support is a set of Java classes that use the remote method
invocation (RMI) feature of the JDK. As such, this support can also be used to
provide a remote display of any Java AWT based GUI on any Java compliant
platform.

The Java application on the "source" system (in this case, the AS/400 system) uses
standard Java AWT APIs to generate a graphical user interface (GUI). Every call
to any AWT API is passed to the Remote AWT support on the "source" system.
The Remote AWT function uses RMI to communicate with its equivalent function on
the "target" (remote) system. On the "target" (remote) system, the Remote AWT
support passes all the AWT requests it receives from the "source" system to the
standard Java AWT APIs. The standard Java AWT support on the "target"
(remote) system then displays the GUI on the locally attached display device.
Keyboard and mouse interactions flow in the opposite direction. They are handled
on the "target" (remote) system by the standard Java AWT APIs and passed to the
Remote AWT support. The remote AWT support sends all the requests to its peer
component on the "source" system using RMI. On the "source" system, the
Remote AWT support passes all the keyboard and mouse requests back to the

28 Building AS/400 Applications with Java

standard Java AWT APIs, which, in turn, passes them to the Java application.
Figure 11 on page 29 shows a Remote AWT implementation.

Figure 11. Source and Target Systems

As you can see, the path length involved in the Remote AWT operations is quite
long. The sole intent of the Remote AWT support is to provide an implementation
that allows any Java application to run on the AS/400 system without any
modification, even though that application uses Java AWT support while the AS/400
does not have any graphical user interface capability.

One of the possible uses of the Remote AWT support is to allow for application
installation and configuration, which usually involves little end user interactions and
is performed on the server.

Remote AWT is not intended to be used as a way to support client/server
applications involving heavy graphical user interface (GUI) operations. Such
applications must be designed as client/server applications (that is, a client side
application that manages the user interface and interacts, using Java RMI APIs with
a server side application that manages database accesses and server side
processing). Figure 12 on page 30 shows the architecture of a standard
client/server application.

 Chapter 2. Java Overview and AS/400 Implementation 29

Figure 12. AS/400 Server and Java-Enabled Client

As you can see, this is a much "cleaner" design where the Java RMI support is
only used to communicate between the client side Java application and the server
side Java application. The overhead incurred is by far less important than what is
involved in managing a graphical user interface. Also, the Java AWT APIs are
used on the client side where the user interaction with the application takes place.
In this case, there are no AWT operations performed on the server side.

Conversely, the database operations are performed on the server side. Servers
such as the AS/400 system have an industrial strength database management
system (DBMS) that is designed to handle heavy data base operations in a secure
multi-user environment. Care should be taken when placing enterprise data on
client workstations.

30 Building AS/400 Applications with Java

 Chapter 3. Installation

This chapter provides the information needed to successfully install various
software components required to run Java on the AS/400 system. We cover:

1. Installing the Java support on the AS/400 system itself.

2. The necessary steps required to install the JavaSoft Java Development Kit
(JDK) on a workstation.

3. Installing the AS/400 Toolbox for Java on the workstation.

4. How to set up the run-time environment variables such as the PATH and
CLASSPATH directives.

5. How to configure and run Remote AWT.

In this book, we use a PC based workstation running Microsoft's Windows 95
Operating System as an example. Any Java Virtual Machine (JVM) enabled
workstation can be used in lieu of a Windows 95 system. This includes RS/6000
with AIX workstations, PCs running IBM's OS/2 Warp Version 4 or Microsoft's
Windows NT, Apple's Macintosh, or any JVM capable Network Computer such as
IBM's Network Station.

3.1 Installing Java on AS/400 System
To install Java on the AS/400 system, sign on to the system using the QSECOFR
user profile. At the Sign On display, enter QSECOFR on the User prompt and
type the corresponding password on the Password prompt shown in Figure 13 on
page 32.

Pressing the Enter key displays the AS/400 Main Menu .

 Copyright IBM Corp. 1998 31

Figure 13. Sign On to Your AS/400 using QSECOFR User Profile

On the AS/400 Main Menu command line, type GO LICPGM as shown in
Figure 14 on page 33. The system then displays the Work with Licensed
Programs menu.

32 Building AS/400 Applications with Java

Figure 14. AS/400 Main Menu

Now check to see if all the required software is already installed on your AS/400
system. All AS/400 systems shipped from IBM with OS/400 Version 4 Release 2
(V4R2) installed should have all the required support already pre-loaded. If you are
migrating to V4R2 from a previous release of OS/400, you may need to install the
required software manually as described in Section 3.2, “Manually Installing Java
Support on AS/400 System” on page 41.

3.1.1 Checking What Software is Installed
On the Work with Licensed Programs menu command line, type option 10 as
shown in Figure 15 on page 34. All of the licensed programs currently installed on
your system are displayed.

 Chapter 3. Installation 33

Figure 15. Work with Licensed Program Menu

Pressing the Enter key shows the Display Installed Licensed Programs display.
On this display, you can choose the type of information shown in the second
column of the display. The default setting is to display the compatibility status of
the various licensed programs. Pressing F11 one time displays the Installed
Release information. Pressing F11 again displays the Product Option information.
Since we are looking for some OS/400 options, select the Product Option
information shown in Figure 16 on page 35.

34 Building AS/400 Applications with Java

Figure 16. Display Licensed Programs with Product Options

If you are planning to develop client/server Java applications on the AS/400
system, you may require all of the following licensed programs and operating
system options:

� OS/400 - Host Servers (5769-SS1 Option 12)
� OS/400 - QShell Interpreter (5769-SS1 Option 30)
� AS/400 Toolbox for Java (5763-JC1)
� AS/400 Developer Kit for Java (5769-JV1)
� TCP/IP Connectivity Utilities for AS/400 (5769-TC1)

The Java classes provided in the AS/400 Toolbox for Java can be used to develop
client-based applications and applets that access AS/400 resources. These
applications or applets can access any AS/400 system running OS/400 V3R2,
V3R7, V4R1, or V4R2 (in earlier releases such as V3R2, not all AS/400 Toolbox for
Java features may be available due to certain host server functions not being
available. For example, on OS/400 V3R2, DDM is not supported over a TCP/IP
connection. This feature can be enabled on V3R7 and V4R1 by applying the
appropriate PTFs.) These classes use TCP/IP sockets to connect to the host
servers running on the AS/400 system. This is the reason why you must have the
OS/400 Host Servers and TCP/IP Connectivity Utilities installed.

Running Java applications on the AS/400 system requires OS/400 Version 4
Release 2 (V4R2).

With V4R2, Java applications running on the AS/400 system must also use the
AS/400 Toolbox for Java classes to access AS/400 resources such as data

 Chapter 3. Installation 35

queues, print and spool support, execute OS/400 commands, or call AS/400
programs.

For this reason, you must make sure that the OS/400 Host Servers, TCP/IP
Connectivity Utilities, and AS/400 Toolbox for Java are installed on your AS/400
system.

With V4R2 of OS/400, you have two new licensed programs:

� The AS/400 Developer Kit for Java (5769-JV1)
� The AS/400 Toolbox for Java (5763-JC1)

The AS/400 Developer Kit for Java (5769-JV1) provides the Java classes or
Application Programming Interfaces (APIs) defined by JavaSoft. The current
implementation conforms to level 1.1.4 of the Java Development Kit (JDK)
specification. The QShell Interpreter (OS/400 Option 30) provides a
character-based command level environment that allows you to use standard Java
commands such as java , javac , javadoc , and so on from any AS/400 workstation.
This support allows you to perform Java related functions such as compiling Java
source code into bytecodes or running a Java program in the same way as you do
when performing these tasks on a PC workstation from a DOS session.

The AS/400 Toolbox for Java (5769-JC1) provides a set of Java classes that
simplify the access of AS/400 resources from a Java application. These classes
can be used in a client Java application or in a server Java application.

Using the Page Down key (or the Scroll Up key), page through the Display
Installed Licensed Programs displays and look for the required OS/400 options
and licensed programs. Figure 17 on page 37 shows 5769-SS1 Option 30,
OS/400 - QShell Interpreter .

36 Building AS/400 Applications with Java

Figure 17. Display Installed Licensed Programs and Product Options (Option 30)

Browse through the various pages of the displayed licensed programs and look for
all the programs previously listed. Make sure you find the two new V4R2 licensed
programs, 5763-JC1 AS/400 Toolbox for Java and 5769-JV1 AS/400 Developer
Kit for Java , shown in Figure 18 on page 38.

 Chapter 3. Installation 37

Figure 18. Display Installed Licensed Programs (5769-JC1 and 5769-JV1)

If you find that 5763-JC1 AS/400 Toolbox for Java or 5769-JV1 AS/400
Developer Kit for Java are not installed then follow the procedures in 3.2,
“Manually Installing Java Support on AS/400 System” on page 41 to install them.

Continue paging down until you find the 5769-TC1 TCP/IP Connectivity Utilities
for AS/400 licensed program shown in Figure 19 on page 39.

38 Building AS/400 Applications with Java

Figure 19. Display Installed Licensed Programs (Host Servers)

If you plan on using PCs running Microsoft's Windows 95/NT as Java clients or as
Java Remote AWT devices for your AS/400 applications, use Client Access for
Windows 95 to provide easy to use AS/400 connectivity features such as accessing
the IFS to store Java source code and Java bytecodes from your PC. In this case,
look for the 5763-XD1 Client Access for Windows 95/NT licensed program shown
in Figure 20 on page 40.

 Chapter 3. Installation 39

Figure 20. Display Installed Licensed Programs (5763-XD1)

Starting with Version 4 Release 1 (V4R1) of OS/400, the enhanced version of the
Windows 3.1 client and the Windows 95/NT client are now part of the AS/400
Client Access Family for Windows, 5769-XW1 . Make sure this licensed program
is installed as shown in Figure 21 on page 41.

40 Building AS/400 Applications with Java

Figure 21. Display Installed Licensed Programs (5769-XW1)

If all of the required licensed programs and OS/400 options are installed on your
system, you can skip the next section. Otherwise, go through the following steps to
install any missing OS/400 option or licensed program on your system.

3.2 Manually Installing Java Support on AS/400 System
In this section, we go through the steps required to install one or more of the
software functions needed to run Java on your AS/400 system.

First, we guide you step-by-step in the installation process; then we cover loading
and applying the latest PTF Cumulative Package.

3.2.1.1 Install OS/400 Options And Licensed Programs
Return to the Work with Licensed Programs menu using the F3=Exit or the
F12=Cancel key from the Display Installed Licensed Programs display. On the
Work with Licensed Programs menu, type option 11 as shown in Figure 22 on
page 42.

 Chapter 3. Installation 41

Figure 22. Work with Licensed Programs Display

Press the Enter key. The Install Licensed Programs display is shown as in
Figure 23 on page 43.

42 Building AS/400 Applications with Java

Figure 23. Install Licensed Programs Display

On the appropriate line in the list, enter a 1 next to 5769-SS1 OS/400 - Host
Servers if this option is not already installed on your system. Use the Page Down
or the Scroll Up key until you see 5769-SS1 OS/400 - QShell Interpreter shown in
Figure 24 on page 44.

 Chapter 3. Installation 43

Figure 24. Install Licensed Programs Display (Installing OS/400 Host Servers)

Type a 1 to select the 5769-SS1 OS/400 - QShell Interpreter option if it is not
already installed on your system. This is a new option of OS/400 V4R2 that
provides a text-based command entry environment designed to allow you to use
most Java standard commands from any AS/400 workstation the same as from a
DOS command entry window on a PC.

This is a required option as an OS/400 style command is not provided for every
Java command.

In V4R2 of OS/400, the current Java CL commands are:

� CRTJVAPGM to compile a Java program on the AS/400 system. This
command converts Java bytecodes produced by any Java compiler into an
executable AS/400 program. To run the CRTJVAPGM command, you must
specify the name of a Java .class file containing Java bytecodes. Java
bytecodes can be produced by any PC based Java compiler and then copied to
the AS/400 IFS. Or you can run the javac command on the AS/400 system
using the OS/400 Java QShell Interpreter support; then create the AS/400
executable program from an OS/400 command entry display.

� RUNJVA (or JAVA) to execute a Java program on the AS/400 system. This
command is equivalent to the standard java command. To run a Java program
on the AS/400 system, you can choose to use the OS/400 RUNJVA command
or JAVA command from an OS/400 command entry display and benefit from
the OS/400 style prompts and online help, or use the standard Java style java
command using the OS/400 Java QShell Interpreter support.

44 Building AS/400 Applications with Java

� DSPJVAPGM displays some details about the AS/400 executable Java
program produced by the CRTJVAPGM command.

� DLTJVAPGM deletes the AS/400 executable Java program and removes the
link from the associated .class file.

If you need to run any other Java command (such as javadoc) to produce standard
documentation from a Java program, jar to package one or more Java classes
together, or any other Java standard command, you must use OS/400 Java QShell
Interpreter support. So, do not forget to install it.

Use the Page Down or the Scroll Up key until you see the new V4R2 licensed
programs required for running Java within the AS/400 system. These are
5763-JC1 AS/400 Toolbox for Java and 5769-JV1 AS/400 Developer Kit for
Java . Type a 1 next to each one on these two new licensed programs to select
them for installation, as shown in Figure 25.

Figure 25. Install Licensed Programs (5763-JC1 and 5769-JV1)

The AS/400 Toolbox for Java provides a set of Java classes aimed at simplifying
the access to AS/400 resources from a Java application. These classes are used
on the AS/400 server to allow AS/400 native Java applications access to data
queues, printer and spooling functions, executing OS/400 commands, or calling
AS/400 programs. The AS/400 Toolbox for Java classes also provide record level
access to AS/400 files using DDM, reading from and writing to PC-like files stored
on the IFS, and JDBC access to DB2/400 Database.

The AS/400 Toolbox for Java classes can also be used on the client to develop
Java applications or applets that access AS/400 resources. Please refer to
Accessing the AS/400 System with Java, SG24-2152, for a complete detailed

 Chapter 3. Installation 45

description and working examples on how to use the AS/400 Toolbox for Java
classes to develop Java applications or applets that access the AS/400 system.

The AS/400 Developer Kit for Java (5769-JV1) provides all the Java classes as
defined in the Java Development Kit Version 1.1.4 and published by JavaSoft. This
set of application programming interfaces (APIs) allows for running any Java
compliant program on the AS/400 system. This new licensed program requires
OS/400 Version 4 Release 2 (V4R2).

Then, you need to scroll further down the list until you find 5769-TC1 TCP/IP
Connectivity Utilities for OS/400 . Type 1 next to this licensed program to install if
it is not already installed on your AS/400 system. This is shown in Figure 26.

Figure 26. Install Licensed Programs (5769-TC1 TCP/IP Connection Utilities)

If you plan on using PCs running Microsoft's Windows 95 or Windows NT
Workstation as Java clients or as Java Remote AWT clients for your AS/400 server
based Java applications, you might consider installing Client Access for Windows
95/NT on your AS/400 system. To do this, you need to scroll down the Install
Licensed Programs display until you see the 5763-XD1 Client Access for
Windows 95/NT licensed program shown in Figure 27 on page 47.

46 Building AS/400 Applications with Java

Figure 27. Install Licensed Programs (5763-XD1 Client Access for Windows 95/NT)

Type a 1 next to the 5763-XD1 Client Access for Windows 95/NT entry on the
display if this licensed program is not already installed on your AS/400 system.
Then scroll down the display using the Page Down key or the Scroll Up key until
you see 5769-XW1 AS/400 Client Access Family for Windows . Type a 1 on the
corresponding line to select this licensed program for installation if it is not currently
installed on your machine. Figure 28 on page 48 shows this selection.

 Chapter 3. Installation 47

Figure 28. Install Licensed Programs (5769-XW1 Client Access Family for Windows)

You have now completed selecting the required OS/400 options and licensed
programs. Press Enter to see the Confirm Install of Licensed Programs display
shown in Figure 29 on page 49.

48 Building AS/400 Applications with Java

Figure 29. Confirm Install of Licensed Programs Display

As you can see on this display, most of the OS/400 options and licensed programs
are at the V4R2 level. However, as we have previously mentioned, the AS/400
Toolbox for Java Licensed Program can be installed on any AS/400 system running
OS/400 V3R2, V3R7, V4R1, or V4R2. This is depicted by the name of the licensed
program (5763-JC1) that conforms to OS/400 V3R2 standards and by the V3R2M0
information shown in the Installed Release column .

The Client Access for Windows 95/NT Licensed Program is now at the V3R1M3
level. This level can be installed on any AS/400 system running OS/400 V3R1,
V3R2, V3R6, V3R7, V4R1, or V4R2. Be aware that some Operations Navigator
functions may not be available on the CISC systems. The Enhanced Client for
Windows 3.1 became available as a member of the AS/400 Client Access Family
for Windows with OS/400 V4R1.

Note: If one or more options or licensed programs are not installed on your
system, the corresponding Installed Release information is blank.

Press Enter to see the Install Options display shown in Figure 30 on page 50.

 Chapter 3. Installation 49

Figure 30. PTF Install Options

On this display, type the device name of the CD-ROM drive of your AS/400 system.
This is usually OPT01. Type OPT01 (or the name of the CD-ROM drive on your
AS/400 system if it differs from OPT01) on the Installation device prompt and leave
all other options as they are. Make sure you insert the OS/400 Volume 1 in the
CD-ROM drive; then press the Enter key. This starts the installation process on
your system. If your distribution media is tape, use the name of the tape device for
the Installation device (for example, TAP01).

3.2.1.2 Install Cumulative PTF Package
When the installation completes, you must install the latest cumulative PTF
package to load and apply all the required PTFs to the newly installed OS/400
options and licensed programs. To proceed with installing the PTFs, use the
F3=Exit key or the F12=Cancel key to return to the AS/400 Main Menu ; then type
GO PTF on the AS/400 Main Menu command line as shown in Figure 31 on
page 51.

50 Building AS/400 Applications with Java

Figure 31. AS/400 Main Menu Display

Then press the Enter key. The Program Temporary Fix menu is shown in
Figure 32 on page 52.

 Chapter 3. Installation 51

Figure 32. Program Temporary Fix Display

On the Program Temporary Fix menu, type option 8 - Install program temporary
fix package ; then press the Enter key to see the Install Options for Program
Temporary Fixes display shown in Figure 33 on page 53.

52 Building AS/400 Applications with Java

Figure 33. Install Options for Program Temporary Fixes

On this display, type OPT01 (or the name of your AS/400 system CD-ROM drive or
tape device if it differs from OPT01) and keep the default values for all the other
options shown in the previous picture. Make sure you use the latest cumulative
PTF package volume and place it in the CD-ROM drive (or tape device); then press
the Enter key to start loading and applying the latest cumulative PTF package. If
you cannot re-IPL the system at this time, you can change the Automatic IPL value
to N for No. But beware, you cannot use any Java related functions before you
power down the system and apply the required PTFs during the following IPL.

After you complete this step, you are ready to install the required Java support on
your workstation.

3.3 Installing Java on Your Workstation
You now need to install a Java run time on your workstation. In this redbook, we
show you how to install the JavaSoft Java Development Kit (JDK) on a PC running
the Microsoft Windows 95 operating system.

You may choose to use any other workstation environment capable of running a
Java Virtual Machine (JVM). Such environments include RS/6000 with AIX
workstations, PCs running IBM's OS/2 Warp Version 4 or Microsoft's Windows NT
Operating Systems, Apple's Macintosh, or any JVM enabled Network Computer
such as IBM's Network Station.

 Chapter 3. Installation 53

This redbook does not provide guidance on how to install a Java environment on
any of these systems, nor does it provide help on how to install a Web browser or
to configure TCP/IP communications.

You must have at least one workstation enabled for Java in your configuration.
Java is a new programming language designed to develop applications that you
can easily deploy in a network computing environment.

3.3.1 Downloading JavaSoft JDK from Internet
To install a Java environment on your workstation, you must obtain the required
software. The Java Development Kit can be downloaded free of charge from the
JavaSoft World Wide Web (WWW) Internet site.

If you have several workstations on which you want to install the JDK, you may
choose to obtain the required software on a CD-ROM. You can purchase such a
CD-ROM from JavaSoft. For more details, please visit JavaSoft Internet site at the
URL shown in the following example and Figure 34.

http://www.javasoft.com/products/jdk/1.1/

Figure 34. JavaSoft JDK 1.1 Home Page

To download the Java Development Kit from the Internet, you must start your Web
browser and go to the previous URL. In this redbook, we use Netscape for our
examples.

Note: The JDK that we used on our Windows 95 PC was JDK 1.1.4. In the
future, there will be later releases of the JDK (for example, JDK 1.1.5). In the
documentation provided by JavaSoft, it is stated that these 1.1.n releases will be

54 Building AS/400 Applications with Java

upward compatible. So when a later release becomes available for your PC, it
should work the same or similar to the JDK 1.1.4 examples shown here.

From this site, simply follow the instructions as they are listed on the HTML page
(shown in Figure 34 on page 54):

Select Microsoft Windows 95 / NT 4.0 from the drop-down list under Download
JDK 1.1.4 software.

Click on the Download Software push button next to it as shown in Figure 35.

Figure 35. Downloading JDK 1.1.4 from the Internet

Note: Carefully read the information notice you receive relating to U.S. Export
Control Terms and Conditions. You may not be eligible to download the JDK. This
notice is shown in Figure 36 on page 56.

 Chapter 3. Installation 55

Figure 36. Export Control Terms and Conditions

If you are eligible to download the JDK, click on the Yes push button. The JDK
Download Page is shown in Figure 37 on page 57.

56 Building AS/400 Applications with Java

Figure 37. JDK Download Page (Windows Version)

Click on the Download jdk114.exe link to copy the install program named
JDK114.EXE onto the hard disk of your PC. You are prompted to specify a path
name (directory) and file name for saving the file shown in Figure 38. Specify a
directory name of your choice and keep the proposed program name.

Usually temporary files are saved to the following directory tree:

C:\WINDOWS\TEMP\

Figure 38. Directory Trees

Then click on the Save push button to begin downloading the file to your PC. This
takes several minutes, depending on the speed of your Internet connection link
because this file is 9 060 335 bytes (compressed).

 Chapter 3. Installation 57

After copying the JDK114.EXE, return to the Downloading the Java Development
Kit Version 1.1.4 page at the following URL:

http://www.javasoft.com/products/jdk/1.1/

You may use the Back push button from your browser's toolbar to do so. Again,
simply follow the instructions as they are listed on the HTML page:

Select ZIP file for Windows from the drop-down list under Download JDK 1.1.4
HTML documentation.

Click on the Download Documentation push button next to it as shown in
Figure 39.

Figure 39. Downloading JDK 1.1.4 Documentation

This takes you to the JDK Download Page shown in Figure 40 on page 59.

58 Building AS/400 Applications with Java

Figure 40. JDK Download Page (Documentation)

Click on the Download jdk114doc.zip link to copy the ZIP file containing the JDK
documentation to your PC hard disk.

You may receive a warning message "Unknown File Type". Ignore the message by
clicking on the Save File push button.

You are then prompted to specify a path name (folder) and file name as shown in
Figure 41.

Figure 41. Downloading the .zip File to Correct Folder

Specify the folder name and the file name of your choice. Usually, temporary files
are saved in the following folder:

 Chapter 3. Installation 59

C:\WINDOWS\TEMP\

Keep the proposed file name for further reference. Then click on the Save push
button to begin copying the documentation to your PC. This takes several minutes,
depending on the speed of your Internet connection link as this file is 2 010 261
bytes (compressed).

You are now ready to begin installing the JDK and associated documentation on
your PC. Start the Windows Explorer and find the two files you just downloaded. If
you used the proposed folder and file names, look for the program
C:\WINDOWS\TEMP\JDK114.EXE . Double-click on it to run the installation
program. This creates a folder called JDK1.1.4 on your disk and installs all the
files and sub-folders composing the JDK.

Figure 42 shows the Windows 95 Explorer frame.

Figure 42. Locating JDK Documentation File for Installation

Then look for the documentation self extracting program. Again, if you used the
proposed folder and file names, look for C:\WINDOWS\TEMP\JDK114DOC.ZIP .
Double-click on it to start installing the documentation. Make sure you first install
the JDK classes and then the documentation. The documentation self-extracting
file automatically creates a sub-folder named docs in the previously created
JDK1.1.4 folder.

This completes installing the JDK and related documentation on your PC.

60 Building AS/400 Applications with Java

 Important Note

The Java core classes of the JavaSoft JDK 1.1.4 are contained in a
compressed (ZIP) file named CLASSES.ZIP in JDK1.1.4\LIB\.

Do not UNZIP this file! It must remain zipped for the compiler and interpreter to
access the class files within it properly. This file contains all of the compiled
.class files for the JDK.

3.4 Setting Up the Environment
In this section, we guide you through the various steps you need to follow to set up
the proper Java environment both on your PC and on the AS/400 system.

3.4.1 Setting Up the Environment On Your PC
The first thing you need to do is to set up the PATH and the CLASSPATH
environment variables on your workstation.

It is possible for you to run the JDK without modifying any system environment
variables (such as PATH or CLASSPATH) or modifying the AUTOEXEC.BAT file.
The path variable is merely a convenience to the developer and not necessary to
set. If you choose not to modify these environment variables, you must specify the
correct path every time you want to run any Java command such as java , javac , or
javadoc from a DOS session. For instance, if you want to compile a Java program
named myclass.java , you need to enter the following command at the DOS
prompt:

C:\WINDOWS> C:\JDK1.1.4\BIN\javac myclass.java

This can become tedious and error prone, so usually you want to set up the proper
path information in your AUTOEXEC.BAT file. Once you set up the path
information in your AUTOEXEC.BAT file, you can compile your program simply by
entering the following command at the DOS prompt:

C:\WINDOWS> javac myclass.java

3.4.1.1 Setting Up the PATH Variable
To change the path information in your AUTOEXEC.BAT file, you need to do the
following steps:

� Start a text editor such as WordPad or Notepad.

� From the File menu open c:\autoexec.bat .

� Look for the PATH statement. Notice that the PATH statement is a series of
directories separated by semi-colons (;). Windows looks for programs in the
PATH directories in order, from left to right.

� Put the Java directory at the end of the path statement.

� Choose Save from the File menu to update your AUTOEXEC.BAT file.

� Exit from the text editor.

For example, in the following PATH statement, we have added the Java directory
at the end:

SET PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;C:\;C:\DOS;C:\JDK1.1.4\BIN

 Chapter 3. Installation 61

Figure 43 on page 62 shows the contents of a typical AUTOEXEC.BAT file.

Figure 43. Editing AUTOEXEC.BAT Path Variable

Once you have added the proper path information to your AUTOEXEC.BAT file,
you must run it for the new path information to take effect. It is preferable to
re-boot your system, but it can be run interactively (care must be exercised as to
what else will run again) by using the following commands at the DOS prompt :

C:\WINDOWS>cd \

C:>autoexec.bat

If while running the AUTOEXEC.BAT file, you get an "Out of environment space"
error, you must increase the initial environment memory for your DOS session.

Click with the right mouse button somewhere on the MS-DOS Prompt window title
(or to click with the left mouse button on the MS-DOS icon on the top left corner of
the MS-DOS Prompt window) to show the pop-up menu. On the pop-up menu,
select Properties to open the MS-DOS Prompt Properties window. Then select
the Memory tab (the one in the middle). On the Memory tab, select 4096 from the
drop-down list next to Initial environment as shown in Figure 44 on page 63.

62 Building AS/400 Applications with Java

Figure 44. Changing Initial Memory Environment for DOS

Then click on the Apply push button to save your changes, and finally click on the
OK push button to close the MS-DOS Properties window. Now you can re-run the
AUTOEXEC.BAT file to set up the required JDK path information.

Now you can test that the path was changed properly by entering the following
command at the DOS prompt:

C:\WINDOWS> java

If the system does find the java command, you get a list of messages describing
how to use this command as shown in Figure 45 on page 64.

 Chapter 3. Installation 63

Figure 45. Testing the Path Variable for Java

You have now completed setting up the PATH environment variable.

3.4.1.2 Setting Up the CLASSPATH Variable
Now you must change the CLASSPATH environment variable to locate the AS/400
Toolbox for Java classes.

The JDK does not require you to change the CLASSPATH environment variable as
it can find the core Java classes as long as they are in the CLASSES.ZIP file
located in the LIB sub-directory and the LIB sub-directory is located in the same
directory as the BIN sub-directory indicated in the PATH statement. This is
because the JDK automatically appends the following CLASSPATH data to
whatever you have explicitly set in your AUTOEXEC.BAT file:

 .;[bin]\..\classes;[bin]\..\lib\classes.zip

where [bin] is substituted by the absolute path to the JDK1.1.4\BIN directory.

Therefore, if you keep the BIN and LIB directories at the same directory level (that
is, if they have a common parent directory), the Java executables find the classes.
You need to set the CLASSPATH only if you move the CLASSES.ZIP file or if you
want to load additional class libraries such as one you develop or the AS/400
Toolbox for Java .

The AS/400 Toolbox for Java classes are located on the AS/400 IFS in the
following directory structure:

/QIBM/ProdData/HTTP/Public/jt4ðð/lib/

64 Building AS/400 Applications with Java

 Important Note

The Java language is extremely case sensitive! Make sure you type all the
path names (directory names) exactly as shown in the examples.

To use the AS/400 Toolbox for Java classes, we must tell the JVM where to look
for these classes. We do this by means of a CLASSPATH directive that we add to
the AUTOEXEC.BAT file. To change the AUTOEXEC.BAT file, you need to do the
following steps:

� Start a text editor such as WordPad or Notepad.

� From the File menu, open "c:\autoexec.bat".

� Look at the SET CLASSPATH= statement. Notice that the CLASSPATH
statement is a series of directories separated by semi-colons (;). The JVM
looks for Java classes in the CLASSPATH directories in order, from left to
right.

� If a SET CLASSPATH= statement does not exist, insert a new one.

� Put the AS/400 Toolbox for Java directory at the end of the SET
CLASSPATH= statement.

� Choose Save from the File menu to update your AUTOEXEC.BAT file.

� Exit from the text editor.

For example, on the following SET statements, we have set up the AS/400
Toolbox for Java directory structure:

SET AS4ððJT=S:\QIBM\ProdData\HTTP\Public\jt4ðð

SET CLASSPATH=%AS4ððJT%\lib\jt4ðð.zip;%AS4ððJT%\utilities;

First, we set our own environment variable, called AS400JT, with the value of the
AS/400 Toolbox for Java main directory on the IFS. This assumes that you have
mapped a network drive "S:" to your AS/400 system. We then set the
CLASSPATH environment variable to instruct the JVM that the AS/400 Toolbox for
Java classes are contained in the jt400.zip file located in the lib sub-directory. We
also indicate how to find utilities such as the AS400ToolboxInstaller.class file
located in the utilities sub directory. Setting up our own environment variable
allows for easier changes later if we decide to download the AS/400 Toolbox for
Java classes on the hard disk of the PC.

Figure 46 on page 66 shows a typical AUTOEXEC.BAT file edited with the
Notepad utility.

 Chapter 3. Installation 65

Figure 46. Setting up the CLASSPATH Variable for Java

This completes setting up the Java environment on the workstation.

3.4.2 Setting Up the Environment on the AS/400 System
On the AS/400 system, there is no requirement to set up any special environment
to use the native Java support provided in the JDK. There is no such thing as an
AUTOEXEC.BAT file with a PATH environment variable. Similar to any other
standard JDKs, the AS/400 native JDK does not require you to change the
CLASSPATH environment variable as it can find the core Java classes as long as
they are stored in the java.zip and sun.zip files located in the lib sub-directory and
that the lib sub-directory is in the same directory as the bin sub-directory.

This is because the AS/400 Java Virtual Machine (JVM) automatically searches all
the classes it needs to load in the lib sub-directory located in the jdk directory on
the AS/400 IFS.

Therefore, if you do not modify anything in the jdk directory and associated
sub-directories (as shipped with the 5769-JV1 Licensed Program), the Java
executables find the classes.

You need to do some setup if you want to load additional class libraries such as
one you develop yourself or the AS/400 Toolbox for Java .

The AS/400 Toolbox for Java classes are stored on the AS/400 IFS in two files
named jt400.zip and jt400.jar . These two files are located in the following
directory tree:

/QIBM/ProdData/HTTP/Public/jt4ðð/lib/

To use the AS/400 Toolbox for Java classes, you must tell the JVM where to look
for these classes. You can do this in several different ways. The best way to set
up the AS/400 environment depends on whether you want to run java from the

66 Building AS/400 Applications with Java

QShell interpreter, by using Command Language (CL) commands (for example,
RUNJVA), or both. In this section, we provide details on how to do this.

3.4.2.1 Creating a Symbolic Link
In the examples that follow, we use a symbolic link. This link is used to simplify
setting up the AS/400 environment. We do this by entering the following command
on an AS/400 command entry line:

ADDLNK OBJ('/QIBM/ProdData/HTTP/Public/jt4ðð') NEWLNK(AS4ððJT)

An example of adding the the symbolic link AS400JT is shown in Figure 47.

Figure 47. Adding a Symbolic Link

Now, rather than entering /QIBM/ProdData/HTTP/Public/jt400 each time, we can
use AS400JT instead.

3.4.3 Setting Up the Java Environment for CL Commands
If you want to use Java CL commands, you can:

� Specify the CLASSPATH each time you run a CL command.

� Use the CLASSPATH environment variable to set the CLASSPATH variable.

3.4.3.1 Setup on Every Java CL Command
You can specify the proper path on the CLASSPATH parameter on the
CRTJVAPGM and RUNJVA (or the JAVA) commands as shown in Figure 48 on
page 68.

 Chapter 3. Installation 67

Figure 48. Run Java Program Display

Since you have to do this every time you compile or run a Java program, it can be
error prone and soon becomes quite tedious.

3.4.3.2 Setting the CLASSPATH Environment Variable
The CLASSPATH environment variable is available and can be used to set the
CLASSPATH variable. Two CL commands are available:

� ADDENVVAR - to add the environment variable for the session

� WRKENVVAR - to work with an existing environment variable

This environment variable is only in effect for the session in which it is set. If you
prefer using this option, you can set your AS/400 user profile to run a CL program
that sets the CLASSPATH environment variable each time you sign on. For
example, the following command sets the CLASSPATH environment variable to
allow the AS/400 Toolbox for Java classes to be found.

ADDENVVAR ENVVAR(CLASSPATH) VALUE('AS4ððJT/lib/JT4ðð.zip:AS4ððJT/utilities')

Now when a Java CL command is used (for example, RUNJVA), the classpath
parameter can be set to *ENVVAR. This is the default setting and it uses the value
that you set previously with the ADDENVVAR command. This technique also
works when using the QShell interpreter. We use the symbolic link AS400JT rather
than the full path name. Note that this directive is a succession of directory names
separated by a colon (:).

Several different techniques may be used to set the CLASSPATH for CL
commands. The CLASSPATH used depends on which technique applies to the
user.

The order of precedence for setting the CLASSPATH for CL commands is:

1. CLASSPATH parameter on the CL command

68 Building AS/400 Applications with Java

2. CLASSPATH environment variable as set by ADDENVVAR

3.4.4 Setting Up the Environment for QShell
If you want to use the QShell environment, you can:

� Use the CLASSPATH environment variable to set the CLASSPATH variable:

This method uses the same technique described previously for CL commands.

� Use the export directive to set up a CLASSPATH dynamically.

� Use the -classpath parameter on a Java command to set up a CLASSPATH
dynamically.

� Set up profile files for individual users.

� Set up a profile for the entire system.

Several different techniques may be used to set the CLASSPATH for an AS/400
system. The CLASSPATH used depends on which technique applies to the user.
The order of precedence for setting the CLASSPATH for the QShell environment is:

1. -classpath parameter on a Java command

2. The export directive to set up a CLASSPATH dynamically

3. Profile files for individual users

4. Profile file for the entire system

5. CLASSPATH environment variable as set by ADDENVVAR

3.4.4.1 Setting the CLASSPATH Dynamically in QShell
To set the CLASSPATH variable after starting QShell, enter:

export -s CLASSPATH=.:AS4ððJT/lib/jt4ðð.zip:AS4ððJT/utilities

The export directive uses the symbolic link called AS400JT rather than the full
path name. Note that this directive is a succession of directory names separated
by a colon (:). The QShell interpreter searches the directories in the order
specified, from left to right, until it finds the classes to load. The current working
directory is specified by a period (.) or a null directory before the first colon. This is
set dynamically and is in effect for only the current session of QShell.

3.4.4.2 Setting the CLASSPATH Dynamically Using -classpath
Parameter
This option is similar to using the export directive, but sets the CLASSPATH
variable by using a parameter on a Java command. It is only in effect for the
current Java command. For example:

java -classpath .:AS4ððJT/lib/jt4ðð.zip:AS4ððJT/utilities myjavapgm

3.4.4.3 Setup for Individual Users when Using QShell
When using the QShell Interpreter, you can control the CLASSPATH information by
individual user or system wide. In this section, we show how to change the
CLASSPATH information for a limited number of user profiles. To do so, you must
create a .profile file in the home directory of every user you want to access the
AS/400 Toolbox for Java classes. First, you need to create the user's home
directory. Do this by typing the following command on an AS/400 Command Entry
line:

 Chapter 3. Installation 69

CRTDIR DIR('/home/myusrprf')

where "myusrprf" is the user profile for the user.

You may also use the PC-like alias of the md command or the mkdir command.

Figure 49. Creating an IFS Directory on AS/400 System

This creates a sub-directory named "myusrprf" in the home directory. You then
need to create the .profile file for that user profile. Do this by entering the
following command on an AS/400 Command Entry line:

EDTF STMF('/home/myusrprf/.profile')

The EDTF command invokes a stream file editor provided in the QUSRTOOL
library that is similar to Source Entry Utility (SEU). See member TGPAESFI in file
QUSRTOOL/QATTINFO for directions on installing this editor on your system.

Then add the following line in the .profile file for this user:

export -s CLASSPATH=.:$HOME/AS4ððJT/lib/jt4ðð.zip:$HOME/AS4ððJT/utilities

The EXPORT directive uses the symbolic link called AS400JT rather than the full
path name. This makes it much easier when you want to create .profile files for
many users on your system. Note that this directive is a succession of directory
names separated by a colon (:). The QShell interpreter searches the directories in
the order specified, from left to right, until it finds the classes to load. The current
working directory is specified by a period (.) or a null directory before the first colon.
The $HOME parameter represents the user's home directory, as created before.
This statement allows you to find the AS400 Toolbox for Java classes and your
own Java classes as long as your classes are stored in your home directory.
Figure 50 on page 71 shows the EDTF window.

70 Building AS/400 Applications with Java

Figure 50. Using EDTF to Create .profile File

This setup allows you to create an identical .profile file in every user's home
directory instead of having a specific .profile file for every user.

Since we use the $HOME parameter to control the path to the AS/400 Toolbox
classes, we must add a symbolic link in the user's directory. We do this by signing
on as the user and executing the ADDLNK command. We then create a link
named AS400JT that points to the Toolbox classes.

3.4.4.4 Setup for Entire AS/400 System Using QShell Interpreter
You can set up the CLASSPATH environment to use a system wide profile file
located in the etc directory. Instead of creating one /home/myusrprf/.profile file
for every single user that requires access to the AS/400 Toolbox for Java classes
or to your own developed Java classes, you can define a single /etc/profile file that
applies to the entire system. You create this file with the same EDTF editor you
used in creating the individual files.

export -s CLASSPATH=.:/AS4ððJT/lib/jt4ðð.zip:/AS4ððJT/utilities

Similar to the individual user profile setup, we use a symbolic link named AS400JT
to simplify the creation of the EXPORT directive and to make it possible to access
the AS/400 Toolbox for Java classes, the AS400ToolboxInstaller class, and your
own classes through a single export statement. In this case, we do not use the
user's home directory to control the path to the AS/400 Toolbox classes, so we use
a system wide symbolic link. In this case, it is named AS400JT.

If you need to create the symbolic link, you do it exactly as explained before by
using the ADDLNK OS/400 IFS command.

 Chapter 3. Installation 71

3.4.4.5 Testing the AS/400 Java Environment
 Important information

We provide an example Java program named checkToolbox . You can find the
complete source listing of this program in Appendix C, “Java Source Code
Samples” on page 209. This program is also available for downloading from
our Internet site. Please refer to Appendix A, “Example Programs” on
page 203 for download instructions.

To successfully compile the checkToolbox program as shown here, you must:

� Set up the AS/400 Java environment correctly (in our case, we use the QShell
environment).

� Place the source code (checkToolbox.java) in your home directory.

Now you can test that the environment you just set up is working properly. First,
compile the checkToolbox Java program. This program uses the
AS400ToolboxInstaller class and provides the functions required to install
(download) the AS/400 Toolbox for Java classes on your PC and check if the
downloaded version needs to be updated in case PTFs have been applied to the
AS/400 system. To compile the Java program, start the QShell Interpreter by
typing qsh on any AS/400 command entry line. This opens the QSH Command
Entry display. On the command entry line, enter the following QShell command:

javac checkToolbox.java

This is the standard Java command to compile a Java source file (.java file) into
bytecodes (.class file). If your environment is set up as required and if the Java
source file (.java file) is located in your home directory, the program should compile
successfully and the corresponding .class file should be created in your home
directory. You can check your environment by typing export on the QShell
command entry line. Figure 51 on page 73 shows the javac command on the
QShell command entry line and the results of the export command.

72 Building AS/400 Applications with Java

Figure 51. Compiling a Java Program in QShell Environment

The >>>$ you see near the bottom of the output area is a "message" that is
returned by the Java virtual machine to indicate completion of the previous request.
This message is NLS enabled and requires no translation.

Now you can test the checkToolbox program by typing the following command on
the QShell command entry line:

java checkToolbox

This is the standard Java command to run a program. If the program was compiled
successfully and if your CLASSPATH is set up properly, the program responds by
"printing" help information on the display regarding the required parameters it is
expecting as shown in Figure 52 on page 74.

 Chapter 3. Installation 73

Figure 52. Running the checkToolbox Program from QShell

3.4.4.6 Setting the System Value QUTCOFFSET
The system value QUTCOFFSET indicates differences in hours and minutes
between Universal Time Coordinated (UTC), also known as Greenwich Mean Time
(GMT), and the current system time (local time). This is the number of hours you
need to subtract from local to obtain the UTC.

The JVM uses this value to keep track internally of the time in your system's locale.
Java has the ability to track time in other locations using locales. The following
example (the JVM uses the UTC) to derive the correct date (and time):

import java.text.\;
import java.util.\;
import java.util.Date;

public class DateExample {

public static void main(String args[]) {

// Get the Date
date now = new Date();

// Get date formatters for default, German locales
DateFormat theDate = DateFormat.getDateInstance(DateFormat.LONG);
DateFormat germanDate = DateFormat.getDateInstance(DateFormat.LONG, Locale.GERMANY);

For more information on QUTCOFFSET, see Chapter 2 in OS/400 Work
Management, SC41-5306-01.

In the next section, we show how to use the checkToolbox program to download
the AS/400 Toolbox for Java classes to your Personal Computer.

74 Building AS/400 Applications with Java

3.4.5 Installing the AS/400 Toolbox for Java on Your Workstation
In this section, we show how to install the AS/400 Toolbox for Java classes on your
workstation. Although this is not mandatory, you may want to install the AS/400
Toolbox for Java on your workstation if you are interested in building applications
that use Java on your workstation. For example, you may want to build a
client/server application that uses Java on both the workstation and the AS/400
system. This set of Java Application Programming Interfaces (APIs) provides easy
to use Java classes that allow you to access most AS/400 resources from Java
applets or applications running on any Java enabled workstation. The AS/400
Toolbox for Java provides the following support:

� Connection management and security (connect to the AS/400 system and
change password)

� JDBC (Relational database access APIs)
 � Data queues
� AS/400 Program call
� OS/400 Command execution
� IFS stream file access
� Print and spool access
� Record level access (native DDM database access APIs)

 � AS/400 messages
� Data conversion between Java data types and AS/400 data types

AS/400 Toolbox for Java 5763-JC1 is an AS/400 licensed program and is shipped
to you on the OS/400 Licensed Programs media (CD-ROMs). You install this
licensed program on the AS/400 system using standard installation procedures as
described in Section 3.2, “Manually Installing Java Support on AS/400 System” on
page 41.

You can choose to use these classes directly from the AS/400 IFS. All you need to
do is to map a network drive on your PC to the AS/400 IFS and direct the Java
Virtual Machine on your PC to this drive with an appropriate CLASSPATH directive
as described in Section 3.4.1.2, “Setting Up the CLASSPATH Variable” on
page 64. This is the easiest way to use the Toolbox for Java classes and it is the
only way to use these classes if you are running Java on a diskless device such as
the IBM Network Station. As with any other AS/400 licensed program, changes to
the AS/400 Toolbox for Java are distributed by means of PTFs. PTFs are applied
to the AS/400 system so using the classes directly from the AS/400 IFS ensures
that you automatically get all the changes after they are applied to the AS/400
system.

However, for performance reasons, you may prefer to copy the AS/400 Toolbox
for Java classes on your PC hard disk drive. As part of the AS/400 Toolbox for
Java, we provide a Java class, AS400ToolboxInstaller , which is designed to
handle installing, updating, and un-installing the AS/400 Toolbox for Java classes
on your workstation. This is not a stand-alone application and it must be included
in a user-written program. This class provides several methods, some of them
being:

� isInstalled() to check if the AS/400 Toolbox for Java is currently installed on
your workstation.

� isUpdateNeeded() to check if PTFs were applied on the AS/400 system that
require your workstation to be updated.

� install() to install or update the AS/400 Toolbox for Java on your hard disk.

 Chapter 3. Installation 75

� unInstall() to remove the AS/400 Toolbox for Java package from your hard
disk drive.

 checkToolbox

Please refer to Section 3.4.4.5, “Testing the AS/400 Java Environment” on
page 72 for details on how to install and compile the checkToolbox program.

We provide an example Java program named checkToolbox that uses the
AS400ToolboxInstaller. Use this program to install the AS/400 Toolbox for Java
classes on your PC. We have already set up the required CLASSPATH
environment variables on the PC to allow the JVM on the PC to locate all the
classes this program uses such as the AS400ToolboxInstaller class. First, you
need to start an MS-DOS session on your PC. Make sure you have a network
drive mapped to your AS/400 system. In this section, we assume that the S: drive
is mapped to your AS/400 system.

At the DOS prompt, switch to your network drive. Enter S: and then press the
Enter key. Then set your AS/400 home directory as the current directory on your
PC. Enter the following command (where myusrprf is your user profile):

CD home\myusrprf

at the DOS prompt and press the Enter key. Then test if you can run the
checkToolbox program. Type the following command:

java checkToolbox

at the DOS prompt and press the Enter key. You see the same messages as
when you tried to run the program on the AS/400 system as shown in Figure 53
(notice that in this example we have set our user profile to A970107C).

Figure 53. Testing the checkToolbox Program

76 Building AS/400 Applications with Java

Note: We compiled this program on the AS/400 system and we ran it on your PC
without making any changes to the Java bytecodes! This same program can also
run unchanged on any other Java enabled platform.

Now you need to run the program to actually download the AS/400 Toolbox for
Java classes on your PC.

This program makes use of the AS/400 HTTP server , which must be running, and
also in your HTTP configuration file, there must be a pass statement that allows us
access to the AS/400 Toolbox for Java classes (this can be added using the
WRKHTTPCFG CL command):

Pass /QIBM/ProdData/HTTP/Public/jt4ðð/\

On your PC at the DOS prompt, type the following command:

java checkToolbox http://as4ððsys/QIBM/ProdData/HTTP/Public/jt4ðð/ c:\jt4ðð

Make sure you type in the slash (/) at the end of the source path parameter right
after jt400. This is required as file names are appended to the path name by the
program. If you forget to type in the slash (/), you receive a "File not found"
exception error message.

The program checks if the AS/400 Toolbox classes are installed on your system. If
the classes are not installed (or if they are out of date), the program asks if you
want to install them now. Answer Y for Yes to the message to start downloading
the classes to your PC. In a few seconds, you receive a message telling you that
the installation was successful as shown in Figure 54.

Figure 54. Installing AS/400 Toolbox for Java on Your PC

Now you have one final thing to do: modify the AUTOEXEC.BAT file on your PC
to change the CLASSPATH environment variable so that the JVM on your PC
loads the AS/400 Toolbox for Java classes from your PC's hard disk instead of
loading them from the AS/400 IFS.

 Chapter 3. Installation 77

To change the AUTOEXEC.BAT file, do the following steps:

� Use a PC text editor such as Notepad or Work Pad.

� On the File menu, open the autoexec.bat file

� Look for the SET CLASSPATH=AS400JT line; if there is no line, you need to
add one.

� Change the line to set our private environment variable to c:\jt400 .

� Save your changes.

� Exit from the text editor.

Now open an MS-DOS session and run the AUTOEXEC.BAT file again for the
change to be effective.

You are now ready to use Java and the AS/400 Toolbox for Java classes on your
PC and on the AS/400 system.

3.5 Using Remote AWT Support on Your Workstation
The Remote Abstract Windowing Toolkit (Remote AWT) is a set of Java classes
that use the Remote Method Invocation (RMI) feature of the Java Development Kit
(JDK) to handle graphical user interface (GUI) operations on a server that does not
have any GUI capable devices directly attached to it such as the AS/400 system.

The Remote AWT feature of the AS/400 Developer Kit for Java provides an easy
way to test and run (on the AS/400 system) any Java application that makes use of
the Java AWT.

Typically, the only GUI operations that are performed on the server side of a
client/server Java application are those related to application installation and
configuration; that is, application functions that must be performed on the server
and require limited user interaction. It is expected that all GUI intensive operations
are performed on the client side where the user interaction with the application
takes place.

3.5.1 Setting Up the Remote AWT Environment
You can use the Remote AWT support by running it from the AS/400 IFS or the PC
hard drive. To run Remote AWT from the AS/400 IFS, all you need to do is to map
a network drive on your workstation and set up the proper CLASSPATH
environment variable so that the Java Virtual Machine running on your workstation
can find the Remote AWT classes.

The Remote AWT classes are contained in the rawt_PC_classes.zip file located in
the /QIBM/ProdData/Java400/lib/ directory in the IFS. Assuming that you have
assigned drive letter S to your AS/400 server, this is the CLASSPATH statement
that you use:

SET CLASSPATH=S:/QIBM/ProdData/Java4ðð/lib/rawt_PC_classes.zip

Make sure the CLASSPATH for the Remote AWT support comes before the one
needed to access standard JDK classes as specified earlier in this chapter.

78 Building AS/400 Applications with Java

Because the Remote AWT support generates heavy network traffic, you may want
to install (download) the Remote AWT classes on your workstation. You can do
this by first creating a directory on your workstation and then copy the Remote
AWT rawt_PC_classes.zip file from the AS/400 IFS to your workstation. You can
do this by entering the following DOS commands at the DOS prompt:

C:\WINDOWS>cd ..

C:\>md rawt

C:\>cd rawt

C:\rawt>s:

S:\>cd QIBM\ProdData\Java4ðð\lib

S:\QIBM\ProdData\Java4ðð\lib>copy s:rawt_PC_classes.zip c:

This process is shown in Figure 55.

Figure 55. Downloading the Remote AWT Classes to Your Workstation

In this case, the CLASSPATH to find the Remote AWT classes needs to be set as
follows:

SET CLASSPATH=C:\RAWT\rawt_PC_classes.zip

Now you are ready to start Remote AWT.

3.5.2 Starting Remote AWT Support On Your Workstation
You now need to start the Remote AWT daemon on your workstation so that it is
listening on a TCP/IP port for incoming Remote AWT requests sent by the AS/400
Java application.

We do this by starting a Java application named java.awt.Awt400ServerImpl on
your workstation. You must pass your workstation's IP address and an arbitrary
port number as a parameter to this application. Use a private port number that
does not conflict with any TCP/IP application.

 Chapter 3. Installation 79

Currently, the port numbers are divided into three ranges: the well-known ports,
the registered ports, and the dynamic and private ports. The well-known ports are
those from 0 through 1023; the registered ports are those from 1024 through 49151
and the dynamic and private ports are those from 49152 through 65535. You can
pick up any number in that range such as 55555, for example.

Normally, you want to start the Remote AWT daemon and have it run in the
background. Do this by typing the following command:

start /m java java.awt.Awt4ððServerImpl 192.168.21.7:55555

where 192.168.21.7 is the IP address of your workstation and 55555 is an arbitrary
port number within the private port range. If you want to automate the entire
process, you can create a .bat file and run it when you want to start the Remote
AWT support on your workstation.

To create a .bat file, do the following steps:

� Start an editor such as Word Pad or Notepad.

� Type in the SET CLASSPATH and the start /m statements previously shown.

� Save your file in the folder of your choice and give it a meaningful name such
as rmtawt.bat .

� Exit from the editor.

You now can start the Remote AWT daemon on your workstation by typing rmtawt
at the DOS prompt whenever you need to run a Java application on the AS/400
system that uses the Java AWT APIs. You may even want to include this in your
autoexec.bat file to have the daemon ready on your workstation. The example
below shows the required SET CLASSPATH and start commands:

SET CLASSPATH=C:\RAWT\rawt_PC_classes.zip

start /m java java.awt.Awt4ððServerImpl 192.168.21.7:55555

Note: If you add just these two lines, then when the Remote AWT program ends
on the AS/400, your workstation daemon will end as well. To circumvent this, you
may wish to place you listener daemon in a continuous loop, which will restart it
each time after it is ended. Change you code so it looks like this:

SET CLASSPATH=C:\RAWT\rawt_PC_classes.zip

:loop

start /m java java.awt.Awt4ððServerImpl 192.168.21.7:55555

goto loop

When you start the Remote AWT support on your workstation, you are told that the
support is ready when the message shown on the next picture briefly pops up.

Figure 56. Remote AWT Startup Message

80 Building AS/400 Applications with Java

3.5.3 Starting Remote AWT Support on the AS/400 System
When you want to run a Java application that uses the AWT APIs and have the
AS/400 application's GUI displayed on your workstation, you must set up the Java
properties required to run the Remote AWT support. There are two properties that
need to be set, awt.toolkit and RmtAwtServer . The awt.toolkit property must be
set with the value java.awt.CToolkit and the RmtAwtServer property must be set
to match the IP address and port number of the workstation where you want the
AS/400 application GUI to be routed.

If you use the java tool from the QShell Interpreter to run your application, you
must set the properties with the -D parameter on the java command as shown in
Figure 57.

Figure 57. Starting a Remote AWT Java Program on AS/400 System

You may use your workstation's host name instead of the IP address. If you intend
to do so, make sure that the host name is known to the AS/400 system, or the
workstation name is on the DNS server known to the AS/400 system. (Test this by
using ping 'workstationname' on a command line).

You can use Work with TCP/IP host table entries (option 10) of the Configure
TCP/IP (CFGTCP) menu or the ADDTCPHTE command to add an entry for your
workstation to the AS/400 TCP/IP host table shown in the following picture.

 Chapter 3. Installation 81

Figure 58. Putting Your Workstation Name in AS/400 Host Entry Table

If you are using a Domain Name Server (DNS) on your network, make sure that
your workstation host name in the DNS matches the name in the Windows 95
configuration. If the name specified in the DNS does not match your real
workstation host name as configured in Windows 95 TCP/IP properties and if you
did not add an entry to the AS/400 host table, the AS/400 system tries to use the
DNS to locate your workstation and the DNS provides invalid information to the
AS/400 system.

You may also choose to use the OS/400 RUNJVA command (or JAVA) to start
your application. If you plan to use this method, set up the Java properties as
follows:

� Type RUNJVA or JAVA on any OS/400 command entry line.

� Press F4 to display the command prompt.

� Enter the name of the Java application (class name) you want to run.

� Press F10=Additional parameters for more prompting.

� Press Page Down (or Scroll Up) to go to the next page of the prompt.

� On the first line of Properties (PROP), type awt.toolkit for the name.

� Type java.awt.CToolkit on the property value line.

� Type + for more properties.

� Type RmtAwtServer as the property name for the second property.

� Type the TCP/IP address and port number of the Remote AWT workstation.

� Press the Enter key to start your application.

Figure 59 on page 83 shows the RUNJVA command prompt.

82 Building AS/400 Applications with Java

Figure 59. Using the Run Java Program (RUNJVA) Command to Run MyApp

Again, you may choose to specify the workstation host name rather than its IP
address. In this case, make sure the names are set up properly in the AS/400 host
table and your Domain Name Server and Windows workstation TCP/IP properties.

In each of the preceding examples, a small application named MyApp is used.
This is a simple Java application that displays a simple windows panel on the
workstation. The source is as follows:

import java.awt.\;
public class MyApp extends Frame
{

// "final" variables are constants
static final int H_SIZE = 3ðð;
static final int V_SIZE = 2ðð;

 public MyApp()
 {

// Calls the parent constructor
// Frame(string title)
// Equivalent to setTitle("My First Application")
super("My First Application");

 pack();
 setSize(H_SIZE, V_SIZE);
 show();
 }

public static void main(String args[])
 {
 new MyApp();
 }
}

 Chapter 3. Installation 83

84 Building AS/400 Applications with Java

Chapter 4. Java For RPG Programmers

This chapter provides a brief overview of Java and object-orientation from an RPG
programmer's perspective. If you are already familiar with OO, Java, or C++, you
probably do not need to read this information.

Java is an object-oriented (OO) programming language. RPG is not. However,
many of the concepts from OO can be translated and applied to RPG. In this
chapter, the similarities between OO languages and high-level languages (HLL) are
discussed. There is also an introduction to the Java language. A complete
introduction to Java may be obtained from any of the current books on the subject
available at your local book shop.

This chapter contains information about the following subjects:

� Fields as variables
� Procedures/subroutines as methods
� Modules as classes
� Programs as packages
� The Java language

4.1 Object-Orientation and RPG
No, this is not an oxymoron! It is quite possible to write object-oriented programs in
any programming language. It merely requires a little discipline on the part of the
programmer. This section discusses how an application can implement
object-oriented principles in RPG as a bridge to the new terminology associated
with object-orientation.

RPG IV has a closer fit to OO than the earlier versions of RPG so we shall confine
our comparison to that dialect.

 4.1.1.1 Variables
Variables equate to RPG fields. There are different kinds of variables:

 � Class variables:

Class variables are visible to all instances of a class. They are declared with
the static keyword. They are shared among those objects such that changing
the variable in one object affects all the objects.

 � Instance variables:

Instance variables are scoped to a specific object. They may be global to the
object or scoped to a method or block.

 � Local variables:

Local variables are instance variables scoped to a particular method or block.
The variable is not visible outside the method or block and, therefore, cannot
be accessed by other methods or blocks.

 � Final variables:

Final variables are used to define constants. They are usually assigned a
value when they are declared but may be assigned a value once only while a
method is running if a value has not yet been assigned.

 Copyright IBM Corp. 1998 85

RPG IV implements these constructs as:

 � Global fields:

Global fields are the normal form of field in RPG; these are declared on the
D-spec of the main program. These fields are visible to the entire program and
may be referenced and modified from anywhere in the program.

 � Local fields:

Local fields are scoped to a procedure. They are declared on the D-spec of
the procedure and cannot be modified by other procedures.

 � Named constants:

Named constants are used to provide meaningful names for "magic" values in a
program. Rather than coding -1, -2, -4, -8, and so on as indicators of error
severity, the negative numbers are assigned names so the program can
reference words such as DIAG, WARN, ERROR, FATAL, and so on.

 4.1.1.2 Methods
Methods equate to RPG IV procedures or subroutines. Procedures are a closer fit
because they provide better support for encapsulation through interface prototyping
and local fields. Methods and procedures are where the real work is performed.
They contain the code that actually performs the function. For example, a method
or procedure may provide support for converting a date from Year/Month/Day
format to Day/Month/Year format.

 4.1.1.3 Classes
Classes equate to RPG IV modules. A class is a collection of methods and
variables; a module is a collection of procedures or subroutines. Classes and
modules are designed to support a particular function. For example, a series of
date conversion methods or routines may be grouped in a single class or module.

 4.1.1.4 Packages
Packages equate to RPG IV programs or service programs. They are a means of
grouping similar functions together. A package contains one or more classes; a
program or service program contains one or more modules. For example, a series
of conversion classes or modules may be grouped in a single package or service
program.

4.1.1.5 Differences between Java and RPG
Java supports a number of modifiers when declaring classes and variables that do
not have direct equivalents in RPG.

� Public - the variable or method is visible to the users of the class.

� Private - the variable or method is not visible to the users of the class. Only
the class can use it.

� Protected - the variable or method is visible to the class in which it is defined
and also to the subclasses of that class.

The public and private modifiers can be implemented in RPG IV by using the
features of the Integrated Language Environment (ILE). A module may choose to
export the fields and procedures it defines. Exported fields and procedures are
available to the caller of the module (therefore, public); all other fields and
procedures are private.

86 Building AS/400 Applications with Java

 4.2 Java
Java brings a number of interesting things to the AS/400 system:

� The ability to apply object-oriented design principles in a native environment
that directly supports those constructs.

� The ability to create Internet applications in a much easier manner than CGI
programming.

Java also fits extremely well with the AS/400 system because they both share
similar architectural principles as shown in Figure 60.

Figure 60. Java Architecture Compared to AS/400 Architecture

Figure 61 on page 88 shows a high level view of how Java is implemented on
AS/400, taking advantage of the AS/400 architecture.

 Chapter 4. Java For RPG Programmers 87

Figure 61. High Level Schematic of AS/400 Java Implementation

4.2.1 What is Java?
Java originated as a language to program electronic consumer devices such as
microwave ovens, washing machines, and toasters. Software for these devices
needs to be particularly reliable and must work on a variety of computer chips.

A small group of people were working on this problem at Sun and realized that
languages such as C and C++ were not suitable for this task because C and its
derivatives require a compiler specific to the computer chip being used in the
device and the nature of C makes it difficult to write reliable software. The Sun
group started developing a language to solve these problems.

These developers soon realized that the new language was ideally suited to the
Internet due to the platform-independent nature of its architecture. This allowed a
program to run on any system that provided support for the run time.

More information about the development of Java can be found in The Java
Language: A White Paper at http://java.sun.com/docs/white/index.html

Java is quite a simple language in that the basic constructs are few. However,
similar to all OO languages, the complexity is in understanding the classes and
methods.

Java is designed to support distributed applications through classes for Distributed
Program Call, Remote Method Invocation, JDBC, and sockets. Java simplifies
writing distributed applications by hiding much of the communications effort.
Applications can be written to open files over the Internet simply by providing a

88 Building AS/400 Applications with Java

Uniform Resource Locator (URL). By using the sockets classes, client/server
applications can be easily written.

Java is intended to be used in a graphical environment. Graphical user interfaces
tend to allow many things to happen at once. Threads are a convenient way of
allowing a process to handle many tasks simultaneously. Writing code in C or C++,
which deals with threads, is a particularly onerous task. Java simplifies writing a
threaded application by provided built-in language support for threads.

Java code is intended to be portable. Because Java bytecodes run in a Java
Virtual Machine (JVM), the compiled program is platform-independent. It can be
run on any hardware that implements a JVM. Byte-codes are generally interpreted
by the JVM although some platforms provide a compiler to improve performance.
Writing an application in Java can increase the usefulness of the application by
removing hardware restrictions.

While Java is an object-oriented language, it is not a pure OO language because it
makes a distinction between various types of data. Most things are objects but
Java supports so-called primitive data types. Primitive data types are the basic
kinds of program data:

� boolean - a 1-bit value representing true or false
� char - a 16-bit value representing a single Unicode character
� byte - an 8-bit value representing a signed integer
� short - a 16-bit value representing a signed integer
� int - an 32-bit value representing a signed integer
� long - a 64-bit value representing a signed integer
� float - a 32-bit value representing an IEEE 754 floating point number
� double - a 64-bit value representing a floating point number

All other data types are objects and derive from the object class. They are
generally more complex data types.

As a contrast, Smalltalk implements everything, including primitive types, as a
subclass of Object.

 4.2.2 Java Syntax
The Java syntax is similar to the C language. This is because Java was partly
designed as a replacement for C (a better C) and also to appeal to the huge
number of existing C and C++ programmers.

Each line of Java source may span multiple physical lines in the source file. Each
logical line ends with a semicolon.

Note: Lines that use braces are not ended with semicolons. The statements may
be entered in any format and blank lines are ignored.

Statement are grouped using braces. Braces delimit scope blocks, the beginning
and end of methods, and the beginning and end of classes.

if (someCondition)

{

// do this stuff

 Chapter 4. Java For RPG Programmers 89

}

else

{

// do this other stuff

}

All names in Java are case-sensitive. For example:

 int myInteger;

 int MyInteger;

 int myinteger;

 int MYINTEGER;

These four integer variables are all different entities in Java. The RPG compiler
folds these names to uppercase and treats them as a single entity.

Comments may begin with either the C style of a slash followed by an asterisk and
ending with an asterisk followed by a slash, or the C++ style of a double slash.

/* The first line of a C style comment line

** The second line of a C style comment line

** The final line follows

*/

// A C++ style comment line

// Another C++ style comment line

Java is also a strongly typed language. This means that all named entities in the
program must have a specific type (for example, char, int, Object, and so on). The
type is always specified when declaring a variable in Java.

 4.2.3 Object Creation
Every class in Java has a constructor method. This is a method with the same
name as the class. It may or may not accept arguments. An object is created by
creating a new instance of a class:

Thing myThing = new Thing();

This statement performs both the definition and the declaration of a variable. The
definition is the part to the left of the equal sign and says define a variable called
myThing that is a type of Thing . The declaration is the part to the right of the
equal sign and says create a new Thing . The equal sign is an assignment
statement. The statement creates a new Thing and stores the reference to that
new object in the variable myThing .

Thing() is the default constructor for the Thing class and does not accept any
arguments. It is possible for a class to have multiple constructors each accepting
different arguments. A constructor is used to initialize a new object.

90 Building AS/400 Applications with Java

 4.2.4 Class Variables
Class variables are those with a static modifier. These variables are associated
with the class and, therefore, are accessible from every instance of the class.
These are used where the variable represents something that is either independent
of each object or is dependent on all objects. For example, a counter of the
number of objects (instances of a particular class) can be implemented as a class
variable and incremented by the constructor for that class giving all objects
knowledge of how many of them exist.

static int howMany = ð;

 4.2.5 Class Methods
Class methods also use the static modifier. These methods may be invoked
without an instance of the class having been created. This may be necessary
where the methods operate on one or more of the various primitive data types. For
instance, the Math class (in java.lang) declares all its methods as static because no
object is required to use the Math functions; they all accept numeric primitive data
types. They also do not reference any object instance data.

double aRoot = Math.sqrt(someValue);

 4.2.6 Instance Variables
Instance variables are specific to an object and are not shared among other
objects. They may be visible to other objects (in which case, they are said to be
public) or hidden from other objects (private - most instance variables are private).
They can be public , private , protected , or default .

 4.2.7 Instance Methods
Instance methods are only usable when an object has been created. They provide
the code that implements the programming logic for the class. Instance methods
may be public , private , protected , or default .

 4.2.8 Object Destruction
Objects are not explicitly destroyed in Java. They are automatically removed by
the garbage collector when there are no further references to the object. The idea
of a garbage collector has existed for a long time and has been implemented in
languages such as Smalltalk and Lisp. The Java Virtual Machine knows which
objects it has allocated. It can also determine which variables reference which
objects and, therefore, can determine when an object is no longer needed.

4.2.9 Subclasses and Inheritance
Inheritance is one of the more powerful features of an OO language. It allows code
to be reused by creating a subclass of an existing class. The new class gets all
the code in the parent class (super class) and can extend the parent class by
providing its own routines to do things the parent class was not designed to do.

 Chapter 4. Java For RPG Programmers 91

 4.2.10 Overriding Methods
If a class defines a method with the same signature (name and arguments) as a
method in its super class, the class is said to override the method. This allows a
class to change the behavior of a method provided by its super class. For
example, a class hierarchy representing various geometric shapes can have an
Ellipse class that inherits from a Circle class. Both classes may need a means of
returning the size of their area; however, calculating the area of an ellipse is
different from calculating the area of a circle so the Ellipse class can override the
Circle 's area() method.

4.2.11 Compiling Java on the AS/400 System
Java programs on the AS/400 system are stored in the integrated file system (IFS).
They may be run as Java bytecodes or direct execution programs.

Running a Java program from the bytecodes results in exactly the same form of
execution as all other Java Virtual Machines (JVM). However, the AS/400 system
supports a direct execution mechanism where the Java bytecodes for a class are
transformed into a service program that results in faster processing.

The default method of running a Java program causes a direct execution version of
the program to be created if one does not already exist or if the service program
and the class file are not synchronized. To run from the Java bytecodes, the
program must be run in interpreted mode.

Compiling Java on the AS/400 system can be done in a number of ways:

� The javac command can be used from the QSH shell on the AS/400 system or
within the SDK on a PC to compile the Java source into bytecodes and the
resulting .class file stored in the IFS.

� The Create Java Program (CRTJVAPGM) command can be run from an
AS/400 command line to create a direct execution version of the .class file.

� The java or Run Java (RUNJVA) command can be run, which automatically
creates a direct execution version of the Java program.

For a more detailed coverage of this topic, see Java for RPG Programmers, by
Phillip Coulthard and George Farr, IBM Press (1998).

92 Building AS/400 Applications with Java

Chapter 5. Overview of the Order Entry Application

In this chapter, we cover the example RPG order entry application. This application
is representative of a commercial application although it does not include all the
necessary error handling that a business application requires.

This section introduces the application and specifies the database layout. In
Chapter 6, “Migrating the User Interface to Java Client” on page 109, we convert
the RPG order entry application to a client/server application that uses Java to
handle the data entry functions and RPG to handle the server database functions.
The goal is to use the existing RPG application to service both the client application
and the host 5250 application.

In Chapter 7, “Moving the Server Application to Java” on page 141, we convert the
server-based RPG application to Java so both sides of the application are written in
Java.

5.1 Overview of the RPG Order Entry Application
This section provides an overview of the application and a description of how the
application database is used.

5.1.1 The ABC Company
The ABC Company is a wholesale supplier with one warehouse and 10 sales
districts. Each district serves 3000 customers (30 000 total customers for the
company). The warehouse maintains stock for the 100 000 items sold by the
Company.

The following diagram illustrates the company structure (warehouse, district, and
customer).

Figure 62. Company Structure

 Copyright IBM Corp. 1998 93

5.1.1.1 The ABC Company Database
The company runs its business with a database. This database is used in a
mission critical, online transaction processing (OLTP) environment.

The database includes tables with the following data:

� District information (next available order number, tax rate, and so on).
� Customer information (name, address, telephone number, and so on).
� Order information (date, time, shipper, and so on).
� Order line information (quantity, delivery date, and so on).
� Item information (name, price, item ID, and so on).
� Stock information (quantity in stock, warehouse ID, and so on.)

5.1.1.2 A Customer Transaction
1. Customers telephone one of the 10 district centers to place an order.

2. The district customer service representative answers the telephone, gets the
following information, and enters it into the application:

 � Customer number
� Item numbers of the items the customer wants to order
� The quantity required for each item

The customer service representative may prompt for a list of customers or a list
of parts.

3. The application then:

� Reads the customer last name, customer discount rate, and customer
credit status from the Customer Table (CSTMR).

� Reads the District Table for the next available district order number. The
next available district order number is incremented by one and updated.

� Reads the item names, item prices, and item data for each item ordered by
the customer from the Item Table (ITEM).

� Checks if the quantity of ordered items is in stock by reading the quantity in
the Stock Table (STOCK).

4. When the order is accepted:

� Inserts a new row into the Order Table to reflect the creation of the new
order (ORDERS).

� A new row is inserted into the Order Line Table to reflect each item in the
order.

� The quantity is reduced by the quantity ordered.

� A message is written to a data queue to initiate order printing.

 5.1.1.3 Application Flow
The RPG Order Entry Application consists of the following components:

 Program Listings

To download the example code used in this redbook, please refer to
Appendix A, “Example Programs” on page 203 for more information.

� ORDENTD - Parts Order Entry - display file

94 Building AS/400 Applications with Java

� ORDENTR - Parts Order Entry - main RPG processing program
� PRTORDERP - Parts Order Entry - print file
� PRTORDERR - Print Orders - RPG server job
� SLTCUSTD - Select Customer - display file
� SLTCUSTR - Select Customer - RPG SQL stored procedure
� SLTPARTD - Select Part - display file
� SLTPARTR - Select Part - RPG stored procedure

Figure 63. Application Flow

ORDENTR is the main RPG program. It is responsible for the main line
processing. It calls two supporting RPG programs that are use to prompt for and
select end-user input. They are SLTCUSTR, which handles selecting a customer,
and SLTPARTR , which handles selecting part numbers. PRTODERR is an RPG
program that handles printing customer orders. It reads order records that were
placed on a data queue and prints them in a background job.

 Chapter 5. Overview of the Order Entry Application 95

5.1.1.4 Customer Transaction Flow
The following scenario steps through a customer transaction showing the
application flow. Understanding the flow of the AS/400 application can assist in
understanding the changes made to this application to support a graphical client.

5.1.1.5 Starting the Application
The application is started by calling the main program from an AS/400 command
line.

CALL ORDENTR

When the order entry application is started, the following display is shown.

Figure 64. Parts Order Entry

The user is expected to type in a customer number and press the Enter key, but
they may choose to end the program by pressing either F3 or F12.

If the user does not know the customer number, F4 may be pressed to show a
window containing a list of available customers.

96 Building AS/400 Applications with Java

Figure 65. Select Customer

The user may press F12 to remove the window and return to the initial display.
They may roll through the items in the list until they find the customer they want.
By typing a 1 in the option field and pressing the Enter key, they indicate their
choice and the selected customer is returned to the initial display.

 Chapter 5. Overview of the Order Entry Application 97

Figure 66. Parts Order Entry

After selecting a customer from the list or typing a valid customer number and
pressing the Enter key, the customer details are shown and an order number is
assigned. An additional prompt is displayed allowing the user to type a part
number and quantity.

If the user does not know the part number, F4 may be pressed to show a window
containing a list of available parts.

98 Building AS/400 Applications with Java

Figure 67. Select Part

The user may press F12 to remove the window and return to the initial display.
They may roll through the items in the list until they find the part they want. By
typing a 1 in the option field and pressing the Enter key, they indicate their choice
and the selected part is returned to the initial display.

 Chapter 5. Overview of the Order Entry Application 99

Figure 68. Parts Order Entry

After selecting a customer from the list or typing a valid customer number and
pressing the Enter key, the part and quantity ordered are added to a list section
below the part entry fields.

100 Building AS/400 Applications with Java

Figure 69. Parts Order Entry

The user may type a 2 beside an entry in the list to change the order. Pressing the
Enter key causes a window to appear allowing the order line to be changed.

 Chapter 5. Overview of the Order Entry Application 101

Figure 70. Change Selected Order

The user may press F12 to cancel the change, press F4 to list parts, or type a new
part identifier or different quantity. Pressing the Enter key causes the part identifier
and quantity to be validated and if valid, the order line is changed in the list and the
window is closed.

102 Building AS/400 Applications with Java

Figure 71. Parts Order Entry

Here you can see the quantity for Zoo_Season_Pass has been changed to 3.
When the order is complete, the user may press F6 causing the database to be
updated and an order to be printed.

 Chapter 5. Overview of the Order Entry Application 103

Figure 72. Printed Order

The printed order is created by a batch process. It shows the customer details and
the items, quantities, and cost of the order.

5.1.1.6 Database Table Structure
The ABC Company database has eight tables:

 � District
 � Customer
 � Order
 � Order line
 � Item
 � Stock
� Warehouse (not used)
� History (not used)

104 Building AS/400 Applications with Java

The relationships among these tables are shown in the following diagram:

Figure 73. ABC Company Database Table Relationships

5.2 Order Entry Application Database Layout
The sample application uses the following tables of the database:

 � District
 � Customer
 � Order
 � Order line
 � Stock
 � Item (catalog)

The following sections describe in detail the layout of the database tables.

 5.2.1 District
Table 1 (Page 1 of 2). District Table Layout (DSTRCT)

Field Name Real Name Type Length

DID District ID Decimal 3

DWID Warehouse ID Character 4

DNAME District Name Character 10

DADDR1 Address Line 1 Character 20

DADDR2 Address Line 2 Character 20

DCITY City Character 20

DSTATE State Character 2

DZIP Zip Code Character 10

 Chapter 5. Overview of the Order Entry Application 105

Table 1 (Page 2 of 2). District Table Layout (DSTRCT)

Field Name Real Name Type Length

DTAX Tax Decimal 5

DYTD Year to Date Balance Decimal 13

DNXTOR Next Order Number Decimal 9

Note: Primary Key: DID, DWID

 5.2.2 Customer
Table 2. Customer Table Layout (CSTMR)

Field Name Real Name Type Length

CID Customer ID Character 4

CDID District ID Decimal 3

CWID Warehouse ID Character 4

CFIRST First Name Character 16

CINIT Middle Initials Character 2

CLAST Last Name Character 16

CLDATE Date of Last Order Numeric 8

CADDR1 Address Line 1 Character 20

CCREDT Credit Status Character 2

CADDR2 Address Line 2 Character 20

CDCT Discount Decimal 5

CCITY City Character 20

CSTATE State Character 2

CZIP Zip Code Character 10

CPHONE Phone Number Character 16

CBAL Balance Decimal 7

CCRDLM Credit Limit Decimal 7

CYTD Year To Date Decimal 13

CPAYCNT Quantity Decimal 5

CDELCNT Quantity Decimal 5

CLTIME Time of Last Order Numeric 6

CDATA Customer Information Character 500

Note: Primary Key: CID, CDID, CWID

 5.2.3 Order
Table 3 (Page 1 of 2). Orders Table Layout (ORDERS)

Field Name Real Name Type Length

OWID Warehouse ID Character 4

ODID District ID Decimal 3

OCID Customer ID Character 4

106 Building AS/400 Applications with Java

Table 3 (Page 2 of 2). Orders Table Layout (ORDERS)

Field Name Real Name Type Length

OID Order ID Decimal 9

OENTDT Order Date Numeric 8

OENTTM Order Time Numeric 6

OCARID Carrier Number Character 2

OLINES Number of Order Lines Decimal 3

OLOCAL Local Decimal 1

Note: Primary Key: OWID, ODID, OID

 5.2.4 Order Line
Table 4. Order Line Table Layout (ORDLIN)

Field Name Real Name Type Length

OLOID Order ID Decimal 9

OLDID District ID Decimal 3

OLWID Warehouse ID Character 4

OLNBR Order Line Number Decimal 3

OLSPWH Supply Warehouse Character 4

OLIID Item ID Character 6

OLQTY Quantity Ordered Numeric 3

OLAMNT Amount Numeric 7

OLDLVD Delivery Date Numeric 8

OLDLVT Delivery Time Numeric 6

OLDSTI District Information Character 24

Note: Primary Key: OLWID, OLDID, OLOID, OLNBR

 5.2.5 Item (Catalog)
Table 5. Item Table Layout (ITEM)

Field Name Real Name Type Length

IID Item ID Character 6

INAME Item Name Character 24

IPRICE Price Decimal 5

IDATA Item Information Character 50

Note: Primary Key: IID

 5.2.6 Stock
Table 6 (Page 1 of 2). Stock Table Layout (STOCK)

Field Name Real Name Type Length

STWID Warehouse ID Character 4

STIID Item ID Character 6

 Chapter 5. Overview of the Order Entry Application 107

Table 6 (Page 2 of 2). Stock Table Layout (STOCK)

Field Name Real Name Type Length

STQTY Quantity in Stock Decimal 5

STDI01 District Information Character 24

STDI02 District Information Character 24

STDI03 District Information Character 24

STDI04 District Information Character 24

STDI05 District Information Character 24

STDI06 District Information Character 24

STDI07 District Information Character 24

STDI08 District Information Character 24

STDI09 District Information Character 24

STDI010 District Information Character 24

STYTD Year To Date Decimal 9

STORDRS Quantity Decimal 5

STREMORD Quantity Decimal 5

STDATA Item Information Character 50

Note: Primary Key: STWID, STIID

 5.3 Database Terminology
This redbook concentrates on the use of the AS/400 system as a database server
in a client/server environment. In some cases, we use SQL to access the AS/400
databases; in other cases, we use native database access.

The terminology used for the database access is different in both cases. In
Table 7, you find the correspondence between the different terms.

Table 7. Database Terminology

AS/400 Native SQL

Library Collection

Physical File Table

Field Column

Record Row

Logical File View or Index

108 Building AS/400 Applications with Java

Chapter 6. Migrating the User Interface to Java Client

This chapter covers the steps necessary to create a Java Graphical User Interface
that interacts with the Order Entry application discussed in Chapter 5, “Overview
of the Order Entry Application” on page 93. The user interface is designed so that
minimal changes are needed in the RPG code. Furthermore, the host application is
changed so that it can handle both an invocation from a Java client as well as a
native invocation involving no Java interface. The following figure shows the
original design of the Order Entry application.

Figure 74. Original Order Entry Application

 Copyright IBM Corp. 1998 109

We migrate the application to a Java Client that provides a graphical user interface.
We modify the original RPG code to allow it to be used from either the new Java
client interface or from the original 5250 interface. The following figure shows the
new design.

Figure 75. Java Client Order Entry Application

6.1 Creating the Java Client Graphical User Interface
First, we analyze the steps and code involved in creating the Java Graphical User
Interface. It is built using VisualAge for Java . The AS/400 Toolbox for Java is
used to access data and programs on the AS/400 system. The following Toolbox
topics are covered:

� Stored procedures using the AS/400 Toolbox for Java JDBC driver

� DDM Record Level Access

� Distributed Program Call

Familiarity with IBM's VisualAge for Java as well as a basic understanding of the
AS/400 Toolbox for Java is assumed. For more information pertaining to these
topics, see the redbook Accessing the AS/400 System with Java, SG24-2152-00.

110 Building AS/400 Applications with Java

The changes made in the host RPG application are also discussed later in this
chapter.

We begin by focusing on the "look" of the window that is designed to interact with
the Order Entry application. The components contained in the window are
discussed. Subsequent sections explore the issues relating to the functionality
associated with the individual components in the window.

6.2 Overview of the Parts Order Entry Window
The following figure shows the main order entry window that is designed.

Figure 76. Parts Order Entry - Initial Panel

This window is built using VisualAge for Java . The name of the class that defines
this window is OrderEntryWdw . It is the controlling class (or entry point) of the
client application.

The following list contains the primary components contained in the window:

� A menu bar that contains a "Connect" menu item
� Six text fields for the customer information
� Three text fields for the current item that is selected
� A multi-column list box that displays all items in the current order
� A text field for status updates
� A button for listing all valid customers

 Chapter 6. Migrating the User Interface to Java Client 111

� A button for listing all valid items that can be ordered
� A button for adding the current item to the order list box
� A button for submitting the order
� A button for exiting the application

When the window is first displayed, all the buttons except the "Exit" button are
disabled. Initially, the only valid options are exiting or connecting to the remote
database (the host AS/400 system).

The following Java code is a partial listing of the class definition for
OrderEntryWdw :

 Program Listings

For complete listings of all the code examples shown throughout this book,
please refer to Appendix A, “Example Programs” on page 203 for instructions
to access the redbook Web site and download the example code.

import java.math.\;
import java.sql.\;
import com.ibm.as4ðð.access.\;
import OrderEntry.\;
public class OrderEntryWdw extends java.awt.Frame
 implements java.awt.event.ActionListener,
 java.awt.event.KeyListener,
 java.awt.event.WindowListener
{

private String password = null;
private String systemName = null;
private String userid = null;
private AS4ðð as4ðð = null;
private Connection dbConnect = null;
private KeyedFile itemFile = null;
// not shown are all the TextFields, Buttons, etc.
// generated by VisualAge for Java

}

We only show the data members that are not added by the VisualAge for Java
Composition Editor . There are three string objects for sign-on information.
Additionally, there is an SQL Connection object (dbConnect) that is created from
the connection class that is included with the java.sql package . Finally, we
declare two objects from classes provided by the AS/400 Toolbox for Java - an
AS400 object, and a KeyedFile object. We now examine how these objects (in
conjunction with GUI controls and other objects) are used to interface with the RPG
Order Entry application.

6.3 Application Flow through the Java Client Order Entry Window
The series of tasks that the client application supports is summarized in the
following list:

� Connect to the remote database.
� Retrieve a list of valid customers.
� Select a customer.
� Retrieve a list of valid items (parts).
� Select an item.

112 Building AS/400 Applications with Java

� Verify the item.
� Add the item to the order.
� Submit the order.

Each of these tasks is now examined.

6.3.1 Connecting to Database
Once the Parts Order Entry Window has initially displayed, the Connect menu
option is chosen to connect to the AS/400 system.

Figure 77. Parts Order Entry - Database Connect

A dialog is shown that requests sign-on information. A machine name, userid, and
password must be entered:

 Chapter 6. Migrating the User Interface to Java Client 113

Figure 78. Sign On to System

The action of the OK button being pressed is connected to the connectToDb()
method of the OrderEntryWdw class. The code for this method follows:

public void connectToDB(String systemName, String userid,
 String password)
{

// This method invokes the openItemFile() method and then
// establishes the JDBC connection

updateStatus("Connecting to " + systemName + " ...");

this.systemName = systemName;
this.userid = userid;
this.password = password;

 openItemFile();

 try
 {
 DriverManager.registerDriver
 (new com.ibm.as4ðð.access.AS4ððJDBCDriver());

dbConnect = DriverManager.getConnection
("jdbc:as4ðð://" + systemName +
"/apilib;naming=sql;errors=full;date format=iso", +

 "Extended Dynamic=true;Package=JavaMig",
 userid,password);
 }
 catch(Exception e)
 {
 updateStatus("Connect failed");
 handleException(e);
 return;
 }

updateStatus("Connected to " + systemName);

 return;

114 Building AS/400 Applications with Java

 } // end method

This method has two main responsibilities: invoking the openItemFile() method,
and establishing a JDBC connection. The openItemFile() method opens an
AS/400 remote file using record-level access functionality that is provided by the
AS/400 Toolbox for Java . It is discussed in greater detail later.

After invoking the openItemFile() method, the AS/400 JDBC driver is loaded with
the following statement:

 DriverManager.registerDriver
 (new com.ibm.as4ðð.access.AS4ððJDBCDriver());

Next, the SQL connection is established by invoking the getConnection() method,
which is a static method in the DriverManager class:

dbConnect = DriverManager.getConnection
("jdbc:as4ðð://" + systemName +
"/apilib;naming=sql;errors=full;date format=iso", +

 "Extended Dynamic=true;Package=JavaMig",
 userid,password);

A URL is passed to the getConnection() method. The systemName value is
retrieved from a text field in the Sign-On Dialog, as are the userid and password
values that are passed in. The URL string also specifies a default library of apilib,
standard SQL naming convention, full error message information, and ISO format
for date fields. Extended dynamic support is also enabled. This allows us to store
the SQL statements in packages on the AS/400 system. This provides better
performance than using dynamic SQL. The name of the package we store the
statements in is JavaMig . The updateStatus() method simply updates the text in
the status text field.

As mentioned previously, the openItemFile() method handles opening the ITEM
file on the AS/400 system. This is the code for the method:

public void openItemFile()
{

// initialize the as4ðð data member
as4ðð = new AS4ðð(systemName, userid, password);

// declare a path name for the file
QSYSObjectPathName fileName = new QSYSObjectPathName

 ("APILIB","ITEM","\FILE","MBR");

// establish a handle to the ITEM file
itemFile = new KeyedFile(as4ðð, fileName.getPath());

 try
 {
 as4ðð.connectService(AS4ðð.RECORDACCESS);
 }
 catch(Exception e)
 {
 updateStatus

("Error establishing RECORDACCESS connection");
 handleException(e);
 return;
 }

 Chapter 6. Migrating the User Interface to Java Client 115

RecordFormat itemFormat = null;

// retrieve the record format of the file - some files may
// have multiple formats, in this case there is only one

 try
 {

AS4ððFileRecordDescription recordDescription =
 new AS4ððFileRecordDescription(as4ðð,"/QSYS.LIB/APILIB.LIB/ITEM.FILE");

itemFormat = recordDescription.retrieveRecordFormat()[ð];
 itemFormat.addKeyFieldDescription("IID");
 }
 catch(Exception e)
 {
 updateStatus

("Error retrieving file format on ITEM file");
 handleException(e);
 return;
 }

// set the record format and the open options
 try
 {
 itemFile.setRecordFormat(itemFormat);
 itemFile.open(AS4ððFile.READ_ONLY,1,
 AS4ððFile.COMMIT_LOCK_LEVEL_NONE);
 }
 catch(Exception e)
 {

updateStatus("Error opening ITEM file");
 handleException(e);
 return;
 }

updateStatus("Item File successfully opened...");

 return;

} // end method

The openItemFile() method intializes the as400 data member and establishes the
RECORDACCESS connection for this object. The itemFile object is initialized so
that it becomes a handle to the ITEM file on the AS/400 system. After instantiating
a RecordFormat object for this file, it is opened in read-only mode with a blocking
factor of one. Since we are only reading the file, commitment control is not used.
A blocking factor of one is used because we only need one record at a time. We
use this file later in the application when we need to verify items that are being
ordered.

This completes the discussion relating to connecting to the AS/400 system. In
summary, an SQL connection is established and a handle to the ITEM file on the
AS/400 system is initialized. The ITEM file is then opened. The List Customers
button is enabled and we are ready to retrieve a list of valid customers from the
AS/400 Customer Master database.

116 Building AS/400 Applications with Java

 6.3.2 Program Interfaces

Figure 79. Java Client Programming Interfaces

The Java client program uses a number of different interfaces to access the AS/400
system. All of these interfaces are provided by the AS/400 Toolbox for Java.
ODBC stored procedures are used to populate the customer listbox and the item
listbox. DDM record level access is used to verify items being ordered and the
Distributed Program Call interface is used to submit an order. In the following
sections, we examine the coding implementation of these interfaces in more detail.

6.3.3 Retrieving the Customer List
In this section, we examine the code that enables us to retrieve a list of valid
customers from the AS/400 system. The following figure shows the window that is
displayed once the list of customers has been retrieved.

 Chapter 6. Migrating the User Interface to Java Client 117

Figure 80. Select a Customer

SltCustWdw is the class that defines this window. It contains a Taligent
multi-column list box and one button. JDBC is used to access an SQL stored
procedure on the AS/400 system. This stored procedure returns a result set.
Records are fetched from the result set and the retrieved data is used to populate
the list box.

Note: The Taligent classes used in these examples are available from
www.Taligent.com.

The following code snippet shows the class definition for SltCustWdw :

import java.sql.\;

public class SltCustWdw extends java.awt.Frame
 implements java.awt.event.ActionListener
{
private Connection dbConnect = null;
private com.taligent.widget.MultiColumnListboxivjCustMLB = null;
private java.awt.Button ivjSltCustBTN = null;
private OrderEntryWdw orderWindow = null;

}

When the List Customers button on the order entry window is clicked on, the
constructor for SltCustWdw is invoked. The constructor receives a reference to
the order entry window as well as a reference to the SQL connection object. The
code for the constructor follows:

public SltCustWdw (OrderEntryWdw orderWdw,
 Connection dbConnect)
{
 super();
 initialize();
orderWindow = orderWdw;

118 Building AS/400 Applications with Java

this.dbConnect = dbConnect;
 setupCustBox();
 populateCustBox();
 this.show();
}

The setupCustBox() method simply adds the columns to the list box and sets
some border characteristics. Data retrieval is done in the populateCustBox()
method. This is the code for the method:

private void populateCustBox()
{

orderWindow.updateStatus("Retrieving customer list...");
// The result set that is returned represents records that
// have 9 fields of data. These fields are all character
// data and will be stored in an array of strings
String[] array = new String[9];

ResultSet rs = null;
CallableStatement callableStatement = null;

 try
 {

// invoke the stored procedure on the AS/4ðð
callableStatement = dbConnect.prepareCall

("CALL APILIB.SLTCUSTR(' ','R')");
rs = callableStatement.executeQuery();

// each record is fetched from the result set, the fields
// are retrieved by name and stored in the array

 while(rs.next())
 {

array[ð] = rs.getString("CID");
array[1] = rs.getString("CLAST");
array[2] = rs.getString("CFIRST");
array[3] = rs.getString("CINIT");
array[4] = rs.getString("CADDR1");
array[5] = rs.getString("CADDR2");
array[6] = rs.getString("CCITY");
array[7] = rs.getString("CSTATE");
array[8] = rs.getString("CZIP");

 getCustMLB().addRow(array);
 }
 }
 catch(SQLException e)
 {
 orderWindow.updateStatus

("Error retrieving customer list");
 handleException(e);
 return;
 }

orderWindow.updateStatus("Customer list retrieved");

 return;
} // end method

 Chapter 6. Migrating the User Interface to Java Client 119

As previously shown, populateCustbox() receives a result set through an
invocation of a remote stored procedure. This is done by invoking the prepareCall(
) method, which returns a CallableStatement object. The executeQuery()
method of this object executes the stored procedure:

callableStatement = dbConnect.prepareCall
("CALL APILIB.SLTCUSTR(' ','R')");

rs = callableStatement.executeQuery();

The stored procedure on the AS/400 system is called SLTCUSTR. It is defined to
call an RPG program also named SLTCUSTR. It accepts two parameters. Each
parameter is one character long. When the SLTCUSTR program receives two
parameters, it bypasses its own display processing and returns a result set. The
actual values of the parameters (' ' and 'R' in this case) are arbitrary. They can be
set to any character value. The important fact is that two parameters are being
passed. This is also covered later when we cover the RPG code.

After the list box is filled, the user selects a valid customer with a mouse click and
then clicks on the OK button. This action is connected to the invocation of the
custSelected() method. The code for this method follows:

private void custSelected()
{

Object[] selectedRow = getCustMLB().getSelectedRow();

// declare an array of strings the same size as the
// number of columns in the list box
String[] custInf = new String[selectedRow.length];

// retrieve the data from the selected row. It is
// returned as an array of Object and each element
// will be converted to a String object.

 for(int i=ð;i<selectedRow.length;i++)
 {

custInf[i] = selectedRow[i].toString();
 }

// instantiate a Customer object, passing the
// constructor the array of String data
Customer custSelected = new Customer(custInf);

// invoke the method that will set the text fields
// in the OrderEntryWdw

 orderWindow.setSelectedCust(custSelected);

// close down
 this.dispose();

 return;
}

As shown in this code snippet, the custSelected() method creates a Customer
object once a row has been selected from the list box. We now examine the
Customer class.

120 Building AS/400 Applications with Java

public class Customer
{
public java.math.BigDecimal id;
private String lastName;
private String firstName;
private String init;
private String address1;
private String address2;
private String city;
private String state;
private String postCode;

}

The Customer class is an object-oriented representation of a customer record.
The constructor simply sets the data members based upon the string elements in
the array that is passed in:

public Customer (String[] custInfo)
{
// parse the array into the appropriate data members
id = new java.math.BigDecimal(custInfo[ð]);
lastName = custInfo[1];
firstName = custInfo[2];
init = custInfo[3];
address1 = custInfo[4];
address2 = custInfo[5];
city = custInfo[6];
state = custInfo[7];
postCode = custInfo[8];

}

The Customer class also provides the standard "getter" methods for retrieving the
values of individual data members. These methods are basic and not discussed
here.

As noted previously, the selected Customer is passed as a parameter to the
setSelectedCust() method of the OrderEntryWdw object. This method follows:

public void setSelectedCust(Customer selectedCust)
{
 getCustIDTF().setText(selectedCust.getId().toString());
 getCustNameTF().setText(selectedCust.getFullName());
 getStreetTF().setText(selectedCust.getAddress());
 getCityTF().setText(selectedCust.getCity());
 getStateTF().setText(selectedCust.getState());
 getPCodeTF().setText(selectedCust.getPostCode());
 getListItemBTN().setEnabled(true);
updateStatus("Customer information set");

 return;
}

The method simply retrieves values from the Customer object and sets the
appropriate text fields in the Order Entry Window . The following figure shows the
current state of the main window:

 Chapter 6. Migrating the User Interface to Java Client 121

Figure 81. Order Entry Window with Customer Data

Once the information for the selected customer has been set, the List Items button
is enabled and we are ready to retrieve the list of valid items from the AS/400
system.

6.3.4 Retrieving the Item List
In this section, we examine the code that enables us to retrieve a list of valid items
from the AS/400 system. The process is similar to retrieving the customer list. The
following figure shows the window that is displayed once the list of items has been
retrieved.

122 Building AS/400 Applications with Java

Figure 82. Selected Items

SltItemWdw is the class that defines this window. It contains a Taligent
multi-column list box and one button. JDBC is used to access an SQL stored
procedure on the AS/400 system. This stored procedure returns a result set.
Records are fetched from the result set and the retrieved data is used to populate
the list box.

The following code snippet shows the class definition for SltItemWdw :

import java.sql.\;

public class SltItemWdw extends java.awt.Frame
 implements java.awt.event.ActionListener,
 java.awt.event.WindowListener
{
private Connection dbConnect = null;
private java.awt.Button ivjButton1 = null;

 private com.taligent.widget.MultiColumnListbox
ivjItemMLB = null;

private OrderEntryWdw orderWindow = null;
}

When the List Items button on the order entry window is clicked on, the
constructor for SltItemWdw is invoked. The constructor receives a reference to the
order entry window as well as a reference to the SQL connection object. The code
for the constructor follows:

 Chapter 6. Migrating the User Interface to Java Client 123

public SltItemWdw (OrderEntryWdw orderWdw,
Connection dbConnect)

{
 super();
 initialize();
orderWindow = orderWdw;
this.dbConnect = dbConnect;

 setupItemBox();
 populateItemBox();
 this.show();
}

The setupItemBox() method simply adds the columns to the list box and sets
some border characteristics. Data retrieval is done in the populateItemBox()
method. This is the code for the method:

private void populateItemBox()
{

orderWindow.updateStatus("Retrieving item list...");

// The result set that is returned represents records that
// have 4 fields of data. These fields will be stored in
// an array of strings
String[] array = new String[4];

 ResultSet rs;
 CallableStatement callableStatement;

 try
 {

// invoke the stored procedure on the AS/4ðð system
callableStatement = dbConnect.prepareCall

("CALL APILIB.SLTPARTR(' ','R')");
rs = callableStatement.executeQuery();

 while(rs.next())
 {

array[ð] = rs.getString("IID");
array[1] = rs.getString("INAME");
array[2] = "$"+rs.getBigDecimal("IPRICE",2).toString();
array[3] = Integer.toString(rs.getInt("STQTY"));

 getItemMLB().addRow(array);
} // end while

 } // end try
 catch(SQLException e)
 {

orderWindow.updateStatus("Error retrieving item list");
 handleException(e);
 return;
 }
orderWindow.updateStatus("Item list retrieved");

 return;
}

The process of populating the ITEM list box is almost identical to the process of
populating the CUSTOMER list box. However, two of the fields that are retrieved
are not characters. The IPRICE field (column) is stored as packed decimal data on

124 Building AS/400 Applications with Java

the AS/400 system. It is mapped to a Java BigDecimal type with two decimal
positions in the Java code. This result is then converted to a String:

array[2] = "$"+rs.getBigDecimal("IPRICE",2).toString();

The STQTY field is mapped to a Java type of Integer since there are no decimal
positions involved. The string value of this is put into the array. This is done by
invoking the static toString() method of the Integer class:

array[3] = Integer.toString(rs.getInt("STQTY"));

After the item list box is filled, the user selects a valid item with a mouse click and
then clicks on the OK button. This action is connected to the invocation of the
itemSelected() method. The code for this method follows:

private void itemSelected()
{
Object[] selectedRow = getItemMLB().getSelectedRow();

// declare an array of String the same size as the row
String[] itemInf = new String[selectedRow.length];

// retrieve each item in the selected row, convert to
// String and put it into the String array

 for(int i=ð;i<selectedRow.length;i++)
 {

itemInf[i] = selectedRow[i].toString();
 }

// instantiate an Item object and pass it to the
// setSelectedItem() method of the order window
Item itemSelected = new Item(itemInf);

 orderWindow.setSelectedItem(itemSelected);

// close down the list window
 this.dispose();

 return;
}

The itemSelected() method retrieves the selected row, converts it to String , and
adds it as an element in a String array. It then creates an ITEM object and passes
this to the setSelectedItem() method. The ITEM class is now examined.

public class Item
{
private String id;
private String name;
private java.math.BigDecimal price;
private int quantity;

}

The ITEM class is an object-oriented representation of a record in the ITEM file.
The constructor takes a String array as a parameter and then sets the data
members accordingly:

public Item (String[] itemInf)
{

id = itemInf[ð];
name = itemInf[1];
// remember to trim the '$' symbol before

 Chapter 6. Migrating the User Interface to Java Client 125

// instantiating a BigDecimal
 price = new java.math.BigDecimal(itemInf[2].substring(1));

quantity = new Integer(itemInf[3]).intValue();
}

The setSelectedItem() method in the OrderEntryWdw class puts the ITEM id and
the ITEM name in the window. It positions the cursor to the quantity field, where a
number must be entered before the entry is added to the order list:

public void setSelectedItem(Item selectedItem)
{
 getItemTF().setText(selectedItem.getId());
 getDscTF().setText(selectedItem.getName());
 getQtyTF().requestFocus();

updateStatus("Item information set: please enter quantity");

 return;
}

6.3.5 Verifying the Item and Adding It to the Order
Once a quantity is entered, the Add Item button is enabled. The action of this
button is connected to an invocation of the addOrderItem() method. The value in
the item id text field is passed in as a parameter. This method uses the
RECORDACCESS functionality provided by the AS/400 system Toolbox for Java
to retrieve a record from the ITEM file. If the record is found, it adds the
information to the Order List Box in the main window and enables the Submit
button. If the record is not found or there is an error reading the file, the status
field is updated and the Submit button is not enabled. This acts as a verification
for the item being ordered (in case an item id and quantity are incorrectly entered
without using the prompt function offered by the List Items button). Here is the
code for the method:

public void addOrderItem(String key)
{

// This method is invoked when the add item button
// is pressed. It gets the text from the item text
// field (getItemTF().getText()) and uses it as a
// key to read the ITEM file.

Record data = null;
Object[] theKey = new Object[1];
theKey[ð] = key;

updateStatus("Verifying order item...");

if(itemFile == null)
 {
 openItemFile();
 }

 try
 {

data = itemFile.read(theKey);
 }
 catch(Exception e)
 {

updateStatus("Error reading ITEM file");

126 Building AS/400 Applications with Java

 handleException(e);
 return;
 }
 try
 {

if(data != null)
 {

// retrieve data from the record and build an
// entry in the order box
Object[] orderRow = new Object[4];
orderRow[ð] = data.getField("IID");
orderRow[1] = data.getField("INAME");
orderRow[2] = data.getField("IPRICE");
orderRow[3] = getQtyTF().getText();

 getOrderMLB().addRow(orderRow);
 getOrderMLB().repaint();
 getSubmitBTN().setEnabled(true);
 updateStatus

("Item added: please add more or submit");
 }
 else
 {
 updateStatus("Invalid item...");
 }
 }
 catch(Exception e)
 {
 updateStatus

("Error retrieving field data from Item file");
 handleException(e);
 return;
 }

 return;
 }

Once an item has been added to the order list, the Submit button is enabled.
More items may be added to the list, or the order may be submitted. The following
diagram shows the state of the window at this point.

 Chapter 6. Migrating the User Interface to Java Client 127

Figure 83. Parts Order Ready to Submit

6.3.6 Submitting the Order
When the Submit button is clicked on, the retrieveOrderInf() method is called.
This method retrieves the order information from the window. It constructs an
Order object, passing the customer id to the constructor. It then adds OrderDetail
objects to the Order by retrieving each row in the Order List box.

public void retrieveOrderInfo()
{

 int numEntries = getOrderMLB().countRows();

 Order theOrder = new Order(getCustIDTF().getText());
 for(int i=ð;i<numEntries;i++)
 {

Object[] detailRow = getOrderMLB().getRow(i);
OrderDetail detail = new OrderDetail

 (detailRow[ð].toString(),
 detailRow[1].toString(),
 new BigDecimal(detailRow[2].toString()),
 new BigDecimal(detailRow[3].toString()));
 theOrder.addEntry(detail);
 }

 prepareOrder(theOrder);

128 Building AS/400 Applications with Java

 return;
}

The Order class is now examined:

public class Order
{

private StringBuffer customerId = new StringBuffer(4);
private OrderDetail[] entryArray = new OrderDetail[5ð];
private int index = -1;
private int cursor = ð;

}

As shown, an Order object contains an array of OrderDetail objects. The size of
this array is arbitrarily set to 50. A Vector can also be used, which avoids having
to determine a size in advance (vectors allow dynamic allocation, whereas arrays
do not).

The customerId field is declared as a StringBuffer rather than a String . This is
because leading zeros may have to be inserted. The AS/400 system program that
is eventually called expects a buffer of character data. Certain fields need to have
specific lengths so that offsets are predictable. The customerId field must always
be a length of 4. If the customerId retrieved from the window is 10, then two
leading zeros must be inserted to yield 0010. This is shown in the constructor:

public Order (String cid)
{

// Set the customer id making sure leading zeros are
 // included.

for(int i=ð;i<4-cid.length();i++)
 {
 customerId.append('ð')
 }
 customerId.append(cid);
}

Since the AS/400 system program that processes orders (ORDENTR) expects all
character data, a toString() method is provided in the Order class. This method
converts the Order object into one contiguous string. The string may be viewed as
a buffer with the following breakdown:

1. Starting at offset 0 for a length of 4 bytes: the customer id

2. Starting at offset 4 for a length of 5 bytes: the number of detail entries

3. Starting at offset 9 with varying length: multiple 40-byte segments

Each 40-byte segment represents a single detail record consisting of an item ID,
name, price, and quantity - see the OrderDetail.toString() method for a granular
breakdown of a detail record.

This is the toString() method for the Order class:

The complete listing of the class is available in the example code. Please see
Appendix A, “Example Programs” on page 203 for information on how to download
the code. Other methods such as getFirstEntry() and getNextEntry() may also
be viewed there.

 Chapter 6. Migrating the User Interface to Java Client 129

public String toString()
{
// declare a StringBuffer
StringBuffer orderBuffer =

 new SringBuffer(9+(4ð\getNumEntries()));
// append the customerId to the buffer

 orderBuffer.append(customerId);
// convert the number of entries to a string of 5 bytes
// and be sure to include leading zeros
StringBuffer numEntryBuffer = new StringBuffer(5);
String numEntryString = Integer.toString(getNumEntries());

for(int i=ð;i<5-numEntryString.length();i++)
 {
 numEntryBuffer.append('ð');
 }
 numEntryBuffer.append(numEntryString);

// append the number of entries string to the order buffer
 orderBuffer.append(numEntryBuffer);

// now append a string representation of all entries to
// the buffer
OrderDetail entry = getFirstEntry();

while(entry != null)
 {

// append a string representation of the detail entry
// this is done by invoking the toString() method that
// is provided by the OrderDetail class

 orderBuffer.append(entry.toString());
entry = getNextEntry();

 }

// return the complete StringBuffer as a String
// this is done by invoking the toString() method that is
// provided by Java's StringBuffer class
return orderBuffer.toString();

}

The OrderDetail class is now shown:

public class OrderDetail
{
StringBuffer itemId = new StringBuffer(6);
StringBuffer itemDsc = new StringBuffer(24);
BigDecimal itemPrice = null;
BigDecimal itemQty = null;

}

As in the Order class, care must be taken so that certain data members have a
specific length. In this case, itemId and itemDsc are declared as StringBuffer
types. In some cases, the constructor must add leading zeros to the itemId . It
may also have to add trailing blanks to itemDsc . This is the constructor:

130 Building AS/400 Applications with Java

public OrderDetail(String itemId,
 String itemDsc,
 BigDecimal itemPrice,
 BigDecimal itemQty)
{
// set the itemId making sure leading zeros are there

 for(int i=ð;i<6-itemId.length();i++)
 {
 this.itemId.append('ð');
 }
 this.itemId.append(itemId);

// set the description making sure trailing blanks are there
 this.itemDsc.append(itemDsc);
 for(int j=itemDsc.length()+1;j<25;j++)
 {
 this.itemDsc.append(' ');
 }

this.itemPrice = itemPrice;
this.itemQty = itemQty;

}

The OrderDetail class also provides a toString() method. Once again, this
facilitates the call to the AS/400 system program that accepts parameters as
character data. The toString() method converts the orderDetail object to a buffer
of 40 characters with certain offsets designated as starting points of certain data
members. The breakdown of the orderDetail buffer is as follows:

1. Starting at offset 0 for 6 bytes: the item id

2. Starting at offset 6 for 24 bytes: the item name (description)

3. Starting at offset 30 for 5 bytes: the price

4. Starting at offset 35 for 5 bytes: the quantity ordered

public String toString()
{

StringBuffer entryBuffer = new StringBuffer(4ð);
 entryBuffer.append(itemId);
 entryBuffer.append(itemDsc);

// convert price field to String, remove
// decimal point, and make sure leading
// zeros are there
StringBuffer priceBuffer = new StringBuffer(5);
String priceString = itemPrice.toString();
// find out the position of the decimal point
int decimalPosition = priceString.indexOf('.');
// create a new string that contains the digits
// before the decimal point

 String priceString1=
 priceString.substring(ð,decimalPosition);

// create a new string that contains the digits
// after the decimal point
String priceString2 = priceString.substring(decimalPosition+1)
// now combine the 2
priceString = priceString1 + priceString2;

 Chapter 6. Migrating the User Interface to Java Client 131

// insert any needed leading zeros
 for(int i=ð;i<5-priceString.length();i++)
 {
 priceBuffer.append('ð');
 }
 priceBuffer.append(priceString);

// now append it to the entry buffer
 entryBuffer.append(priceBuffer);

// convert the quantity field to String and make sure
// it is 5 bytes
StringBuffer qtyBuffer = new StringBuffer(5);
String qtyString = itemQty.toString();

 for(int i=ð;i<5-qtyString.length();i++)
 {
 qtyBuffer.append('ð');
 }
 qtyBuffer.append(qtyString);

// now append it to the entry buffer
 entryBuffer.append(qtyBuffer);

// now return the whole entry as a String
 return entryBuffer.toString();
}

It was previously mentioned that the action of the Submit button was connected to
an invocation of the retrieveOrderInf() method. That method created an Order
and added OrderDetail objects to it. Next, the retrieveOrderInf() method invokes
the prepareOrder() method and passes the Order object as a parameter. The
prepareOrder() method builds the constructs that are used as parameters when
invoking the AS/400 system RPG program that processes orders (ORDENTR).
Two parameters are required by this program.

The first parameter is a string that is a concatenation of the customer id and the
number of entries in the order. This data is fixed in length: the first 4 bytes are
designated for the customer id, while the last 5 bytes are for the number of entries.
The ORDENTR program moves the customer id data into a character field that has
a length of 4. The last 5 bytes are moved to a zoned numeric field. These 9 bytes
of data are the first 9 bytes in the string returned by Order.toString().

The second parameter is a block of character data that represents all the detail
entries in the order. This data is sent as one contiguous block of character data to
the ORDENTR program that parses the data. This block of data is also part of the
string that is returned by Order.toString(). It begins at offset 9 of the string.

This is the prepareOrder() method:

public void prepareOrder(Order theOrder)
{

String orderString = theOrder.toString();
StringBuffer headerBuffer = new StringBuffer(9);

 headerBuffer.append(orderString.substring(ð,9));

StringBuffer detailBuffer =
 new StringBuffer(orderString.length()-9);
 detailBuffer.append(orderString.substring(9));

132 Building AS/400 Applications with Java

// now invoke submit() and pass the 2 parms
// note that the toString() method of StringBuffer is

 // invoked
 submitOrder(headerBuffer.toString(),detailBuffer.toString());
 return;
}

After setting up the two parameters, prepareOrder() invokes the submitOrder()
method. SubmitOrder() calls the ORDENTR program on the AS/400 system
using the Distributed Program Call class provided by the AS/400 Toolbox for
Java .

public void submitOrder(String header, String detail)
{
 updateStatus

("Processing...if you hang here check QZRCSRVS");
 try
 {
 as4ðð.connectService(AS4ðð.COMMAND);

ProgramCall ordEntrPgm = new ProgramCall(as4ðð system);
QSYSObjectPathName pgmName =

 new QSYSObjectPathName("APILIB","ORDENTR","PGM");

ProgramParameter[] parmList = new ProgramParameter[2];
// set the first parameter which is the order header
// we use the data conversion classes in the Toolbox to
// do this.
AS4ððText text1 = new AS4ððText(9);
byte[] headerBytes = text1.toBytes(header);
parmList[ð] = new ProgramParameter(headerBytes);

AS4ððText text2 = new AS4ððText(detail.length());
byte[] detailBytes = text2.toBytes(detail);
parmList[1] = new ProgramParameter(detailBytes);

 ordEntrPgm.setProgram(pgmName.getPath(),parmList);

if (ordEntrPgm.run() != true)
 {

// If you get here, the program failed to run.
// Get the list of messages to determine why
// the program didn't run.

 AS4ððMessage[] messageList = ordEntrPgm.getMessageList();
 updateStatus(messageList[ð].getText());
 }
 else
 {

updateStatus("Order successfully submitted");
 }
 }
 catch(Exception e)
 {

updateStatus("Error submitting order");
 handleException(e);
 }
 return;
}

 Chapter 6. Migrating the User Interface to Java Client 133

Let's analyze the method. First, we start the AS400.COMMAND service for the
as400 object. It should be noted that the Toolbox implicitly starts this if it needs to
be. It is shown here for clarification.

as4ðð.connectService(AS4ðð.COMMAND);

Then we declare a ProgramCall object called ordEntrPgm . We then set the name
of the AS/400 system program associated with this object by declaring and
initializing a QSYSObjectPathName object:

ProgramCall ordEntrPgm = new ProgramCall(as4ðð system);
QSYSObjectPathName pgmName =

 new QSYSObjectPathName("APILIB","ORDENTR","PGM");

Once this is done, the parameters for the program must be set. The scenario for
setting up parameters is as follows.

First, we must declare an array of ProgramParameter objects. We declare an
array of two since the program requires two parameters:

ProgramParameter[] parmList = new ProgramParameter[2];

We must now construct the individual ProgramParameter elements to fill the array.
The ProgramParameter constructor must be passed an array of bytes. So before
instantiating a ProgramParameter object, we must first generate the appropriate
array of bytes.

The process of creating the array of bytes has two steps. First, declare an
appropriate AS/400 system data type object. In this case, we are passing string
data, so we declare an AS400Text object. Then we invoke the toBytes() method
on this AS400Text object and pass the string that is being converted to bytes.
Here are the two steps:

AS4ððText text1 = new AS4ððText(9);
byte[] headerBytes = text1.toBytes(header);

Now we can invoke the constructor for the ProgramParameter class.

parmList[ð] = new ProgramParameter(headerBytes);

The same scenario is followed for each additional parameter needed. Once the
parameters have been instantiated, the ProgramCall object must be initialized with
the actual name of the AS/400 program being called. The parameter list must also
be specified. This is done by invoking the setProgram() method:

ordEntrPgm.setProgram(pgmName.getPath(),parmList);

We are now ready to execute the program. The run() method invokes the
program. In this sample, it is done inside an "if" construct so that any errors may
be processed:

if (ordEntrPgm.run() != true)
 {

// If you get here, the program failed to run.
// Get the list of messages to determine why
// the program didn't run.

 AS4ððMessage[] messageList = ordEntrPgm.getMessageList();
 updateStatus(messageList[ð].getText());
 }

One important fact should be noted here. If the program on the AS/400 system
issues a message that waits for a response (an inquiry message), then control is
never returned. The submitOrder() method hangs on the ordEntrPgm.run()

134 Building AS/400 Applications with Java

method. If this occurs, you must check the server job that is handling the request
on the host AS/400 system. This job has a name of QZRCSRVS and its job log
should be viewed. If the program executes successfully, the submitOrder()
method updates the status text field accordingly.

This concludes the application flow from the Java client perspective. We now
examine the code changes made in the RPG code to accommodate the Java client.

6.4 Changes to the Host Order Entry Application
This section contains details about the transition of the RPG code on the host. The
changes are made so that the application can run in one of two modes: either as a
native application with 5250 screen interaction or in conjunction with the newly
created Java client. For the most part, the changes are examined in the same
sequence as the client application flow.

6.4.1 Providing a Customer List
We saw earlier that one of the first things the client does after connecting is to
request a Customer List. This was done by invoking an SQL stored procedure
using JDBC. The stored procedure is actually an RPG program called SLTCUSTR.
To accommodate the Java client, two subroutines are added to the program and
the logic flow is changed when a second parameter is detected. In the original
version of SLTCUSTR, the logic flow can be summarized as:

� Execute OpenCust subroutine (declares and opens cursor for CSTMR file).

� Execute BldSfl subroutine (populates and displays the sub-file).

� Execute Process subroutine (detects the chosen customer and displays).

The new logic flow can be summarized as:

� Execute CloseCust subroutine (effectively resets cursor for multiple client
requests).

� Execute OpenCust subroutine (same behavior as original version).

� If more than one parm, execute ResultSet subroutine (makes result set
available to the caller of the stored procedure).

� If only one parm, continue as original version did: execute BldSfl , then
execute Process .

The added subroutines are minimal code changes. Here is the CloseCust
subroutine:

CSR CloseCust BEGSR
 \ ----------
C/Exec Sql Close CUSTOMER
C/End-Exec
 \
CSR ENDSR

As previously mentioned, this ensures that the cursor is at the beginning of the file
when multiple requests are received from the client. Now we examine the
ResultSet subroutine:

 Chapter 6. Migrating the User Interface to Java Client 135

CSR ResultSet BEGSR
 \ ----------
C/Exec Sql
C+ Set Result Sets Cursor CUSTOMER
C/End-Exec
 \
CSR ENDSR

This allows the client to retrieve the result set when the program is called as a
stored procedure.

The program determines the number of parameters by accessing a pre-defined field
in the Program Status Data Structure:

D PgmStsDS SDS
D NbrParms \PARMS

After executing the OpenCust subroutine, the program determines if more than one
parameter was passed. If this is the case, the ResultSet subroutine is executed
and control is returned. The sub-file processing is bypassed:

C IF NbrParms > 1
C EXSR ResultSet
C RETURN
C ENDIF

The file specifications for the display file are changed so that user controlled open
is specified (the keyword USROPN is added). There is no reason to open the file if
the program is invoked from a Java client. The partial line is shown here:

...WORKSTN SFILE(CUSTSFL:SflRrn) USROPN

It is interesting to note that the functionality handled by the BldSfl subroutine is
analogous to the processing done by the SltCustWdw.populateCustBox()
method. The functionality handled by the Process subroutine is handled by the
SltCustWdw.custSelected() and OrderEntryWdw.setSelectedCust() methods.

6.4.2 Providing an Item List
We saw earlier that the List Items button invokes the SLTPARTR stored
procedure. The changes made in SLTPARTTR to accommodate the Java client
are similar to the changes made in SLTCUSTR. The original logic flow in the
SLTPARTR program is virtually identical to the flow in SLTCUSTR:

� Execute OpenPart subroutine (declares and opens cursor for ITEM and
STOCK file).

� Execute BldSfl subroutine (populates and displays the sub-file).

� Execute Process subroutine (detects the chosen part/item and displays it).

The new logic flow can be summarized as:

� Execute ClosePart subroutine (effectively resets cursor for multiple client
requests).

� Execute OpenPart subroutine (same behavior as original version).

� If more than one parm, execute ResultSet subroutine (makes result set
available to the caller of the stored procedure).

136 Building AS/400 Applications with Java

� If only one parm, continue as original version did: execute BldSfl , then
execute Process .

Since the code changes are virtually identical to the ones made in SLTCUSTR,
they are not discussed here but can be downloaded and viewed.

6.4.3 Verifying an Item
From the client, an item is verified using the direct RECORDACCESS capability
offered by the AS/400 Toolbox for Java . Since no host RPG program is used, no
changes are involved in this process. The only task left to do is handle an order
submitted from the client.

6.4.4 Processing the Submitted Order
As previously discussed, the AS/400 system program that handles a request to
submit an order is ORDENTR. When the order entry application is run from an
AS/400 system 5250 session (no Java client), ORDENTR is the entry point of the
application. It displays the initial windows that correspond to the Order Entry
Window in the Java client version. The ORDENTR program must be changed so
that it recognizes the fact that it is being invoked from Java.

First, the number of parameters are ascertained through the program status data
structure:

D PgmStsDS SDS
D NbrParms \PARMS

If the number of parameters is greater than zero, it is assumed that the program
has been invoked as a distributed program.

Since the Java client passes in two parameters, two data structures are declared
that map to the parameters. As discussed earlier, the client passes two strings.
The first string is 9 characters representing the customer id (4 characters), and the
number of detail entries (5 characters). A data structure named CustDS is
declared for this first parameter:

D CustDS DS
D CustNbr LIKE(CID)
D OrdLinCnt 5 ð

The second parameter is a string representing a contiguous grouping of detail
entries. Each entry has a length of 40, and there are a maximum of 50 entries. A
data structure named OrderMODS is declared for this parameter.

D OrderMODS DS OCCURS(5ð)
D PartNbrX LIKE(IID)
D PartDscX LIKE(INAME)
D PartPriceX 5 2
D PartQtyX 5 ð

An entry parameter list is added to the initialization subroutine. This ensures that
the data structures are loaded with the parameter values passed in:

C \ENTRY PLIST
C PARM CustDS
C PARM OrderMODS

 Chapter 6. Migrating the User Interface to Java Client 137

As in the other RPG programs, the USROPN keyword is added to the file
specification since the file is not opened when invoked as a distributed program.
Here is the portion of the file specification with the USROPN keyword added:

 ...WORKSTN SFILE(ORDSFL:SflRrn) USROPN

The mainline logic of the program is changed to check the number of parameters.
If there are parameters, a new subroutine called CmtOrder2 is invoked and all
display file processing is bypassed:

C IF NbrParms > \ZERO
C EXSR CmtOrder2
C EXSR EndPgm
C ENDIF

The CmtOrder2 subroutine is similar to the original CmtOrder subroutine.
However, it retrieves the order information from the CustDS and OrderMODS data
structures rather than from the display file and sub-file records:

CSR CmtOrder2 BEGSR
 \ ----------
 \ Get the next order number
C EXSR GetOrdNbr
 \
 \ Get the order date and time
C TIME DateTime
C Z-ADD \ZERO OrdTot
 \
 \ Get the customer information
C MOVE CustNbr CustomerId
C CustKey CHAIN CSRCD
 \
 \ For each order line in the passed structure ...
C 1 DO OrdLinCnt OrdCnt
C OrdCnt OCCUR OrderMODS
 \ Set up the fields so the existing DB routines work
C MOVE PartNbrX PARTNBR_O
C MOVE PartDscX PARTDSC_O
C MOVE PartQtyX PARTQTY_O
C MOVE PartPriceX ITEMPRICE
 \ Add an order detail record ...
C EXSR AddOrdLin
 \ Update stock record ...
C StockKey CHAIN STRCD
C EXSR UpdStock
 \ Accumulate order total ...
C EVAL OrdTot = OrdTot + OLAMNT
C ENDDO
 \
 \ Add an order header record ...
C EXSR AddOrdHdr
 \
 \ Update customer record ...
C EXSR UpdCust
 \
 \ Commit the database changes ...
C IF CmtActive = $True
C COMMIT
C ENDIF

138 Building AS/400 Applications with Java

 \
 \ Request batch print server to print order
C EXSR WrtDtaQ
 \
CSR ENDSR

The subroutine is built so that all other existing subroutines can be used as in the
prior version. Once again, the only significant change is that the information for the
order is retrieved from the parameters that are passed in.

 6.5 Summary
The common thread pervasive across all the changes in the host RPG code deals
with the display file processing. When ORDENTR is invoked as a distributed
program, all display file processing is bypassed. The information normally received
from the display files and sub-files is now made available through parameters.

Different approaches can be taken. The scenario shown here is not the only valid
one. For example, the detail order entries can be passed to the AS/400 system as
data queue entries. However, this approach entails more changes in the host
application. The amount of change needed at the host end is largely affected by
design decisions made at the Java client end.

Of course, this only covers certain portions of migrating the application to Java.
The server code can also be converted. This topic is covered in Chapter 7,
“Moving the Server Application to Java” on page 141.

 Chapter 6. Migrating the User Interface to Java Client 139

140 Building AS/400 Applications with Java

Chapter 7. Moving the Server Application to Java

So far we have shown how to move the user interface to a client PC using Java.
We have demonstrated how to do this while reusing much of the existing RPG
application. Now we are ready to replace the RPG application with a Java version.
The primary benefit of this is to gain easier maintenance and portability of our
application.

We next migrate the application to AS/400 Server Java. We use the Java Remote
Method Invocation (RMI) interface to allow the client Java program to interface with
the server Java code. The following figure shows the new design.

Figure 84. Java Client/Java Server Order Entry Application

This chapter discusses the Java code necessary to replace the RPG order entry
application. We discuss two techniques: using Record Level access and using
AS/400 JDBC. We also discuss the changes required for the client code.

There are many possible approaches to creating the AS/400 Java order entry
application:

 Copyright IBM Corp. 1998 141

1. We can simply create a procedural Java program and make all variables and
methods public. This is the most straightforward way of moving to Java but
does not take advantage of any of the object-oriented constructs such as
encapsulation.

2. We can completely redesign the application to be fully object-oriented. This
can involve creating classes to encapsulate all the files used, a class to hide
the data queue implementation, and classes to describe an order and a
customer.

3. We can compromise and use object-oriented constructs where it seems
sensible to do so and still use a somewhat procedural coding style for the
primary methods.

We have chosen to take the third approach, feeling that it is easier to understand
as a first step in moving to Java. We use classes to describe the order entry
application and the order itself. We also hide the internal implementation of the
order entry class. A full object-oriented version can be implemented later.

Figure 85. Java Client/Java Server Interfaces

The client Java program is comparable to the Java client program covered in
Chapter 6, “Migrating the User Interface to Java Client” on page 109. The major
difference is that now, the submit order processing is done through the Java remote

142 Building AS/400 Applications with Java

method invocation (RMI) interface. In the following sections of this chapter, we
cover implementing the RMI interface for this application.

Mapping RPG to Java

The first step in converting our RPG application to Java is to create a class that
represents the RPG program. Then we map the RPG subroutines to Java
methods. The final step is to write the code to implement the methods.

Creating a single class to represent an order entry program is the simplest design
for a Java replacement. We need to consider which techniques to use to access
the AS/400 database. There are four choices:

 � JDBC-ODBC bridge
� AS/400 Toolbox JDBC running on the AS/400 system
� AS/400 Toolbox Record Level Access (DDM) running on the AS/400 system
� AS/400 Developer Kit for Java JDBC (Native JDBC)

We demonstrate two different techniques of implementing the Java server
application. They are DDM Record Level Access and Native JDBC. The two
implementations are functionally equivalent and they are both equivalent to the
RPG application discussed in Chapter 5, “Overview of the Order Entry Application”
on page 93. We create two classes. OrderEntryDDM is for the DDM record Level
Access example and OrderEntryJDBC is for the JDBC example. Each class
contains Java methods that map to the subroutines found in the RPG example.
We initially implement Record Level Access because it is closer to the native I/O
mechanisms used in the original RPG application and, therefore, easier to
understand.

 Program Listings

For complete listings of all the code examples shown throughout this book,
please refer to Appendix A, “Example Programs” on page 203. It also contains
instructions to access the redbook Web site and download the example code.

7.1 Order Entry using Record Level Access (DDM)
In this section, we create the OrderEntryDDM class and its supporting methods.

 Chapter 7. Moving the Server Application to Java 143

Figure 86. OrderEntryDDM Class

We first create a class called OrderEntryDDM in the OrderEntryDDM package. The
basic class code follows with elaboration:

Here we specify that the class OrderEntryDDM is in the OrderEntry package.

package OrderEntryDDM;

Here we define the packages used by this class.

import com.ibm.as4ðð.access.\; // for AS/4ðð Toolbox classes
import java.math.\; // for BigDecimal class
import java.text.\; // for DateFormat class
import java.util.\; // for Properties class

This is the class definition. The class can be used by any other object.

/\\
\ This class is a replacement for the ORDENTR RPG IV program.
\ The method and variable names have been improved slightly
\ since Java supports longer names than RPG.
 \/
public class OrderEntryDDM
{

Here we define some named constants to simplify code changes in the methods of
the class. The values for your-library , your-user-id , your-password , and
your-system need to be set appropriately.

// Mnemonic values
private static final String SYSTEM_LIBRARY = "QSYS.LIB";
private static final String DATA_QUEUE_NAME = "ORDERS.DTAQ";
private static final String DATA_QUEUE_LIBRARY = "your-library.LIB";
private static final String WAREHOUSE = "ððð1";
private static final int DISTRICT = 1;

144 Building AS/400 Applications with Java

private static final String SYSTEM = "your-system";
private static final String USER = "your-user-id";
private static final String PASSWORD = "your-password";
private static final String DATA_LIBRARY = "your-library";

Here we create some global instance variables. These are visible to all the
methods of the class and are global to make referencing these objects easier.

// an AS4ðð object
private AS4ðð as4ðð = null;

// File objects
private SequentialFile ordersFile = null;
private SequentialFile orderLineFile = null;
private KeyedFile customerFile = null;
private KeyedFile stockFile = null;
private KeyedFile itemFile = null;
private KeyedFile districtFile = null;

// Record formats
private RecordFormat ordersFormat = null;
private RecordFormat orderLineFormat = null;
private RecordFormat customerFormat = null;
private RecordFormat stockFormat = null;
private RecordFormat itemFormat = null;
private RecordFormat districtFormat = null;

Here we define the default constructor for the class. It is responsible for initializing
the object when a new instance is created. It ensures that its super class is
initialized and then performs its own initialization.

/\\
 \ This method was created by a SmartGuide.
 \/
public OrderEntryDDM () throws Exception
{
 super();
 initialize();
}

The basic structure of the OrderEntryDDM class has now been completed. At this
point, we have the ability to create an instance of the class. However, it cannot do
anything until we define and implement the methods that the class provides. There
is almost a one-to-one relationship between the RPG subroutines and the methods
provided by this class.

� CmtOrder2 - commitOrder()
� AddOrdLin - addOrderLine()
� AddOrdHdr - addOrderHeader()
� UpdStock - updateStock()
� UpdCust - updateCustomer()
� WrtDtaQ - writeDataQueue()
� GetOrdNbr - getOrderNumber()
� EndPgm - finalize()
� *INZSR - initialize()

We next add these methods to the class definition. The methods are inserted after
the default constructor. Notice that most of the methods are defined as private to

 Chapter 7. Moving the Server Application to Java 145

hide the internal implementation of the OrderEntryDDM class from the users of the
class. The only external interface to the OrderEntryDDM class is the constructor
and the commitOrder() method.

 7.1.1.1 initialize()
Here is the basic initialize() method. It is responsible for ensuring that the new
object has the correct starting values.

private void initialize ()
{
 return;
}

 7.1.1.2 commitOrder()
Here is the basic commitOrder() method. This is the public interface to the
OrderEntryDDM class. It is responsible for accepting an Order object and
processing it. It needs to know the order and it will return a string indicating
whether the order was processed successfully or not.

public String commitOrder (Order anOrder)
{
return("Order processed successfully.");

}

 7.1.1.3 addOrderHeader()
Here is the basic addOrderHeader() method. It is responsible for inserting a new
record in the ORDERS file. It needs to know which customer the order is for, the
order identifier, and how many lines of items are in the order.

private void addOrderHeader (String aCustomerNbr,
 BigDecimal anOrderNbr,
 BigDecimal anOrderLineCount)
{
 return;
}

 7.1.1.4 addOrderLine()
Here is the basic addOrderLine() method. It is responsible for inserting a record in
the ORDLIN file for each order line created by the order entry application. It needs
to know the order identifier and the actual order. Notice that the Order is another
object. This method returns the total value of the order to its caller.

private BigDecimal addOrderLine (BigDecimal anOrderNbr,
Order anOrder)

{
 return orderTotal;
}

 7.1.1.5 getCustomerDiscount()
Here is the basic getCustomerDiscount() method. It is responsible for
determining the amount of discount to which a particular customer is entitled. It
needs to know the customer identifier and it returns the amount of that discount to
its caller.

private BigDecimal getCustomerDiscount (String aCustomerID)
{
 return customerDiscount;
}

146 Building AS/400 Applications with Java

 7.1.1.6 getOrderNumber()
Here is the basic getOrderNumber() method. It is responsible for obtaining the
correct identifier for this order. It simply returns an order number.

private BigDecimal getOrderNumber ()
{
 return orderNumber;
}

 7.1.1.7 updateCustomer()
Here is the basic updateCustomer() method. It is responsible for updating the
customers record in the CSTMR file to show the current amount ordered and the
data and time of the most recent order. It needs to know the customer identifier
and the value of the current order.

private BigDecimal updateCustomer (String aCustomerID,
BigDecimal anOrderTotal)

{
 return;
}

 7.1.1.8 updateStock()
Here is the basic updateStock() method. It is responsible for ensuring the stock
quantity is reduced by the number of items ordered. It needs to know which part
was ordered and how many of them were ordered.

private void updateStock (String aPartNbr,
BigDecimal aPartQty)

{
 return;
}

 7.1.1.9 writeDataQueue()
Here is the basic writeDataQueue() method. It is responsible for sending a
message to the Orders data queue to initiate printing of the order. It needs to
know the customer identifier and the order identifier.

private void writeDataQueue (String aCustomerID,
BigDecimal anOrderID)

{
 return;
}

 7.1.2 Method Logic
Next we add the program logic to each of the methods we have created. We also
need to consider exception handling. Many of the classes we use to access the
AS/400 system database send an error message if they encounter problems. The
mechanism Java uses to perform this is called throwing an exception. This is
similar to the exception handling model of the AS/400 system.

Consider a CL command such as Display Object Description (DSPOBJD). This
command sends an *ESCAPE message if you try to display the description of an
object that does not exist. That message is known as an exception. If you use the
DSPOBJD command in a CL program, you need to monitor for the exception if you
want your program to continue running if an exception occurs.

 Chapter 7. Moving the Server Application to Java 147

CL monitors for exceptions with the Monitor Message (MONMSG) command. Java
monitors for exception with try{} and catch{} blocks. A global MONMSG can be
performed in Java by adding the throws Exception statement to the definition of a
method.

 7.1.2.1 initialize()
Here is the complete initialize() method. This method is invoked by the constructor
for the OrderEntry class. First we create a connection to the AS/400 system (the
values SYSTEM, USER, and PASSWORD are named constants found in the class
definition). This is used to process the Record Level Access requests.

 Note

It is necessary to provide a user ID and password even when running on the
same AS/400 system as the database to which you are connected. You can
use the value *current for the user ID and password. In this case, the user ID
and password for the current AS/400 session is used.

The next block of code creates objects representing the files used by the
OrderEntry class. We choose an object appropriate to the type of processing
performed. The ORDERS and ORDLIN files are only written so they can be
processed sequentially—we use instances of the SequentialFile class to represent
these files. All the other files are processed randomly so support for keyed reads is
required—we use instances of the KeyedFile to represent these files. An example
follows:

ordersFile = new SequentialFile(as4ðð,
 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/ORDERS.FILE/%FILE%.MBR");

What this single line of Java code does is to set the ordersFile variable to
reference a new SequentialFile using the as400 connection object and the name
of the database file. Notice that we must use the IFS naming convention.

Then we create objects to represent a file description. We need these objects to
retrieve the record formats for each file. An example follows:

AS4ðð systemFileRecordDescription ordersFileD = new AS4ððFileRecordDescription(as4ðð,
 "/QSYS.LIB/PRODDATA.LIB/ORDERS.FILE");

What this single line of Java code does is to declare a variable called ordersFileD ,
which is a type of AS400FileRecordDescription and initializes it to reference a
new instance of an AS400FileRecordDescription representing a description of the
file named "/QSYS.LIB/PRODDATA.LIB/ORDERS.FILE ") on the system
represented by the as400 connection. Notice we are using the IFS naming
convention even though we are connecting to the DB2/400 system database.

Next we create objects to represent the record format for each file. These are used
in the same way a record format is used in an AS/400 system high-level language.
The record format is used to describe the data for read, update, and write
operations. The record format is retrieved by an instance method of the file
description objects just created. An example follows:

RecordFormat ordersFormat = ordersFileD.retrieveRecordFormat()[ð];

What this line of Java code does is to define a variable named ordersFormat ,
which is a type of RecordFormat , and initializes it to the first (and in this case,

148 Building AS/400 Applications with Java

only) record format of the ordersFileD file description. (Array subscripts in Java
start at zero.)

Then we define the key fields for the files that are processed randomly. The
retrieveRecordFormat() method sets the key values automatically if the file has a
primary key defined; however, we explicitly define the key to provide an example of
how this is done.

The final task is to associate each record format with the corresponding file. This is
similar to the way RPG associates I-specs describing the file layout with the
F-specs describing the file (this happens even for externally described files).

Any exceptions generated by the methods are simply passed back to our caller.

private void initialize () throws Exception
{

// Create an AS4ðð system connection object
as4ðð = new AS4ðð(SYSTEM, USER, PASSWORD);

// Create the various file objects
ordersFile = new SequentialFile(as4ðð,

 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/ORDERS.FILE/%FILE%.MBR");
orderLineFile = new SequentialFile(as4ðð,

 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/ORDLIN.FILE/%FILE%.MBR");
customerFile = new KeyedFile(as4ðð,

 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/CSTMR.FILE/%FILE%.MBR");
stockFile = new KeyedFile(as4ðð,

 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/STOCK.FILE/%FILE%.MBR");
itemFile = new KeyedFile(as4ðð,

 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/ITEM.FILE/%FILE%.MBR");
districtFile = new KeyedFile(as4ðð,

 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/DSTRCT.FILE/%FILE%.MBR");

// Create record description objects
AS4ðð FileRecordDescription ordersFileD = new AS4ððFileRecordDescription(as4ðð,
 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/ORDERS.FILE");
AS4ðð FileRecordDescription orderLineFileD = new AS4ððFileRecordDescription(as4ðð,
 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/ORDLIN.FILE");
AS4ðð FileRecordDescription customerFileD = new AS4ððFileRecordDescription(as4ðð,
 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/CSTMR.FILE");
AS4ðð FileRecordDescription stockFileD = new AS4ððFileRecordDescription(as4ðð,
 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/STOCK.FILE");
AS4ðð FileRecordDescription itemFileD = new AS4ððFileRecordDescription(as4ðð,
 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/ITEM.FILE");
AS4ðð FileRecordDescription districtFileD = new AS4ððFileRecordDescription(as4ðð,
 "/QSYS.LIB/"+DATA_LIBRARY+".LIB/DSTRCT.FILE");

// Get the external description of the file objects
ordersFormat = ordersFileD.retrieveRecordFormat()[ð];
orderLineFormat = orderLineFileD.retrieveRecordFormat()[ð];
customerFormat = customerFileD.retrieveRecordFormat()[ð];
stockFormat = stockFileD.retrieveRecordFormat()[ð];
itemFormat = itemFileD.retrieveRecordFormat()[ð];
districtFormat = districtFileD.retrieveRecordFormat()[ð];

// Define the key fields for the record formats
// The retrieveRecordFormat() method will create the default key
// this code is to show you how to do it if you need to define a key

 Chapter 7. Moving the Server Application to Java 149

 customerFormat.addKeyFieldDescription("CID");
 customerFormat.addKeyFieldDescription("CDID");
 customerFormat.addKeyFieldDescription("CWID");

 stockFormat.addKeyFieldDescription("STWID");
 stockFormat.addKeyFieldDescription("STIID");
 itemFormat.addKeyFieldDescription("IID");
 districtFormat.addKeyFieldDescription("DID");
 districtFormat.addKeyFieldDescription("DWID");

// Associate the record format objects with the file objects
 ordersFile.setRecordFormat(ordersFormat);
 orderLineFile.setRecordFormat(orderLineFormat);
 customerFile.setRecordFormat(customerFormat);
 stockFile.setRecordFormat(stockFormat);
 itemFile.setRecordFormat(itemFormat);
 districtFile.setRecordFormat(districtFormat);

 return;
}

 7.1.2.2 commitOrder()
Here is the complete commitOrder()) method. This method is the public interface
to the OrderEntry class. It needs to be given an order to process. The Order
class is described in Chapter 6, “Migrating the User Interface to Java Client” on
page 109. It contains the following logic:

� Request the customer number and the number of order lines from the order
object.

� Determine the next order number by invoking an internal method.

� Pass the order and the order number to another internal method that adds the
line items to the database.

� Add an order header record and update the customer record with information
about the current order.

If an error occurred during the processing, we indicate failure by returning an error
message to our caller. If processing was successful, we return a successful
completion message.

We use a try{} and catch{} block to determine whether processing was successful.
The code attempts (tries) to run the block of code, and catches any exception. If
an exception occurs, it prints a trace of the method and class stack to the Java
console, and returns an error message to the caller.

public String commitOrder (Order anOrder) throws RemoteException
{
 try
 {

// Extract the customer number and count of lines
String customerNumber = anOrder.getCustomerId();
BigDecimal orderLineCount = new BigDecimal(anOrder.getNumEntries());

// Determine the order number
BigDecimal orderNumber = getOrderNumber();

// Add the line items to the order detail file

150 Building AS/400 Applications with Java

BigDecimal orderTotal = addOrderLine(orderNumber, anOrder);

// Add the order header
addOrderHeader(customerNumber, orderNumber, orderLineCount);

// Update the customer
 updateCustomer(customerNumber, orderTotal);

// Commit the database changes
// If any file is opened under commitment control we need
// to perform a commit

 if (ordersFile.isCommitmentControlStarted() ¦¦
 orderLineFile.isCommitmentControlStarted() ¦¦
 customerFile.isCommitmentControlStarted() ¦¦
 stockFile.isCommitmentControlStarted() ¦¦
 districtFile.isCommitmentControlStarted())
 {

// A commit for any file under commitment control will
// affect all files

 customerFile.commit();
 }

// Initiate order printing
 writeDataQueue(customerNumber, orderNumber);

} catch(Exception e) {e.printStackTrace(); return("Order processing failed.");}

return("Order processed successfully.");
}

 7.1.2.3 addOrderHeader()
Here is the complete addOrderHeader() method. It determines the current date by
creating a Date object. The constructor must be qualified because there are two
Date classes available; one in java.util and another in java.sql . Then it opens the
ORDERS file and creates an empty order record. Next the fields in the order
record are populated. Finally, the record is written to the ORDERS file.

Notice the data conversions performed on the date and time. The database fields
are simply numeric data types representing a date and time rather than true date
and time fields. Java does not provide a method to retrieve dates or times in this
format. However, it is a simple matter to create a means of doing so. The
getRawDate () and getRawTime () methods are discussed in detail later.

Any exceptions generated by the methods are simply passed back to our caller.

private void addOrderHeader (String CustomerNbr,
 BigDecimal anOrderNbr,
 BigDecimal anOrderLineCount)
throws Exception
{
// Get the current date and time
java.util.Date currentDateTime = new java.util.Date();

// Open the file
if (ordersFile.isOpen() == false)

 {
 ordersFile.open(AS4ððFile.READ_WRITE,ð,AS4ððFile.COMMIT_LOCK_LEVEL_DEFAULT);

 Chapter 7. Moving the Server Application to Java 151

 }

// Create an empty record
Record ordersRcd = ordersFormat.getNewRecord();

// Set the record field values
 ordersRcd.setField("OWID", WAREHOUSE);
ordersRcd.setField("ODID", new BigDecimal(DISTRICT));

 ordersRcd.setField("OCID", aCustomerNbr);
 ordersRcd.setField("OID", anOrderNbr);
 ordersRcd.setField("OLINES", anOrderLineCount);
 ordersRcd.setField("OCARID", "ZZ");
ordersRcd.setField("OLOCAL", new BigDecimal(1));
ordersRcd.setField("OENTDT", new BigDecimal(getRawDate(currentDateTime)));
ordersRcd.setField("OENTTM", new BigDecimal(getRawTime(currentDateTime)));

// Add a new order header record
 ordersFile.write(ordersRcd);

 return;
}

 7.1.2.4 addOrderLine()
Here is the complete addOrderLine() method.

� Determine the amount of discount for this customer.

� Open the ORDLIN file and create an empty order line record.

� The first order line is extracted from the order object.

� A loop is entered that continues until no more order lines can be extracted from
the order. Each order line is used to populate the fields in the order line
record.

� Each record is written to the ORDLIN file.

� The value of the order is accumulated and the stock quantity for each item is
updated.

� When all order lines have been processed, the total order value is returned to
the caller.

Any exceptions generated by the methods are simply passed back to our caller.

private BigDecimal addOrderLine (BigDecimal anOrderNbr, Order anOrder)
throws Exception
{
BigDecimal orderTotal = new BigDecimal(ð);
int lineCounter = ð;

// Get the customer discount percentage
BigDecimal customerDiscount = getCustomerDiscount(anOrder.getCustomerId());

// Open the file
if (orderLineFile.isOpen() == false)

 {
 orderLineFile.open(AS4ððFile.READ_WRITE, ð,
 AS4ððFile.COMMIT_LOCK_LEVEL_DEFAULT);
 }
// Create an empty record

152 Building AS/400 Applications with Java

Record orderLineRcd = orderLineFormat.getNewRecord();

// Priming read
OrderDetail orderLine = anOrder.getFirstEntry();

// While we have order lines to process
while(orderLine != null)

 {
// Set the record field values

 orderLineRcd.setField("OLWID", WAREHOUSE);
orderLineRcd.setField("OLDID", new BigDecimal(DISTRICT));

 orderLineRcd.setField("OLOID", anOrderNbr);
orderLineRcd.setField("OLNBR", new BigDecimal(++lineCounter));

 orderLineRcd.setField("OLSPWH", "JAVA");
 orderLineRcd.setField("OLIID", orderLine.getItemId());
 orderLineRcd.setField("OLQTY", orderLine.getItemQty());

BigDecimal orderAmount = (orderLine.getItemPrice().
 subtract(orderLine.getItemPrice().
 multiply(customerDiscount).
 divide(new BigDecimal(1ðð),
 java.math.BigDecimal.ROUND_DOWN))).
 multiply(orderLine.getItemQty());
 orderLineRcd.setField("OLAMNT",
 orderAmount.setScale(2, BigDecimal.ROUND_HALF_UP));

orderLineRcd.setField("OLDLVD", new BigDecimal(12311999));
orderLineRcd.setField("OLDLVT", new BigDecimal(235959));

// Add a new order detail record
 orderLineFile.write(orderLineRcd);

// Accumulate the order total
 orderTotal.add(orderAmount);

// Update the stock record
 updateStock(orderLine.getItemId(), orderLine.getItemQty());

// Get the next order line
orderLine = anOrder.getNextEntry();

 }

 return orderTotal;
}

 7.1.2.5 getCustomerDiscount()
Here is the complete getCustomerDiscount() method. It simply opens the
CSTMR file and performs a keyed read (or CHAIN in RPG) of the file. A key list is
built from the customer identifier, the district identifier, and the warehouse identifier.
If the keyed read was successful, a record is returned and we extract the customer
discount percentage from the record. This value is returned to our caller.

Any exceptions generated by the methods are simply passed back to our caller.

private BigDecimal getCustomerDiscount (String aCustomerID)
throws Exception
{
// Open the file
if (customerFile.isOpen() == false)

 {

 Chapter 7. Moving the Server Application to Java 153

 customerFile.open(AS4ððFile.READ_WRITE, ð,
 AS4ððFile.COMMIT_LOCK_LEVEL_DEFAULT);
 }

// Create a key
Object[] customerKey = new Object[3];
customerKey[ð] = aCustomerID;
customerKey[1] = new BigDecimal(DISTRICT);
customerKey[2] = WAREHOUSE;

// Perform a keyed read for the district record
Record customerRcd = customerFile.read(customerKey);

// If the keyed read was successful
if (customerRcd != null)

 {
// Extract the customer discount from the record
BigDecimal customerDiscount = (BigDecimal)customerRcd.getField("CDCT");

 return customerDiscount;
 }
 else
 {
 return null;
 }
}

 7.1.2.6 getOrderNumber()
Here is the complete getOrderNumber() method. This method opens the DSTRCT
file and performs a keyed read using the district identifier and warehouse identifier.
If a record is successfully retrieved, the order number is incremented and updated
in the file. The order number is returned to our caller.

Notice that the orderNumber.add(new BigDecimal(1) method does not affect the
value of the orderNumber variable. That is because the orderNumber.add(new
BigDecimal(1) method returns a new instance of BigDecimal containing the
incremented value. This is, of course, a temporary value that is passed directly to
the districtRecord.setField() method.

Any exceptions generated by the methods are simply passed back to our caller.

private BigDecimal getOrderNumber () throws Exception
{
 System.out.println("getOrderNumber:");

// Open the file
if (districtFile.isOpen() == false)

 {
 districtFile.open(AS4ððFile.READ_WRITE, ð,
 AS4ððFile.COMMIT_LOCK_LEVEL_DEFAULT);
 }

// Create a key
Object[] districtKey = new Object[2];
districtKey[ð] = new BigDecimal(DISTRICT);
districtKey[1] = WAREHOUSE;

154 Building AS/400 Applications with Java

// Perform a keyed read for the district record
Record districtRcd = districtFile.read(districtKey);

// If the keyed read was successful
if (districtRcd != null)

 {
// Extract the order number from the result set
BigDecimal orderNumber = (BigDecimal)districtRcd.getField("DNXTOR");

// Update the order number (positioned update)
districtRcd .setField("DNXTOR",orderNumber.add(new BigDecimal(1)));

 districtFile.update(districtRcd);
 return orderNumber;
 }
 else
 {

return new BigDecimal(ð);
 }
}

 7.1.2.7 updateCustomer()
Here is the complete updateCustomer() method. It determines the current date by
creating a Date object. The constructor must be qualified because there are two
Date classes available; one in java.util and another in java.sql . Then it opens the
CSTMR file (the file may already be open from the getCustomerDiscount()
method, which is why we test for it already being open). Next we perform a keyed
read for the customer and if a record is found, we extract the current values for the
customer balance and year-to-date sales. We update these fields and set the date
and time of the order and the customer record is updated in the database.

Any exceptions generated by the methods are simply passed back to our caller.

private void updateCustomer (String aCustomerID,BigDecimal anOrderTotal)
throws Exception
{
// Get the current date and time
java.util.Date currentDateTime = new java.util.Date();

// Open the file
 if (!customerFile.isOpen())
 {
 customerFile.open(AS4ððFile.READ_WRITE, ð,
 AS4ððFile.COMMIT_LOCK_LEVEL_DEFAULT);
 }

// Create a key
Object[] customerKey = new Object[3];
customerKey[ð] = aCustomerID;
customerKey[1] = new BigDecimal(DISTRICT);
customerKey[2] = WAREHOUSE;

// Perform a keyed read for the customer record
Record customerRcd = customerFile.read(customerKey);

// If the keyed read was successful
if (customerRcd != null)

 {

 Chapter 7. Moving the Server Application to Java 155

// Extract the current balance and year to date sales from record
BigDecimal currentBalance = (BigDecimal)customerRcd.getField("CBAL");
BigDecimal yearToDateSales = (BigDecimal)customerRcd.getField("CYTD");

// Update the current balance, year to date, date and time of order
 customerRcd.setField("CBAL",currentBalance.add(anOrderTotal));
 customerRcd.setField("CYTD",yearToDateSales.add(anOrderTotal));
 customerRcd.setField("CLDATE",
 new BigDecimal(getRawDate(currentDateTime)));
 customerRcd.setField("CLTIME",
 new BigDecimal(getRawTime(currentDateTime)));
 customerFile.update(customerRcd);
 }
 return;
}

 7.1.2.8 updateStock()
Here is the complete updateStock() method. This method opens the STOCK file
and performs a keyed read using the warehouse identifier and part identifier. If a
record is successfully retrieved, the stock quantity is decremented and updated in
the file.

Any exceptions generated by the methods are simply passed back to our caller.

private void updateStock (String aPartNbr,BigDecimal aPartQty) throws Exception
{
// Open the file
if (stockFile.isOpen() == false)

 {
 stockFile.open(AS4ððFile.READ_WRITE, ð,
 AS4ððFile.COMMIT_LOCK_LEVEL_DEFAULT);
 }
// Create a key
Object[] stockKey = new Object[2];
stockKey[ð] = WAREHOUSE;
stockKey[1] = aPartNbr;

// Perform a keyed read for the district record
Record stockRcd = stockFile.read(stockKey);

// If the keyed read was successful
if (stockRcd != null)

 {
// Extract the stock quantity from the record
BigDecimal stockQty = (BigDecimal)stockRcd.getField("STQTY");

// Update the stock quantity
 stockRcd.setField("STQTY",stockQty.subtract(aPartQty));
 stockFile.update(stockRcd);
 }
 return;
}

156 Building AS/400 Applications with Java

 7.1.2.9 writeDataQueue()
Here is the complete writeDataQueue() method :

� Create a description of the data queue layout.

It first creates objects representing the different data types used in the layout.
Then it creates an object representing the AS/400 system data queue object.
Next it defines the layout of each record in the data queue using the field
definitions created earlier.

� Populate the record with the values for the data queue.

� Send the record to the data queue to initiate printing the order.

Any exceptions generated by the methods are simply passed back to our caller.

private void writeDataQueue (String aCustomerID,BigDecimal anOrderID)
throws Exception
{
// Create some data type objects to describe the data queue layout
CharacterFieldDescription as4CustomerID =

new CharacterFieldDescription(new AS4ððText(4), "customerID" .);
PackedDecimalFieldDescription as4DistrictID =

new PackedDecimalFieldDescription(new AS4ððPackedDecimal(3,ð), "districtID");
CharacterFieldDescription as4WarehouseID =

new CharacterFieldDescription(new AS4ððText(4), "warehouseID");
PackedDecimalFieldDescription as4OrderID =

new PackedDecimalFieldDescription(new AS4ððPackedDecimal(9,ð), " .orderID");

// Create a data queue object
DataQueue dqOutput = new DataQueue(as4ðð,

 "/"+SYSTEM_LIBRARY+"/"+DATA_QUEUE_LIBRARY+"/"+DATA_QUEUE_NAME);

// Create a record format object describing the data queue layout
RecordFormat rfOutput = new RecordFormat();

 rfOutput.addFieldDescription(as4CustomerID);
 rfOutput.addFieldDescription(as4DistrictID);
 rfOutput.addFieldDescription(as4WarehouseID);
 rfOutput.addFieldDescription(as4OrderID);

// Set up the data queue entry field values
Record recordOutput = rfOutput.getNewRecord();

 recordOutput.setField("customerID", aCustomerID);
recordOutput.setField("districtID", new BigDecimal(DISTRICT));

 recordOutput.setField("warehouseID", WAREHOUSE);
 recordOutput.setField("orderID", anOrderID);

// Send the data queue entry
 dqOutput.write(recordOutput.getContents());
 return;
}

 7.1.2.10 getRawDate()
This method accepts a Date object and returns an unedited string representation of
the date. We do this by creating our own dateFormatter object as a
SimpleDateFormat . The format we require is a four-digit year, a two-digit month,
and a two-digit day.

 Chapter 7. Moving the Server Application to Java 157

private String getRawDate(Date aDate)
{
DateFormat dateFormatter = new SimpleDateFormat("yyyyMMdd");

 return(dateFormatter.format(aDate));
}

 7.1.2.11 getRawTime()
This method accepts a Date object and returns an unedited string representation of
the time. We do this by creating our own timeFormatter object as a
SimpleDateFormat . The format we require is a 24-hour clock.

private String getRawTime(Date aDate)
{
DateFormat timeFormatter = new SimpleDateFormat("HHmmss");

 return(timeFormatter.format(aDate));
}

 7.1.3 Cleaning Up
After an order has been processed, we need to perform some housekeeping such
as closing files, dropping the connection to the AS/400 system, and so on. Java
provides a standard way of doing this. We create a method called finalize() . If a
method of this name exists in a class, the Java run time guarantees that it is called
before any garbage collection is performed on the object. This provides a
convenient way to ensure that the database is left in a consistent state when we
finish.

A finalize () method must have the following signature. It should be protected, must
return void, must not accept arguments, and must throw the Throwable exception
because it calls the finalize () method of its super class.

We first close any open files and end commitment control. Setting each of the file
objects to null explicitly allows the garbage collector to reclaim the objects. We
then close the connection to the AS/400 system and invoke the finalize() method of
our super class.

protected void finalize() throws Throwable
{
// Close the file objects

 if (ordersFile.isOpen())
 {
 ordersFile.close();

ordersFile = null;
 }
 if (customerFile.isOpen())
 {
 orderLineFile.close();

orderLineFile = null;
 }
 if (customerFile.isOpen())
 {
 customerFile.close();

customerFile = null;
 }
 if (stockFile.isOpen())
 {
 stockFile.close();

stockFile = null;

158 Building AS/400 Applications with Java

 }
 if (districtFile.isOpen())
 {
 districtFile.close();

districtFile = null;
 }

// End commitment control
 if (ordersFile.isCommitmentControlStarted() ¦¦
 orderLineFile.isCommitmentControlStarted() ¦¦
 customerFile.isCommitmentControlStarted() ¦¦
 stockFile.isCommitmentControlStarted() ¦¦
 districtFile.isCommitmentControlStarted())
 {
 customerFile.endCommitmentControl();
 }

// Close the AS4ðð system connection
 if (as4ðð.isConnected())
 {
 as4ðð.disconnectAllServices();

as4ðð = null;
 }
 super.finalize();
 return;
}

There is one limitation in using the DDM classes to implement the OrderEntry
class; they are specific to the AS/400 system. If the order entry application is
transportable, it is better to use portable Java classes. We can accomplish this by
using JDBC as our database access mechanism. We discuss this in the next
section.

7.2 Order Entry using JDBC
In this section, we build the Java order processing program using JDBC. We
create a class named OrderEntryJDBC; it is equivalent to the OrderEntryDDM class
discussed previously in this chapter.

 Chapter 7. Moving the Server Application to Java 159

Figure 87. OrderEntryJDBC Class

OrderEntryJDBC is a platform-independent version of the OrderEntry class. We
achieve platform independence by using JDBC, which shields our application from
platform unique considerations.

There are three options of JDBC available to us:

� JDBC through the ODBC bridge
� JDBC through the AS/400 system Toolbox
� JDBC through the Developer kit

The option we use is determined by which JDBC driver we choose to load.
Loading a driver requires a URL providing the connection information. Each of the
three drivers requires a different URL.

� JDBC-ODBC - "jdbc:odbc:"
� Toolbox JDBC - "jdbc:as400://"
� Developer kit JDBC - "jdbc:db2:"

JDBC drivers can be loaded explicitly by registering a driver with the driver
manager and then connecting to the URL, or loaded implicitly by invoking the
Class.forName() method. For example:

DriverManager.registerDriver(new AS4ððJDBCDriver());
dbConnection =

DriverManager.getConnection("jdbc:db2://SYSTEM1/LIB1", USER, PASSWORD);

or

Class.forName ("com.ibm.db2.jdbc.app.DB2Driver");
dbConnection =

DriverManager.getConnection("jdbc:db2://SYSTEM1/LIB1", USER, PASSWORD);

The advantage of using Class.forName() is that a ClassNotFound exception is
signaled if the requested JDBC driver cannot be found. This can be used to create

160 Building AS/400 Applications with Java

code that can run on many platforms by testing for the most specific driver and
loading successively generic drivers. For example:

String url = "jdbc:db2:SYSTEM";

try
{

// Load the native JDBC driver
 Class.forName ("com.ibm.db2.jdbc.app.DB2Driver");
} catch (ClassNotFoundException e) // not found so
try
{ // Load the AS/4ðð system toolbox JDBC driver
 Class.forName ("com.ibm.as4ðð.access.AS4ððJDBCDriver");
 url = "jdbc:as4ðð://SYSTEM";
} catch (ClassNotFoundException e) // not found so
{
// Load the JDBC-ODBC driver

 Class.forName ("java.sql.JdbcOdbcDriver");
 url = "jdbc:odbc:SYSTEM";
}

// Attempt to connect to a driver. Each one of the registered drivers
// will be loaded until one is found that can process this URL

Connection con = DriverManager.getConnection (url, "my-user", "my-passwd");

Here is the class definition for the JDBC version. We include the JDBC routines
from the java.sql package. Some of the class variables have changed to support
SQL constructs.

package OrderEntry;

import com.ibm.as4ðð.access.\; // for AS/4ðð system Toolbox classes (DQ support)
import java.math.\; // for BigDecimal class
import java.sql.\; // for JDBC classes
import java.util.\; // for Properties class
import java.text.\; // for DateFormat class
/\\
 \ This class was generated by a SmartGuide.
 \
 \ This class is a replacement for the ORDENTR RPG IV program.
 \ The method and variable names have been improved slightly
 \ since Java supports longer names than RPG.
 \/
public class OrderEntryJDBC
{
// Mnemonic values
private static final String SYSTEM_LIBRARY = "QSYS.LIB";
private static final String DATA_QUEUE_NAME = "ORDERS.DTAQ";
private static final String DATA_QUEUE_LIBRARY = "your-library.LIB";
private static final String WAREHOUSE = "ððð1";
private static final int DISTRICT = 1;
private static final String SYSTEM = "your-system";
private static final String USER = "your-user-id";
private static final String PASSWORD = "your-password";
private static final String DATA_LIBRARY = "your-library";

// an AS4ðð system object for DataQueue support

 Chapter 7. Moving the Server Application to Java 161

private AS4ðð as4ðð = null;

// A global connection and prepared statement
private Connection dbConnection = null;
private PreparedStatement psAddOrderLine = null;

// Create an executable SQL statement object
private Statement addOrderHeader = null;
private Statement getDiscount = null;
private Statement getOrderNumber = null;
private Statement setOrderNumber = null;
private Statement getCustomer = null;
private Statement setCustomer = null;
private Statement getStockQty = null;
private Statement setStockQty = null;

}

 7.2.1 Method Logic
The method logic for the JDBC version of the OrderEntry class is similar to the
DDM version, only the implementation differs. We use JDBC methods instead of
DDM methods.

 7.2.1.1 initialize()
Here is the complete JDBC initialize() method. This method is invoked by the
constructor for the OrderEntry class. It uses a different technique to create a
connection to the AS/400 system. A JDBC properties object is used to describe
the attributes of the connection.

JDBC allows either a string of properties to be specified in the URL for the
connection or a properties object to be used in addition to the URL. Using the
properties object allows a little more flexibility in defining the connection because it
can be encapsulated in another class.

We create a connection to the AS/400 system for use by the data queue methods
in writeDataQueue() . It is better to connect using a global variable because the
connection can be quite time-consuming. (It is not a good idea to connect and
disconnect frequently.)

We create the properties object and set a number of the property values (the
values for USER, and PASSWORD are named constants found in the class
definition).

 Note

It is necessary to provide a user ID and password even when running on the
same AS/400 system as the database to which you are connected. You can
use the value *current for the user ID and password. In this case, the user ID
and password for the current AS/400 session is used.

We then use the class method Class.forName() to determine the proper JDBC
driver and automatically register and load it. Then we create a connection to the
AS/400 system using our properties object.

162 Building AS/400 Applications with Java

The next block of code creates a prepared statement for the only SQL statement
that is run repeatedly. Using a prepared statement is more efficient than running a
dynamic SQL statement.

private void initialize () throws Exception
{
// Create an AS4ðð system connection object
as4ðð = new AS4ðð(SYSTEM, USER, PASSWORD);

// Create a properties object for JDBC connection
Properties jdbcProperties = new Properties();

// Set the properties for the JDBC connection
 jdbcProperties.put("user", USER);
 jdbcProperties.put("password", PASSWORD);
 jdbcProperties.put("naming", "sql");
 jdbcProperties.put("errors", "full");
jdbcProperties.put("date format", "iso");

// Load the AS4ðð system Native JDBC driver into the JVM
// This method automatically verifies the existence of the driver
// and loads it into the JVM—should not use

 // DriverManager.registerDriver()
 Class.forName ("com.ibm.db2.jdbc.app.DB2Driver");

// Connect using the properties object
 dbConnection =
 DriverManager.getConnection("jdbc:db2://"+SYSTEM+"/"+DATA_LIBRARY,
 jdbcProperties);

// Prepare the ORDLIN SQL statement
psAddOrderLine = dbConnection.prepareStatement("INSERT INTO "+

"ORDLIN (OLOID, OLDID, OLWID, OLNBR, OLSPWH, OLIID," +
" OLQTY, OLAMNT, OLDLVD, OLDLVT) "+
"VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?)");

// Create an executable statement
 getOrderNumber = dbConnection.createStatement();
 setOrderNumber = dbConnection.createStatement();
 getStockQty = dbConnection.createStatement();
 setStockQty = dbConnection.createStatement();
 getCustomer = dbConnection.createStatement();
 setCustomer = dbConnection.createStatement();
 getCustomer.setCursorName("CUSTOMER");
 getOrderNumber.setCursorName ("DISTRICT");
 getStockQty.setCursorName("STOCK");
 return;
}

 7.2.1.2 commitOrder()
The method of committing changed data is altered. A commit request is placed
through the connection object rather than any of the files.

public String commitOrder (Order anOrder) throws Exception
{
 try
 {

// Extract the customer number and count of lines
String customerNumber = anOrder.getCustomerId();

 Chapter 7. Moving the Server Application to Java 163

BigDecimal orderLineCount = new BigDecimal(anOrder.getNumEntries());

// Determine the order number
BigDecimal orderNumber = getOrderNumber();

// Add the line items to the order detail file
BigDecimal orderTotal = addOrderLine(orderNumber, anOrder);

// Add the order header
addOrderHeader(customerNumber, orderNumber, orderLineCount);

// Update the customer
 updateCustomer(customerNumber, orderTotal);

// Commit the database changes
if (dbConnection.getTransactionIsolation() !=

 java.sql.Connection.TRANSACTION_NONE)
 {
 dbConnection.commit();
 }

// Initiate order printing
 writeDataQueue(customerNumber, orderNumber);
 }
 catch(Exception e)
 {
 e.printStackTrace();

return("Order processing failed.");
 }
return("Order processed successfully.");

}

 7.2.1.3 addOrderHeader()
The only change necessary to this method is replacing the field population and
write statement with an SQL INSERT statement. Notice that the SQL statement is
built in a variable and passed to the executeUpdate() method. We do this so we
can see the final SQL statement with debug. If we pass the SQL statement as
literal strings, it is difficult to find SQL syntax errors.

private void addOrderHeader (String aCustomerNumber,
 BigDecimal anOrderNumber,
 BigDecimal anOrderLineCount)
throws Exception
{

// Get the current date and time
java.util.Date currentDateTime = new java.util.Date();

// Create an executable statement
addOrderHeader = dbConnection.createStatement();

// Add a new order header record
String sql = "INSERT INTO ORDERS " +

"(OWID, ODID, OCID, OID, OLINES, OCARID, OLOCAL, OENTDT, OENTTM)"+
 "VALUES('"+WAREHOUSE+"'"+
 ","+DISTRICT+
 ",'"+aCustomerNumber+"'"+
 ","+anOrderNumber.toString()+
 ","+anOrderLineCount.toString()+

164 Building AS/400 Applications with Java

", 'ZZ', 1"+
 ", "+getRawDate(currentDateTime)+
 ", "+getRawTime(currentDateTime)+")";

 addOrderHeader.executeUpdate(sql);
 return;
}

 7.2.1.4 addOrderLine()
The only change necessary to this method is replacing the field population and
write statement with an SQL INSERT statement. We use an SQL prepared
statement in this method because there may be multiple order lines resulting in the
same SQL statement being run multiple times. Preparing the SQL statement
before using it is faster if the statement is run many times.

 Note

We can also see some performance improvements by changing the other
methods to use prepared statements.

private BigDecimal addOrderLine (BigDecimal anOrderNumber, Order anOrder)
throws Exception
{
BigDecimal orderTotal = new BigDecimal(ð);
int lineCounter = ð;

// Get the customer discount percentage
BigDecimal customerDiscount = getCustomerDiscount(anOrder.getCustomerId());

// Priming read
OrderDetail orderLine = anOrder.getFirstEntry();

// While we have order lines to process
while(orderLine != null)

 {
// Set the parameter markers for the SQL statement

 psAddOrderLine.setBigDecimal(1, anOrderNumber);
psAddOrderLine.setBigDecimal(2, new BigDecimal(DISTRICT));

 psAddOrderLine.setString(3, WAREHOUSE);
psAddOrderLine.setBigDecimal(4, new BigDecimal(++lineCounter));

 psAddOrderLine.setString(5, "JAVA");
 psAddOrderLine.setString(6, orderLine.getItemId());
 psAddOrderLine.setBigDecimal(7, orderLine.getItemQty());

BigDecimal orderAmount = (orderLine.getItemPrice().
 subtract(orderLine.getItemPrice().
 multiply(customerDiscount).
 divide(new BigDecimal(1ðð),
 java.math.BigDecimal.ROUND_DOWN))).
 multiply(orderLine.getItemQty());
 psAddOrderLine.setBigDecimal(8, orderAmount);

psAddOrderLine.setBigDecimal(9, new BigDecimal(12311999));
psAddOrderLine.setBigDecimal(1ð, new BigDecimal(235959));

// Add the order line record
 psAddOrderLine.executeUpdate();

 Chapter 7. Moving the Server Application to Java 165

// Accumulate the order total
 orderTotal.add(orderAmount);

// Update the stock record
 updateStock(orderLine.getItemId(), orderLine.getItemQty());

// Get the next order line
orderLine = anOrder.getNextEntry();

 }
 return orderTotal;
}

 7.2.1.5 getCustomerDiscount()
This method is similar to the DDM version. We create an SQL statement object
and build an SQL query that returns the values we are interested in. In this case,
this is only the customer discount field (CDCT).

We run the query, which returns a result set. A result set contains the rows
retrieved by the query. There may be many rows returned, in which case a loop is
used to process the result set. Here we expect only one row and do no looping.
The ResultSet class provides a next() method to fetch the rows from the result set.
If no rows exist or no more rows are available (equivalent to end-of-file), a null is
returned.

After we have retrieved the row from the result set, we extract the value for the
customer discount field. The ResultSet class provides methods for extracting
column values appropriate to each database data type. Here we use the
getBigDecimal() method because the CDCT field is a packed decimal filed.

We return the value of the customer discount to our caller.

private BigDecimal getCustomerDiscount (String aCustomerID)
throws Exception
{
// Create an executable statement
getDiscount = dbConnection.createStatement();

// Get the customer record
String sql = "SELECT CDCT "+

"FROM CSTMR "+
"WHERE CID = '"+aCustomerID+"'";

ResultSet rs = getDiscount.executeQuery(sql);

// Extract the customer discount from the result set
 rs.next();
BigDecimal customerDiscount = rs.getBigDecimal("CDCT", 4);

 return customerDiscount;
}

If we do need to process many rows from the result set, the Java code looks
similar to:

166 Building AS/400 Applications with Java

while(rs.next() != null)
{

// do row processing
}

 7.2.1.6 getOrderNumber()
This method has the same structure as the DDM version; however, we need to do
some additional processing to allow us to update a row. Updating records can be
done by specifying selection criteria on the WHERE clause or by doing a positioned
update where the record just read is the one updated. This is more efficient than
using the WHERE clause in this case. A positioned update can only be done
through a named SQL cursor. A statement can only be named once so we either
must catch the exception as shown here or define and name the SQL statements
globally. Both techniques have drawbacks; a performance penalty for raising the
exception or a maintenance concern with global variables.

We first create two SQL statement objects; one for fetching the records and one for
updating the records. We name the cursor so we can reference it in the UPDATE
statement.

Then we build an SQL query to retrieve the row containing the next order number.
We run the query, fetch the row from the result set, and extract the field value.
Then we build an SQL UPDATE statement to increment the order number value
and update the database.

And last, we return the order number to our caller.

private BigDecimal getOrderNumber ()
throws Exception
{

// Get the next available order number
String sql = "SELECT DNXTOR "+
"FROM DSTRCT "+
"WHERE DID = "+DISTRICT+" AND DWID = '"+WAREHOUSE+"'"+

 "FOR UPDATE";

ResultSet rs = getOrderNumber.executeQuery(sql);

// Extract the order number from the result set
 rs.next();
BigDecimal orderNumber = rs.getBigDecimal("DNXTOR", ð);

// Update the order number (positioned update)
sql = "UPDATE DSTRCT "+
"SET DNXTOR="+ orderNumber.add(new BigDecimal(1)).toString() +" "+
"WHERE CURRENT OF DISTRICT";

 setOrderNumber.executeUpdate(sql);
 return orderNumber;
}

 Chapter 7. Moving the Server Application to Java 167

 7.2.1.7 updateCustomer()
Here is another method that uses the positioned update technique described
earlier. Again we create statement objects, name the cursor, build and run a query,
extract values from the result set, and build and run an UPDATE statement.

The customer file is updated with the date and time of the order, the current
balance, and the total year-to-date sales.

private void updateCustomer (String aCustomerID, BigDecimal anOrderTotal)
throws Exception
{
// Get the current date and time
java.util.Date currentDateTime = new java.util.Date();

// Get the customer record
String sql = "SELECT \ "+

"FROM CSTMR "+
"WHERE CID = '"+aCustomerID+"' "+
"FOR UPDATE OF CLDATE, CLTIME, CBAL, CYTD";

ResultSet rs = getCustomer.executeQuery(sql);

// Extract the current balance and year to date sales from the result set
 rs.next();
BigDecimal currentBalance = rs.getBigDecimal("CBAL", 2);
BigDecimal yearToDateSales = rs.getBigDecimal("CYTD", 2);

// Update the current balance and year to date sales (positioned update)
sql = "UPDATE CSTMR "+

"SET CLDATE = "+getRawDate(currentDateTime)+
", CLTIME = "+getRawTime(currentDateTime)+
", CBAL = "+(currentBalance.add(anOrderTotal)).toString()+
", CYTD = "+(yearToDateSales.add(anOrderTotal)).toString()+

 " "+
"WHERE CURRENT OF CUSTOMER";

 setCustomer.executeUpdate(sql);
 return;
}

 7.2.1.8 updateStock()
Again, we use the positioned update technique described earlier. We create
statement objects, name the cursor, build and run a query, extract values from the
result set, and build and run an UPDATE statement.

In this case, we subtract the number of items sold from the current quantity and
update the database.

private void updateStock (String aPartNbr,BigDecimal aPartQty)
throws Exception
{

// Get the next available order number
String sql = "SELECT STQTY "+

"FROM STOCK " +
"WHERE STIID = '"+aPartNbr.toString()+"'
AND STWID = '"+WAREHOUSE+"' "+

168 Building AS/400 Applications with Java

 "FOR UPDATE";

ResultSet rs = getStockQty.executeQuery(sql);

// Extract the order number from the result set
 rs.next();
BigDecimal stockQty = rs.getBigDecimal("STQTY", ð);

// Update the order number (positioned update)
sql = "UPDATE STOCK "+
"SET STQTY = "+ stockQty.subtract(aPartQty).toString() +" "+
"WHERE CURRENT OF STOCK";

 setStockQty.executeUpdate(sql);

 return;
}

 7.2.1.9 writeDataQueue()
No changes are required to this method.

 7.2.1.10 getRawDate()
No changes are required to this method.

 7.2.1.11 getRawTime()
No changes are required to this method.

 Note

Because these three methods are common to both OrderEntry classes, it
makes more sense to encapsulate them in an object. The reader is invited to
perform this task as an exercise.

 7.2.2 Cleaning Up
This method closes cursor objects rather than file objects. Otherwise, it is similar to
the DDM version.

protected void finalize() throws Throwable
{

// Close the cursor objects
 addOrderHeader.close();

addOrderHeader = null;
 psAddOrderLine.close();

psAddOrderLine = null;
 getCustomer.close();

getCustomer = null;
 setCustomer.close();

setCustomer = null;
 getStockQty.close();

getStockQty = null;
 setStockQty.close();

setStockQty = null;
 getOrderNumber.close();

getOrderNumber = null;
 setOrderNumber.close();

setOrderNumber = null;

 Chapter 7. Moving the Server Application to Java 169

// Close the AS4ðð system connection
 if (!dbConnection.isClosed())
 {
 dbConnection.close();

dbConnection = null;
 }

// Close the AS4ðð system object
 if (as4ðð.isConnected())
 {
 as4ðð.disconnectAllServices();

as4ðð = null;
 }

 super.finalize();
 return;
}

7.3 Remote Method Invocation Support
At this point, we have successfully created two Java classes that are functionally
equivalent to the RPG order entry program we started with. If we create an Order
object and pass it to either of the OrderEntry classes, we can test the classes.
However, these classes are intended to be invoked from a client front-end and we
cannot yet do that because there is no linkage to the client.

Remote Method Invocation (RMI) is the mechanism Java uses to support invoking
methods on physically separate systems. A TCP/IP connection must exist between
the systems and certain applications must be running to support RMI—specifically
the RMI registry.

Changing a class to support RMI is similar to an alchemist's incantation. You must
specify certain things and magic happens!

The rules for making RMI work are:

1. The class must be a subclass of the UnicastRemoteObject class.

2. The class must implement an interface that describes the public methods.

3. The interface must be a subclass of the Remote class.

4. The interface must describe each public method.

5. The interface methods must throw RemoteException.

6. An RMI registry must be running on the server.

7. An instance of the class must register with the registry.

8. The client and the server must know on which TCP port to find the registry.

Here is the definition of the interface class. It does not need to be called
OrderEntryI but such a naming convention helps keep the links between the
classes clear. The class must import the java.rmi package to use the RMI classes.
The class must satisfy rules 3, 4, and 5.

170 Building AS/400 Applications with Java

package OrderEntry;

import java.rmi.\;
/\\
 \ This interface was generated by a SmartGuide.
 \
 \/
public interface OrderEntryI extends Remote
{
public String commitOrder(Order anOrder) throws RemoteException;
}

7.3.1 RMI Application Design

Figure 88. RMI Application Design

We use the Java Remote Method Invocation (RMI) interface to allow the client Java
program to interface with the server Java code. The Java client program will
interface to the AS/400 program (OrderEntryDDM or OrderEntryJDBC) through a
class named OrderSubmitter. An Order object is passed from the client program to
the server program.

 Chapter 7. Moving the Server Application to Java 171

Figure 89. RMI Interface

The public method that we use is called commitOrder . It is described in the
interface that we implement named OrderEntryI . The host Java program
implements a method named commitOrder . The client programs calls this method
through the OrderSubmitter class.

7.3.2 Adding RMI Support to Server Classes
Each of the OrderEntry classes must import a number of RMI packages to
successfully support RMI. Each class must satisfy rules 1 and 2.

import java.rmi.\; // for Remote Method Invocation
import java.rmi.registry.\;
import java.rmi.server.\;

public class OrderEntryJDBC extends UnicastRemoteObject implements OrderEntryI

Because the interface method for commitOrder() states that RemoteException is
thrown, the actual commitOrder() implementation must also throw
RemoteException .

public String commitOrder (Order anOrder) throws RemoteException
{
 try
 {

// code removed for clarity
 }
 catch(Exception e)
 {
 e.printStackTrace();

return("Order processing failed.");
 }

172 Building AS/400 Applications with Java

return("Order processed successfully.");
}

Each remote class must be capable of registering its services with an RMI registry
that provides brokering services between the client and the server. We do this by
adding a main method that performs the registration. The RMI classes throw
exceptions so we must wrap our use of these classes in a try{} catch{} block.
Here is the main() method from the OrderEntryJDBC class:

public static void main(String[] parameters)
{

// Set up the server
 try
 {
 System.setSecurityManager(new RMISecurityManager());

OrderEntryJDBC oeJDBC = new OrderEntryJDBC();
 Naming.rebind("//"+SYSTEM+"/OrderEntryJDBC", oeJDBC);

} catch(Exception e) {e.printStackTrace();}

 return;
}

What this block of code does is:

� Create a new security manager.
� Create a new instance of our own class.
� Bind the new object as a service with an appropriate name—in this case,

OrderEntryJDBC.

The next step in supporting RMI is to create stub and skeleton classes that provide
the communications support. These are created automatically by the rmic
command. VisualAge for Java can also be used to create these classes.

Once the proxies have been created, we must start the RMI registry. This must be
done from the shell. There is a shell command called rmiregistry to start the
registry.

The RMI registry can be directed to a specific TCP port but it is probably best to let
it use the default port of 1099. If you want to assign a name to the port, you can
do so by adding a service table entry.

ADDSRVTBLE SERVICE('rmiregistry') PORT(1ð99) PROTOCOL('tcp')
TEXT('Java RMI registry Service')

If you do choose to start the registry on a different port number, you must ensure
that both the server and client use the same port for registry services. This can be
accomplished by adding the port number to the Naming.bind() or Naming.rebind()
methods. For example:

Naming.rebind("//"+SYSTEM+":55555/OrderEntryJDBC", oeJDBC);

that specifies that port 55555 is to be used by the registry.

The final step before the remote class can be used is to actually start it. This can
also be done from the shell (although it must be a different session from the one
running the registry itself).

java OrderEntry.OrderEntryJDBC

 Chapter 7. Moving the Server Application to Java 173

7.3.3 Adding RMI Support to the Client
In Chapter 6, “Migrating the User Interface to Java Client” on page 109, we
analyzed how the Java client submitted an order. It created buffers of string data
that were used as parameters in a distributed program call. The ProgramCall
class, as well as other classes in the AS/400 system Toolbox for Java , was used
to do this. Admittedly, the process is somewhat complicated. This is rooted in the
fact that an object-oriented program is calling a legacy program. Since a legacy
program does not understand the concept of an object, objects cannot be passed
as parameters to legacy routines. The objects must be "flattened" or streamed out
as byte data.

However, as we saw in Chapter 6, “Migrating the User Interface to Java Client” on
page 109, this introduces more complexity to the program. The Order and
OrderDetail classes provided toString() methods that helped deal with this
situation. Once the server code is implemented in Java, the client's task of passing
parameters is simplified. The client can simply pass the Order object as a
parameter. Rather than call a distributed program, the client can now make use of
Java's RMI architecture. In the previous sections, we saw how to convert some of
the legacy RPG code to Java classes. These classes are designed so that they
implement the RMI interfaces. The client can now invoke the remote methods that
are made available through these new classes.

7.3.4 Creating a Client Class to Handle RMI
At the client, we create a new class to handle the RMI interface to the server. The
name of this class is OrderSubmitter:

import java.rmi.\;
import java.rmi.RMISecurityManager;

public class OrderSubmitter
{

private String serverURL = null;
private OrderEntryI orderHandler = null;

}

This class contains only two data members. The serverURL is a string that
represents a concatenation of the host machine as well as the name of the RMI
service that has been registered on the host machine. The orderHandler is
declared to be of the interface type that the host RMI class implements. See the
previously discussed OrderEntryI and OrderEntryJDBC classes for details.

public boolean linked(String hostServer, String port)
{

// set an RMISecurityManager - if we have none
if(System.getSecurityManager() == null)

 {
 System.setSecurityManager(new RMISecurityManager());
 }

// obtain reference to the remote OrderEntryJDBC object
 try {

serverURL = "//" + hostServer + "/OrderEntryJDBC"
orderHandler = (OrderEntryI)Naming.lookup(serverURL);

 }

174 Building AS/400 Applications with Java

 catch(Exception e)
 {
 e.printStackTrace();
 return(false);
 }
 return(true);
}

The linked() method handles two primary tasks. First, it sets an
RMISecurityManager for the session. Next, it obtains a reference to the remote
object by invoking the Naming.lookup() method. Once these two steps are
completed, the application can invoke a remote method. The hostServer is
passed in as a parameter. This is the same value that was retrieved from the
sign-on dialog discussed in Chapter 6, “Migrating the User Interface to Java Client”
on page 109.

The 'OrderEntryJDBC' string is the name that the OrderEntryJDBC class is
registered as on the host machine (see the OrderEntryJDBC class).

The OrderSubmitter class imbeds the remote method invocation in its own
submit() method:

public String submit(Order theOrder)
{
 String status;

 try
 {

status = orderHandler.commitOrder(theOrder);
 }
 catch(Exception e)
 {
 e.printStackTrace();

status = "Error invoking remote method";
 return(status);
 }

 return(status);
}

The submit() method simply invokes the commitOrder() method on the remote
object. The commitOrder() method returns a status message that the client
displays in the Order Entry Window. Using RMI to submit the order simplifies the
parameter passing. The Order object is now passed without having to stream the
data members.

Since the Order object is passed as a parameter in a remote method invocation, it
must be changed so that it implements Serializable . Java's Serializable interface,
however, requires no methods that must be implemented by the user. You simply
have to declare that the class implements Serializable .

Any object that is contained in the Order class must also implement the
Serializable interface. The Order class contains an array of OrderDetail objects.
Therefore, OrderDetail must also implement Serializable . The rest of the data
members in OrderDetail and Order are not user-defined classes, so no further
changes have to be made. The new declaration of the Order class is shown:

 Chapter 7. Moving the Server Application to Java 175

import java.io.Serializable;
public class Order implements Serializable
{

private StringBuffer customerId = new StringBuffer(4);
private OrderDetail[] entryArray = new OrderDetail[5ð];
private int index = -1;
private int cursor = ð;

}

The declaration of the OrderDetail class changes in a similar fashion. Simply add
'implements Serializable' to the class declaration. This completes the changes
necessary to enable the client's use of RMI.

 7.3.5 Conclusion
To allow the Java client to interface with the new AS/400 server Java classes, we
use remote method invocation (RMI). In this section, we discussed the changes
necessary to the client code and the server code to support RMI. We covered
implementing RMI for the JDBC example (OrderEntryJDBC). We can also use the
same methodology to implement an RMI interface between the Java client and the
OrderEntryDDM class.

176 Building AS/400 Applications with Java

 Chapter 8. Performance

Java on the AS/400 system results in a different environment from what most
AS/400 developers have previously used. First, Java is a truly object-oriented
language compared to RPG and COBOL, which are considered to be procedural
languages. The development life cycle is then also different.

From a work management viewpoint, there are several new concepts with which
the application developer should be familiar. Among these are the spawned Batch
Immediate jobs (within which Java programs run) and built-in kernel thread support,
since Java is a multi-threaded language. Several system tuning tips are provided
in this chapter, specifically for the new Java environment.

Within an application, there are several techniques that can be used to improve
performance. These include compile options, run parameters, and coding
techniques. For the most part, good coding techniques are platform independent,
so these apply equally to AS/400 JDK.

Another area that impacts response time and resource utilization is the use of
system services, mostly involving database access. JDBC is expected to be the
most common database access method due to its portability across different
platforms, but where portability is less of a concern and higher performance is
required, DDM and DPC are widely used to access DB2/400. These techniques
will be covered in a later redbook.

The emphasis in this chapter is on Java performance on the AS/400 system. At
the time of writing this redbook, significant IBM development resources are being
invested to improve Java run-time performance.

The information contained in this chapter is based on an early implementation of
AS/400 Development Kit for Java (5769-JV1) on Version 4 Release 2 of OS/400.

 8.1 Java Implementation
One of the greatest strengths of Java is its portability. An application that adheres
to the Java standards will run on any compliant Java Virtual Machine (JVM) on any
hardware platform. This portability is achieved not only through standardized
language constructs, where the Java source can be moved from one system to
another, but also at a lower level through bytecode.

Bytecode is machine-independent psuedo-code generated by the Java compiler
and executed by the Java interpreter. When a Java source program is compiled
using javac , a .class file containing the bytecode is created. This .class file
containing the bytecode can be executed on original system's JVM and can also be
transported to another platform and executed on a different JVM.

Executing the bytecode on a JVM involves interpreting the bytecode into
instructions that are specific to that particular operating environment (operating
software and hardware). This implies that a JVM is platform-specific because it has
to be aware of the underlying system architecture. The bytecode, on the other
hand, is completely portable and is isolated from the underlying hardware
implementation.

 Copyright IBM Corp. 1998 177

Consider the process that was just described. The program source was
"COMPILED" into bytecode, then the bytecode was "INTERPRETED" by the virtual
machine. This is different from other programming models on the AS/400 system.
In other languages, "COMPILE" of the program source generates an executable
*PGM object under the Original Programming Model. In the Integrated Language
Environment (ILE), the program source is compiled into a *MODULE, which is then
bound with other modules to create an executable *PGM object.

The AS/400 Developer Kit for Java provides an additional facility to create a
persistent, optimized program object as the default. This facility is called the Java
Transformer and is invoked explicitly through the CRTJVAPGM command or
automatically when a .class is first loaded. Because the program object consists of
64-bit enabled RISC instructions, run-time performance is improved significantly
without affecting the Java portability qualities of the corresponding bytecode. The
traditional ILE environment and the new Java environment are graphically
compared in Figure 90.

Figure 90. AS/400 Application Development Comparison

8.2 Performance Red Flags
This section discusses methods and techniques, which, when used, may adversely
affect performance. Often there is a trade-off between performance and may things
such as ease of use, portability, levels of abstraction, and so on. Java should not
be looked at in isolation, but should be considered along with the goals, objectives,
and requirements (current and future) when developing an application system.

178 Building AS/400 Applications with Java

8.2.1 Portablility and Interpreted Code
From a performance standpoint, there are two aspects of the Java programming
model that raise red flags. One is the promise of portability. In most, if not all,
computing environments, portability is mutually exclusive with performance. The
other is the interpreted nature of the bytecode. When one recalls the inherent
slowness of past interpreted languages, there is a tendency to expect the same
from Java.

In a way, these two are related. The interpreted bytecode is needed for Java to be
portable. During the creation of the Java .class file that contains the bytecode, the
destination system may not be known. Therefore, the compile can only optimize
the bytecode down to the lowest common denominator; that is, it cannot contain
any features that are platform specific. The portable bytecode then may not be
able to take advantage of a hardware platform's performance strengths.

As far as the interpreted nature is concerned, bytecode level interpretation occurs
at a much lower level than the source level interpreters that many programmers are
familiar with. In addition, the Java compile process also performs a certain level of
optimization. It then runs faster than source level interpreted programs but not as
well as those languages that can be compiled to a specific hardware platform (for
example, ILE RPG).

There are some large efforts being undertaken within the IT industry to optimize the
performance of the portable Java bytecode by reducing the inherent slowness of
interpretation. The first is the use of Just-in-Time compilers, or JITs. The second
is direct compilation, where the Java source is compiled directly into executable
programs, bypassing the bytecode level altogether and relying on source code for
portability. A third approach is the AS/400 system's Java Transformer, which
retains the bytecode portability (allowing them to be served to other platforms) and
makes use of *JVAPGM program to perform the actual execution. This is
described in detail later in this chapter.

8.3 Are Object-Oriented (OO) Designs Inherently Slower?
Going beyond the language implementation, a concern that object-oriented (OO)
technology pundits have is that an object-oriented design is expected to perform
slower than a functionally equivalent structured programming design or even
spaghetti code. This is supposedly due to the amount of messages that need to be
passed from one class to another. In a typical OO implementation, when a method
or procedure from another class needs to be invoked, a message containing the
method name is passed to the class.

Note that Java is a full OO language and is capable of implementing OO concepts.
To fully utilize the capabilities of this language, an application should be developed
using the recommended object-oriented analysis (OOA) and object-oriented design
(OOD) methodologies. This results in an application that has a well-designed class
hierarchy with high levels of maintainability and reusability. But what performance
penalty needs to be paid for this?

As in other platforms, there is, indeed, additional overhead associated with an OO
design. For instance, instantiating an object is relatively expensive. Using a
method that resides in another class (for example, the superclass) results in call

 Chapter 8. Performance 179

indirection, which has a higher cost than if the method was in the same class that
invoked it. Java also has stricter type checking than a language such as C++.

Method inlining can significantly improve method call performance. This is
available for any method that is final (private, static, or protected). To take
advantage of this, use the javac -O option when creating the Java class from the
Java source. One tradeoff is that the sizes of the class files (as well as the sizes of
the transformed Java programs that are eventually created) increase. However, the
resultant DASD storage penalty is well worth the improvement in run-time
performance.

In addition, before discounting OO Technology and Java, be aware that the trend in
computer science is that software development and maintenance costs are
increasing rapidly while hardware price/performance continues to improve.

8.3.1 First Pass after Technology Preview
In comparison with other programming languages that are available on the AS/400
system, Java is fairly new not only to the platform but to the entire industry as well.
Other languages such as RPG and COBOL have had many years head start over
Java in terms of performance optimization. OS/400 V4R2 contains the first full
production version of Java for the AS/400 system. Ideally, it should perform as well
as the other languages but in reality, that may not be the case.

The industry's performance objective is to have Java perform similar to C++. The
probability of this happening in an interpreted environment is small. However, with
JIT compilers in other platforms and with the AS/400 system's Java transformer,
there is a good chance that such an objective can be achieved in the near future
(perhaps a few Web years). There has even been talk of processors that are
optimized for Java, but that is all for the future.

Java has also drawn interest due to its applicability to the Internet. Java applets
can be downloaded from an Internet server such as an AS/400e system to a client
workstation or network station where a browser frame is presented to the user.
Processing can occur on the client if the browser has a JVM (and most do). The
user can then input data and send a response back to another Java program
running on the AS/400 system, which could eventually access information stored in
DB2/400. If this happens, it fits the profile of a commercial environment, albeit with
an electronic commerce flavor.

Currently, there is no widely accepted commercial benchmark for Java. The
benchmarks that are used (for example, CaffeinMark 3.0) are not commercial
benchmarks and deal with program instruction execution rather than system
services such as DB access. On the AS/400 system, one of the internal
benchmarks used is called the Business Object Benchmark (BOB), which runs a
workload similar to Commercial Processing Workload (CPW) but has no
persistence; that is, everything is done in memory. Another benchmark is the
Commercial Java Workload (CJW). This is also based on CPW and actually
implements persistence by accessing DB2/400 using the JDBC driver.

Traditionally, the AS/400 system has been an excellent performer within the
commercial environment. Typical RPG, COBOL, or a C commercial application
have a performance profile where fewer resources are spent processing in high
level language program instructions than in system services such as database
processing (this is represented graphically in Figure 91 on page 181).

180 Building AS/400 Applications with Java

Figure 91. Traditional Commercial Application

A commercial Java application is expected to have a similar profile, but in this first
version, the HLL portion is noticeably higher, implying that more time is spent
executing machine instructions compared to performing system activities such as
database I/O's.

Maximum performance payback is then achieved by implementing similar coding
techniques that have worked so well in traditional languages (for example, keeping
files open, logical blocking, and so on).

8.4 AS/400 Java Execution Steps
The following major events occur when a Java program program is run on any
platform. While the Java application is portable, there may be different ways of
tuning specific platforms to improve performance:

� Starting the Java environment
� Loading and verifying the class files
� Actual program interpretation or instruction execution
� Accessing system services

Figure 92. AS/400 Java Execution Steps

In all platforms, there is a noticeable delay when a class is first executed using the
JAVA command. This includes time taken to set up the JVM, as well as loading
classes where the JVM searches through the CLASSPATH to load the required
classes.

Running many short Java programs is not recommended because it may take more
time and resources to start up than to actually execute the programs.

 Chapter 8. Performance 181

Upon invocation, the instructions in a Java class are executed. This portion is
affected by program coding techniques.

The Java application generally has to access system services to perform functions
related to the database, security, and so on. Performance can be affected by
techniques such as database tuning, and so on.

These major steps are discussed in more detail later in this chapter.

8.5 Comparison with Main Frame Interactive (MFI)
When discussing performance, it is best to start with the most apparent symptom of
a performance problem - slow response time. This term as used here can apply to
interactive response time in the case of an online transaction processing (OLTP)
environment and also to batch processing. Usually there is a response time
objective, either implied or explicitly stated. A performance problem exists if the
response time objective is not being met or, based on future projections, the
objective will not be met.

Let's start with a typical Main Frame Interactive (MFI) environment, also known as a
non-programmable terminal environment. Many AS/400 installations use
applications that run in this environment. The application transaction is triggered by
the user pressing Enter or a Function key.

Figure 93. Main Frame Interactive Response

For every transaction, there is usually one conversation between the terminal and
the AS/400 system unless certain display handling techniques such as
RSTDSP(*YES) or DFRWRT(*NO) are used. A large majority of the response
times can be attributed to the server AS/400 system with minimal contributions in
the network and virtually none by the terminal.

In Figure 94 on page 183, we see the response time divided into its individual
components

Note: The actual contribution of each response time component may vary
depending on the system environment.

182 Building AS/400 Applications with Java

Figure 94. Main Frame Interactive Response Time Components

CPU service is the actual processing time needed to execute all of the instructions
in the transaction.

CPU queuing is the time spent waiting for the processor to become available. In a
typical multi-user environment, the processor may not be available when the task is
ready to execute because other tasks of higher or equal priority are already queued
ahead of it. The queuing time becomes more pronounced as the system gets
busier (higher CPU utilization). The effect is exponential and the queueing factor is
approximated by:

Q(f)= 1 / (1 - (u\\n))

where u the the utilization of the system between ð and 1

and n is the number of CPU's

Since queuing is a function of CPU utilization, reducing the utilization by improving
the efficiency of high volume transactions will reduce queuing.

Disk I/O time is due to the physical I/O operations that need to be done as part of
the transaction. There are several different categories of physical I/Os but
generally, it is the synchronous ones that directly affect performance. Due to the
implementation of the AS/400 system's single level storage, the application does
not have direct control over the number of physical I/Os unless file parameters such
as Force Write Ratio (FRCRATIO) on output operations or Number of Records
(NBRRCDS) on input processing are specified. System tuning functions such as
expert cache, Set Object Access (SETOBJACC), pool sizes, and so on can also
affect this number of physical I/O operations. Generally, the more complex a
transaction is, the more physical I/O operations are required and more CPU
resources consumed. Making the transaction less complex tends to reduce both
CPU and physical I/O requirements. Individual disks can also suffer from excessive
I/O requests and exhibit similar delays due to queueing as the CPU. More
information can be found on system tuning in the OS/400 Work Management
Guide, SC41-5306-01.

Locks and seizes involve waiting for resources to be released by another task. An
example of a lock is when a job reads a record with update intent. If another job
attempts to read that record with update intent, this second job cannot unless the
first one releases the record. Seizes occur in the microcode, and may sometimes
occur when a task seizes an object such as an index, to update it when a record is

 Chapter 8. Performance 183

added, or if a new index needs to be built. DB2/400 has been enhanced to
minimize the chance of seizes occuring and if they do, for short times. Excessive
seizes or locks usually indicates poor application design. AS/400 Performance
Tools, 5769-PT1, can be used to find seizes and locks. More information can be
found in Performance Tools/400, SC41-5340.

In comparison to the MFI environment, Java on the AS/400 system is expected to
play a role in the client server environment, particularly in relation to the Internet.
Figure 95 shows a typical client/server transaction.

Figure 95. Client/Server Response

Every transaction (even a user clicking on a control button) can result in zero to
many conversations with the server AS/400 system. With zero conversations, the
total response time is due to the client. Every additional conversation adds to the
network component, including turnaround time. The server overhead depends on
the amount of processing that is required, typically performing database accesses.

It is important to understand that when a performance problem is experienced, it
can be due to a combination of three major areas:

 � The client
� The server (AS/400 system)

 � The network

The response time components of each of these areas are shown in Figure 96 on
page 185.

184 Building AS/400 Applications with Java

Figure 96. Client/Server Response Components

The remainder of this chapter addresses the server component of the response
time. In the client/server environment previously described, a performance problem
can manifest itself through a slow response time at the clients, a network
congestion problem, or excessive use of the network or both, or through capacity
constraints at the server. Ensure that the appropriate diagnostic tools are available
to determine whether the problem is due to client, network, or server constraints.

There are actually several scenarios that fit the client/server model. Figure 97 on
page 186 shows some that are more commonly used (with some AS/400 access
methods overlayed).

 Chapter 8. Performance 185

Figure 97. AS/400 Java and the Client/Server Model

In all five, there are two physical tiers composed of the client hardware and the
server hardware. The application is organized according to three logical tiers:

Presentation:
Encompasses the user interface, generally pertaining to Abstract
Window Toolkit (AWT) classes.

Logic: Involves business logic such as processing and enforcement of business
rules.

Data: Access to the database.

The three logical tier design is the recommended approach in implementing Java
applications. Because of its portability, any of the logical tiers can be implemented
within any of the physical tiers, depending on which hardware platform is most
appropriate.

Because this redbook covers Java on the AS/400 system, the performance
discussion only includes the three leftmost scenarios, that is, Distributed
Presentation, Remote Presentation, and Distributed Logic. These scenarios use
tiers that allow business logic on the server, which is assumed to be written in
Java. The other two scenarios are addressed in other books. The Remote Data
scenario is covered in the redbook Accessing the AS/400 System with Java,
SG24-2152. The Distributed Data scenario is covered by many books but a good
reference is Distributed Database Programming, SC41-5702-01.

186 Building AS/400 Applications with Java

In these three client/server Java scenarios, user interaction is through a graphical
user interface (GUI) and is not based on the 5250 data stream. All of these Java
scenarios are excellent candidates for AS/400e servers, which provide the best
price/performance for non-5250 applications.

Under Distributed Presentation, all three logical tiers of the Java application run on
the server. However, because the Abstract Window Toolkit (AWT) support for Java
cannot run on the AS/400 system, any method calls to AWT are actually executed
on the client. The Remote AWT support within the AS/400 system is built over
Java's Remote Method Invocation (RMI) standard. RMI provides distributed objects
support within Java.

For Remote Presentation, the Java business logic and the data reside on the
server with the presentation on the client. A common example is a Web page
containing an applet that has been downloaded from the server. This applet
handles the presentation logic, then invokes remote methods on the server that
perform the business logic. RMI is also the expected way of invoking these remote
Java methods.

Distributed Logic has a portion of the business logic on both physical tiers. The
client performs some of the business rules (for example, validation of input) prior to
invoking remote Java methods on the server. Also, because the business logic on
the server is written in Java, RMI is expected to be the facility for invoking remote
methods.

 8.6 Addressing Performance
All performance situations can be addressed in these four major ways (see
Figure 98 on page 188). Any of these can provide a significant performance
improvement. Conversely, if any of these are not properly implemented,
performance can be negatively affected. For instance, the best hardware can be
installed, but if the system is not tuned properly, there is a good chance that
performance will suffer.

 Chapter 8. Performance 187

Figure 98. Performance Factors (Donut)

The criteria generally used to determine the most appropriate approach are:

� Whether the option is available or not
� The cost of implementation versus expected improvement
� How long it takes to implement

Hardware upgrades are not discussed in detail. It is a rational assumption that if
the components of response time on the AS/400 system are largely due to CPU
service time and CPU queuing, a processor (and memory) upgrade should provide
improvements. Similarly, if disk I/O service time is excessive, adding more disk
arms or faster disk arms may reduce that response component.

Tuning the system is discussed because the implementation of the JVM on the
AS/400 system is new. Work management concepts (including the startup of the
JVM, QSHELL, and thread support) are discussed. In many environments (Java or
other environment), system tuning can result in noticeable improvements within a
short period of time.

Application design and coding recommendations are also made. This is usually the
area where the most significant, long term performance improvements can be
attained.

Significant improvements to the Java run-time support can be expected in future
updates as this is the first production version of the AS/400 JDK.

188 Building AS/400 Applications with Java

8.7 Work Management and Tuning
As mentioned previously, system tuning can provide noticeable performance
improvements with the least time and with minimal cost. Some of the significant
differences, as compared to traditional RPG or COBOL environments, are the use
of a Batch Immediate (BCI) job for the JVM and the inclusion of native thread
support.

There are three ways of running Java programs on the AS/400 system:

1. Through the JAVA or RUNJVA command, which makes use of the BCI job
QJVACMDSRV.

2. Through the QSHELL interpreter, wherein the JAVA built-in utility can be used
to run a JAVA program or a script (text) file can be used to run several JAVA
programs. QSHELL uses the QZSHSH BCI job.

3. Use the Unity interface through Client Access/400 by double-clicking on a class
file within Operations Navigator (this method is not discussed here and is
mentioned only for clarity).

Each Java program that is run results in four major execution steps:

� Initiate the Batch Immediate job.
� Search and load classes.
� Java instruction execution.
� Access system services.

8.7.1 Initiating the Batch Immediate Job
Each time a Java program is run using the JAVA or RUNJVA commands, a Batch
Immediate (BCI) job is spawned by the job that ran the command. Job initiation
such as that encountered in a SBMJOB or signing on to an interactive session
incurs considerable overhead.

Spawning a BCI job is not as costly as a full job initiation because it uses the same
environment as the initiating job (that is, security, work management parameters,
and so on). A BCI job does not go through a JOBQ and uses fewer objects than a
full job initiation.

However, frequent initiations should still be minimized for reasons that will become
clear as the startup details are described. Spawning a BCI job is more expensive
than starting a new thread. Java classes should then only be called or used if they
are relatively long running. For instance, do not run a Java class from an RPG
program to perform a date conversion routine.

This does not limit the use of Java to a batch environment, however. It fits very
well into the interactive client/server scenarios previously described. With RMI, the
server classes are started and remain active in a "Never-ending" type mode.

8.7.2 JAVA or RUNJVA Commands = QJVACMDSRV BCI Job
Whenever a Java program is invoked with the RUNJVA or JAVA commands, the
following steps occur:

� A BCI job named QJVACMDSRV is spawned under the same work
management environment; that is, same subsystem and routing entry as the

 Chapter 8. Performance 189

job that ran the JAVA command. This is the job that actually loads the classes
and runs the Java program.

� If the JAVA command was run interactively (that is, through a 5250 session), a
temporary data queue is created by the job from which the command was run.
The following message is shown in the interactive job log:

"CPC9801: Object QP0ZTRML type *DTAQ created in library QTEMP." This
*DTAQ is used to communicate events between the BCI job and the 5250
session. This data queue is deleted when the Java program ends and the BCI
job is terminated.

� If JAVA was run interactively, an internal Dynamic Screen Manager (DSM)
session is created. This checks the 5250 device attributes (for example,
screen size and double-byte character set capability).

These steps are shown graphically in Figure 99.

Figure 99. Java Run Time - Java Major Steps

Figure 100 on page 191 shows a Work with Active Jobs display where
interactive job QPADEV0007 ran a Java program. Note its entry under the
Function column, CMD-JAVA . This program was initiated using the following
JAVA command:

JAVA CLASS(a97ð1ð7e.RMIExample.HelloImpl) CLASSPATH('.')

190 Building AS/400 Applications with Java

Figure 100. WRKACTJOB - INT and BCI Jobs

This spawned the BCI job QJVACMDSRV under the same environment (that is,
subsystem, job description, and class). A Batch Immediate job is similar to a UNIX
process being spawned and has similar characteristics as the job that spawned it.
The initial job log entry in the QJVACMDSRV job is similar to that of the interactive
job that spawned it:

Job ð34ð4ð/LLAMES/QJVACMDSRV started on 12/11/97 at 1ð:14:47

in subsystem QINTER in QSYS. Job entered system on 12/1/97 at 1ð:14:47."

To minimize the relative costs of starting up the Java environment (that is, job
initiation and termination, creation and deletion of the temporary data queue in
5250 mode, and the dynamic screen manager), Java classes should only be called
or used when they are relatively long running.

8.7.3 Running Java from QSHELL = QZSHSH BCI Job
The second method of running Java classes is through the QSHELL interpreter.
This is invoked through the QSH or STRQSH commands and provides a POSIX
and X/Open based command interpreter from which the JAVA command can be
run.

This interface provides additional efficiencies when starting several Java programs
because a SHELL script can be stored in a text file and used to run several
commands in a row, including starting up several Java programs. With a script,
several Java programs can be run under the same BCI job instead of having to
spawn a BCI job for each one.

 Chapter 8. Performance 191

Figure 101. Running Java from QShell

The spawning of a BCI job QZSHSH is similar to that of QJVACMDSRV. In
Figure 102, you can see the BCI job that was spawned from the interactive job
running CMD-QSH.

Figure 102. WRKACTJOB - Java QShell

When running under a QSHELL script, it is also possible to pre-start jobs to
improve execution. The pre-start job entries should be added to the subsystem
from which the QSH or STRQSH command is run. The preceding example uses
subsystem QINTER. An example is:

192 Building AS/400 Applications with Java

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWP) INLJOBS(20)
THRESHOLD(5) ADLJOBS(5) JOBD(QGPL/QDFTJOBD) MAXUSE(1)
CLS(QGPL/QINTER)

To run a QSHELL session with a QSHELL script, use the QSH or STRQSH
command with the parameter CMD(textfile_in_IFS_syntax).

For more information about QSHELL, refer to the QSHELL Interpreter Reference,
which can be found at http://as400bks.rochester.ibm.com.

8.7.4 Searching and Loading Classes
When running Java under OPTION(*VERBOSE), many messages that relate to
class loading are generated:

Loading class: java/lang/Object.class

Loading class: java/lang/Class.class

Loading class: java/lang/String.class

Loading class: java/io/Serializable.class

Loading class: com/ibm/as4ðð/system/MIPtr.class

Loading class: java/lang/Cloneable.class

Loading class: java/lang/Void.class

Loading class: java/lang/Byte.class

Loading class: java/lang/Number.class

Loading class: java/lang/Character.class

Loading class: java/lang/Double.class

Loading class: java/lang/Float.class

Loading class: java/lang/Integer.class

Loading class: java/lang/Long.class

Loading class: java/lang/Short.class

Loading class: java/lang/Boolean.class

Loading class: a97ð1ð7e/RMIExample/HelloImpl.class

Loading class:

There are several "system" classes that are loaded before the actual application
class HelloImpl.class is loaded and starts executing. After this, other required
classes are loaded in a "lazy load" mode or as needed.

One main difference between CRTJVAPGM . . . OPTIMIZE(30) and OPTIMIZE(40)
in the Direct Execution environment is that the latter is meant for fastest execution
and therefore, more classes are pre-loaded. If the JVM cannot determine if a
particular class is executed, it is loaded to ensure that execution is not delayed if it
is indeed used.

At times, a particular class load seems to take several seconds while most of the
other classes seem to load much faster. In most cases, the delay is due to
searching for a class rather than in actually loading the class. Class size is not a
primary reason for such delays.

Classes are searched for in the order at which directories are specified in the class
path.

There are several things that can be implemented to improve the class search and
load times:

� Create Java Program (CRTJVAPGM) for jar, zip, and class files:

 Chapter 8. Performance 193

Jar and zip files are treated the same way (that is, same compression and
decompression algorithms). A difference is that a jar file includes a manifest for
authorities and library maintenance.

Make sure that the Java jar, zip, and class files have been processed through
the transformer (that is, they should have the "hidden" service program created,
particularly for the sun.zip, java.zip, and rawt_classes.zip files). These can be
verified using the Display Java Program (DSPJVAPGM) command as follows:

DSPJVAPGM CLSF('/QIBM/Proddata/Java4ðð/lib/sun.zip')

DSPJVAPGM CLSF('/QIBM/Proddata/Java4ðð/lib/java.zip')

DSPJVAPGM CLSF('/QIBM/Proddata/Java4ðð/lib/rawt_classes.zip')

The same applies to any jar, zip, or class files that are part of the application
that run on the AS/400 system. Recall that to run a class in the Direct
Execution environment, the Create Java Program (CRTJVAPGM) command
should be used to create the service program. Using the OPTIMIZE(40)
parameter enhances execution performance but reduces debug capabilities
such as changing the program variables.

Jar or zip files without service programs have long class search and load times.
When a class has to be loaded from the zip file, the zip file is opened, its
directory searched for the class, and a non-persistent service program has to
be created for the class to be executed in OPTIMIZE(10) mode. Thus, not only
is the class loading slow, but so is the class execution because of the low
degree of optimization. Because the service program is non-persistent, this
process is performed every time the class is run.

A class that is not stored in a zip or jar file also needs its service program to
execute. If it has not been put through CRTJVAPGM, a persistent service
program is created internally the first time the class is run. It then runs
subsequently under the OPTIMIZE(10) level by default.

� Minimize the directory search:

Searching through directories for a Java class can be likened to searching
through a library list for a non-qualified program name. Similar
recommendations then apply.

This implies that unnecessary directories should be removed from the
CLASSPATH so that the directory search is no deeper than necessary.

In addition, the most frequently used directories should be placed at the
beginning of the CLASSPATH. Otherwise, searches of the starting entries of
the CLASSPATH result in many misses.

� Store related Java classes in jar or zip with service program:

The best scenario for searching and loading classes is to have them in a jar or
zip file that has a service program associated with it (that is, created through
the CRTJVAPGM command). Opening a zip file and scanning through its
directory is faster than looking for an individual class within a directory.

This technique may not be viable during a development environment because it
results in frequent changes to the zip or jar files. It is generally applied when
the classes are relatively static.

In order of performance, with the fastest performer first, the following common
environments are encountered:

� Zip or jar file with service program created through CRTJVAPGM

194 Building AS/400 Applications with Java

� Regular class directory search
� Zip or jar file without service program (WORST)

8.8 Threads and Tuning
A thread, or thread of control, is the path taken by a program during execution.
Thread support is available in the Java language. Every AS/400 job or process has
at least one thread. This thread can start or "spawn" others that can run
independently of one another, although there are ways of synchronizing threads
within the Java language.

The AS/400 thread support is implemented through kernel threads, which lets the
machine schedule the execution of threads and can take advantage of symmetric
multiprocessor (SMP) hardware.

For more information about threads and threaded applications, see the AS/400
manual Developing Multi-threaded Applications, SC41-5436.

Thread support actually provides a way of multi-tasking within a single process. On
the AS/400 system, a process is represented by a job. For example, if an order
processing program needs to print a report, it can create another thread to do the
printing asynchronously. Creating a new thread (considered a lightweight
operation) is far less expensive than initiating a new job or process.

Some ways to observe a job's threads are through WRKACTJOB option 12 or
WRKJOB option 20. There is also thread identification information in the job log to
indicate which thread generated a particular message.

Figure 103 shows the threads of a QJVACMDSRV BCI job:

Figure 103. Work with Threads

 Chapter 8. Performance 195

The introduction of native thread support adds a new twist to system tuning.

 8.8.1 Initial Thread
In the Java environment, an initial thread is created to perform the initial service
functions such as the initial piping for STDIN and STDOUT. It also handles
interrupt requests when the BCI job that it is running under is ended and then
performs clean up functions. When this thread is doing nothing, it sits at TIMW
status.

This thread has the lowest thread number assignment as it is the first one that is
started.

 8.8.2 Run Priorities
The initial thread runs at the same run priority as the BCI job that created it, which
runs at the same priority as the job that spawned it. Note that in the preceding
example, the first thread is the initial thread with a run priority of 20.

When the actual Java main method starts, the initial thread spawns a new thread
whose run priority is lower by a relative amount, usually 5.

Java has 10 priorities ranging from 1 (MIN_PRIORITY) to 10 (MAX_PRIORITY).
The higher the integer value used in the java.lang.thread setPriority() method, the
higher the run priority. The default priority of 5 is the same as NORM_PRIORITY.

When converting Java priorities to AS/400 run priorities, the equation used is:

AS/400 Thread Priority = (BCI job's run priority + (11 - Java priority))

For example, when a BCI job is at priority 20 and a thread has a Java *NORM
priority of 5, the resulting AS/400 run priority for the thread is 26. This is derived
from the equation as follows:

AS/400 Thread Priority = (20 + (11 - 5))

If the JAVA command is run in batch mode such that the BCI job is running at
priority 50 and a thread is set to the maximum Java priority of 10, the thread's
AS/400 priority is 51, as shown in the equation:

AS/400 Thread Priority = (50 + (11 - 10))

When a BCI job's run priority is changed (for example, from 20 down to 30), the
thread priorities are also changed by the same relative amount (for example, from
26 to 36). However, the change does not occur immediately. A thread's priority is
changed only the next time it hits a long or short wait, or when it reaches MI time
slice (external time slice) as specified in the *CLS. Its priority does not change if it
has been sitting at a prolonged wait state or TIMW status. Hitting the system
internal time slice does not cause the thread's priority to change either.

To compete on the same level as other jobs on the AS/400 system, the BCI job's
run priority should then be set accordingly. For example, if the Java application is
used for online transaction processing and there are interactive RPG applications
running at priority 20, the BCI job's priority should be set to 14. This allows its
threads to also run at priority 20 and compete at the same level as the interactive
RPG applications.

196 Building AS/400 Applications with Java

The effects of dynamic priority scheduler for Java classes whose BCI job runs at
priority 20 are not expected to be any different. In such a case, the work then runs
at a default priority of 26. This means that the threads that consume most of the
CPU run within the delay cost range of priority 23 to 35. The Dynamic Priority
Scheduler is established by the system value QDYNPTYSCD and defaults to a
value of 1 (On). Recall that the ranges are as follows:

 � Priority 10-16
 � Priority 17-22
 � Priority 23-35
 � Priority 36-46
 � Priority 47-51
 � Priority 52-89

Two of the threads are garbage collection threads. They usually have the next
lowest thread number assignments to the initial thread. When running a Java class
from the JAVA or RUNJVA commands, there is a GCPTY parameter that is used to
set the garbage collection priority. Its valid values are 10 (lowest), 20 (default), and
30 (highest).

With a GCPTY value of 20, the threads' run priority should be the same as a Java
NORM_PRIORITY, or 5. In this example, they should be running at an AS/400 run
priority of 26.

With GCPTY(10), the garbage collection threads should be running at a Java
priority of 1, which is the lowest priority. With the BCI job at priority 20, the
garbage collection threads run at an AS/400 run priority of 31.

GCPTY(30) translates to the highest Java priority of 10. With the BCI job at priority
20, the GC threads run at an AS/400 run priority of 21.

 8.8.3 Activity Level
Each active thread occupies an activity level, even though several threads can be
running under one job. That is because each thread is an independently
dispatchable task (recall that with the kernel thread support, AS/400 threads can
take advantage of SMP hardware). Therefore, the initial activity level setting for a
Java pool should be higher, based on the expected number of active threads, not
on the expected number of active jobs. Observations within peak periods should
then be used to set the activity level based on ineligible rates and standard pool
faulting guidelines.

 8.8.4 Time Slice
Because threads are separately dispatchable tasks, they have their own separate
counters for the amount of CPU that they have individually used. Each thread's
counter is compared to the TIMESLICE parameter that it is running under as well
as to the internal time slice value for the system.

Each thread can independently hit its time slice limit. This limit is derived from the
parent job's time slice value.

The total CPU consumed by all threads in a job is accumulated to keep the job
from exceeding the maximum CPU time limit if specified in the Work Management
class (*CLS) object. This is established with the CPUTIME parameter on the
CRTCLS command or the CHGCLS command.

 Chapter 8. Performance 197

 8.8.5 PURGE
If the job is multi-threaded (a BCI job is multi-threaded) and one of its threads goes
into a long wait, the other threads are checked for any activity. If none of the
others are active, the BCI job's Process Access Group (PAG) becomes a candidate
for purging. It then uses the standard storage management algorithm for PURGE.

The only difference between the Java environment and RPG or COBOL
environments is that there are now other threads to consider.

8.9 Java Instruction Execution
The execution of Java program instructions is the third major area where a Java
application incurs overhead. This overhead can be reduced by using certain
compile options, and from a coding standpoint, there are certain features that need
to be minimized. Most of these are also applicable to other platforms.

8.9.1 Compile Options JAVAC
Java source is compiled into bytecode using the javac command. One way is to do
the compilation on a client, then move the generated bytecode to the AS/400
Integrated File System. Another way is to run the command on the AS/400 inside
QSHELL.

� javac -O:

An object-oriented design is generally more expensive than a functionally
equivalent procedural design because of call indirection (that is, when a method
is requested, a search has to be done up the class hierarchy). Generally, the
deeper the class hierarchy, the higher the overhead.

The -O option on the AS/400 system does method inlining. Any method that is
final (private, static, or protected) is a candidate. Run-time performance is
improved because method call overhead is reduced.

Because a final method cannot be sub-classed, it is possible to determine
which method is used. A copy of the method's bytecode is then included in the
caller (inlining) so that the method execution is much faster. The tradeoff is
that the class size will increase.

� javac -g:

This option is needed so that when debugging the class, variables can be
changed.

8.9.2 Explicit Java Transformer CRTJVAPGM (Optional)
Using the Create Java Program (CRTJVAPGM) command on a class file results in
a "hidden" service program being created for that class. The program is
considered "hidden" because it is not visible through the object commands.

This causes the class to run at a default optimization level of 10 unless a different
OPTIMIZE parameter was used. Once an application is deemed stable and has
minimal need for debugging, the transformer should be run at OPTIMIZE(40) to
improve performance.

198 Building AS/400 Applications with Java

The program is created by TRANSFORMING the class file's bytecode into an
optimized program object attached to that class. This program object contains fully
compiled 64-bit RISC machine instructions.

When the JAVA classname command is run, the program object executes with
significant performance improvement over the interpreted mode. One exception is
when the CRTJVAPGM is run with OPTIMIZE(*INTERPRET). The Java class then
runs under bytecode interpretation, a much slower process but with maximum
debug capability.

8.9.3 Automatic Java Transformer
If a .class, .jar, or .zip file does not have the program object created prior to
execution, the Java Transformer is automatically run to create a program object
under the default OPTIMIZE(10) level. Note the difference between the .class
versus the .jar and .zip files.

� .class files:

If the class file does not have a hidden program object associated with it, one
is automatically created by the Java Transformer the first time it is run. It is
possible to use a value different from 10 (for example, a higher optimization
level by using a different OPTIMIZE parameter setting in the JAVA or RUNJVA
command). This program object is persistent until the class is deleted or the
Delete Java Program (DLTJVAPGM) command is run on it.

� .jar and .zip files:

If a .jar or .zip does not have a program object associated with it, performance
is expected to be poor. Class searching and loading takes much longer (see
Section 8.7.4, “Searching and Loading Classes” on page 193).

In addition, once the class is found in the .jar or .zip file's directory, a
non-persistent program object is created for it. This program object is also run
at a default OPTIMIZE(10) level unless a different value is specified in the
JAVA or RUNJVA command's OPTIMIZE parameter.

An obvious problem is that the program object is non-persistent and, therefore,
has to be created (then destroyed) each time the class is referenced in a JVM.
It is then imperative, as mentioned in Section 8.7.4, “Searching and Loading
Classes” on page 193, to run the CRTJVAPGM Transformer on .jar and .zip
files.

 8.9.4 Optimization Levels
Optimization is usually a tradeoff between performance versus size and debug
capabilities. For maximum debugging on the AS/400 system, there are three
requirements:

1. JAVAC -g so that debug information is included in the class.

2. The .java and the .class file should be in the same IFS directory.

3. The class should be running in *INTERPRET mode. This means that the
CRTJVAPGM . . . OPTIMIZE(*INTERPRET) should first be run to ensure it will
run under bytecode interpretation mode. Another way is to DLTJVAPGM, then
use the JAVA or RUNJVA command with OPTIMIZE(*INTERPRET).

Otherwise, when the application is stable, it is best to run at the highest
optimization level of 40 for best performance.

 Chapter 8. Performance 199

8.9.5 Automatic Garbage Collection
Unlike most other JVM implementations, the AS/400 automatic garbage collection is
not Stop & Copy, where other threads stop as garbage collection runs. The
AS/400 JVM usually performs garbage collection asynchronously without having to
stop the other threads. The exception is when the maximum garbage collection
heap size is reached, which is described later.

The following garbage collection parameters are specified within the RUNJVA
command.

� Initial size:

The JAVA command keyword is GCHINL. The default is 2048KB. This
specifies the initial size of the garbage collection heap before garbage
collection will start. Setting too low a value causes garbage collection to start
on small programs, which is why the default should be kept the minimum size.

� Maximum size:

The keyword for this parameter is GCHMAX. The default is 32 768KB. This
specifies the maximum size that the garbage collection heap can grow to
prevent runaway programs from consuming all of the available storage.

In a balanced application, this limit should not be hit. If it does, garbage
collection, which normally runs asynchronously, stops all threads while garbage
collection takes place. The effect of such an occurrence is noticeable. That is
why the smallest value should be 32 768.

The next parameters, frequency and priority, are used to ensure that garbage
collection occurs frequently enough and gets enough cycles to perform cleanup
so that this maximum heap size is not hit.

 � Frequency:

The parameter keyword is GCFRQ. The default is 50 and a lower integer value
causes garbage collection to run less frequently. A value higher than 50
causes it to run more frequently.

 � Priority:

The parameter keyword is GCPTY. This is described in Section 8.8.2, “Run
Priorities” on page 196.

200 Building AS/400 Applications with Java

Figure 104. Garbage Collection Threads

There are two threads associated with garbage collection. They are the ones with
the next higher thread numbers to the initial thread with a gap of one hexadecimal
increment. They are marked with option 10 in Figure 104. Their functions are:

� Collector Garbage Collection Thread - locates objects no longer being
referenced.

� Finalize Garbage Collection Thread - When an object collected by the garbage
collection, this garbage collection thread invokes the FINALIZE method.

 Chapter 8. Performance 201

202 Building AS/400 Applications with Java

 Appendix A. Example Programs

The Java client programs and the AS/400 programs and libraries used in this
redbook are available to be downloaded through the Internet. These examples
were developed using VisualAge for Java Enterprise edition. OS/400 V4R2 or later
is required. The following components are available:

� AS/400 RPG code
 � AS/400 databases
� AS/400 Java code
� Client Java code

 Important Information

These example programs have not been subjected to any formal testing. They
are provided "AS-IS"; they should be used for reference only. Please refer to
the Special Notices section at the back of this document for more information.

A.1 Downloading the Files from the Internet Web Site
To use these files, you must download them to your personal computer from the
Internet Web site. A file named README.TXT is included. It contains instructions
for restoring the AS/400 libraries, the VisualAge for Java examples, and run-time
notes.

The URL to access is: www.redbooks.ibm.com

Click on Downloads and then select directory SG242163. In the SG242163
directory, click on download.htm.

 Copyright IBM Corp. 1998 203

204 Building AS/400 Applications with Java

Appendix B. Java/400 V4R2M0 PTF List

When installing Java/400, make sure that you have the most current PTF
Cumulative Tape. Below is a list of the known fixes as of January 1, 1998. Please
review this list of PTFs to make sure that they have been applied. Be aware that
some may have been superseded.

B.1 SLIC PTFs Needed for Java 5769-999
MF17593 Fix invalid NumberFormatException. No IPL required.

MF176ð8 GC abnormally terminates with 43ðð/ð1ðð vlog. No IPL requred.

MF17612 Handle JAR files correctly

MF17659

MF17622 Incorrect exception location reported from interpreter for

invoke interface bytecode.

MF17661

MF17667 Pre-req for MF17671

MF17671 Fixes to assure that specfied interface is implemented and

that final class isn't overridden

MF17674 OX problem with 4 byte signed SRL (Shift Right Logical)

operation). IPL is requred.

MF17693 (superseded) Raise correct exception (VerifyError) in some

cases during class loading

MF17722 Fixes for Threads

MF17735 Fix verifier bug for ldc2_w

MF17739

MF17741 Fix for freeMemory

MF17742 Fix for java_lang_SecurityManager

MF17743 (superseded) and MF17744 (co-req) Fixes for authority checks on

invoke interface bytecode

MF1776ð (superseded) The penultimate invoke interface fix

MF17774 Fix for JavaSerial

MF17781

MF17783 Pre-req for MF17784

MF17784 Fix verifier missing invalid bytecodes & empty methods

MF17789 Fix memory leak

MF17791 Object signature missing semicolon not diagnosed.

MF17793 Fix memory leak (requires MF17789).

MF17798 Evaluating uninitialized variables.

MF1781ð Detect invalid bytecodes

MF17816 Verifier Does Not Reject Bad Initializer const

MF17833 Java Format Errors Should be Verify Errors

MF17852 Wrong Exception Signaled From Java Pgm

MF17861 Debug fixes

MF17882 Exception fixes

MF179ð7

MF179ð8 Exception fixes

MF17921 Exception fixes

MF17922 Thread fixes

MF17955 Java Check for ()V Signature on clinit

MF17997 Additional verify checks

MF17998 (superseded) Java Verify Error Thrown for Final Static

MF18ðð1 Translate time failures

MF18ð21 Debug fixes

 Copyright IBM Corp. 1998 205

MF18ð22 OSP Back off Floating Point Change in Java Thread

MF18ð29 (Supersedes MF17852) Numeric overflow in converting some

 floating-point numbers

MF18ð31 Suppress verify errors on aastore

MF18ð32 Unpredictable Failures Running Java Direct Ex

MF18ð43 (superseded) Add Access Checking for Protected Members

MF18ð48 (Supersedes MF17774) NullPointerException in ObjectInputStream

MF18ð55 NullPointerException when using reflection invoke with a null parm

MF18ð67 (superseded) Fix problems with JNI interfaces RegisterNatives

 and UnregisterNatives

MF18ð83 Null Ptr Exception Not Thrown

MF18ð88 Assorted Verification Errors

MF181ð1 (Supersedes MF18ð43) Public Members of Non-Public classes

MF181ð6 (Supersedes MF18ð48) Object access fields returned incorrectly

MF181ð8 Array classes should inherit public access authority from base

 class

MF18119 Debug fixes

MF18135 ASCII/EBCDIC name clash causes binder failure

MF18152 Java Threads Need to Throw the StackOverFLowError

B.2 XPF PTFs Needed for Java 5769-SS1
SF45172 Generic Terminal support fix.

SF45235 Qshell version of Java utilities syntax fixed

SF45383 Qshell Interpreter fixes QSH CL command failed and QSH CMD(xxx)

CL command inheriting current working dir

SF454ð7 database fix for a thread problem with the JDBC CLI -

implementation that causes the database connect to fail

SF45576

SF45588 QSHELL fix for having random newlines inserted in your-

system.out output to the QSHELL screen

SF46ð56 Debug fixes.

B.3 JV1 PTFs Needed for Java 5769-JV1
SF452ð2 ICONV thread safe use by JV1

SF45238 Shell utility syntax fixes

SF45298 Fix to translation in QjvaLibPrc

SF453ðð Fix for file read errors in batch

SF45438 Fix QJVANET \SRVPGM to \OWNER

SF45439 Fix for error when class path name too large

SF4545ð Retrieve txt msg for NLS, not hardcoded English

SF45485 298 Op Nav RUN function fails with -secure invalid option

SF45524 java code for javah, javap

SF4561ð Fix for DSPJVAPGM

SF457ðð Java in batch

SF457ð7 Hursley 1.1.4 JDK java.zip and sun.zip

SF45861 STDOUT/STDERR truncated for DBCS

SF46ð84 JDBC SQLð842 connection already exists

SF46135 RAWT i/o exception in OS/2

SF46199 Fix for canonPath native method

SF462ðð Fix for not deleting shared memory segments

SF4621ð Fix for null spool files in batch

SF46296 RAWT caused err in javac

SF46353 bindOwnVirtual and bindOwnSpecial used by opt 4ð only

206 Building AS/400 Applications with Java

 B.4 Miscellaneous Fixes
Also review fixes for System Threads and System Debugger as there may be PTFs
that need to be applied to support these system functions.

 Appendix B. Java/400 V4R2M0 PTF List 207

208 Building AS/400 Applications with Java

Appendix C. Java Source Code Samples

This appendix shows samples of small Java programs. They are also found on the
Internet and download instructions are given in Appendix A, “Example Programs”
on page 203. The code samples are distributed on an "as is" basis, and as such
IBM makes no guarantees nor warranties for correctness or quality.

C.1 checkToolbox Java Program

//
//
// Install/Update example. This program uses the AS4ððToolboxInstaller class
// to install and update the AS/4ðð Toolbox for Java package on the workstation.
//
// The program checks the target path for the AS/4ðð Toolbox for Java package.
// If the package is not found, it installs the package on the worksatation.
// If the package is foundc it checks the source path for updates. If
// updates are found they are copied to the workstation.
//
// Command syntax:
// checkToolbox source target
//
// Where
// source = location of the source files. This name is in URL format.
// target = location of the target files.
//
//
//
//
//
// This source is an example of AS/4ðð Toolbox for Java "AS4ððToolboxInstaller".
// IBM grants you a nonexclusive license to use this as an example
// from which you can generate similar function tailored to
// your own specific needs.
//
// This sample code is provided by IBM for illustrative purposes
// only. These examples have not been thoroughly tested under all
// conditions. IBM, therefore, cannot guarantee or imply
// reliability, serviceability, or function of these programs.
//
// All programs contained herein are provided to you "AS IS"
// without any warranties of any kind. The implied warranties of
// merchantablility and fitness for a particular purpose are
// expressly disclaimed.
//
// AS/4ðð Toolbox for Java
// (C) Copyright IBM Corp. 1997
// All rights reserved.
// US Government Users Restricted Rights -
// Use, duplication, or disclosure restricted
// by GSA ADP Schedule Contract with IBM Corp.
//
//

import java.io.\;
import java.util.\;
import java.net.\;
import AS4ððToolboxInstaller;

Figure 105. checkToolbox Program (Page 1 of 4)

 Copyright IBM Corp. 1998 209

public class checkToolbox extends Object
{

public static void main(String[] parameters)
 {

System.out.println(" ");

// Continue with the install/update only if both source and target
// names were specified.

if (parameters.length >= 2)
 {

// The first parameter is the source for the files, the second is the target.

String sourcePath = parameters[ð];
String targetPath = parameters[1];

boolean installIt = false;
 boolean updateIt = false;

// Created a reader to get input from the user.

BufferedReader inputStream = new BufferedReader(new InputStreamReader(System.in),1);

 try
 {

// Point at the source package. AS4ððToolboxInstaller uses the URL
// class to access the files.

URL sourceURL = new URL(sourcePath);

// See if the package is installed on the client. If not, ask the user
// if install should be performed at this time.

if (AS4ððToolboxInstaller.isInstalled("ACCESS", targetPath) == false)
 {

System.out.print("AS/4ðð Toolbox for Java is not installed. Install now (Y/N):");

String userInput = inputStream.readLine();

if ((userInput.charAt(ð) == 'y') ¦¦
(userInput.charAt(ð) == 'Y'))
installIt = true;

 }

Figure 106. checkToolbox Program (Page 2 of 4)

210 Building AS/400 Applications with Java

// The package is installed. See if updates need to be copied from the
// server. If the target is out of data ask the user if update should
// be performed at this time.

 else
 {

if (AS4ððToolboxInstaller.isUpdateNeeded("ACCESS", targetPath, sourceURL) == true)
 {

System.out.print("AS/4ðð Toolbox for Java is out of date. Install fixes (Y/N):");

String userInput = inputStream.readLine();

if ((userInput.charAt(ð) == 'y') ¦¦
(userInput.charAt(ð) == 'Y'))
updateIt = true;

 }
 else

System.out.println("Target directory is current, no update needed.");
 }

// If the package needs to be installed or updated.

if (updateIt ¦¦ installIt)
 {

// Copy the files from the server to the target.

AS4ððToolboxInstaller.install("ACCESS", targetPath, sourceURL);

// Report that the install/update was successful.

 System.out.println(" ");

 if (installIt)
 System.out.println("Install successful!");
 else
 System.out.println("Update Successful!");

// Tell the user what must be added to the CLASSPATH environment
 // variable.

Vector classpathAdditions = AS4ððToolboxInstaller.getClasspathAdditions();

if (classpathAdditions.size() > ð)
 {
 System.out.println("");

System.out.println("Add the following to the CLASSPATH environment variable:");

for (int i = ð; i < classpathAdditions.size(); i++)
 {
 System.out.print(" ");
 System.out.println((String)classpathAdditions.elementAt(i));
 }
 }

Figure 107. checkToolbox Program (Page 3 of 4)

 Appendix C. Java Source Code Samples 211

// Tell the user what can be revmoed from the CLASSPATH environment
 // variable.

Vector classpathRemovals = AS4ððToolboxInstaller.getClasspathRemovals();

if (classpathRemovals.size() > ð)
 {
 System.out.println("");

System.out.println("Remove the following from the CLASSPATH environment variable:");

for (int i = ð; i < classpathRemovals.size(); i++)
 {
 System.out.print(" ");
 System.out.println((String)classpathRemovals.elementAt(i));
 }
 }
 }
 }

catch (Exception e)
 {

// If any of the above operations failed say the operation failed
// and output the exception.

 System.out.println("Install/Update failed");
 System.out.println(e);
 }
 }

// Display help text when parameters are incorrect.

 else
 {
 System.out.println("");
 System.out.println("");

System.out.println("Parameters are not correct. Command syntax is:");
 System.out.println("");

System.out.println(" checkToolbox sourcePath targetPath");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");

System.out.println(" sourcePath = source for AS/4ðð Toolbox for Java files");
System.out.println(" targetPath = target for AS/4ðð Toolbox for Java files");

 System.out.println("");
 System.out.println("For example:");
 System.out.println("");

System.out.println("checkToolbox http://mySystem/QIBM/ProdData/HTTP/Public/jt4ðð/ d:\\jt4ðð");
 System.out.println("");
 System.out.println("");
 }

 System.exit(ð);
 }
}

Figure 108. checkToolbox Program (Page 4 of 4)

212 Building AS/400 Applications with Java

 Appendix D. Special Notices

This publication is intended to help anyone with a need to understand how to use
Java to build AS/400 client/server applications. The information in this publication
is not intended as the specification of any programming interfaces that are provided
by the AS/400 Developer Kit for Java (Program Number 5769-JV1) or the AS/400
Toolbox for Java (Program Number 5763-JC1). See the PUBLICATIONS section of
the IBM Programming Announcement for the AS/400 Developer Kit for Java
(Program Number 5769-JV1) or the AS/400 Toolbox for Java (Program Number
5763-JC1) for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop
1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the implementation
of any of these techniques is a customer responsibility and depends on the
customer's ability to evaluate and integrate them into the customer's operational
environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX AIX/6000
AIXwindows Applet.Author
Application System/Entry Application System/400
AS/400 Bean Machine
C/400 Client Access

 Copyright IBM Corp. 1998 213

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

Client Access/400 COBOL/400
Coffee Shop Common User Access
Cryptolope CUA
DATABASE 2 OS/400 DataGuide
DataHub DataPropagator
DB2 Distributed Relational Database Architecture
DProp DRDA
Electronic Marketplace Encryptolope
IBM Global Network IBM
IBMLink IIN
Integrated Language Environment IPDS
Operating System/2 Operating System/400
OS/400 PowerPC Architecture
PowerPC AS Print Services Facility
RPG/400 RS/6000
SAA SNAP/SHOT
Software Mall Solutions for a small planet
SOM (NOT FOR USE IN JAPAN) SOMobjects
SOMobjects Application Class Library SOMobjects Compatible
SQL/400 System/36
System/38 ThinkPad
VisualAge VRPG CLIENT
WebConnection WebExplorer
WIN-OS/2 Xstation Manager

214 Building AS/400 Applications with Java

 Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this redbook.

OS/400 Work Management, SC41-5306-01

Performance Tools/400, SC41-5340-00

Distributed Database Programming, SC41-5702-01

QShell Interpreter Reference (see http://www.as400bks.com/ the AS/400 internet
book server. Note that this book is only available on the internet)

AS/400 Java Developer Kit for Java Reference (see http://www.as400bks.com/ the
AS/400 internet book server. Note that this book is only available on the internet)

Developing Multi-threaded Applications, SC41-5436-00

JAVA 1.1 Interactive Course, Laura Lemay, 1997, The Waite Group (ISBN
1-57169-083-2).

E.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 217.

Accessing the AS/400 System with Java, SG24-2152

E.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

 E.3 Other Publications
These publications are also relevant as further information sources:

� Java in a Nutshell, ISBN 1-56592-183-6

� Java Developer's Reference, ISBN 1-57521-129-7

� Object Oriented Technology: A Manager's Guide, ISBN 0-201- 56358-4

 Copyright IBM Corp. 1998 215

216 Building AS/400 Applications with Java

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

� PUBORDER — to order hardcopies in United States

� GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

 � Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE

TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

� Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

� IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

� REDBOOKS category on INEWS

� Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 � Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of the
note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1998 217

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

� Online Orders — send orders to:

 � Telephone orders

� Mail Orders — send orders to:

� Fax — send orders to:

� 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

� Direct Services - send note to softwareshop@vnet.ibm.com

� On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

 � Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

 Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

218 Building AS/400 Applications with Java

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

Ø Invoice to customer number

Ø Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

 How to Get ITSO Redbooks 219

220 Building AS/400 Applications with Java

List of Abbreviations

AFP advanced function printing

APA all points addressable

AWT Abstract Windowing Toolkit

CPW Commercial Processing
Workload

EAB Enterprise Access Builder

DAX Data Access Builder

DDM Distributed Data Management

DPC Distributed Program Call

FFST First Failure Support
Technology

GUI Graphical User Interface

HTML Hypertext Markup Language

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

ITSO International Technical Support
Organization

JAR Java archive

JDBC Java Database Connectivity

JDK Java Development Toolkit

JIT Just in Time Compiler

JVM Java Virtual Machine

MI Machine Interface

OOA Object Oriented Analysis

OOD Object Oriented Design

OOP Object Oriented Programming

PROFS Professional Office System

PTF Program Temporary Fix

RAD Rapid Application Development

RMI Remote Method Invocation

SCS SNA Character Set

SLIC System Licensed Internal Code

SSL secure sockets layer

TIMI Technology Independent
Machine Interface

UML Unified Methodology Language

URL Universal Resource Locator

WWW World Wide Web

 Copyright IBM Corp. 1998 221

222 Building AS/400 Applications with Java

 Index

Special Characters
.jar file 199
.zip file 199
$HOME parameter 70

Numerics
5769-SS1 OS/400 - qshell interpreter 43

A
abbreviations 221
acronyms 221
activity level 197
API

AS/400 java 15
commerce 9
core library 7
embeddedjava 10
java management 10
javahelp 9
media and communications 9
personaljava 10
server 9
servlet 9

API (application programming interface) 7
appletviewer 12
application programming interface (API) 7
AS/400 Client Access Family for Windows,

5769-XW1 40
AS/400 developer kit for java (5769-JV1) 35
AS/400 java API 15
AS/400 java implementation 13
AS/400 java utilities 15
AS/400 JDBC 141
AS/400 thread support 195
AS/400 toolbox for java 45
AS/400 toolbox for java (5763-JC1) 35
AS/400 toolbox JDBC 143
AS/400 toolbox record level access (DDM) 143
AS400ToolboxInstaller 71
AUTOEXEC.BAT 61
automatic garbage collection 200

B
batch immediate job (BCI) 189
BCI (batch immediate job) 189
bibliography 215
bytecode 177
bytecode interpreter 6

bytecode verifier 6

C
catch{} 148
checkToolbox program 72
CJW (commercial java workload) 180
class loader 5
CLASSPATH 61
CLASSPATH environment variable 68
CLASSPATH variable 64
Client Access for Windows 95/NT 39
client/server response component 185
command

create java program (CRTJVAPGM) 194
command, CL

Monitor Message (MONMSG) 148
MONMSG (Monitor Message) 148

commerce API 9
commercial java workload (CJW) 180
commercial processing workload (CPW) 180
constructor method 90
core library API 7
CPU queuing 183
CPW (commercial processing workload) 180
create java program (CRTJVAPGM) command 194
CRTJVAPGM 19, 44
CRTJVAPGM (create java program) command 194

D
display installed licensed programs 34
distributed logic 186
distributed presentation 186
distributed program call 133
DLTJVAPGM 21, 45
DNS (domain name server) 82
domain name server (DNS) 82
DSPJVAPGM 21, 45

E
EDTF command 70
embeddedjava API 10
environment for QShell 69
environment on AS/400 system 66
environment on your PC 61
EXPORT directive 70

G
garbage collector 6, 158

 Copyright IBM Corp. 1998 223

getconnection() 115
good coding technique 177

H
host servers (5769-SS1 option 12) 35

I
IDL 9
inheritance 91
install cumulative PTF package 50
install options 49
installation process 41
installed licensed programs 41
installing java on AS/400 system 31
instance variable 91
ITEM file 116

J
jar 12
java 10, 22, 44

-classpath parameter 69
download documentation 58
overview 1

java abstract windowing toolkit (AWT) 28
java client graphical user interface 110
java management API 10
java on your workstation 53
java program (CRTJVAPGM) command, create 194
java run-time performance 177
java syntax 89
java transformer 178, 199
java virtual machine 5
java.applet 8
java.awt 8
java.beans 8
java.io 8
java.lang 8
java.math 8
java.net 8
java.rmi 8
java.security 8
java.sql 8
java.text 8
java.util 8
javac 11
javadoc 12
javah 11
javahelp API 9
javakey 12
javap 11
JavaSoft JDK 54
jdb 11

JDBC 8, 118, 123, 160
JDBC initialize() 162
JDBC-ODBC bridge 143
JNDI 9
JNI (native method interface) 6
jt400.jar 66
jt400.zip 66

L
legacy program 174
locks 183

M
media and communications API 9
message

monitoring 148
method inlining 180
Monitor Message (MONMSG) command 148
monitoring

message 148
MONMSG (Monitor Message) command 148

N
native JDBC 143
native method interface (JNI) 6
native2ascii 13

O
object-orientation 85
object-oriented 5
object-oriented (OO) design 179
object-oriented program 174
ODBC stored procedure 117
OPTIMIZE(40) 194
order class 129
order entry application 111
order list box 128
order object 129
OrderDetail 129
OS/400 java commands 19
overview of java 1

P
password 115
PATH 61
personaljava API 10
primitive data type 89
profile file 71
program (CRTJVAPGM) command, create java 194
program interface 117
program temporary fix 52

224 Building AS/400 Applications with Java

Q
QJVACMDSRV 189
qshell interpreter 25
qshell interpreter (5769-SS1 option 30) 35
QZSHSH BCI job 189

R
RECORDACCESS 116
reflection in 7
remote abstract windowing toolkit (remote AWT) 28
remote AWT support 28, 78, 79
remote method invocation (RMI) 141, 170
remote presentation 186
RMI 8
RMI (remote method invocation) 141, 170
RMI package 172
RMI registry 170, 173
rmic 13
rmiregistry 13
RPG 85
run priorities 196
RUNJVA 22, 44

S
security manager 173
seizes 183
serialization 7
serialver 13
server API 9
servlet API 9
SQL connection 112
SQL INSERT 164
SQL stored procedure 135
start qshell interpreter 26
stored procedure 120
symbolic link 67
system value QUTCOFFSET 74
systemName value 115

T
TCP/IP connectivity utilities for AS/400 (5769-TC1) 35
thread 195
throwable exception 158
time slice 197
try{} 148

U
URL 115
userid 115

V
VisualAge for Java 110, 111

W
work with licensed programs 33

 Index 225

226 Building AS/400 Applications with Java

ITSO Redbook Evaluation

Building AS/400 Applications with Java
SG24-2163-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

� Use the online evaluation form found at http://www.redbooks.com
� Fax this form to: USA International Access Code + 1 914 432 8264
� Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 227

ÉÂÔ

Printed in U.S.A.

SG24-2163-ðð

