JNDI

m JavaSoft m

Java Naming
& Directory Interface”

JUNE 1997

Java Naming and Directory

Interface ™ (JNDI) is a new addition
to JavaSoft’s platform APIs. It
provides Java applications a unified
interface to multiple naming and
directory services in the enterprise. As
part of the Java Enterprise API set,
JNDI enables seamless connectivity td
heterogeneous enterprise naming and
directory services. Java developers
can now build powerful and portable
directory-enabled applications using
this industry-standard interface.

TheJNDI specification was developed
by JavaSoft with a number of leading
industry partners, including SunSoft,
Novell, Netscape, IBM and HP. Itis
available for public review at the
JavaSoft web site.

|
Technical Overview

Directory services play a vital role i
Intranets and Internets by providin
access to a variety of information abo
users, machines, networks, services, g
applications. By its very nature, a direg
tory service incorporates a haming fac
ity for providing human understandabl
namespaces that characterize t
arrangement and identification of th
various entities.

The computing environment of an ente
prise typically consists of several namir
facilities often representing differen

parts of acompositenamespace. Fot JNDI also defines a service provider
example, the Internet Domain Name interface which allows various director
System (DNS) may be used as the tgp-and naming service drivers to be pluggg
level naming facility for different organi- i
zations within an enterprise. The organi-

zations themselves may use a directqryHere are two examples to briefly illus
service such as LDAP or NDS or NI
From a user’s perspective, there is ohefeatures ofINDI.

namespace consisting of composite

names. URLs are examples of composjteAn application that wants to access
names because they span namespaces gfinter needs the corresponding print
multiple naming facilities. Applications object. This is simply done as follows:
which use directory services must sup-

port this user perspective.

prt = (Printer)
building7.lookup(“puffin”);
Many Java application developers can Prt.print(document);
benefit from a directory service API that
is not only independent of the particular wherebuilding7 is the naming con-
directory or naming service implementa- text representing a physical building th
tion, but also enables seamless access tprovides a convenient context for refe
directory objects through multiple nam- ring to the printers.
ing facilities. In fact, an application cal
attach its own objects to the namespaceJNDI does all the work of locating the
Such a facility enables any Java applica-information needed to construct th
tion to discover and retrieve Java objedtsprinter object.
of any type.
As another example, an application th
JNDI is an API specified in JalV¥ that
g provides directory and naming functior)- which are stored in the organization
Ut ality to applications written in Java. It i$ directory, can simply do:
nalefined to be independent of any specific
t- directory service implementation. Thu
I- a variety of directories, new and existing
e ones in the installed base, can
heaccessed in a common way.
e
Directory service developers can ben
from a service-provider capability that
r- enables them to incorporate their respec-
g tive implementations without requirin
t changes to the client.

|
CONTENTS

Technical Overview

Overview of Interfaces

The Naming Interface

The Directory Interface

The Service Provider Interface
For More Information 2

1
2
2
2
2

. trate some of the more commonly use

wants to find a person’s phone number:

String[] attrs = {*workPhone”,

“cellPhone”, “faxNumber};

bobsPhones =
directory.getAttributes(
“cn=Bob,0=Widget,c=US",
attrs);

If there may be several Bobs in the Wi
get organization, the application ¢

search the organization’s directory
find the right Bob as follows:

bob = directory.search(
“o=Widget,c=US",“cn=Bob”,
constraints);

Other application examples inclu

access to security credentials stored i

enterprise-wide directory service, acc

to electronic mail addresses, and acq
to addresses of a variety of existing S

vices such as databases, network file
tems, etc.

|
Overview of Interfaces

TheJNDI API is contained in two pack
for the naming

ages: java.naming

operations, and java.nam-
ing.directory for directory operar
tions. The JNDI service providef

interface is contained in the packs

java.naming.spi

The Naming Interface —
java.naming

java.naming.Context

It defines basic operations such as ad
a name-to-object binding, looking up t
object bound to a specified name, list
the bindings, removing a name-to-obj
binding, creating and destroying subc
texts of the same typetc.

Context.lookup() is the mos
commonly used operation. The cont
implementation can return an object
whatever class is required by the Java
ent. For example, a client might use
name of a printer to look up the cor
sponding Printer object, and the
print to it directly:

Printer printer = (Printer)
ctx.lookup(“treekiller”);

is the core
interface that specifies a naming contg

Java Application
0] ———— D] AP
an
0 JNDI Implementation Manager
e JNDI SPI
e JNDI- NDS
han |aNDI-RMI| |cosNaming © ® @ | LDAP
eSS
ess
er-

SYSprinter.print(report);

service implementation. In fact, a ne
type of naming service can be introduc
without requiring the application to b
modified or even disrupted if it is run
ning.

The Directory Interface —
java.naming.directory

ge Directory Objects and AttributesThe
java.naming.direc-
tory.DSContext interface enableg
the directory capability by defining
methods for examining and updatin
attributes associated with a directo
object. Each directory object contains|
ext.set of zero or more objects of cla
dingAttribute . Each attribute is denote
he by a string identifier and can have zero
ng more values of any type.
pCt
on- Directory Objects as Naming ConteX
TheDSContext interface also behave
as a naming context by extending t
Context interface. This means thg
ext any directory object can also provide
of naming context. In addition to a direc
cli-tory object keeping a variety of informa
thetion about a person, for example, it
e- also a natural naming context fq
N resources associated with that person
person’s printers, file system, calend
etc.

The client is not exposed to any namif

Searches.The DSContext interface

supports content-based searching of
ng directories. In the simplest and most
w common form of usage, the application
pdspecifies a set of attributes — possibly
with specific values — to match. It then
invokes theDSContext.search()
method on the directory object, which
returns the matching directory objects
along with the requested attributes.

a)

The Service Provider Interface —
java.naming.spi

The JNDI SPI provides the means by
which different naming/directory service
g providers can develop and hook up their
ry implementations so that the correspond-
aing services are accessible from applica-
5S tions that usdNDI . In addition, because
d JNDI allows specification of names that
orspan multiple namespaces, if one service
provider implementation needs to inter-
act with another in order to complete an
t. operation, the SPI provides methods that
5 allow different provider implementa-
netions to cooperate to complete client
t JNDI operations.
a

s For More Information
r
&eehttp://java.sun.com/products/jndi/

| Sun

microsystems

JavaSoft

JNDI

