IBM VisualAge for Java**

Getting Started

for OS/2* and for Windows**, Version 1.0

S430-4086-00

IBM VisualAge for Java**

Getting Started

for OS/2* and for Windows**, Version 1.0

S430-4086-00

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page V.

First Edition (July 1997)

This edition applies to Version 1.0 of the VisualAge for Java product, and to all subsequent releases and modifications
until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product. The
term "VisualAge", as used in this publication, refers to the VisualAge for Java product set.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30 a.m.
and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800) 284-4721.

You can also order publications through your IBM representative or the IBM branch office serving you locality. Publica-
tions are not stocked at the address below.

If you have comments about this document, address them to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada, M3C 1H7

FAX: (416) 448-6161
torrcf@vnet.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices e \%
Trademarks L vii
About this document oL iX
What this documentincludes Lo iX
Sample programs in this document X
Who this documentis for Lo X
About this product L X
Conventions used in this document X
Chapter 1. The Basics 1
What is VisualAge for Java? 1
Rapid application development Lo 1
Create industrial-strength Java programs 2
Maintain multiple editions of programs L 2
Key concepts 2
Development with a repositoryo 2
The workspace and the repository 2
Importing and exporting code 3
The Workbench 3
Visual programming with the Visual Composition Editor 5
Beans L 5
Connections L. L e 5
The Visual Composition Editor 5
Chapter 2. Building your first appleto 9
Introduction to building your firstappleto oL 9
Getting started with your firstapplet oo oo 9
Starting VisualAge forJava 9
Now that you areupand running 10
Using a SmartGuide 11
Creating an applet, a project, and a package 11
Using the Visual Composition Editor 12
Working with beans 12
Building the To-Do Listapplet 13
Adding TextField and Label beans 14
Changing the textof aLabel 14
Adding a List 14
Adding Buttons 15
Sizing and aligning visual beans oL 15
Sizing, aligning, and distributing beans L. 16
Saving yourwork sofar 17
Correcting mistakes 17
Connecting beans 17

Copyright IBM Corp. 1997 iii

Event-to-method and parameter-from-property connections 17

Saving and testing the To-do Listapplet 20
Saving your visualbean Lo L 20
Testing the applet 20
Saving your workspace 21

Chapter 3. Adding state checking to your applet 23

Introduction to adding state checking to your applet 23

Finding your To-Do List applet in the Workbench 23

Versioning an edition of your appleto 24

Adding state checking to your applet L. 25
Desired behavior of the Remove button 25
Overview of adding the desired behavior to the Remove button 25
Open your To-Do List applet in the Visual Composition Editor 25
Set the properties of the Remove button 26
Create a new method to check if an item is selected 27
Add a connection to enable the Remove button 27
Add connections to disable the Remove button 28
Saving and testing your changes 30

Chapter 4. Creating the To-Do File program 31

Introduction to creating the To-Do File program 31

Behavior of the To-Do File program 31

Steps for creating the To-Do File program 32

Creatinganewclass 33

Creating a new class: creating a skeleton 33

Creating a new class: adding a method for reading files 35

Creating a new class: adding a method for writing files 38
Using the Scrapbook totestcode 41

Adding buttons to the To-Do List applet user interface 42

Adding the ToDoFile class to the free-form surface 44

Adding file dialog beans to the free-form surface 45

Connecting the Open To-Do File button 47
Create the connection to show the file dialog 48
Create the connection to dispose of the file dialog 48
Create the connection to invoke readToDoFile 49

Testing the Open To-Do File button 50

Connecting the Save To-Do File button 51
Create the connection to show the filedialog 52
Create the connection to dispose of the file dialog 52
Create the connection to invoke writeToDoFile 53

Saving and testing the completed To-Do File program 55

Chapter 5. What else you can do with the Visual Composition Editor b7

Introduction to what else you can do with the Visual Composition Editor 57

Manipulating beans 57
Selectingbeans 57
Selecting severalbeanso 58

iv VisualAge for Java: Getting Started

Deselectingbeans 58

Moving beans 58
Copyingbeans 59
Copying beans using the clippboard 59
Deletingbeans 59
Sizing, aligning, and positioningbeans 0L 60
Sizingbeans 60
Aligning beans 60
Matching the dimensions of another bean 61
Distributing beans evenly Lo 61
Changing bean properties L 62
Opening the Properties window forabean 62
Changing bean colorsand fonts 63
Changing the colorofabean 63
Changing the fontofabean 64
Portability of colors and fonts Lo 65
Connecting beans 65
Property-to-property connections 66
Event-to-method connections Lo 67
Event-to-script connections L. Lo 68
Parameter connections 69
Changing the properties of connections 71
Connection parameters 72
Manipulating connections Lo 74
Chapter 6. Managing editions 79
Introduction to managing editions Lo Lo 79
About editions . . . L L 79
Versioning an edition 81
Updating your code again 81
Creating a new edition 82
Adding a counter to the ToDoFile program 82
Returning to a previous edition L 85
Exploring the Repository 85
Examining examples in the repository 87
Summary ..o e e e 88
Chapter 7. Whatelseyoucando 89
Introduction to what else youcando 89
Printing program elements L 89
Changing the default printer 90
Navigating e 90
Moving between windows 90
Windows you can open from the Window menu 91
Searching 94
Searching for a program element, 94
Searching with the Search secondary window 94
Searching from the Workspace menu 96

Contents V

Vi

Browsing L 97

Browsing a project 97
Browsing apackage e 98
Browsingaclass 99
Browsing an interface L 99
Browsing a method L 100
Debugging 100
Setting breakpoints Lo 101
Removing breakpoints 101
Using the Debugger window and the Breakpoints window 102
Support for JavaBeans Lo 104
What are JavaBeans? L 104
Bean Features 104
Beaninfo Classes 105
The Beaninfo page 105
Using the BeanIinfo Page 107
Customizing the Workspace 112
Setting customization options 112
Chapter 8. Accessing enterprise data L. 117
Data Access Builder 117
Thin-client model 118
Generating the schema mapping 119
Customizing the schema mapping 121
Generating the data access beans 123
Using the generated GUI 125
Connecting to yourown GUI 126
Distributing and deploying the GUI 127
CICS Access Builder 127
CICS access OVerview 128
Using the Create COMMAREA Bean SmartGuide 129
The Unitof Work bean 131
Connecting the CICS access beans to the user interface 131
RMI Access Builder 132
Overview of RMI access through proxy beans 133
Using the Create Proxy Bean SmartGuide 134
Creating RMI stubs and skeletonclasses 136
Connecting the client-side server proxy 136
Starting the server 137
C++ Access Builder 139
Generating the C++ wrapper and stubbeans 139
Working with the generated makefile 142
Local and remote access scenarios 143
Importing the beans intothe IDE 143
Distributing and connecting the stub bean 144
Chapter 9. More information about VisualAge for Java 145
Printing materialo 145

VisualAge for Java: Getting Started

Contents

vii

viii VisualAge for Java: Getting Started

Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any of the intellectual property rights of IBM
may be used instead of the IBM product, program, or service. The evaluation and verifi-
cation of operation in conjunction with other products, except those expressly desig-
nated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to IBM Director of Licensing, I1BM
Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

IBM may change this publication, the product described herein, or both.

Copyright IBM Corp. 1997 ix

X VisualAge for Java: Getting Started

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

CICs

DATABASE 2

DB2

IBM

Operating System/2
0Ss/2

VisualAge

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc in the United States and in other countries.

Microsoft, Windows and Windows NT are trademarks of Microsoft Corporation.
Acrobat Reader and Adobe are trademarks of Adobe Systems Incorporated.

Other product, service and company names, which may be marked with a double
asterisk, may be trademarks of their respective owners.

Copyright IBM Corp. 1997 Xi

Xii VisualAge for Java: Getting Started

About this document

The purpose of this document is to introduce you to:

The basic concepts and terms you need for using VisualAge for Java
The fundamentals you need to know in creating an application using VisualAge for
Java

To help achieve these goals, we guide you through creating a simple Java applet. Then
we guide you through adding features to this applet.

What this document includes
This document is divided into nine chapters:
Chapter 1, “The Basics” on page 1 introduces the overall capabilities of VisualAge
for Java and outlines the concepts you need to know.

Chapter 2, “Building your first applet” on page 9 introduces the visual program-
ming features of VisualAge for Java by leading you through the process of creating
a simple applet.

Chapter 3, “Adding state checking to your applet” on page 23 gives you more
details on the visual programming features of VisualAge for Java and shows you
how to make improvements to the applet you created in the previous part. This part
also introduces VisualAge for Java's approach to code management.

Chapter 4, “Creating the To-Do File program” on page 31 shows you how to add
more features to your applet and gives you more details on VisualAge for Java's
overall coding environment.

Chapter 5, “What else you can do with the Visual Composition Editor” on page 57
gives you more details on the powerful visual programming capabilities of
VisualAge for Java.

Chapter 6, “Managing editions” on page 79 gives you more details on the edition
control features of VisualAge for Java.

Chapter 7, “What else you can do” on page 89 gives you more information on the
following features of VisualAge for Java:

— Printing

— Navigating

— Searching

— Browsing

— Debugging

— Support for JavaBeans**

— Customizing your programming environment

Copyright IBM Corp. 1997 Xiii

Chapter 8, “Accessing enterprise data” on page 117 provides an overview to using

the robust builder tools that are shipped with VisualAge for Java Enterprise.
[EMTREFEI4E]

Chapter 9, “More information about VisualAge for Java” on page 145 describes
the overall help system that comes with VisualAge for Java. It also gives you
details on printing material from the help system.

Sample programs in this document

This document includes the following sample programs:

The "To-Do List" applet in Chapter 2, “Building your first applet” on page 9 guides

you through the basic steps in creating an applet. You can find a completed

version of this example in the COM.ibm.ivj.examples.vc.todolist package in the
IBM Java Examples project in the VisualAge for Java repository.

The "To-Do File" program in Chapter 4, “Creating the To-Do File program” on

page 31 guides you step-by-step through adding new features to the simple To-Do

List applet. You can find a completed version of this example in the
COM.ibm.ivj.examples.vc.todofile package in the IBM Java Examples project in
the VisualAge for Java repository.

See “Examining examples in the repository” on page 87 for details on how to examine
the completed versions of these examples.

Who this document is for

This document is written for programmers who want to become familiar with the basic
use of VisualAge for Java, and for anyone who wants an overall perspective on the
product. It introduces you to the basic concepts behind building programs using
VisualAge for Java, explains the general process of visual programming with VisualAge
for Java, and walks you through two sample programs. To get the most out of this
document, you should be familiar with the basics of the Java language.

About this product

Xiv

VisualAge for Java is a complete, integrated environment for creating Java applications
and applets.

VisualAge for Java gives you interactive visual programming tools and a set of
JavaBeans that represent common interface components. See “Support for JavaBeans
on page 104 for more details on JavaBeans. You create programs by assembling and
connecting beans. In many cases, you may not even have to write code. When you do
need to write code, VisualAge for Java provides a state-of-the-art, integrated develop-
ment environment in which to do your coding.

VisualAge for Java: Getting Started

Conventions used in this document

The following conventions are used in the text:

Highlight style

Used for

Boldface

New terms the first time they are used

Iltems you can select, such as buttons and menu
choices

Italics

Special emphasis

Method names in general discussion. Method names
that you can select in the VisualAge for Java environ-
ment, however, are boldface, and method names in
code samples are monospace font.

Property and event names

Text that you can enter

Monospace font

Examples of Java code

File names

About this document

XV

XVi VisualAge for Java: Getting Started

Chapter 1. The Basics

What is VisualAge for Java?

VisualAge for Java is an integrated, visual environment that supports the complete
cycle of Java program development. In particular, VisualAge for Java gives you every-
thing you need to perform the development tasks described in this section.

Rapid application development
You can use VisualAge for Java's visual programming features to quickly develop

Java applets and applications. In the Visual Composition Editor (described in “Visual
programming with the Visual Composition Editor” on page 5) you point and click to:

Design the interface for your program

Specify the behavior of the interface elements

Define the relationship between the interface and the rest of your program
VisualAge for Java generates the Java code to implement what you visually specify in

the Visual Composition Editor. In many cases you can design and run complete pro-
grams without writing any Java code.

In addition to its visual programming features, VisualAge for Java gives you
SmartGuides to lead you quickly through many tasks, including:

Creating new applets

Creating new program elements . In VisualAge for Java, a program element is one
of the following:

— Project : the top-level program element in VisualAge for Java. A project con-
tains packages.

— Package: the Java language construct. Packages contain classes and inter-
faces.

— Class: the Java language construct. Classes contain methods and fields.

— Interface : the Java language construct. Interfaces contain methods and fields.
The fields in interfaces must be static final fields.

— Method : the Java language construct.
Creating features for JavaBeans

Importing code from the file system and exporting code to the file system

Copyright IBM Corp. 1997 1

Create industrial-strength Java programs
VisualAge for Java gives you the programming tools that you need to develop
industrial-strength code. Specifically, you can:

Use the completely integrated visual debugger to examine and update code while it
is running
Build, modify, and use JavaBeans

Browse your code at the level of project, package, class, or method

Maintain multiple editions of programs
VisualAge for Java has a sophisticated code management system that makes it easy
for you to maintain multiple editions of programs. Editions of your code are organized
into two areas:

The workspace contains the code that you are currently working on, as well as
any class libraries that your code uses.
The repository contains all editions of all program elements.

When you want to capture the state of your code at any point, you can version an
edition. This marks the particular edition as read-only and allows you to give it a name.

Key concepts

This section gives you the basic definitions that you need to get started.

Development with a repository
Within the VisualAge for Java environment, you do not manipulate Java code files.
Instead, VisualAge for Java manages your code in a database of structured objects and
shows them to you as a hierarchy of program elements:

o | project
£ package

® class or £ interface

@ public, 4 default, 5 protected, g private methods

Because you are manipulating program elements rather than files, you can concentrate
on the logical organization of the code without having to worry as much about file
names or directory structures.

The workspace and the repository
All activity in VisualAge for Java is organized around a single workspace , which con-
tains the source code for the Java programs that you are working on. The workspace
also contains all the packages, classes, and interfaces that are found in the standard
Java class libraries and other class libraries that you may need.

2 VisualAge for Java: Getting Started

While you work on code in the workspace, the code is automatically stored in a reposi-
tory . In addition to storing all the code that is in the workspace, the repository contains
other packages that you can add to the workspace if you need to use them.

In VisualAge for Java, you can manage the changes that you make to a program
element by creating editions of the program element. The workspace contains at most
one edition of any program element. The repository, on the other hand, contains all
editions of all program elements. See Chapter 6, “Managing editions” on page 79 for
more details.

Importing and exporting code
You can easily move your code between your file system and VisualAge for Java. If
you want to bring existing Java code into VisualAge for Java, you use the Import
SmartGuide to specify files (or whole directory structures) that you want to bring in.
VisualAge for Java compiles your code, indicates if there are any errors, and adds the
appropriate program elements to the workspace.

When you want to run your program outside of VisualAge for Java, you can export it
using the Export SmartGuide. VisualAge for Java creates a Java source (*.java) file or
compiled (*.class) file for each class that you export.

The Workbench
VisualAge for Java gives you a variety of ways to examine and manipulate your code
using different windows. The primary window you use in VisualAge for Java is called
the Workbench . This window displays all of the program elements in the workspace.

Toal bar

Page Selection mm
tabe

Text pane

See “Windows you can open from the Window menu” on page 91 for descriptions of
the other windows in VisualAge for Java.

Chapter 1. The Basics 3

Tool bar

The Workbench tool bar, which is located below the menu bar, gives you easy access
to the tasks you perform most frequently in the Workbench. These tasks include
standard editing operations, running, debugging, searching, and manipulating program
elements.

Edltlng tools Run Debug Showrhide edition information

J@’@@WDJQ.)JJJ@_JE

Search Create new program elements

Note:

To identify any tool in any of the tool bars in VisualAge for Java, place the
mouse pointer over the tool. A label will appear that identifies the tool.

Pages in the Workbench window
5 Projects l%F‘ackages| (8 Claszes | 3 Interfaces | ¥ Unresclved Problems

Each page gives you a specific viewpoint on the code in the workspace:
The Projects page displays all the projects in the workspace. You can expand
projects to see the program elements inside them.

The Packages page displays all the packages in the workspace. You can expand
packages to see the program elements inside them.

The Classes page displays all the classes in the workspace in a hierarchy rooted
at java.lang.Object . You have the choice of displaying the hierarchy as a list or
as a graphical view. You can expand a class to see what classes inherit from it.

The Interfaces page displays all the interfaces in the workspace.

The Unresolved Problems page displays all the classes and methods in the work-
space that have unresolved problems in them. When you save code, VisualAge for
Java compiles it automatically.

Note:

It is important to make a clear distinction between the Workbench and the
workspace. The Workbench is a window in the VisualAge for Java user inter-
face. It displays the program elements that are in the workspace.

4 VisualAge for Java: Getting Started

Visual programming with the Visual Composition Editor

Beans

Connections

The Visual Composition Editor is the portion of VisualAge for Java where you can
develop programs by visually arranging and connecting software objects called

JavaBeans , or simply beans. This process of creating object-oriented programs by
manipulating graphical representations of components is called visual programming

In VisualAge for Java, beans are the components that you manipulate when you
program visually. These beans are Java classes that adhere to the JavaBeans specifi-
cation. In the Visual Composition Editor, you select beans from a palette, specify their
characteristics, and make connections between them. Beans can contain other beans
and connections to beans. See “Support for JavaBeans” on page 104 for more details
on the role of beans in VisualAge for Java.

There are two types of beans that you use within the Visual Composition Editor:

A visual bean can be seen in your program at run time. Visual beans, such as
windows, buttons, and text fields, make up the graphical user interface (GUI) of a
program.

A nonvisual bean does not appear in your program at run time. A nonvisual bean
typically represents an object that encapsulates data and implements behavior
within a program.

A bean's public interface determines how it can interact with other beans. The public
interface of a bean consists of the following features:

Properties are data that can be accessed by other beans. This data can represent
any logical property of a bean, such as the balance of an account, the size of a
shipment, or the label of a button.

Events are signals that indicate something has happened. Opening a window or
changing the value of a property, for example, will trigger an event.

Methods are operations that a bean can perform. Methods can be triggered by
connections from other beans.

In the Visual Composition Editor, connections define how beans interact with each
other. You can make connections between beans and between other connections. A
connection has a source and a target. The point at which you start the connection is
called the source ; the point at which you end the connection is called the target .

The Visual Composition Editor

The Visual Composition Editor is the visual programming tool integrated with VisualAge
for Java. It is one of the pages in the window that appears when you browse a class.
For more details on browsing, see “Browsing” on page 97.

Chapter 1. The Basics 5

The Visual Composition Editor is made up of several components: the beans palette
along the left side, the status area along the bottom, the tool bar along the top, and
the free-form surface where you lay out the beans.

02014 AN | _ |8 =]

Taal Bar

Beans
patete

Freedarm swface

area

You use the Visual Composition Editor to construct new beans. These new beans can
contain other beans as well as connections between beans. You can think of the beans
you construct in the Visual Composition Editor as composite beans because they
contain other beans. The composite beans you build make up your program.

Beans palette
The beans palette , which is located on the left side of the Visual Composition Editor,
contains the set of ready-made beans that you use most frequently. The beans palette

organizes the beans into categories .

The categories are in the left column of the beans palette, and the beans in the
selected category are in the right column.

6 VisualAge for Java: Getting Started

Categories Beans

Ll
e

=
A
Ex |

= I+

The Status area at the bottom of the Visual Composition Editor indicates the category
and bean currently selected in the beans palette, or the bean or connection currently
selected on the free-form surface.

Note:

You can also identify a bean category or a bean by placing the mouse pointer
over the icon for the bean category or bean. A label will appear that identifies
the icon.

Tool bar

The tool bar , which is located below the menu bar of the Visual Composition Editor,
provides easy access to the tools commonly used while manipulating beans. These
tools help with such tasks as positioning beans, sizing beans, showing and hiding con-
nections between beans, and testing your program.

Chapter 1. The Basics

7

Test Properties Connection tools

Selection Beans list Alignment tools

Sizing tools

Distribution tools Debug

Most of the tools in the tool bar act on the beans that are currently selected in the
free-form surface. If no beans are selected for a tool to act on, the tool is unavailable.

Note:
The Tools menu also provides access to these tools.
Free-form surface

The large open area in the Visual Composition Editor is called the free-form surface .
You use the free-form surface as the visual programming area where you construct
your program. You cannot drop nonvisual beans on top of visual beans.

Regardless of the type of bean, every bean has a pop-up menu that contains options
you can use to modify or work with that bean.

8 \VisualAge for Java: Getting Started

Chapter 2. Building your first applet

Introduction to building your first applet

This section leads you through building your first applet in VisualAge for Java: a To-Do
List.

You will create a To-Do List applet, which consists of a bean (a composite bean) that
is made up of many other beans. The applet has a TextField bean for entering a To-Do
item and a List bean for displaying the To-Do items. There are also two Button beans
for adding and removing items from the list. The user interface for the completed To-Do
List applet looks like this:

L. Aipglel Vieser: COE b rveanpler ve badaba). Tolol ik M= 5

T o Ioiny

Tirlny L

Eppks yisd

In the completed applet, you type an item into the To-Do Item field and select Add.
This adds the item to the To-Do List . If you select an item from the To-Do List and
select Remove, the item is removed from the To-Do List .

Getting started with your first applet

If you haven't already installed VisualAge for Java, refer to the installation documenta-
tion in the install.txt file on the product CD for information on how to install the
product. The VisualAge for Java installation program installs all the files that are neces-
sary for your development environment.

Starting VisualAge for Java
You can start VisualAge for Java by doing one of the following:

For OS/2, from the VisualAge for Java folder, double-click the IDE icon:

Copyright IBM Corp. 1997 9

For Windows** 95 and Windows NT**, select VisualAge for Java then IDE from
the Start -> Programs menu.

Now that you are up and running
After you start VisualAge for Java, the Workbench window appears:

The Workbench window is used for accessing other windows, creating program ele-
ments, and viewing the contents of program elements.

Next, the VisualAge Quick Start window appears:

10 VisualAge for Java: Getting Started

R T T, -~ |
W'head wiould wou like fo da?

= Crumbs mnea appii
b ¢ Crowls snewa clenniatecs
" Contram vearhng veth o chernmindecs:

™ Boho Hha Y'odebanch

7 [Ehow Tz vndoa o detup

[] ceed |

The VisualAge Quick Start window provides a fast path to creating applets, classes,
and interfaces. To create your To-Do List applet, you'll use the VisualAge Quick Start
window and the Create Applet SmartGuide.

Using a SmartGuide

For the To-Do List applet, you'll create an applet as well as a project and a package to
contain your work. You'll create these using a SmartGuide that you access from the
VisualAge Quick Start window.

When you manipulate your new applet in the Visual Composition Editor, you will be
visually manipulating JavaBeans. These JavaBeans (or, simply, beans) are represented
as classes when you examine your applet in the Workbench.

VisualAge for Java suggests that you give your applets (and all other classes) hames
that begin with a capital letter. Class names are case-sensitive, and cannot contain
spaces. If a class name consists of multiple words, do not type spaces between the
words, but instead capitalize the first letter of each word. For example, ToDoList.

Creating an applet, a project, and a package
To open the SmartGuide, from the VisualAge Quick Start window:

1. Select Create a new applet , if it is not already selected.

2. Select OK. The SmartGuide - Create Applet window opens.

Chapter 2. Building your first applet 11

s o umle - Liesle Sppiet

Ersted arares ko the e apiet
Howeof appiet |

Eebst 5 st] o puok-es b Ehs s ppdet
Progeat 1
Packoags 1

Hiows wacnbd s Bt i ichesiprirn] B ppdel 7
™ [uzign tha applel vy
& ‘il couree coda ko tra applet

[~ B Sppks v iched

In the SmartGuide - Create Applet window, follow these steps to create your applet:

In the Name of Applet field, type a name, such as ToDoList.
In the Project field, type a project name, such as My ToDolList project.
In the Package field, type a package name, such as todolist.

Select Design the applet visually

o M 0N R

Select Finish .

A secondary window opens, asking if you want to create a project and a package
having the names you specified. Select Yes.

VisualAge for Java creates a project, a package, and an applet, then opens the Visual
Composition Editor on the applet.

Using the Visual Composition Editor

When the Visual Composition Editor opens, you can begin visually constructing your
To-Do List applet. The To-Do List applet consists of a bean that will contain several
visual beans.

Working with beans

When working with beans in VisualAge for Java, you will use the following fundamental
techniques: dragging beans, selecting multiple beans, and displaying pop-up menus.

Dragging beans

12 VisualAge for Java: Getting Started

To drag a bean, click and hold down the appropriate mouse button (In OS/2, use
mouse button 2 to drag a bean; in Windows, use mouse button 1). Move the mouse
pointer to where you want to position the bean; then release the button.

Selecting multiple beans

To select multiple beans, hold down the control (Ctrl) key and click mouse button 1 on
the items you want to select. This is referred to as a selection set .

Note:

Only beans that can be operated upon as a set can be contained in a
selection set. A set of beans placed within a window, for instance, can be
selected together for the purpose of sizing or alignment. However, you could
not select the window and one of the beans together.

Displaying bean pop-up menus

To display a pop-up menu, click mouse button 2 on the object.

Building the To-Do List applet

When the Visual Composition Editor opens for a new visual bean, such as ToDolList, it
already contains an Applet bean. The Applet bean is represented as a dashed rec-
tangle on the free-form surface. To build the rest of the user interface, you must add
several other visual beans. When you have finished creating the user interface for the
To-Do List applet, the free-form surface of the Visual Composition Editor should look

To make a user interface that looks like this, you need to add the remaining beans and
to size and align them.

Chapter 2. Building your first applet 13

Note: As you add beans to the applet, you may find that the default Applet bean
is too small to accommodate all the other beans. If this happens, you can
resize the Applet bean by selecting it and dragging on one of the selection
handles using mouse button 1.

Adding TextField and Label beans
To create the text field in which the To-Do items are typed, you need to add a TextField
bean and a Label bean:

1. Select the Data Entry category: @ from the left column of the beans palette, and
then select the TextField bean:] from the right column of the beans palette.

The information area at the bottom of the Visual Composition Editor displays
Category: Data Entry Bean: TextField , reflecting the current selection in the
beans palette.

2. Move the mouse pointer over the Applet bean (the dashed rectangle on the free-
form surface). The pointer changes to a cross-hair, indicating that it is now loaded
with the bean you selected. Click mouse button 1 where you want to add the
TextField.

If you accidentally picked the wrong bean and have not dropped the bean into the

Applet yet, select the correct bean or select the Selection tool: ':_U from the tool
bar to unload the mouse pointer.

After you have added the TextField bean to the Applet, you can move it to a new
location by dragging it with the mouse.

3. Select the Data Entry category, if it is not already selected, then select the Label
bean: ,I'!'fr and add a Label just above the TextField.

Don't worry about their exact positions. Later you'll learn how to use the tools from
the tool bar to match sizes and align beans.

Changing the text of a Label
Change the text of the Label to To-Do Item by directly editing the text as follows:

1. Hold down the Alt key and click mouse button 1 on the Label. The text of the Label
is highlighted, indicating that you can type over the text.

2. Type To-Do Item then click mouse button 1 in an open area of the free-form
surface or press Shift+Enter.

The Label now contains the text To-Do Item .
Adding a List

To create the list in which the To-Do items are displayed, you need to add a List and
another Label:

14 visualAge for Java: Getting Started

1. Select the Lists category: Ej Then select the List bean: @ and add it to the
Applet below the TextField.

2. You can quickly add a Label for the List by copying the one for the TextField. To
copy a bean:

Select the bean.
From the Edit menu, select Copy.

From the Edit menu, select Paste. The pointer changes to a cross-hair, indi-
cating that it is now loaded with the bean you selected.

Click mouse button 1 just above the List to add the new Label.
3. Change the new Label's text to To-Do List by directly editing it like you did for the
TextField Label.
Tip:

You can also copy a bean using the Ctrl key. Position the mouse pointer over
the Label bean, hold down the Ctrl key, and drag the copy of the bean to just
above the List bean.

Adding Buttons

To add and remove items from the To-Do list, you need to add two Buttons:

1. To add more than one bean at a time, select the Sticky check box, located just
below the beans palette.

2. Select the Buttons category: EI . Then select the Button bean: [__j . Add a
Button to the Applet to the right of the TextField.

Notice that the mouse pointer remains a cross-hair, indicating that the mouse
pointer is still loaded with the Button bean. Click mouse button 1 below the Button
you just added to add another Button.

3. Deselect Sticky or select the Selection tool: H:_J'from the tool bar to unload the
mouse pointer.

4. Change the top button's text to Add and the bottom button's text to Remove by
directly editing them.

Congratulations! You have just created your first user interface using VisualAge. Next,
you need to size and align the beans within the To-Do List applet.

Sizing and aligning visual beans

To clean up the appearance of your user interface, use the sizing and aligning tools
from the tool bar on the Visual Composition Editor. The tool bar provides several dif-
ferent tools for sizing and aligning beans. You'll learn a great deal about how to use
them by experimenting with the different tools.

Chapter 2. Building your first applet 15

The following steps explain how to match the size of two beans, align the beans with
other beans, and evenly distribute the beans within another bean. You'll learn more
about sizing and changing beans in “Manipulating beans” on page 57.

Sizing, aligning, and distributing beans
The order in which you size, align, and distribute the beans is not always important.
Usually, you start with the upper left corner and work your way through all the beans in
the window.

To size the List so it matches the width of the TextField, do the following:

1. Select the List.

2. Hold down the Ctrl key to select multiple items and select the TextField using
mouse button 1.

3. Select the Match Width tool: ’-';.i from the tool bar.

Because the TextField was selected last, it becomes the primary selection for the
match width operation. The width of the List is changed to match the width of the
TextField.

Note:

The primary selection has solid selection handles. The other selected items
have outlined selection handles.

To size and align the Add button and the Remove button, do the following:

1. Resize the Remove button to an appropriate size for the applet.

2. Select the Add button, hold down the Ctrl key and select the Remove button using
mouse button 1. Then, select the Match Width tool: E.i from the tool bar.

3. Because the buttons remain selected, you can now align their left edges by

selecting the Align Left tool: [I= from the tool bar.
To align the left side of the TextField, List, and Labels, do the following:

1. Move the Label for the TextField to the position you want it in the applet.

2. Select the TextField and List and their associated Labels, making sure to select the
Label of the TextField last.

By selecting the TextField Label last, you make it the primary selection for the
alignment operation.

3. Select the Align Left tool: [from the tool bar.

16 VisualAge for Java: Getting Started

4. Because the TextField, List and Labels are still selected, you can evenly distribute

them in the window by selecting the Distribute Vertically tool: *= from the tool
bar.

You have now completely finished the user interface of your To-Do List applet.

Saving your work so far
Before you continue, it is a good idea to save the work you have done so far. To save
the current state of your work, select Save Bean from the File menu. VisualAge for
Java generates the Java code that implements the layout that you have created in the
Visual Composition Editor.

Note:

The entire applet that you are creating is a bean. When you select Save Bean
from the File menu, you are saving the entire applet.

Correcting mistakes

If you make a change in the Visual Composition Editor and then decide that you should
have left things as they were, select Undo from the Edit menu to restore your work to
its previous state. You can undo as many operations as you want, all the way back to
when you opened the Visual Composition Editor for the current bean.

If you undo an operation and then decide that you did the right thing in the first place,
select Redo from the Edit menu. Redo will restore the view to the state it was in
before the last Undo. As soon as you close the Visual Composition Editor for your
bean, you lose any ability to undo or redo any changes made.

Connecting beans

Now that you have added the visual beans to create the user interface, the next step is
connecting them.

Event-to-method and parameter-from-property connections
This is a short discussion of the event-to-method connections used in this example. It is
not necessary for you to make the connections as you follow along in this text. Step-by-
step instructions are provided in the next section.

The behavior of the To-Do List applet is to have the text entered in the TextField added
to the list when the Add button is selected, and to have the selected item in the list
removed when the Remove button is selected. To do this, you need to make event-to-
method connections between the Buttons and the TextField and the List.

Because selecting a button signals an actionPerformed(java.awt.event.ActionEvent)
event and adding an item to the list is performed by the addltem(java.lang.String)
method, the event-to-method connection to add an item to the list will be between the
Add Button's actionPerformed(java.awt.event.ActionEvent) event and the List's

Chapter 2. Building your first applet 17

addltem(java.lang.String) method. Removing an item from the list is performed by con-
necting the Remove Button's actionPerformed(java.awt.event.ActionEvent) event to the
remove(java.lang.String) method of the List.

Simply adding these two event-to-method connections does not actually cause anything
to be added to or removed from the list because both the addltem(java.lang.String) and
remove(java.lang.String) methods require a parameter that specifies what object is to
be added to or removed from the list.

We'll specify the parameters for the event-to-method connections by creating
parameter-from-property connections.

Because the object (the text) entered in the TextField is available through the
TextField's text property and the parameter of the addltem(java.lang.String) method is
specified by the item property of the event-to-method connection, the connection that
specifies what to add to the List will be between the TextField's text property and the
Add event-to-method connection's item property. Because the item selected in the List
is available through the List's selectedltem property and the parameter of the
remove(java.lang.String) method is specified by the item property of the event-to-
method connection, the connection that specifies what to remove from the List will be
between the List's selectedltem property and the Remove event-to-method connection's
item property.

Making the connections
To make the event-to-method connection for the Add button, do the following:
1. Select the Add button, then click mouse button 2. In the pop-up menu that

appears, select Connect then actionPerformed(java.awt.event.ActionEvent)

The mouse pointer changes, indicating that you are in the process of making a
connection. If you accidentally started the wrong connection, press the Esc key to
cancel.

2. To complete the connection, click mouse button 1 on the List and then select
additem(java.lang.String) from the pop-up menu that appears. A dashed line
appears, which means that more information is necessary. In this case, the value
of the parameter for the addltem(java.lang.String) method is missing.

HEAEEN
Fusrmiras |

3. To make the parameter-from-property connection that specifies what to add to
the list, follow these steps:

Move the mouse pointer on top of the dashed event-to-method connection line.

18 VvisualAge for Java: Getting Started

Click mouse button 2. Select Connect then item from the pop-up menu that
appears.

Click mouse button 1 on the TextField, and then select text from the pop-up
menu that appears.

When you finish, the connections should look like this:

TaDo e

TaDolm -
Awresm |

To make the event-to-method connection for the Remove button, do the following:

1. Select the Remove button, then click mouse button 2. In the pop-up menu that
appears, select Connect then actionPerformed(java.awt.event.ActionEvent)

2. Click mouse button 1 on the List, then select remove(java.lang.String) from the
pop-up menu that appears. Again, a dashed line appears, which means that more
information is necessary. In this case, the value of the parameter for the
remove(java.lang.String) method is missing.

3. To make the parameter-from-property connection that specifies what to remove
from the list, follow these steps:

Move the mouse pointer on top of the dashed connection line.

Click mouse button 2, then select Connect then item from the pop-up menu
that appears.

Click mouse button 1 on the List, then select selecteditem from the pop-up
menu that appears.

Your connections should now look like this:

Chapter 2. Building your first applet 19

With the user interface complete and the behavior of the applet defined by the con-
nections between the visual beans, you are now ready to save and test your work.

Saving and testing the To-do List applet
Before testing your ToDoList applet, you should save the work you have done.
When you save changes to a bean, you are replacing the old specification of the bean
with a new one. When you do this, VisualAge for Java will be using the new specifica-

tion of the bean for all new uses of it. You should save your changes to a bean period-
ically as you are working with it and when you have finished editing it.

Saving your visual bean
In the Visual Composition Editor, do the following:
To save your bean, from the File menu select Save bean.

A message box appears saying that your bean is being saved and that runtime
code is being generated. This generated runtime code is what VisualAge uses to
create your bean when you run your application.

Testing the applet
Now that your work is saved, you can test your To-Do List applet.
1. To begin testing your applet from within the Visual Composition Editor, select Test

from the tool bar: ":;'r} When the Settings window for the applet opens, simply
select Run to display the applet.

2. When the To-Do List applet appears, experiment with it to ensure that it behaves
the way you expect it to. For the To-Do List applet, you need to ensure you can
add typed items to the list and remove selected items from the list.

Be sure to close the applet window when you have completed your testing.

20 VisualAge for Java: Getting Started

At any time, you may return to the Visual Composition Editor and make changes, save
the changes, then test the applet again.

Congratulations! Your To-Do List applet is finished.

Saving your workspace
Before you continue, save your workspace. When you save your workspace, you are
saving the current state of all the code that you are working on and the state of any
windows that you currently have open. To save your workspace:

Select Save Workspace from the File menu.

Chapter 2. Building your first applet 21

22 VisualAge for Java: Getting Started

Chapter 3. Adding state checking to your applet

Introduction to adding state checking to your applet

There is one piece of unfinished business left over from the To-Do List applet that you
created. To keep the applet as simple as possible, we did not include any kind of state
checking . The Add and Remove buttons are always available. This is not the ideal
behavior for the applet. For example, a user should only be able to select the Remove
button if there is an item selected in the To-Do List .

This section leads you through the steps to add state checking to your applet. It's a
chance for you to review what you learned when you created the To-Do List applet and
to learn a bit more about how the Visual Composition Editor works. This section only
deals with the Remove button, but if you want to experiment, you can try to add the
same kind of state checking for the Add button.

Before we update the applet to include state checking, we'll go through the steps to find
your applet and to create a versioned edition of it.

Note:

This section assumes that you have completed the steps described in
Chapter 2, “Building your first applet” on page 9. You should now have a
completed, working To-Do List applet. If you have not done so already, please
complete the steps to create the basic To-Do List applet.

Finding your To-Do List applet in the Workbench

Before you can add state checking to your To-Do List applet, you may need to find it.
When you created it in the Visual Composition Editor, you may not have kept track of
where VisualAge for Java was putting the code it generated to implement the applet.
Don't worry. VisualAge for Java gives you powerful search capabilities for finding
program elements. These capabilities are described in more detail in “Searching” on
page 94. For now, here is quick way to find your To-Do List applet:

1. In the Workbench window, select the Projects page.

2. From the Selected menu, select Go To then Class/Interface . The Find
Class/Interface secondary window appears:

Copyright IBM Corp. 1997 23

e Fmnd Llaaafinterlacn

Dhadie 4 pltiwipiaoe.

Patbeam [H =y chupis, “ = o S]]
|

D s e Pl

TR H
Hullomincks

"~ Plasgermnd [b

AivriracE vish skanFand

Btk el dE il

fozarzt poaplon

decl

el rirp

LafE il gl

ek rumrmistca

vt -l

Pacloage Harmsz

[] cum |

3. Enter the name of your To-Do List applet (for example, ToDoList) in the Pattern
field. As you enter the name, the Class/Interface Names list changes to include
only the classes and interfaces that match what you have entered so far.

4. Select the name of your To-Do List applet from the Class/Interface
Names list. If packages are listed in Package Names , it means that more than
one package has a class with the name you specified. Select the package in which
you created the To-Do List applet and select OK.

5. The list of projects is updated. The project and package that contain your applet
are expanded, and the class for your applet is selected.

Now you have found the class for your applet, you are ready to version it.

Versioning an

edition of your applet

When you version an edition of a program element, you give it a name and explicitly
save its current state. When you make more changes to the code and save these
changes, a new edition is created based on this versioned edition. If you decide you
want to undo these changes or try a different set of changes, you can simply return to
the versioned edition. For more details on editions and versioned editions, see
Chapter 6, “Managing editions” on page 79.

Before you make any changes to your To-Do List applet class, version it so you can
return to it if you need to do so. To version the class for your applet:

1. Ensure the class for your applet is selected, then select Version from the Selected
menu. The Versioning Selected Items SmartGuide appears.

24 VisualAge for Java: Getting Started

2. Ensure that Automatic is selected and select Finish . If Show Edition Names : [E

is selected in the tool bar, a version name appears next to the class.

The next time you modify this class and save it, VisualAge for Java creates a new
edition based on the code in this versioned edition. If you run into problems while you
are making updates to your applet, you can return to your working To-Do List applet by
returning to the versioned edition you just created.

Adding state checking to your applet

Now that you have versioned an edition of your applet, you are ready to add state
checking.

Desired behavior of the Remove button
Currently, the Remove button is always enabled, even if nothing is selected to remove.
Here is how the Remove button should work:

When the applet starts, the Remove button should be disabled.

When there is an item selected in the To-Do List , the Remove button should be
enabled.

When no items are selected in the To-Do List , the Remove button should be disa-
bled.

Overview of adding the desired behavior to the Remove button
To get the desired behavior for the Remove button, you need to:

Open the To-Do List applet in the Visual Composition Editor.

Set the properties of the Remove button so it is disabled when the applet first
starts.

Create a new method that checks if an item is selected in the To-Do List .

Add a connection between the To-Do List and the Remove button to enable the
button when an item is selected in the To-Do List .

Add a connection between the Remove button and itself to disable it when there
are no items selected in the To-Do List .

Open your To-Do List applet in the Visual Composition Editor
First, open your To-Do List applet class in the Visual Composition Editor:

1.
2.

Select the class for your To-Do List applet in the Workbench.

Select Open from the Selected menu. A browser opens for the To-Do List applet
class.

Select the Visual Composition page. The free-form surface should look like this:

Chapter 3. Adding state checking to your applet 25

Set the properties of the Remove button
Now, set the properties of the Remove button so it is disabled when the applet starts:

1. Select the Remove button and click mouse button 2. Select Properties from the
pop-up menu that appears. The Properties secondary window appears.

& Show mped issie

2. In the Properties secondary window, ensure that Show expert features is
selected.

3. Select the field to the right of enabled . Select False from the drop down list in this
field and close the Properties secondary window. The Remove button should now
appear disabled:

26 VisualAge for Java: Getting Started

Create a new method to check if an item is selected
Next, create a new method in your To-Do List applet that checks to see if any items are
selected in the To-Do List. To create a new method:

1.

2.

Select the Methods page.

Select Create Method or Constructor from the tool bar: =3 . The Create Method
SmartGuide appears.

In the Create Method SmartGuide, enter the following in the Method Name field:
boolean enableRemove(List checkList)

This specifies a method that takes one parameter (a List) and returns a boolean
value.

Select Finish to generate the method.

Select the new enableRemove(java.awt.List) method from the Methods list and
add the code to implement it. If you are viewing this document online, you can
select the following code, copy it, and paste it into the Source pane. The finished
method should look like this:

public boolean enableRemove(java.awt.List checkList) {
if (checkList.getSelectedIndex() < 0)
return false;
else
return true;
}

To save this new method, click mouse button 2 in the Source pane and select
Save from the pop-up menu that appears.

This simple method calls the getSelectedindex method for its checkList parameter. If
getSelectedindex returns -1, there are no items selected in the list and
enableRemove(java.awt.List) returns false. Otherwise, enableRemove(java.awt.List)
returns true.

Add a connection to enable the Remove button
Next, add the connection that enables the Remove button when an item is selected in
the To-Do List :

1.
2.

Select the Visual Composition page.

Select the List and click mouse button 2. Select Connect then
itemStateChanged(java.awt.event.ltemEvent) from the pop-up menu that
appears. The mouse pointer changes to indicate that you are in the process of
making a connection.

Complete the connection by clicking mouse button 1 on the Remove button. Select
enabled from the pop-up menu that appears. A dashed connection appears
between the list and the Remove button.

Chapter 3. Adding state checking to your applet 27

4. The connection is incomplete because you need to provide a value for the enabled
property of the button. To complete the connection, select it and click mouse button
2. Select Properties in the pop-up menu that appears. The Event-to-method con-
nection Properties window appears.

5. In the Properties window, select Set Parameters . The Constant Parameter Set-
tings window appears. Select the value field, and select true in the drop-down
menu that appears, and select OK.

6. Select OK in the Properties window.

The free-form surface should look like this:

Ta-Cu Ham
| A
13 —_——
Ta-Du Lisi "
_‘—
- -
|

Now, every time an item is selected in the list, the enabled property of the Remove
button is set to true.

Add connections to disable the Remove button
Finally add the connections that disable the Remove button when no items are
selected in the To-Do List . These connections will set the enabled property of the
Remove button to the return value of the enableRemove(java.awt.List) method (with the
List as a parameter for enableRemove).

Follow these steps to make the connections:

1. Select the Remove button, then click mouse button 2. Select Connect then
actionPerformed(java.awt.event.ActionEvent) from the pop-up menu that
appears.

2. The mouse pointer changes. Click mouse button 1 on the Remove button. Yes,
this is a connection between the Remove button and itself. Select enabled from
the pop-up menu that appears. An incomplete connection (we'll call it connection
A) appears between the button and itself. To complete the connection, you need to
specify a value for the enabled property.

3. Select the connection you just made (connection A) and click mouse button 2.
Select Connect then value from the pop-up menu that appears. Now move the

28 VisualAge for Java: Getting Started

mouse pointer onto the free-form surface outside of the applet outline and click
mouse button 1. Select Parameter from Script in the pop-up menu that appears.
The Connect parameter named secondary window appears. It lists all the methods
in the applet class, including enableRemove(java.awt.List), the method you just
created.

4. Select boolean enableRemove(java.awt.List) in the list and select OK. Now con-
nection A is complete. An incomplete connection appears between connection A
and the edge of the free-form surface. We'll call this connection B . Connection B
specifies that the value of enabled in connection A is the return value of
enableRemove(java.awt.List). To complete connection B , you need to supply a
List parameter for the enableRemove(java.awt.List) method. To supply this
parameter:

Select the connection and click mouse button 2. Select Connect then
checkList from the pop-up menu that appears. Notice that checkList is the
name you gave to the parameter when you created the
enableRemove(java.awt.List) method.

Move the mouse pointer to the List and click mouse button 1. Select this from
the pop-up menu that appears. Now you have specified that the list is passed
as the parameter to enableRemove(java.awt.List). We'll call this connection
C.

You have completed all the connections to disable the Remove button when nothing is
selected in the To-Do List . Before we continue, let's review this last set of connections:
Connection A sets the enabled property of the Remove button.

Connection B provides the value of the enabled property for connection A . This
value is the return value of the enableRemove(java.awt.List) method.

Connection C provides the parameter for the enableRemove(java.awt.List)
method.

Now the free-form surface should look like this. The labels for the connections don't
appear in the Visual Composition Editor. We've added them here to make it easier for
you to identify them.

Chapter 3. Adding state checking to your applet 29

e] /:;m

Ta-Da Lisl o w5 — -
:
- -‘-H‘"'i Casserciion

Saving and testing your changes
Before you continue, save your work and test it:

1. To save the current state of your work in the Visual Composition Editor, select
Save bean from the File menu.

2. To test the changes you made, select Test from the tool bar: |4

3. When the Settings window appears, select Run.

4. When the applet appears, experiment with it to ensure that the behavior of the
Remove button is correct. Ensure that the Remove button is disabled when the
applet starts and then becomes enabled as soon as an item is selected in the
To-Do List . Ensure that the Remove button becomes disabled again when all the
items have been removed from the To-Do List .

Congratulations! You have successfully added state checking to your To-Do List applet.

Now that you have a new level of your code working, create another versioned edition
of it by following the steps in “Versioning an edition of your applet” on page 24.

30 VisualAge for Java: Getting Started

Chapter 4. Creating the To-Do File program

Introduction to creating the To-Do File program

In the previous section, you added state checking to your simple To-Do List applet. This
section leads you through the steps of modifying your simple To-Do List applet so that
it can save the To-Do lists to named files and open files containing To-Do lists. This
revised program is called the To-Do File program.

As you modify your applet, you will learn about:

Creating new classes

Creating new methods

Adding business logic code in the Visual Composition Editor
Updating the user interface

Running code as an applet or an application
Note:

This section assumes that you have completed the steps described in
Chapter 3, “Adding state checking to your applet” on page 23. You should
now have a completed, working To-Do List applet with simple state checking.
If you have not done so already, please complete the steps to add state
checking to your To-Do List applet.

Behavior of the To-Do File program

Before jumping into the modifications that you will be making to your applet to create
the To-Do File program, let's review how the finished program will work.

Here is what the To-Do File program will look like:

Copyright IBM Corp. 1997 31

L= Applel HH E

Tz Fmm

| R R

T elia L

BT
‘ D TorDip Pl |
Swwn Tela Fil |

Like your existing applet, the To-Do File program adds the text in the To-Do Item field
to the To-Do List when you select the Add button. When you select the Remove
button, the program removes the selected item from the To-Do List .

What about the new buttons? Here is an overview of their behavior:

When you select Open To-Do List File , a standard file dialog is shown, from
which you can select the file you want to open. If you select a file, its contents are
put into the To-Do List .

When you select Save To-Do List File , a standard file dialog is also shown. In this
dialog you can specify the file where you want to save your list. If you select a file
for saving, the contents of the To-Do

List are copied into this file.

In addition to the differences in interface and behavior, there is one other important
difference between the To-Do List applet and the To-Do File program. Because it needs
access to the file system to read and write files, the To-Do File program must be run as
an application rather than an applet. Java applets are not allowed to access the file
system.

Steps for creating the To-Do File program
Here is a summary of the steps that you will follow to create the To-Do File program:

o o~ w0 Dd PR

Create a new class called ToDoFile with logic for reading and writing files.
Add the Open To-Do File and Save To-Do File buttons to the user interface.
Add the ToDoFile class to the Visual Composition Editor free-form surface.
Add file dialog beans.

Add connections from the Open To-Do List File button.

Test the program to verify your work so far.

32 VisualAge for Java: Getting Started

7. Add connections from the Save To-Do File button.

8. Test the completed program.

The following sections describe these steps in detail.

Creating a new class

The next step in building the To-Do File program is creating the ToDoFile class. When
it is complete, this class will contain the logic for the To-Do File program to:

Read To-Do files
Write To-Do files

Here are the individual tasks that need to be completed to create the new class:

1. Use the Create Class or Interface SmartGuide to create a skeleton for the
ToDoFile class.
2. Add a method for reading To-Do files.

3. Add a method for writing To-Do files.

The following sections describe these tasks in more detail.

Creating a new class: creating a skeleton

Now you are ready to create the ToDoFile class in the same package as your To-Do
List applet. In later steps, you will create methods in this class to read and write files.
For now, you will use the Create Class or Interface SmartGuide to generate a skeleton

of the class.

To generate a skeleton ToDoFile class in the same package as your To-Do List applet
class:

1. Select the package that contains your To-Do List applet class, then select New
Class/Interface from the Selected menu. The Create Class or Interface

SmartGuide appears.

Chapter 4. Creating the To-Do File program 33

olicFia
[re— |

Crre—a—

11 il s ry, i e Dzccir i'

You could also select Create Class or Interface from the tool bar: u to get to
the Create Class or Interface SmartGuide.

2. Ensure Class is selected in the Create a new field. Enter ToDoFile in the Class
Name field and select Next. The Attributes page of the SmartGuide appears:

34 visualAge for Java: Getting Started

3. The methods that you will add to the ToDoFile class require two packages to be
imported: java.awt and java.io . To specify that ToDoFile imports these classes:

Select Add Package . The following secondary window appears:
T N - |
Choroa wpac-aga
FPaltumn |§ = sre chi s * = arg dangl
!
FMarsar

LM shari vy mishs ooy H
CTIH b b 2o s

M. ey mash (2o

T b b, o owed Sl

LM banire mab i zocagar

T i b, e i o

C0 . darureg; masks ol caremn

CTIH o, nmrgies St st praraid,

COH barire snamcin . swdscisurcha

T M i o, snngies Setasl
M. ibari vy mmrmoir S ide =

B s X

Enter java.awt and select OK.

Select Add Package again. In the secondary window, enter java.io and select
OK.

4. The list of imports should look like this:
import java.awt.*;
import java.io.*;

5. Select Finish .

VisualAge for Java generates the skeleton class and creates a new ToDoFile class that

appears in the same package as your To-Do List applet class. The source for the new
class appears in the Source pane.

Creating a new class: adding a method for reading files

Now that you have created a skeleton class, you are ready to begin filling it in. Let's
start by creating a method called readToDoFile that reads an input file.

Before creating this method, let's review what it is supposed to do:

1. Accept as arguments a directory, a file name, and a List object.

2. Read the contents of the file line-by-line and add each line as an item in the List
object.

Here are the detailed steps for creating this method:

1. Select the ToDoFile class.

2. Select New Method from the Selected menu. When the Method Properties
SmartGuide appears, enter the following in the Method Name field:

Chapter 4. Creating the To-Do File program 35

void readToDoFile(String dirName,
String fileName, List fillList)

3. This specifies a method that takes three arguments.

dirName - the name of the directory that holds the file to be read

fileName - the name of the file to be read

fillList - the List object in the interface that receives the contents of the file
4. Select Finish to generate the method.

5. Select the new readToDoFile method and add the code to implement it. If you are
viewing this document online in a browser, you can select the following code, copy
it, and paste it into the Source pane. The finished method should look like this:

36 VisualAge for Java: Getting Started

public void readToDoFile (String dirName,
String fileName, List fillList) {
FilelnputStream filelnStream = null;
DatalnputStream datalnStream;
String result;
/I if valid directory and filenames have been passed in,
/I read the file and fill the list
if ((dirName != null) && (fileName != null)) {

try {
fileInStream= new FilelnputStream(dirName+fileName);

catch (IOException €) {
System.err.printin("lO exception opening To-Do File
+dirName+fileName);
return;

}

datalnStream = new DatalnputStream(fileInStream);

/I clear the existing entries from the list

fillList.removeAll();

try {

/I for each line in the file create an item in the list
while ((result = datalnStream.readLine()) != null){
if (result.length() = 0)
fillList.addltem(result);

}

}

catch (IOException e) {System.err.printin(
"lO exception reading To-Do File "
+dirName-+fileName);}

try {
filelInStream.close();
datalnStream.close();

}

catch (IOException e) { System.err.printin(
"lO exception closing To-Do File "
+dirName-+fileName);}

else {
System.err.printin(
"Null file name and/or directory reading To-Do File");

}

return;

}

6. Select Save from the Edit menu to save your changes and recompile.

Before continuing with the next task, let's review the code in this method:

1. At the beginning of the method there are declarations of the fields that are used to
manipulate the file and its contents, and an if statement that ensures neither the
directory nor the file name is null:

Chapter 4. Creating the To-Do File program 37

FileInputStream filelnStream = null;

DatalnputStream datalnStream;

String result;

/I if valid directory and filenames have been passed in,
I read the file and fill the list

if ((dirName != null) && (fileName != null)) {

2. Next, there are statements to associate the file with a FileInputStream and to asso-
ciate the FilelnputStream with a DatalnputStream. Using a DatalnputStream makes
it possible to read the file a line at a time.

try {
fileInStream= new FilelnputStream(dirName-+fileName);

catch (IOException e) {
System.err.printin(
"lO exception opening To-Do File "
+dirName+fileName);
return;

}

datalnStream = new DatalnputStream(fileInStream);

3. Next, we clear the fillList . Then there is a loop that reads the file a line at a time
into the String result . Then, if result is not a zero-length String, it adds result as
an item to fillList:

fillList.removeAll();
try {
/I for each line in the file create an item in the list
while (((result = datalnStream.readLine()) != null)){
if (result.length() != 0)
fillList.addltem(result);
}

}
catch (IOException e) {System.err.printin(

"lO exception reading To-Do File "
+dirName+fileName);}

4. Finally, there are statements to close the streams associated with the file:

try {
fileInStream.close();
datalnStream.close();

catch (IOException e) { System.err.printin(
"lO exception closing To-Do File "
+dirName+fileName);}

Creating a new class: adding a method for writing files

You have one more method to add to the ToDoFile class. This method, called
writeToDoFile, writes an output file. Let's review what this method is supposed to do:

1. Accept as arguments a directory, a file name, and a List object

38 VisualAge for Java: Getting Started

2. Write each item in the List object as a line in the file
Here are the detailed steps for creating this method:

1. Select the ToDoFile class.

2. Select New Method from the Selected menu. When the Method Properties
SmartGuide appears, enter the following in the Method Name field:

void writeToDoFile(String dirName,
String fileName, List fillList)

3. This specifies a method that takes 3 arguments.
dirName - the name of the directory that holds the file to be written
fileName - the name of the file to be written

fillList - the List object in the interface that contains the items that are
written to the file

4. Select Finish to generate the method.

5. Select the new writeToDoFile method and add the code to implement it. If you are
viewing this document online in a browser, you can select the following code, copy
it, and paste it into the Source pane. The finished method should look like this:

Chapter 4. Creating the To-Do File program 39

public void writeToDoFile(String dirName, String fileName, List fillList) {

FileOutputStream fileOutStream = null;
DataOutputStream dataOutStream;
I carriage return and line feed constant
String crlf =

System.getProperties().getProperty("line.separator");
/1 if valid directory and filenames have been
I/l passed in, write the file from the list
if ((dirName != null) && (fileName != null)) {

try {

fileOutStream =
new FileOutputStream(dirName-+fileName);

catch (IOException e) {
System.err.printin(
"lIO exception opening To-Do File "
+dirName+fileName);
return;

}

dataOutStream = new DataOutputStream(fileOutStream);
Il for every item in the list,

[/l write a line to the output file
for (int i = 0; i < fillList.countltems(); i++) {
try {
dataOutStream.writeBytes(fillList.getltem(i)+crlf);
}

catch (IOException e) { System.err.printin(
"lO exception writing To-Do File "
+dirName-+fileName);}
}
try {
fileOutStream.close();
dataOutStream.close();

catch (IOException e) { System.err.printin(
"lIO exception closing To-Do File "
+dirName-+fileName);}

}
else {
System.err.printin(
"Null file name and/or directory writing To-Do File");
}
return;
}

6. Select Save from the Edit menu to save your changes and recompile.

This code is similar to the code for readToDoFile. Before continuing with the next step,
let's review the loop that actually writes lines to the file:

40 VisualAge for Java: Getting Started

for (inti=0;i < fillList.countltems(); i++) {

try {
dataOutStream.writeBytes(fillList.getltem(i)+crlf);

catch (IOException e) { System.err.printin(
"1O exception writing To-Do File "
+dirName-+fileName);}

}

This loop goes through each item in fillList . Each item is appended with crlf (a
String consisting of the line separator characters) and written to the file. The line sepa-
rator characters force each item to be written on a separate line in the file.

Using the Scrapbook to test code
Before continuing, let's pause and consider the line separator for a moment. Suppose
that you have never seen this before and you want to see how it works. You can use
the Scrapbook window to test out a code fragment that exercises this part of your
class.

To test the line separator code:

1. Select Scrapbook from the Window menu. The Scrapbook window appears.
2. Enter the following code into a page in the Scrapbook window:

String crlf =
System.getProperties().getProperty("line.separator");
System.out.printin(
"Here is one line."+crlf+
"And here's another line.");

3. Select both of these lines of code and select Run from the Scrapbook window tool
bar: rﬁ}

4. Select Console from the Window menu. The Console window should look like
this:

Chapter 4. Creating the To-Do File program 41

Notice that the line separator splits the output so that it appears on separate lines. This
simple example demonstrates how you can use the Scrapbook window to try out a
piece of code quickly and conveniently.

Adding buttons to the To-Do List applet user interface

You have completed all the steps to create the ToDoFile class. Now you are ready to
make modifications to the user interface of the To-Do List applet. Your current To-Do
List applet should look like this:

. Applet Viewer: COM b vy sxample

Torllag b

Tl Lt

Lpplet lwisd.

You need to add two new buttons to this user interface:

42 VisualAge for Java: Getting Started

An Open To-Do File button to trigger opening a file to read into the To-Do List list
A Save To-Do File button to trigger saving the contents of the To-Do List list to a
file

To add these two buttons:

1. Select the class for your To-Do List applet.

2. Select Open from the Selected menu. A browser opens for the To-Do List applet
class.

3. Select the Visual Composition page. The free-form surface should look like this:

Toi-Da M

Tai- Do Lkad

4. Select the Buttons category in the left column of the beans palette, and then
select the Button bean in the right column. Add a Button under the existing
Remove button.

5. Select the button you just added and change its text to Open To-Do File . To
change the text:

Hold down the Alt key and click mouse button 1. The text of the button is high-
lighted, indicating you can type over the text.

Type Open To-Do File... then click mouse button 1 in an open area of the
free-form surface.

6. Follow the same procedure to add another button below the one you just added.
Change the text of this button to Save To-Do File...

7. Size the new buttons to match the width of the existing buttons:

Select the Save To-Do File button. Hold down the Ctrl key to select multiple
items and select the Open To-Do File , Remove, and Add buttons so that all
four buttons are selected. The Add button should have solid selection handles,
indicating that it is the primary selection.

Select Match Width from the tool bar: | &}

8. Align the two new buttons with the existing Add and Remove buttons:

Chapter 4. Creating the To-Do File program 43

Select the Save To-Do File button. Hold down the Ctrl key to select multiple
items and select the Open To-Do File , Remove, and Add buttons so that all
four buttons are selected. The Add button should have solid selection handles,
indicating that it is the primary selection.

Select Align Left from the tool bar: #3

You have added the two new buttons for the To-Do File program. Now you are ready to
add the ToDoFile class to the Visual Composition Editor free-form surface.

Adding the ToDoFile class to the free-form surface

Now that you have added the new buttons to the interface of the program, you need to
add the other beans that these buttons are going to interact with. First, you need to
add the ToDoFile class to the Visual Composition Editor free-form surface so you can
create connections between the class and these new buttons. The ToDoFile bean that
you create is a nonvisual bean because it does not appear in the user interface of the
program.

To add the ToDoFile class as a bean on the Visual Composition Editor free-form
surface:

1. In the Visual Composition Editor, select Add Bean from the Options menu. The
Add Bean secondary window appears.

Eman Typm

@ Clarz ™ 'oamakde ™ Cawmioad
Clivep Plaves

| Heran
Marsa

I

Iinkar E e thee ruawes of e il

2. Ensure the Bean Type Class is selected and select Browse . The Choose a valid
class secondary window appears.

3. Enter ToDoFile in the Pattern field. Select the package in which you created the
ToDoFile class from the Package Names list and select OK.

4. Select OK in the Add Bean secondary window.

5. Move the mouse pointer below the applet outline (the dashed box surrounding the
visual beans of the applet). The mouse pointer becomes a cross-hair. Click mouse
button 1. A ToDoFile bean called ToDoFilel appears on the free-form surface. The
free-form surface should look like this:

44 visualAge for Java: Getting Started

Tai- Cui Lisd N]

-

=
gl
- -

=
Open Tie-Dio Fil. F
Sare To-Dip File E

Adding file dialog beans to the free-form surface

Now that you have added the ToDoFile class as a bean in the free-form surface, the
next step is to add file dialog beans for opening files and saving files. Later you will
connect these file dialog beans to the Open To-Do File and Save To-Do File buttons.

These file dialog beans represent standard file dialogs like this one:

Look

&

=l & = i

=l DT

| Fragraan Filar
|l Feson e

) dpocd

=l T e

S R TS

'

Féarai bpa | .

= Laracal j

In the finished To-Do File program, file dialogs will appear when users select the Open
To-Do File or Save To-Do File buttons. In the file dialogs, users will specify the name
of the file they want to open or save.

To add the file dialog beans:

1. Select the Containers category in the beans palette:

Chapter 4. Creating the To-Do File program 45

2. Select the FileDialog bean: 15 %]

3. Select the Sticky checkbox located just below the beans palette.

4. You want to add the file dialog bean to the free-form surface outside of the applet
outline. Move the mouse pointer below the applet outline, to the right of the
ToDoFilel bean, and click mouse button 1. A file dialog bean appears.

5. Move the mouse pointer to the right of the applet outline and click mouse button 1
again. Another file dialog bean appears.

6. Deselect the Sticky checkbox.
Now that you have added the file dialog beans, you are ready to customize them. To
customize these beans:

1. Change the text of the first file dialog bean to SaveFile:

Select the first file dialog bean, then hold down the Alt key and click mouse
button 1 on the text immediately below the bean (it will be something like
FileDialogl).

Type SaveFile, and then press Shift+Enter.

2. Specify the directory, mode, and title of the SaveFile bean. The mode specifies
whether the file dialog is set up for saving or opening ("loading") files. The title is
the text that appears in the title bar of the file dialog. To specify these values:

Select the SaveFile bean and click mouse button 2. The pop-up menu for the
bean appears.

Select Properties from the pop-up menu. The Properties secondary window
appears.

Select the field to the right of directory . Enter c:ll (the two backslashes are an
escape sequence that specifies a single backslash).

Select the field to the right of mode . Ensure SAVE is selected from the drop-
down list.

Select the field to the right of title . Enter To-Do File to Save.

3. Following the same procedure that you followed for the SaveFile bean, change the
text of the second file dialog bean to OpenFile.

4. Specify the following properties for the OpenFile bean:
LOAD as the mode
c:ll as the directory
*ixt as the file
To-Do File to Open as the title .

5. Click mouse button 1 on an open area of the free-form surface to confirm your
selections. The free-form surface should look like this:

46 VisualAge for Java: Getting Started

TreDin List . M

6. Save the current state of your work in the Visual Composition Editor by selecting
Save bean from the File menu.

Note:

The exact positions of the ToDoFile bean and the file dialog beans do not
affect the interface of the finished program. However, it will be easier for you
to follow the instructions in the following sections for connecting beans if you
line up these three beans according to the instructions in this section.

Connecting the Open To-Do File button
Now that you have added all the new beans to the free-form surface, you are ready to
begin connecting them. Let's start with the Open To-Do File button.

To begin with, let's list all the actions that the To-Do File program should perform when
an end-user selects the Open To-Do File button:

1. Show the file dialog.

2. Dispose of the file dialog.

3. Invoke the readToDoFile method in the ToDoFilel bean to read the file that was

selected in the file dialog.

You will implement actions 1 and 2 by making connections between the Open To-Do
File button and the OpenFile file dialog bean. You will implement action 3 by making a
connection between the Open To-Do File button and the ToDoFilel bean.

Chapter 4. Creating the To-Do File program 47

Create the connection to show the file dialog

1. Select the Open To-Do File button and click mouse button 2. Select Connect
then actionPerformed(java.awt.event.ActionEvent) from the pop-up menu that
appears. The mouse pointer changes to indicate that you are in the process of
making a connection.

2. Complete the connection by clicking mouse button 1 on the OpenFile bean. From
the pop-up menu that appears, select show().

Create the connection to dispose of the file dialog

48

1. Select the Open To-Do File button and click mouse button 2. Select Connect
then actionPerformed(java.awt.event.ActionEvent) from the pop-up menu that
appears.

2. Click mouse button 1 on the OpenFile bean. From the pop-up menu that appears,
select dispose().

Now the free-from surface should look like this:

i bem
L8 '
| . —I—I E
To-Dw Link . " 4 1 - -
- :
OiganTo-Da Fie * .:..L'r;:.il
! DperFils
Bt To-Dh0 Filee | i

-
-

Tl i1 SeweFie

You have completed all the connections between the Open To-Do File button and the
OpenFile bean. Now you are ready to make the connection that invokes readToDoFile
in the ToDoFilel bean.

Note:

You may wonder why the Open To-Do File button both shows and disposes
of the file dialog. Here's a brief synopsis of what happens. First, notice that
there are two connections that both have
actionPerformed(java.awt.event.ActionEvent) as the source event. One con-
nection has the show() method as its target, and the other has the dispose()
method as its target. Once the show() method is called in the file dialog, the
file dialog has control until the user selects the Open button or the Cancel

VisualAge for Java: Getting Started

button. After the user has selected one of these buttons, control returns to the
ToDolList class, and the next action it takes is to hide the file dialog by calling
its dispose() method.

Create the connection to invoke readToDoFile
1. Select the Open To-Do File button and click mouse button 2. Select Connect
then actionPerformed(java.awt.event.ActionEvent) from the pop-up menu that
appears.

2. Click mouse button 1 on the ToDoFilel bean. From the pop-up menu that appears,
select All Features .

3. In the method list, select readToDoFile(java.lang.String,
java.lang.String, java.awt.List) , then select OK. The connection that appears
is incomplete because readToDoFile takes three parameters: a directory name, a
file name, and a List object. Begin by specifying the directory name:

Select the connection and click mouse button 2.

Select Connect then dirName from the pop-up menu that appears. Notice the
selections under Connect include the names of all the parameters that you
specified for readToDoFile when you created it as a method in the ToDoFile
class.

Move the mouse pointer to the OpenFile bean and click mouse button 1.
Select All Features from the pop-up menu that appears.

In the method list, select getDirectory() , then select OK.

4. You have specified one of the parameters, but the connection is still not complete.
To specify the file name:

Select the connection between the Open To-Do File button and the ToDoFilel
bean and click mouse button 2.

Select Connect then fileName from the pop-up menu that appears.

Click mouse button 1 on the OpenFile bean. Select All Features from the
pop-up menu that appears.

In the method list, select getFile() , then select OK.

5. There is still one parameter to specify before the connection is complete: the List
object.

Select the connection between the Open To-Do File button and the ToDoFilel
bean and click mouse button 2.

Select Connect then fillList from the pop-up menu that appears.

Click mouse button 1 on the List bean in the applet and select this from the
pop-up menu that appears. This last connection is significant. It specifies that
the List bean in the user interface is the fillList parameter for readToDoFile. In
other words, the List bean in the interface is the List object in which
readToDoFile adds items as it reads the input file.

6. The free-form surface should look like this:

Chapter 4. Creating the To-Do File program 49

To-Oo Ligt . - - -
F " -
=
& T
L oFil..
.. N AS———
ToDiFis] e

Congratulations! You have completed all the connections from the Open To-Do File
button. Now you are ready to test the work you have done so far on the To-Do File

program.

Testing the Open To-Do File button

Now that you have made all the connections for the Open To-Do File button, you are

ready to test the work you have done so far.

To test the current state of the To-Do File program:

1. First, prepare a simple text file to use for testing. Use the Scrapbook window to

create and save a sample To-Do file called testl.txt with the following four lines
in it:

test item 1

test item 2

test item 3

end of test 1

. Save your current work in the Visual Composition Editor by selecting Save bean
from the File menu. VisualAge for Java generates code to implement the con-
nections you specified in the last step.

. Make the Workbench the current window by selecting Workbench from the
Window menu.

. Ensure the Projects page is selected. Find the class ToDoList. You can follow the
same process you followed in “Finding your To-Do List applet in the Workbench”
on page 23.

. Select the ToDolList class. Select Run then Run Main from the Selected menu.

Note that you have to run the To-Do File program as an application. If you try to
run the program as an applet in the applet viewer, you will get an exception as

50 VisualAge for Java: Getting Started

soon as the program tries to open or save a file. Applets are not allowed to access
the local file system.

6. The Command Line Argument secondary window appears. Select Run. The
To-Do File program appears.

7. Select the Open To-Do File button. A file dialog that looks like this should appear:

teotp [ar 11 2 &l & = mi
ACarTD e e
ProgranFilas

ol Frscycin
Aol

L G |
Faspalipps [i | Cavoed]

8. From this file dialog, go to the directory where you created the testl.txt file.
Select this file and select Open.

9. The To-Do List in your program should now be loaded with the items from the
testl.txt file:

Now that you have tested your current progress on the To-Do File program, you are
ready to complete the program by making the connections from the Save To-Do File

button.

Connecting the Save To-Do File button
You are now ready to make the final connections from the Save To-Do File button.

Chapter 4. Creating the To-Do File program 51

To begin with, let's list the actions that the To-Do File program should perform when the
Save To-Do File button is selected:

1. Show the file dialog.
2. Dispose of the file dialog.

3. Invoke the writeToDoFile method in the ToDoFilel bean to write the file that was
selected in the file dialog.

You will implement actions 1 and 2 by making connections between the Save To-Do
File button and the SaveFile file dialog bean. You will implement action 3 by making a
connection between the Save To-Do File button and the ToDoFilel bean.

As you complete the connections listed in this section, you will notice that they are very
similar to the connections you made from the Open To-Do File button.

Create the connection to show the file dialog
1. Select the Save To-Do File button and click mouse button 2. Select Connect then
actionPerformed(java.awt.event.ActionEvent) from the pop-up menu that
appears.

2. Click mouse button 1 on the SaveFile bean. From the pop-up menu that appears,
select show().

Create the connection to dispose of the file dialog
1. Select the Save To-Do File button and click mouse button 2. Select Connect then
actionPerformed(java.awt.event.ActionEvent) from the pop-up menu that
appears.

2. Click mouse button 1 on the SaveFile bean. From the pop-up menu that appears
select dispose() .

Now the free-form surface should look like this:

52 VisualAge for Java: Getting Started

To-Oii K&imi

1
E

To-Oii Lisd & N & -

B
L Oparfis
o -
.
.. P IR P
TalicF il Sl

You have completed all the connections between the Save To-Do File button and the
SaveFile bean. Now you are ready to make the connection that invokes writeToDoFile
in the ToDoFilel bean.

Create the connection to invoke writeToDoFile
1. Select the Save To-Do File button and click mouse button 2. Select Connect then
actionPerformed(java.awt.event.ActionEvent) from the pop-up menu that
appears.

2. Click mouse button 1 on the ToDoFilel bean. From the pop-up menu that appears,
select All Features .

3. In the method list, select writeToDoFile(java.lang.String, java.lang.String,
java.awt.List) . The connection that appears is incomplete because write ToDoFile
takes three parameters: a directory name, a file name, and a List object. Begin by
specifying the directory name:

Select the connection and click mouse button 2.

Select Connect then dirName from the pop-up menu that appears. Notice the
selections under Connect include the names of all the parameters that you
specified for writeToDoFile when you created it as a method in the ToDoFile
class.

Move the mouse pointer to the SaveFile bean and click mouse button 1.
Select All Features from the pop-up menu that appears.

In the method list, select getDirectory() , and select OK.
4. To specify the file name:

Select the connection between the Save To-Do File button and the ToDoFilel
bean and click mouse button 2.

Select Connect then fileName from the pop-up menu that appears.

Chapter 4. Creating the To-Do File program 53

Click mouse button 1 on the SaveFile bean. Select All Features from the
pop-up menu that appears.

In the method list, select getFile() , then select OK.

5. There is still one parameter required before the connection is complete. To specify
the List object:

Select the connection between the Save To-Do File button and the ToDoFilel
bean and click mouse button 2.

Select Connect then fillList from the pop-up menu that appears.

Click mouse button 1 on the List bean and select this from the pop-up menu
that appears.

6. The free-form surface should look like this:

Te-Op ke
| R
-
Te-Oo List - . -
T 2
- ;
meTn-ElnFlh.i. F
. ! Dperrie
- .
|
.. B o LA —
-
[Gz
TaDioFi1 B

Congratulations! You have completed all the connections from the Save To-Do File
button. Your To-Do File program is complete and you are ready to test it.

Note:

If you want to do some more work with the Visual Composition Editor, you can
try to update the current state of your program to extend the state checking on
the Remove button. To make this state checking complete, the program needs
to check if an item is selected in the List after the Open To-Do File button has
been selected. Examine the completed version of the To-Do File program if
you need some hints before you start. See “Examining examples in the
repository” on page 87 for details on how to examine the completed versions
of this program.

54 visualAge for Java: Getting Started

Saving and testing the completed To-Do File program

Now that you have completed the To-Do File program, you are ready to save and test

it.

To save and test your completed To-Do File program:

1.

Select Save bean from the File menu to save your changes. VisualAge for Java
generates the code to implement all the work you have done in the Visual Compo-
sition Editor since the last time you saved.

Show the Workbench window by selecting Workbench from the Window menu.

Select the ToDolList class and click mouse button 2. In the pop-up menu that
appears, select Run then Run main .

Try creating and saving a new To-Do file:

Add the following items to the To-Do List . For each item, enter the item in the
To-Do Item field and select Add:

— final test item 1
— final test item 2
— final test item 3
— final test item 4
— end of final test

Select Save To-Do File . A save file dialog should appear. In this dialog, go to
the directory where you saved the testl.txt file for testing the Open To-Do
File button. Enter the file name test2.txt and select Save.

Now try loading the list from testl.txt . Select Open To-Do File . An open file
dialog should appear. Select testl.txt , then select Open. The original list from
testl.txt should be loaded into To-Do List .

Now try replacing the current list with the one you saved in test2.txt . Select
Open To-Do File . Select test2.txt , then select Open. The list from test2.txt
should replace the testl.txt list in To-Do List .

Congratulations! You have completed a Java program that combines a user interface
created in the Visual Composition Editor with nonvisual code that you created directly.

Before you continue, create a versioned edition of both the ToDoList class and the
ToDoFile class. Begin with the ToDolist class:

1.

2.

Select the ToDolList class in the Workbench. Select Version from the Selected
menu. The Versioning Selected Items SmartGuide appears.

Ensure that Automatic is selected and select Finish .

Now perform the same steps on the ToDoFile class.

Chapter 4. Creating the To-Do File program 55

56 VisualAge for Java: Getting Started

Chapter 5. What else you can do with the Visual Composition
Editor

Introduction to what else you can do with the Visual Composition Editor

In Chapter 2, “Building your first applet” on page 9, you learned a great deal about
constructing user interfaces using the Visual Composition Editor's beans palette, tool
bar, and free-form surface. To build on these fundamental tasks, you need to learn
about manipulating beans and their properties, working with connections and their prop-
erties, and correcting mistakes.

While reading through this section, you might want to create a new applet, open a
Visual Composition Editor on it, and try out some of the tasks described.

Manipulating beans

After you add beans to an applet, you will often want to align them, or size them, or
perform similar tasks. Before you can align or size your beans, however, you must
learn to manipulate them. This section introduces you to the following tasks:

Selecting beans

Deselecting beans

Moving beans

Copying beans

Selecting beans
To select a bean, click on it with mouse button 1.

When you select a bean, small, solid boxes called selection handles appear in the
corners of the bean to assist you in manipulating that bean.

[]
Butiani

Note:

Beans that cannot be sized do not have selection handles. Instead, these
beans change their background color when they are selected. Beans with this
behavior include nonvisual beans and menu beans.

If other beans are selected when you select a bean, they will be deselected automat-

ically. This is referred to as single selection . The name of the bean currently selected
is displayed in the information area at the bottom of the Visual Composition Editor.

Copyright IBM Corp. 1997 57

Selecting several beans
If several beans are selected, the last one selected has solid selection handles indi-
cating that it has primary selection . The other selected beans have hollow selection

handles.
n a

SR poy
- e

The bean with primary selection is important when performing operations such as bean
sizing and alignment. For these operations, the bean with primary selection is the
anchor for other selected beans. The other selected beans set their alignment or size
to the alignment or size of the anchor bean.

To select several beans do one of the following:

Click mouse button 1 on one of the beans you want to select, then hold down the
Ctrl key and click mouse button 1 on each additional bean you want to select.
Remember, the last bean selected becomes the anchor around which sizing and
alignment operations take place.

In OS/2, you can click and hold mouse button 1 on a bean. Move the mouse
pointer over each additional bean you want to select. After you have selected all
the beans you want, release mouse button 1.

When multiple beans are selected, the status area displays *Multiple selection* .

Deselecting beans
To deselect all the beans currently selected, click mouse button 1 on another bean or in
an open area of the free-form surface.

To deselect one bean from a group of beans that have been selected, hold down the
Ctrl key and click with mouse button 1 on the bean you want to deselect. If the bean
you deselected was the anchor bean, the previously selected bean will become the
anchor bean.

Moving beans
To move beans, follow these steps:
1. Click and hold with the appropriate mouse button on the bean.

In OS/2, hold down mouse button 2 to move beans. In Windows, hold down mouse
button 1 to move beans.

2. Move the mouse pointer to the location where you want to position the bean and
release the mouse button.

You can move several beans at once by first selecting all of the beans you want to
move. You can then grab any selected bean (by clicking on it with mouse button 1) and
drag all the selected beans to their new location.

58 VisualAge for Java: Getting Started

Copying beans
After you add a bean, you can copy that bean instead of adding another one from the
beans palette. Copying a bean is one method of adding multiple copies of the same
bean (using the Sticky option from the beans palette is another method). One obvious
advantage to copying a bean is that you can make common modifications to one bean
and simply duplicate it as often as needed. Copying a bean that has connections does
not duplicate the connections.

To copy a bean, follow these steps:
1. Hold down the Ctrl key and select with the appropriate mouse button on the bean
you want to copy.
In OS/2, use mouse button 2 to copy beans. In Windows, use mouse button 1.
2. Drag the mouse pointer to the position where you want the new bean and release

the mouse button and the Ctrl key.

You can copy several beans at once by first selecting all the beans you want to copy.
Then, press the Ctrl key and grab any selected bean and drag a copy of the beans to
their new location.

Copying beans using the clipboard
To copy beans using the clipboard, follow these steps:

. Select the bean or beans you want to copy.
. From the Edit menu of the Visual Composition Editor, select Copy .

1
2
3. Then, from the Edit menu, select Paste. The mouse pointer becomes a cross-hair.
4

. Move the mouse pointer to the location where you want to add the new bean or
beans and click mouse button 1.

Deleting beans
To delete a bean, simply select it and press the Delete key or select Delete from the
bean's pop-up menu.

To delete several beans, multiple-select the beans you want to delete prior to per-
forming the delete operation.

If you delete a bean that has connections to or from it, the bean and all of its con-
nections are deleted. However, in this case you are prompted to confirm whether you
want to continue before the beans and connections are deleted. If you accidentally
delete an item you wish to retain, simply select Undo from the Edit menu of the Visual
Composition Editor.

Chapter 5. What else you can do with the Visual Composition Editor 59

Sizing, aligning, and positioning beans

This section describes the facilities available in the Visual Composition Editor for sizing,
aligning, and positioning beans.

Note:

One of the properties of an Applet bean is layout . You can select a variety of
layouts for an applet, but if your applet has a layout other than <null >, the
sizing, aligning, and positioning facilities described in this section are not avail-
able.

Sizing beans
To size a bean, follow these steps:

1. Select the bean you want to size. The selection handles display at each corner.

2. Drag any one of the selection handles using mouse button 1 to adjust the size of
the bean.

Before you release the mouse button, an outline of the bean is displayed to show
you the new size of the bean.

To size the bean only horizontally or only vertically, hold down the Shift key while you
drag a selection handle in a horizontal or vertical direction.

You can also use the constraints property in the bean's Properties window to size the

beans. For more information about Properties windows, see “Changing bean properties”
on page 62.

Aligning beans
To align beans with other beans, follow these steps:

1. Select the beans you want to align, ensuring the last bean selected is the bean you
want the others to align with.

2. Select one of the following alignment tools from the tool bar:
=] Align Left
W Align Top
#] Align Center
*1 Align Middle
=1l Align Right

!,J Align Bottom

60 VisualAge for Java: Getting Started

Matching the dimensions of another bean
You can size beans to the same width or height as another bean.

1. Select the beans you want to match, ensuring the last bean selected is the one
you want the others to match.

2. Select one of the following sizing tools from the tool bar:
= Match Width

1!..-' Match Height

You can also match the dimensions of two or more beans by selecting them and then
clicking mouse button 2. Select Layout then Match Size from the pop-up menu that
appears. You can select to match Width , Height, or Both .

Distributing beans evenly
To distribute beans evenly within a composite bean (typically an Applet bean), follow

these steps:

1. Select the beans you want to distribute evenly.

2. Select one of the following distribution tools from the tool bar:
g_,i Distribute Horizontally
= Distribute Vertically

To evenly distribute beans within an imaginary bounding box that surrounds the
multiple-selected beans, follow these steps:

1. Multiple-select the beans you want to evenly distribute. A minimum of three beans
must be selected.

2. From the pop-up menu of one of the selected beans, select Layout Distribute |,
and then select one of the following:

Horizontally In Bounding Box Evenly distribute the selected beans within the
area bounded by the left-most edge of the left-most bean and the
right-most edge of the right-most bean.

Vertically In Bounding Box Evenly distribute the selected beans within the area
bounded by the top-most edge of the top-most bean and bottom-most
edge of the bottom-most bean.

There are two more selections in Layout Distribute

Horizontally In Surface Distributes the selected beans in the same way as
Distribute Horizontally from the tool bar.

Chapter 5. What else you can do with the Visual Composition Editor 61

Vertically In Surface Distributes the selected beans in the same way as Dis-
tribute Vertically from the tool bar.

Changing bean properties
A Properties window provides a way to display and set the properties and other options

associated with a bean or connection. In addition to bean-specific properties, you can
set data validation and layout properties.

Opening the Properties window for a bean
To open the Properties window for a bean, do any of the following:

Double-click on the bean.
Select Properties from the pop-up menu for the bean.

Select the bean and select Properties from the tool bar: | &

If you open the Properties window for a bean, you can show the properties of another
bean in the window by:

Selecting another bean

Selecting another embedded bean from the drop-down list at the top of the Proper-
ties window

Here is an example of the Properties window for a bean:
LT - |

|Butond =
[Oown Taliome. |-
pund ere———
bt dae [Buzez
connEn Wit Adachinend Bos
fexd Abere
obgoand
] Do To-DoFde
K|
I Gl et basfans;

Bean property names and their values are displayed in a table format. How property
values are changed depends on the property type itself. For a TextField bean, for
example, the value of the beanName property is a string and can be changed directly
within a cell in the Properties window. Some property values can be changed by
selecting from a drop-down list. Other bean property values can be changed through a

62 VisualAge for Java: Getting Started

second window displayed for that purpose. Editing a bean's background and
foreground, for instance, is carried out through the use of the Colors window.

To edit any bean property, open its Properties window and click on the value you want
to change. If the value is a string or integer value, you can edit it directly. If the value is
a color value, select the [button in the value column to bring up the Colors window.
If the value is a boolean, click on the cell in the value column of the table and select
either True or False from the drop-down list.

After changing the properties of a bean, you can apply them in the following ways:

By selecting another entry in the Properties window
By closing the Properties window

By clicking on another bean or on the free-form surface.

Changing bean colors and fonts

Another enhancement that you can make to your visual beans is to change the colors
and fonts that the beans use.

If you are developing applets to be used on multiple platforms, you should carefully
consider the effect of choosing colors and fonts that are different from the default
system colors and fonts. For example, if you choose a particular font available in OS/2,
that font might not be available in Windows. For more information, see “Portability of
colors and fonts” on page 65.

Changing the color of a bean
1. In the Visual Composition Editor, double-click on the bean whose color you want to
change. The Properties window appears.

2. To change the background color of a bean, select the value for the background
property in the Property window. Select the [button that appears.

The Colors window opens:

" Haad Spdem FGH

Cipdod Hiane:

Chapter 5. What else you can do with the Visual Composition Editor 63

3. In the Colors window, click mouse button 1 on the color you want to use. The
name of the color selected is shown in the Color Name drop-down list near the
bottom of the Colors window. Then select OK.

4. To have the change take effect, close the bean's Properties window.

To change the foreground color of a bean, follow the same steps but select the fore-
ground property rather than the background property in step 2.

Note:

You cannot change the color of beans in the Menus category.

Changing the font of a bean
1. In the Visual Composition Editor, double-click on the bean whose font you want to
change.

2. In the Properties window that opens, select the value of the font property. Select
the button that appears in the value column for font.

The Fonts window opens:

Frorek P Layres
I-\:H:I-\.lll ;I
Fead S Siplg
1z (P =
IMhe guiok broun far jusped avep the 1azy =]
rleaping deg
6| | FI

[] Cocd |

3. Using the Font Name drop-down list, select the font you want to use.
4. Using the Point Size and Style choices, select the size and style you want to use.

A sample of the font you have selected is displayed in the text area. You can type
additional text in this area to see the appearance of various characters.

5. When you have finished specifying the font, select OK. The selected font is shown
in the value column for font .

6. To have the change take effect, close the bean's Properties window.
Note:

Some beans, such as those in the Menus category, may not support the
changing of fonts depending on the target platform.

64 VisualAge for Java: Getting Started

Portability of colors and fonts
If your applet will be used on multiple platforms, the colors and fonts of the beans must
be available on all systems that will run your applet.

If you do decide to change the colors of beans in your applet, use only the basic colors
on the Colors window, since non-basic colors may appear differently on different plat-
forms.

If you decide to change the font of a bean, ensure that the font you choose will be
available on all the systems that will be running the finished program. You might also
have problems with certain fonts if your applet will be run on systems that use code
pages designed for languages other than English.

Connecting beans

In Chapter 2, “Building your first applet” on page 9, you learned about making con-
nections. In this section, you explore the different types of connections and what you
can do with them. It is best to follow along in the Visual Composition Editor as the
different connection types are described and to try any examples discussed. Creating
and experimenting with connections is an excellent way to learn how to use them.

Note:

In “Property-to-property connections” on page 66 you create a new applet.
You can reuse this applet to follow along with all of the examples in this
section.

There are six types of connections:

Property-to-property Property-to-property connections link two data values together so
that if the source and target events are specified in the connection's Prop-
erty window, when one value changes the other value changes too.

Event-to-method Event-to-method connections call a method when an event occurs.
Event-to-script Event-to-script connections run a script when an event occurs.

Parameter-from-property Parameter-from-property connections use the value of a
property as the parameter to a connection.

Parameter-from-script Parameter-from-script connections run a script when a param-
eter to a connection is required.

Parameter-from-method Parameter-from-method connections use the result of a
method as a parameter to a connection.

Event-to-script and parameter-from-script connections enable you to connect to non-
public methods of the composite bean.

A connection has a source and a target. The point at which you start the connection is
called the source. The point at which you end the connection is called the target. For

Chapter 5. What else you can do with the Visual Composition Editor 65

information on connection properties, see “Changing the properties of connections” on
page 71.

Note:

If a particular bean method, property, or event does not appear in the bean's
preferred connection list in its bean or connection pop-up menu, you can
select Connect then All Features from the bean pop-up or connection pop-up
menu to display a complete list. The list of methods, properties, and events
displayed in a window opened by selecting All Features represents a bean's
complete public interface .

Property-to-property connections
Property-to-property connections tie two data values together. The color of this con-
nection type is blue. A simple example of a property-to-property connection follows:

1. Create a new applet using the Create Applet SmartGuide:

Select Create Applet from the Workbench tool bar: E..'

In the Create Applet SmartGuide, enter a name for the applet in Name of
Applet and specify a project and package for the applet. Ensure Design the
applet visually is selected and select Finish .

2. When the Visual Composition Editor opens on your new applet, place a TextField
bean and a Label bean within the default Applet bean.

3. Connect the text property of the TextField bean to the text property of the Label
bean:

Select the TextField bean and click mouse button 2. Select Connect then text
from the pop-up menu that appears.

Click mouse button 1 on the Label bean and select text from the pop-up menu
that appears.

4. Select the new connection you just created and click mouse button 2. Select
Properties in the pop-up menu that appears. The Property-to-property connection
Properties window appears.

66 VisualAge for Java: Getting Started

for PappEi i Do sty Codvegl i - Frojesiiess

T wetFmie (lac] -2 Lisball Pt

5 RS pah T 5t et

T] :J wagrand

e s T el SR gl

ralnciianE rd ol

3 i Spraand

it -

% cimca avard " wgmt p=mrE

[=] [reee =l

[S e sapet Pasdias
S uiaci couce and Largel propardy o e coreecion.
Ewod | Aessm | D | Reew | Haw |

5. In the Properties window, select textValueChanged(java.awt.event.TextEvent) for
the Source event and select OK.

The free-form surface should look like this:

]

When you run the applet that contains these beans, the Label is updated every time
you change the text in the TextField.

Lahe1

For property-to-property connections, either endpoint can serve as the source or target.
The only time it matters which property is the source and which is the target for a con-
nection is at initialization. During initialization, the value of the target is updated to
match the value of the source.

A property-to-property connection is initiated from the source bean's Connect choice in
the pop-up menu and is terminated by selecting the appropriate target bean's property.

Event-to-method connections
Event-to-method connections cause a method to be called when a certain event takes
place. The color of this connection type is green.

For event-to-method connections, the event is always the source and the method is
always the target. If you try to connect a method to an event, VisualAge for Java auto-
matically reverses the source and target for you, so the connection is an event-to-
method. A simple example of an event-to-method connection follows:

1. Place a Button bean within the default Applet bean in the Visual Composition
Editor. Change the text of this button to Open Window.

2. Place a Frame bean from the Containers category on the free-form surface of the
Visual Composition Editor.

Chapter 5. What else you can do with the Visual Composition Editor 67

3. Connect the actionPerformed(awt.java.event.ActionEvent) event of the Button to
the show method of the Frame bean. This connection causes a frame to display
when the Button is selected.

The free-form surface should look like this:

o) P = Hi= E3
4 -

Properties can also be used to call a method, and events can be used to change the
value of a property. This behavior is possible because VisualAge for Java can asso-
ciate an event with a change in property value. As a result, you can make the following
connections with properties:

Connecting an event to a property

In addition to calling a method, an event can also be used to set a property value. In
this case, a parameter must be used with the connection to supply the property value.
A simple example of an event-to-property connection follows:

1. Place a Label bean within the default Applet bean in the Visual Composition Editor
and change its text property in the Properties window to the string This is a frame
title.

2. Place a Button bean within the default Applet bean in the Visual Composition
Editor.

3. Place a Frame bean on the free-form surface of the Visual Composition Editor.

4. Connect the actionPerformed(awt. java.event.ActionEvent) event of the Button to
the show method of the Frame bean.

5. Connect the componentShown(java.awt.event. ComponentEvent) event of the
default Applet bean to the title property of the Frame bean.

6. Now, to provide the parameter for the event-to-property connection you just
created, connect the text property of the Label bean to the value property in the
connection pop-up menu.

The free-form surface should look like this:

Butan! | This & a Frame®le
» "

et R . L™ Aol L R L .

68 VisualAge for Java: Getting Started

When you run the applet and select the button, the title text of the frame will be set to
This is a frame title. This example is rather contrived, but it conveys the idea. For more
information, see Connection parameters.

Event-to-script connections
Event-to-script connections run a given method when a certain event takes place. This
provides a way to implement or alter applet behavior directly through the use of the
Java language. The target of an event-to-script method can be any method in the class
that you are manipulating in the Visual Composition Editor.

Note:

An event-to-method connection is made between two beans. An event-to-script
connection is made between a bean and a method in the composite bean. The
method in the composite been does not have to be public.

The color of an event-to-script connection is green. To create an event-to-script
connection:

1. Select the source bean (for example, a Button). Click mouse button 2 to display the
bean's pop-up menu. Select Connect then select an event, such as
actionPerformed(java.awt.event.ActionEvent) . The mouse pointer changes.

2. Move the mouse pointer to any open area of the free-form surface. It cannot be
over any bean, including the default Applet bean. Click mouse button 1 and select
Event to Script from the pop-up menu.

3. The resulting window allows you to pick from the list of available methods.

4. Once you've selected a method, select OK to complete the connection.

The connection is drawn between the source bean and the outer edge of the Visual
Composition Editor free-form surface.

Parameter connections

The last three types of connections supply a parameter to a connection from various
sources:

1. Parameter-from-property

2. Parameter-from-script

3. Parameter-from-method

The color for a parameter connection line is purple.

Chapter 5. What else you can do with the Visual Composition Editor 69

Parameter-from-property

Parameter-from-property connections use the value of a property as the parameter to a
connection. As with other connection types, a parameter-from-property connection is ini-
tiated from the source bean's Connect choice in the pop-up menu and is terminated by
clicking mouse button 1 over the target connection line requiring the parameter. The
appropriate property is then selected from the pop-up menu for the connection.

A parameter-from-property connection was used in building the To-Do List sample.
When we connected the TextField bean's text property to the connection between the
Button bean and the List bean, we were making a parameter-from-property connection.
Refer to “Connecting beans” on page 17 for the specific connection details for the
To-Do List sample. The following example also illustrates the use of the parameter-
from-property connection:

1. Place a Label bean, a TextField bean, and a Button bean within the default Applet
bean in the Visual Composition Editor.

2. Connect the actionPerformed(awt.java.event.ActionEvent) event of the Button bean
to the text property of the Label bean.

3. Now, make the parameter-from-property connection by connecting the text property
of the TextField bean to the value property of the connection pop-up menu.

The free-form surface should look like this:

[] m
Ll
L] L]

a S
i

When you run the applet and type text into the text field and select the button, the label
text is set to match the text in the text field.

Parameter-from-script

Parameter-from-script connections run a method whenever a parameter to a connection
is required. This connection is much the same as a parameter-from-property connection
except that the value supplied to the connection is returned from a Java method instead
of a bean property value.

For the sake of illustration, assume that we have created a simple method called
stringFromScript in the applet class that returns the text this is a string. An example of
a parameter-from-script connection follows. Unlike other connection types, a parameter-
from-script connection is initiated from the parameter name in the Connect menu
choice in the connection's pop-up menu and is terminated as follows:

1. Place a Label bean and a Button bean within the default Applet bean in the Visual
Composition Editor.

70 VisualAge for Java: Getting Started

2. Connect the actionPerformed(awt.java.event.ActionEvent) event of the Button to
the text property of the Label bean.

3. Now, create the parameter-from-script connection by connecting the value property
in the connection pop-up menu to the method as follows:

¢ Click mouse button 2 on the connection and select Connect then value from
the pop-up menu. The mouse pointer changes.

¢ Click mouse button 1 on any open area of the free-form surface and select
Parameter from Script from the pop-up menu.

¢ The resulting window allows you to pick from the list of available methods. In
our case, the method stringFromScript() appears (this is the method that we
created in the applet class).

e Once you've selected a method, select OK to complete the connection.
Note:

You have already seen a parameter-from-script connection in Chapter 3,
“Adding state checking to your applet” on page 23. The connection you made
to the enableRemove(java.awt.List) method is a parameter-from-script con-
nection.

Parameter-from-method

Parameter-from-method connections use the result of a method as a parameter to a
connection. An example of how to use a parameter-from-method connection follows:

1. Place a Button bean and a TextField bean within the default Applet bean in the
Visual Composition Editor.

2. Connect the actionPerformed(awt.java.event.ActionEvent) event of the Button bean
to the label property of the Button bean. Yes, connecting an event to a property for
the same bean does make sense in the right situation.

3. Then, make the parameter-from-method connection by connecting the getText()
method of the TextField bean to the value property in the connection's pop-up
menu. This provides the needed connection parameter and causes the connection
line to become solid in color.

When you test the applet, type a string into the text field and then select the Button.
The string becomes the label for the Button.

——

-

B'\.|I.|:l||"lr.“\"i |

Chapter 5. What else you can do with the Visual Composition Editor 71

Changing the properties of connections

Connections, like beans, have properties. To open the properties for a connection,
select Properties from the connection's pop-up menu. Or, just double-click on the con-
nection.

The following figure shows the Properties window for a property-to-property connection:

e Fezpurlp-ir comnecios - Frogpestme
T estFidd] [~ Buthon] [Label]

S ieca prapaiy T uaget propady
sedepbadl et ﬂ Tond ;I

Sl a0l el L ek Fod g oorwssation

%] cwesi | Fom | ek | P | b]

You can use a connection's Properties window to change the source or target property
of the connection. To do this, select a different source or target property from the
appropriate list. To display the current source and target properties of the connection,
select Reset.

If you want the source property of a property-to-property connection to be the target
property, and vice versa, you can change the source and target properties by selecting
Reverse in the connection's Properties window.

When you have finished changing the connection's properties, select OK.

Connection parameters
Event-to-method and event-to-script connections sometimes require parameters (or
arguments). The method's parameters are available as properties of the connection.
Therefore, to specify a parameter you simply make a connection to the parameter prop-
erty of the event-to-method connection itself.

When a connection requires parameters that have not been specified, it appears as a
dashed line, indicating that the connection is not complete.

In the To-Do List applet, you connected the Button bean's
actionPerformed(awt.java.event.ActionEvent) event to the List bean's
addltem(java.langString) method, and a dashed line resulted:

] [1 agid |

72 VisualAge for Java: Getting Started

The parameters that methods require are indicated by the items inside parentheses ()
in the method name. For example, the addltem(java.lang.String) method takes one
parameter, a String. A method named addltem(java.lang.String, int) takes two parame-
ters, a String and an int.

Once you have specified all the necessary parameters, the connection line becomes
solid, indicating the connection is complete. If you do not supply enough parameters for
a connection, the connection continues to appear as a dashed line.

To specify parameters you can use properties or constants.
Properties as parameters

Most of the time, the parameters you need are properties of other beans you are
working with in the Visual Composition Editor. To use a bean's property as a
parameter:

1. Make a new connection using the bean's property as the source.

2. For the target, click mouse button 1 on the connection line that requires the param-
eter, and then from its connection menu, select the particular parameter property
you are specifying.

While making a connection to a connection line, you will see a small visual cue in
the middle of the connection line when the mouse pointer is directly over the con-
nection line, indicating the pointer is positioned correctly: —=--->---u

In the To-Do List applet, the text entered in the TextField bean is used as the param-
eter of the event-to-method connection between the Add Button and the List bean.

-I*‘I-ﬁlﬂl

In this example, you provided the parameter of the event-to-method connection by
making a property-to-property connection between the TextField bean's text property
and the event-to-method connection's item property. The connection's item property is
the name of the first and only parameter of the addltem (java.lang.String) method.

Constants as parameters

Parameter values can also be constants. You specify a constant value for a parameter
in the Properties window for the connection.

For example, to specify a constant value for the parameter for an event-to-method
connection:

1. Double-click on the event-to-method connection.

Chapter 5. What else you can do with the Visual Composition Editor 73

The Properties window for an event-to-method connection opens:

L= Evenifiz-methed cosnecios - Frogestmc

Buthon] [ationPerbonvediaa. vl svenliotionE wetl]~ List] Caddiesnaes. naSiingll

E-vari: Hathod

cranperand .. T hnp!lnp mll all

D -l o el ol e sl Ripr e pal ot | el il
:H\p-mrldmﬂwludlnrlhwl:lj || sl A charad povs et vt Faplodane] =
1 1 b 1 1 ¥

™ Hupa et bestisss

Calact Toasca svenl snd beget resthod ot e conmechon.
SO | Cwwd | Aess | paws | Sepasess. | owen |

2. In this window, select Set parameters . The Constant Parameter Value Settings
window opens:

e Lanciant Farmeeier Value Sefng ﬂl

T b

3. In the Constant Parameter Value Settings window, type the constant values for the
parameters you want to add.

4. When you finish, select OK, and then select OK in the Properties window for the
event-to-method connection.

Manipulating connections
Like beans, once connections are made, you can manipulate them in many different
ways.

Selecting and deselecting connections
You select and deselect connections the same way you select and deselect beans. You
can select multiple connections. The information about the currently selected con-
nection is displayed in the information area at the bottom of the Visual Composition
Editor.
Note:

You cannot select beans and connections at the same time.

Deleting connections

To delete a connection, select Delete from its pop-up menu. You can also delete a
connection by selecting the connection and pressing the Delete key.

74 VisualAge for Java: Getting Started

To delete several connections, select the connections you want to delete, and then
select Delete from the pop-up menu of one of the selected connections.

Reordering connections

When you make several connections from the same event or property of a bean, the
connections run in the order in which they were made. However, if you create the con-
nections in a different order than the order in which you want to run them, you can
reorder them. Consider, for example, the To-Do File program. You made two con-
nections between the Open To-Do File button and the OpenFile bean: one to show the
file dialog, and one to dispose of it.

OpsinTa-0o File |

Suppose you made the dispose connection first and then the show connection. The
behavior of the program would be incorrect. However, you could reorder these two
connections to make the show connection first.

If you need to change the order of connections, simply reorder the connections from the
bean by doing the following:

1. From the bean's pop-up menu, select Reorder Connections From

The Reorder connections window appears:

Dirsg conneciisss b rmorder

et Pam [Bouree Fealure I'I'ur'ﬂ Pam | Tesget Fealune &
Buttoni sction, acisaPur List i =y
Hutlon1 Hllnn.nmr‘TtﬂFltld'l SeherAll]]

1] | B

The Reorder connections window contains all of the connections for the bean you
selected. In this example, the (Buttonl,
actionPerformed(awt.java.event.ActionEvent) -> Listl, addltem(java.lang.String))
connection is the first one that runs for the selected bean.

2. In the Reorder connections window use the appropriate mouse button to drag each
connection to its appropriate position in the list. In OS/2, use mouse button 2; in
Windows use mouse button 1.

As you drag a connection through the list, a dark line appears to indicate where the
connection will be inserted when you release the mouse button.

Showing, hiding, and browsing connections

Chapter 5. What else you can do with the Visual Composition Editor 75

You can show and hide connections by using the Hide Connections tool: ':?__.l and the

Show Connections tool: =i from the tool bar. These tools show and hide all con-
nections to and from the selected bean or beans. If no beans are selected, these tools
will show and hide all the connections in the Visual Composition Editor.

You can selectively show and hide a bean's connections by selecting Browse Con-
nections from the bean's pop-up menu and then selecting one of the following:
Show To Shows all connection lines extending to the bean

Show From Shows all connection lines extending from the bean

Show To/From Shows all connection lines extending to and from the bean

Show All Shows all connection lines

Hide To Hides all connection lines extending to the bean

Hide From Hides all connection lines extending from the bean

Hide To/From Hides all connection lines extending to and from the bean

Hide All Hides all connection lines
Arranging connections

When you select a connection, selection handles are displayed at both ends and along
the connection line. You can then drag the mid-point selection handle to a new position.
This makes the connection line draw in a different area of the free-form surface, which
can help you distinguish among several connection lines that are close together. When
additional selection handles appear, you can then drag the middle selection handle to a
new position to bend the connection line even further.

To restore a connection line to its original shape, from the pop-up menu for the con-
nection line, select Restore Shape .

Changing connection endpoints

VisualAge for Java gives you the ability to change the endpoint bean of a connection,
meaning you can change the source or target bean of the connection. It is quicker than
deleting the connection and creating a new one.

For event-to-method and property-to-property connections, you can move either end of
the connection. For event-to-script connections, you can only move the event end of the
connection.

To change either end of a connection:

1. Select the connection whose endpoint you want to change.

Selection handles appear along the connection line.

76 VisualAge for Java: Getting Started

2. Move the mouse pointer over the selection handle at the end of the connection you
want to change. Using the appropriate mouse button, drag the selection handle to
the new bean. In OS/2, use mouse button 2; in Windows use mouse button 1.

If you change the endpoint of a connection to a bean that does not have the same
property available as in the original connection, the bean's connection pop-up
menu appears so you can specify a new property to connect to.

Chapter 5. What else you can do with the Visual Composition Editor 77

78 VisualAge for Java: Getting Started

Chapter 6. Managing editions

Introduction to managing editions

You've just reached a milestone in the development of your program, and you're ready
to start coding some new features. Maybe you just want to explore a different (perhaps
more efficient) implementation of a method that already works, but you're not sure if
changes or additions will introduce new problems. This is a good time to create a new
versioned edition of your code.

With VisualAge for Java, you can manage multiple editions of program elements. You
have already seen some of the concepts for managing editions. This section briefly
reviews these concepts and shows you how to use the edition management features of
VisualAge for Java.

In this section, you'll learn about:

e Editions in VisualAge for Java

e Versioning an edition

¢ Updating your program with the assurance of easily reverting back
¢ Returning to a previous edition

e Exploring the repository

¢ Managing the workspace

About editions

As you've been saving your program elements, VisualAge for Java has been keeping
track of your code. In fact, the code you are working on is saved in an edition. An
edition is a "cut" or "snapshot" of a particular program element.

To see more information on the edition you're working on, select the Show Edition

Names tool from the tool bar in the Workbench:
-

a2

Notice that each program element includes either an alphanumeric name or a
timestamp beside it; this is the edition information (described below in more detail). You
can also see the same information from the Source pane. For example, select your
ToDoFile class and move the mouse over the class icon: &

in the Source pane title bar. The hover-help window displays the edition information.
The edition information is also displayed in the status area below the Source pane.

© Copyright IBM Corp. 1997 79

An edition of a program element keeps track of all code within the program element,
including program elements within it. For example, an edition of a package includes
classes and interfaces and the methods within these classes and interfaces.

An edition of each program element exists in both the workspace and the repository.
The center of activity in the VisualAge for Java programming environment is the work-
space, which contains the Java source code for all your current projects as well as the
standard Java class libraries.

To help manage multiple editions of your program elements, VisualAge for Java also
includes the repository , a storage area that can contain multiple editions of program
elements. While the repository is not a development environment, you can explore and
retrieve its contents, as needed. You can save as many editions of a program element
as you wish. All editions are stored and are accessible from the repository.

The workspace can only hold one edition of a program element at any given time. This
edition is called the current edition. If you replace this edition with another edition from
the repository, that new edition becomes the current edition. Note that the current
edition is always marked by an asterisk (by default) to the left of the edition name when
you browse an edition list in the repository.

= Aeplace sih A=nteer £ dtne | _ |5 =]

Cplps aned b ackkan b wpleca

JLATEST 103 O S M|
UL 10T 2)
Beda 2

1.1

[] cencel]

There are two fundamental types of editions:

e Open edition

An open edition of a program element can be modified. You can bring this
edition into the workspace, making it the current edition, and change it as
required. In the screen image above, the open editions are marked by
timestamps. For example, (13/06/97 10:25:34 AM) is an open edition.

* Versioned edition

A versioned edition of a program element cannot be changed. When you
version an edition, you establish a frozen (read-only) code base to which you
can revert any time. In the screen image above, versioned editions are desig-
nated by alphanumeric names (for example, Beta 2 or 1.1).

80 VisualAge for Java: Getting Started

A versioned edition can also be the current edition, although any changes you
make and save automatically create a new open edition.

When you save a program element, not only is your code incrementally compiled
behind the scenes, the current edition is updated in both the workspace and the reposi-
tory.

Versioning an edition

You can version a project, a package, or a class. When you version one of these
program elements, all program elements contained within it are also versioned. For
example, if you version a package, all classes that are part of that package are also
versioned.

Let's create a versioned edition of your code.

1. Select the package in which you created your To-Do List applet, then select
Version from the pop-up menu. The Versioning Selected Items SmartGuide
appears.

o malllmdn - Fornereng Selecied |lena

R e e S R
P—:Fril-nurhu'n-.--':?lg. i b

B apdrestic [Aecoawended

T Me Exch
- it Howe I'n

2. Ensure the Automatic radio button is selected and then select Finish .

In the Workbench hierarchy, notice that the timestamp beside the package name has
been replaced with the new version number. This versioned edition is now permanently
stored in the repository, regardless of what happens to your editions in the workspace.
You can create open editions based on this versioned edition, and the versioned edition
will always be available from the repository.

Updating your code again

Now that you have a versioned edition of your program in the repository, you can
change your program elements in the workspace with the assurance that you can
always revert back to the versioned edition.

Chapter 6. Managing editions 81

Creating a new edition
Because a versioned edition cannot be modified, you will need to create a new open
edition from the versioned edition before you can continue changing the program
element. If the current edition in the workspace is the versioned edition, a new edition is
automatically created for you if you make changes to the program element and then
save it. For example:

1. Select your ToDolist class in the Workbench, and type a new comment in the
Source pane.
2. From the pop-up menu in the Source pane, select Save.
Notice that the edition name (in the hierarchy pane) changes from the versioned edition
name to a timestamp. Because the workspace can only hold one edition of a program

element at any given time, the new edition replaces the versioned edition. (Of course, a
copy of the versioned edition can always be retrieved from the repository.)

Adding a counter to the ToDoFile program
Let's add a counter to the ToDoFile program, which will reflect the number of items in
the To-Do list at any given time. To add this feature, we need to change the applet as
follows:
1. Add Labels for the counter name and the counter itself.

2. Connect the Add, Remove, and Open To-Do File buttons to the counter Label.

When modified, the applet will look like this:

L= fymplel !HE
T elia wm
| HT
Telia L
‘ D= Tor D s |
Sawn Tela Fils |
T plia Coparim 1]

Adding the labels

To add the two Labels using the Visual Composition Editor:

82 VisualAge for Java: Getting Started

1. Select the ToDolList class in the Workbench and select Open To then Visual Com-
position from the Selected menu. This opens the ToDoList class in the Visual
Composition Editor.

2. To make it easier to create the new connections, hide the existing connections by
selecting Hide Connections from the tool bar; | =8

Select the Data Entry category from the beans palette, and select the Label bean.
Click mouse button 1 beneath the List to add a Label.

Modify the text of the Label to To-Do Counter .

Add another Label to the right of this Label.

N oo o A~ w

Double-click on this new Label to open its Properties window. Select the value field
to the right of the alignment field. From its pull-down menu, select RIGHT, which
right-justifies the value. In the text field, change the value to 0, which is the initial
value of the counter. Close the Properties window.

8. Align the two Labels.

¢ Select the counter Label, then the List, and select the Align Right tool from
the tool bar.

¢ Select the counter name Label, then the List, and select the Align Left tool.
e Select the counter name Label, then the counter Label, and then select the
Align Middle tool.

The visual beans have been added and aligned. The free-form surface should look like
this:

Toi- Doy i

| A |

T D L
ipen To-0n File. | i ':'i"i'l
i | CparFia
i Bawe To-Cn File.. | !

Toi- O 15 i e 1]

[(&3]

T clsafiai SwwnFin

Now you're ready to add the connections.

Note:

Chapter 6. Managing editions 83

All the other connections you made are still there, they are just hidden now
because you selected Hide Connections from the tool bar. The new con-
nections that you make in the next step will not be hidden.

Connecting the labels
To connect the Add button to the counter:
1. Select the Add button and click mouse button 2. From the pop-up menu select
Connect and then actionPerformed(java.awt.event.ActionEvent)

2. Position the mouse over the counter Label and click mouse button 1.

3. From the pop-up menu, select text. A dashed green line now appears, indicating
an incomplete connection.

4. Select the connection and click mouse button 2. Select Connect and then value
from the pop-up menu that appears.

5. Position the mouse over the list and click mouse button 1.

6. From the pop-up menu, select All Features to bring up the Connect property
named window.

7. From the method list, select the getltemCount() method and then select OK. This
provides the count of the list as input for setting the counter Label string. The con-
nection is now complete.

8. Connect the Remove and Open To-Do File buttons in the same manner. You're
simply updating the list count in the counter whenever an action is taken that may
modify the list count. In this applet, any of the top three buttons have this potential.

Now the free-form surface should look like this:

Teo-Din bem
| 2addl |
TorDiw Lisk ’
| s |
-
bl #
- l:lp-inTn-DﬁFl:-..l E
-] DperiFie
= i
& e To-Dvo Filie |
A
Teorin Cipumjer]

TalioFie1 Sewefie

84 VisualAge for Java: Getting Started

From the File menu, select Save Bean. The changes you've made are reflected in this
open edition. Select the Test tool from the tool bar to launch the applet viewer and see
the counter in action.

Returning to a previous edition

Your program now contains a counter. It works fine, but after thinking about it for a
while, you decide that you want to keep the interface as clean as possible -- no bells
and whistles. So you want to take out the counter code. Of course, you could just
delete the labels and connections you've added, but what if you inadvertently delete
one of the other program elements or connections? No need to worry. Remember, you
versioned the previous edition!

Follow these steps to replace the current edition with a previous edition from the
repository:

1. Select the ToDolList class in the Workbench and click mouse button 2.

2. From the pop-up menu, select Replace With and then select Another Edition.

3. From the Replace with Another Edition secondary window, select the edition that
you previously versioned and select OK. (Because you want to replace the current
edition with the previous edition, you could have also selected Replace With and
then Previous Edition from the pop-up menu.)

The edition information beside the class name now indicates the version number, not
the timestamp of the open edition you had been working on.

If you change your mind again and decide that the counter should stay, you can always
add it back; the edition that contained the counter is still in the repository.

Exploring the Repository

More than just a suite of edit-compile-debug tools, VisualAge for Java provides robust
code management facilities. You've seen how easy it is to work with multiple editions of
a program element. But what else can you get from the repository?

From the Window menu, select Repository Explorer

Chapter 6. Managing editions 85

The Repository Explorer provides a visual interface of your repository. The repository
includes all editions of all program elements. This includes all the program elements
that are currently in the workspace.

Within the Repository Explorer, you can also open or compare program elements that
are stored in the repository. There's no need to swap editions in and out of the work-
space to view them or compare them.

By comparing different editions, you can see:

¢ What changes have been made as a result of code generation

¢ Precisely how an edition with errors differs from a bug-free edition
To compare two editions of a package:

1. Select the Repository Packages page.

2. Select the package in which you created the To-Do List applet from the Package
Names list.

3. From the Editions list, hold down mouse button 1 and drag-select the top two edi-
tions. From the pop-up menu, select Compare . The Comparing window appears:

86 VisualAge for Java: Getting Started

axdS FH) asd

* Cluns fat Eh.lk_!.ll.l: lagie
T lirtr in Hleaw snd savar lir
- s

"' & - i

iq,:‘n farn, da_wy
impoce Awes. et Lisks
publia clars Tobelile serands j

JErE iy
HiwldFileCounn = 0

4. Select a class or method name in the Element pane, and you'll see two sets of
corresponding code in the text panes below. Here, you can compare the two
program elements. From the Differences pull-down menu, you can select Next
Difference and Previous Difference . You can also select the arrows: in the
upper right corner of the window to move back and forth in the list of differences.

All program elements that are in the workspace are indicated by an asterisk (*).

Examining examples in the repository
VisualAge for Java comes with a wide variety of example code. Use the Repository
Explorer window to examine these examples. For instance, to examine the completed
version of the To-Do File program in the Repository Explorer:

1. Select the Repository Projects page. Select IBM Java Examples from the
Project Names list.

2. Select an edition from the Editions list and select
COM.ibm.ivj.examples.vc.todofile from the Packages list. The classes in this
package appear in the Classes and interfaces list. To examine one of the classes
in this list, select the class and click mouse button 2. Select Open from the pop-up
menu that appears.

Suppose that you want to run these completed samples, or make your own updates to
them. First, you must bring them into the workspace. To bring the completed version of
the To-Do File program, for example, into the workspace:

1. In the Workbench, select the project into which you want to add the To-Do File
program and select Add package from the Selected menu. The Add Package
SmartGuide appears.

Chapter 6. Managing editions 87

2. Select Add package(s) from the repository and then select Browse . The Add
Packages from Repository secondary window appears.

3. Select COM.ibm.ivj.examples.vc.todofile from the Available package name list.

Select an edition from the Editions list and select: D |to add the edition to
the Editions to Add list. Select OK.

The package for the To-Do File program is added to your workspace, and you can
update it and run it.

Summary
With the repository and the ability to work with multiple editions of your program ele-
ments, code management becomes easy. VisualAge for Java keeps you on the right
track.

88 VisualAge for Java: Getting Started

Chapter 7. What else you can do

Introduction to what else you can do

You have already seen many of the interesting things that you can do in VisualAge for
Java, but there is much more. This section gives you some more detail on the following
features of VisualAge for Java:

e “Printing program elements”

¢ “Navigating” on page 90

e “Searching” on page 94

e “Browsing” on page 97

e “Debugging” on page 100

e “Support for JavaBeans” on page 104

e “Customizing the Workspace” on page 112

Printing program elements

VisualAge for Java gives you several options for printing program elements. You can
print projects, packages, classes, interfaces, or methods. When you print a program
element that is composed of other program elements, you have the option of printing
these other program elements. For example, when you print a package, you can also
print the classes in the package.

To print a program element:

1. Select the program element and select Print from the Selected menu or from the
pop-up menu for the program element. The Print secondary window appears.

Friria
P cirl st privdar: Dl Chang I pelact o [g |
Eesbenck e b [
Ficach Fachsgma - DlarsarArimiscer Hikad:
- : B Conwsi F Hesmoly 7 Erdis Hathad
r . M DywsiHswdy | Dk I Comclaradion Orly
= e F DlsissrLinl ¥ Consnts of Methods

= Conrndyol Cheies

ita FLE0

© Copyright IBM Corp. 1997 89

2. If no default printer has been selected, a message appears asking you to select
one. To select a printer, select Change and select a printer from the Printer
Selection secondary window.

3. The items that you can select to print depend on what kind of program element you
are printing:

e Selections under Projects are available if you are printing a project.

e Selections under Packages are available if you are printing a project or a
package.

¢ Selections under Classes/Interfaces are available if you are printing a project,
package, class, or interface.

¢ Selections under Methods are always available.

4. By default, all the items under Projects , Packages, and Classes/Interfaces are
selected, and Entire Method is selected under Methods . Change these selections
if you want and select OK to start printing.

Changing the default printer

You can change the default printer by selecting Change in the Print secondary window
or by selecting Print Setup from the File menu of any window.

Navigating

VisualAge for Java gives you many different ways to look at your code. This section
gives you a brief overview of the primary windows in VisualAge for Java and tells you
how to move from one window to another.

Moving between windows

Every window in VisualAge for Java has a Window menu. You can move between
windows by selecting the window you want from this menu.

If the window you select is already open, it becomes the active window. If the window
you want is not open, it is opened and becomes the active window. If you select
Switch To in the Window menu, you can select from any of the windows that are cur-
rently open.

In addition to being opened explicitly by you, some windows are also opened by
VisualAge for Java as you perform your development tasks. For example, suppose you
run a program by selecting a class in the Workbench window and selecting Run from
the Selected menu. If there is an active breakpoint in your program, the Debugger
window opens when the breakpoint is reached. To return to the Workbench window,
select Workbench from the Window menu in the Debugger window. See “Debugging”
on page 100 for more details on breakpoints.

90 VisualAge for Java: Getting Started

Windows you can open from the Window menu
Here is a summary of the windows that you can open from the Window menu:

e Scrapbook - gives you a place to try out code. You can enter and run code frag-
ments without making them a part of any package, project, or class.

e Console - displays standard out. It also gives you an area for entering input to
standard in. If more than one thread is waiting for input from standard in, you can
select which thread gets the input.

e Log - displays messages and warnings from VisualAge for Java.

Chapter 7. What else you can do 91

e Debugger - displays running threads and the contents of their runtime stacks. In
the Debugger you can also suspend and resume execution of threads. See
“Debugging” on page 100 for more details.

¢ Repository Explorer - displays all of the editions of program elements in the reposi-
tory. See “Exploring the Repository” on page 85 for more details.

92 VisualAge for Java: Getting Started

¢ Breakpoints - displays all the breakpoints and allows you to manipulate them. You
can enable or disable breakpoints. You can also clear selected breakpoints or all
breakpoints.

Chapter 7. What else you can do 93

Searching

VisualAge for Java is designed to make it easy for you to find program elements and to
move around within the interface. This section tells you how to take advantage of the
search features of VisualAge for Java.

Searching for a program element
When you first start VisualAge for Java, the Workbench looks like this:

s Wmkbench

o = O (3

VisualAge gives you several choices for searching for program elements. For example,
in the Workbench, if you press a letter key, VisualAge for Java selects the first dis-
played program element that begins with that letter. If you press the same letter again,
the next program element that begins with that letter is selected.

Now, suppose you want to look at the source for the String class in the standard Java
class library. We'll go through two ways that you can search for the String class in
VisualAge for Java.

Searching with the Search secondary window
You can use the Search secondary window to perform powerful searches of the work-
space. You can open the Search secondary window by doing any of the following:
e Select Search from the Workspace menu of any window.

e Select Search from the Edit menu of any window.

e Select a project or package and then select Search inside from the Selected
menu. By default, this limits the search to the selected project or package.

94 visualAge for Java: Getting Started

¢ Select a class, interface, or method and then select Search for References in

from the Selected menu. You can search for references in Workspace , Project ,

Package, or Hierarchy .

e Select a class, interface, or method and then select Search for Declarations in

from the Selected menu. You can search for declarations in Workspace , Project ,

Package, or Hierarchy .

e Select Search in the tool bar of any window: E,i . This is equivalent to selecting
Search from the Workspace menu.

To keep things simple, suppose you select Search from the tool bar. The Search sec-

ondary window is displayed:

F‘mlﬁlﬂﬁllml

Sk Fid
Hawe]
Tupa: II'.Ill:l:-lHllu:l

Lok b [Wwokipse

Lok [Coschwstees

S paciy i 3 naach Parsraia:

Ledpe

T R |

The Search secondary window gives you many powerful options for scoping the range
of your search. For example, you can search the entire workspace or just the subset of
the workspace that you define on the Search Set page.

For now, to search for the String class:

1. Enter String in the Name field.

2. Select Class or Interface in the Type field. Select Workspace in the Look
In field and Declarations in the Look At field. Select Start to begin the search. A
list of all the matching program elements is displayed:

Chapter 7. What else you can do

95

When you select the String program element, the source for String is displayed in the
Source pane. You can also select Open from the Selected menu to browse the String
class.

Searching from the Workspace menu
You can also search for a program element by selecting one of the Open selections
from the Workspace menu. For example, if you select Open Class/Interface Browser
from the Workspace menu, the Open Class or Interface secondary window is
displayed:

As you enter String in the Pattern field, the Class/Interface Names list updates to
show only the classes and interfaces that match what you have typed in so far. Select

96 VisualAge for Java: Getting Started

String from the Class/Interface Names list and select OK to open a browser on the
String class.

Browsing
VisualAge for Java gives you extensive facilities for browsing program elements.
In VisualAge for Java, you browse a program element by opening it. There are many

ways to open a program element in VisualAge for Java, but for now here are two
simple methods:

¢ Select the program element and select Open from the Selected menu or from the
pop-up menu for the program element.

¢ Select the appropriate browser in the Workspace menu (Open Class/Interface
Browser , Open Package Browser , or Open Project Browser) for the program
element. A secondary window appears that lists all the classes and interfaces,
packages, or projects in the workspace. Enter the name of your program element
and select OK.

When you open a program element, a window appears that displays information about
this program element. The following sections describe in more detail the windows that
appear when you open each kind of program element.

Browsing a project
When you open a project, you get a window with four pages:
¢ The Packages page displays the hierarchy of packages contained in this project.
¢ The Classes page displays the hierarchy of classes contained in this project.
¢ The Interfaces page displays the interfaces contained in this project.

¢ The Editions in Repository page displays all the editions of this project.

Chapter 7. What else you can do 97

Browsing a package
When you open a package, you get a window with the three pages:
* The Classes page displays the hierarchy of classes contained in this package
¢ The Interfaces page displays the interfaces contained in this package

e The Editions in Repository page displays all the editions of this package

98 VisualAge for Java: Getting Started

Browsing a class
When you open a class, you get a window with the five pages:
e The Methods page displays the methods contained in this class.

¢ The Hierarchy page displays the position of the class in the overall class hier-
archy.

e The Editions in Repository page displays the editions of this class.

e The Visual Composition page displays the Visual Composition Editor. See “Using
the Visual Composition Editor” on page 12 for more details.

e The BeanInfo page displays the JavaBean information for this class. See “The
BeanInfo page” on page 105 for more details.

';-F This llﬂ:.ul n-.d.:'r.u :El,,:l..- ﬂ.l.-nu u-qh d.'l.:im-.prr e
T the Lish Eillliwe. o #

* hl.:l.l. d.'lﬂn.‘l S, LATRg. Du!.h.. % ﬂ.‘un:n'ql ::.n.l’-'I
. . s i e .

Browsing an interface
When you open an interface, you get a window with two pages:

e The Methods page displays the methods contained in this interface

¢ The Editions in Repository page displays the editions of this interface

Chapter 7. What else you can do 99

Browsing a method
When you open a method, you get a window with two pages:

e The Source page lists the source for the method

The Editions in Repository page displays the editions of this method

Debugging

VisualAge for Java includes a visual debugger with a rich set of features. This section
outlines some of these features.

We begin by showing you how to set breakpoints. Then we discuss the features of the
Debugger window and the Breakpoints window.

100 VisualAge for Java: Getting Started

Setting breakpoints
In VisualAge for Java, you can set breakpoints in any text pane that is displaying
source. Suppose that you want to set a breakpoint in the writeToDoFile method in the
ToDoFile class from the To-Do File program.

To set this breakpoint:

1. Display the source for the method.

¢ Select the ToDoFile class in the Workbench. Expand the class to show its
methods.

¢ Select the writeToDoFile method. The source for the method is shown in the
Source pane.

2. Double-click mouse button 1 in the left margin of the Source pane beside the fol-
lowing line (in the loop that writes items):

dataOutStream.writeBytes(fillList.getItem(i)+crif);
3. A breakpoint indicator appears in the margin of the Source pane beside this line:
= B

| LT
I

" maw ek St cenn | BdLailhwt T cumml o
ff far #mery iR Ln che Liet, orizs & line To Che crocpur fils
Eor ddogk 4 = O i 4 HElsh. coumbEbamyChp 1840 |
EFY |

| ¥
| ceech (IdEsceptisn sl | Syrtam arr.primblnd “10 szcepiicn =cibinog

You can also set a breakpoint on a line that does not already have a breakpoint by
following these steps:

1. Move the cursor to the line.

2. Click mouse button 2 and select Insert/Remove Breakpoint from the pop-up
menu.

Removing breakpoints
To remove a breakpoint, double-click mouse button 1 on the breakpoint indicator. You
can also remove a breakpoint by following these steps:

1. Move the cursor to the line.
2. Click mouse button 2 and select Insert/Remove Breakpoint from the pop-up
menu.

Try removing the breakpoint you just set. Now reset it. You will be using this breakpoint
in the next section to examine the features of the Debugger window and the Break-
points window.

Chapter 7. What else you can do 101

Using the Debugger window and the Breakpoints window
You can open the Debugger window at any time by selecting Debugger from the
Window menu. The Debugger window opens automatically when the program you are
executing reaches an active breakpoint or has an unhandled exception.

Now that we have set a breakpoint, let's run the To-Do File program to see what
happens:

1. In the Workbench, select the ToDolList class. Select Run then Run Main from the
Selected menu. Select Run in the Command Line Argument window.

2. When the To-Do File program appears, add some items to the To-Do List and
then select Save To-Do File . When the Save To-Do File dialog appears, enter a
file name and select Save. The Debugger window appears. It should look like this:

an %)9 8

Ff o wesry iceam im che liec, wwice & lizs oo The carpoc file
for lipa i = 30 1 < Fillbiys . commeltemrdls itdl [

ey |
T T wrialyr s (41 01Ed ob, gubTbamiidberlEd _
1
cai<h [I0lzcepbion 4] | Byrrem.asr.printlni”I0 sxcaphion wri
FRTT PRI

The thread you are debugging is selected in the Threads list. In the Methods list,
writeToDoFile (the method in which you set the breakpoint) is selected. The
Source pane shows the source where the breakpoint is set.

3. Select Resume from the tool bar: to continue execution of the program.
Because this breakpoint is inside a loop, the Debugger window displays again
immediately.

4. Examine some of the variables in the Visible Variables list. For example, to see
the value of the loop counter variable /, select i from the Visible Variables list. Its
value appears in the Value list:

102 vVisualAge for Java: Getting Started

This value of the loop counter is exactly what you would expect after the loop has
been executed once.

5. Now let's disable this breakpoint:

¢ Select Breakpoints from the Window menu. The Breakpoints window
appears:

El Bisskpoints
Fin E# ‘Wokmeca Buhodr iinden Hep

0T S T I e

e e

T Fpurmm dirBess Jwrs. lang. String dirachery TiEses
= fparaks fileWess jors. lang. Fcring fils nass
4

e The Breakpoints window displays all the breakpoints that you have set in the
workspace. The Methods pane lists all the methods in which you have set
breakpoints. The Source pane displays the source for the method that is
selected in the Methods pane.

e To disable your breakpoints, select Disable from the tool bar: The break-
point indicator changes colors to show that it is disabled.

¢ Select Debugger from the Window menu to return to the Debugger window.

6. You can update and save code in the Source pane of the Debugger window.
When you resume execution of the program, you see the changes you made to the
code. For example, suppose that you wanted to change the writeToDoFile method
so that items were written to the file in reverse order. You could make this change
by modifying the beginning of the for loop to look like this:

for (int i = fillList.countItems()-1; i >= 0; i--) {

Make this change in the Source pane of the Debugger window, and then select
Save from the Edit menu.

7. Now select Resume from the tool bar to continue execution of the program. In the
To-Do File program, add the following values to the To-Do List and then select
Save To-Do File to save them to a file:

Chapter 7. What else you can do 103

e jtem A
e jtemB
e jtemC
e |ast item

8. Now select Open To-Do File and open the file you just saved. The To-Do List
should look like this:

e last item
e jtemC
e jtemB
e jtemA

Before you continue, return to the Breakpoints window and enable your breakpoints
again by selecting the Enable tool from the tool bar.

Support for JavaBeans

VisualAge for Java includes support for JavaBeans. This section gives you a very brief
introduction to JavaBeans and some details on how VisualAge for Java supports them.

What are JavaBeans?

JavaBeans are Java objects that behave according to the JavaBeans specification.
JavaBeans (or, more simply, beans) are reusable software components that you can
visually connect together and manipulate in a development environment like VisualAge
for Java. The method signatures and class definition of a bean follow a pattern that
permits environments like VisualAge for Java to determine their properties and
behavior. This ability for a beans-aware environment to determine the characteristics of
a bean is called introspection .

Bean Features
Beans have three kinds of features :

* Events
¢ Methods

e Properties
You may remember seeing these three categories when you connected the beans of
the To-Do File program in the Visual Composition Editor. A bean exposes a feature
when it makes that feature available to other beans.

Here are brief descriptions of the three kinds of features:

104 visualAge for Java: Getting Started

1. Events are the events that the bean causes to occur. Other beans can register
their interest in these events and be notified when they occur.

2. Methods are actions that a bean exposes for invocation by other beans. The bean
methods are a subset of the public methods of the Java class that constitutes the
bean.

3. Properties are the attributes exposed by a bean. Properties can be read and/or
written. Properties can have the following characteristics:

e A bound property triggers the propertyChange event when its value is
changed.

e A constrained property allows other beans to determine whether the value of
the property can be changed.

e Anindexed property is an array.
¢ A hidden property is not visible in the Visual Composition Editor.
e An expert property should only be manipulated by expert users.

e A normal property is one that is explicitly defined for the bean and that is
neither hidden nor expert.

Beaninfo Classes
Beans can have accompanying BeanlInfo classes. These classes explicitly describe the
events, methods, and properties that a bean exposes. VisualAge for Java can generate
BeanlInfo classes for your beans. The BeanlInfo class has the same name as the bean
with the suffix "Beaninfo".

The Beanlinfo class contains public methods that return information about the bean,
including the class of the bean, the name of the class of the bean, and details about
the events, methods, and properties of the bean.

The Beaninfo page

In VisualAge for Java you manipulate the characteristics of a bean in the Beanlinfo
page of the class browser.

Chapter 7. What else you can do 105

The top left pane lists the features of the bean. You can specify the kinds of features
the BeanInfo page shows by selecting an entry under Show in the Features menu. The
following groups of features are available:

e All All features in the bean, including features that were generated by VisualAge
for Java
 Normal Features you explicitly defined for the bean
e Property Properties
e Event Events
e Method Methods
e Hidden Hidden features
e Expert Expert features
When you select a feature, VisualAge for Java lists information in the top right pane
depending on what kind of feature is selected:
e Event Interface, listener methods, add listener method, remove listener method
e Property Type, read method, write method
e Method Signature
The top right pane lists the program elements that are associated with the selected

feature. If you select one of the program elements, its source is displayed in the bottom
pane.

106 VisualAge for Java: Getting Started

If you do not select a program element in the upper right pane, the bottom pane lists
the bean information for the selected feature, including its description, display name,
and whether or not it is expert or hidden.

Using the BeanInfo Page
How would you use the Beaninfo page to create and manipulate the features of a
bean? In this section we'll show you how you can modify your To-Do File program so
that it uses a mode property that you create in the Beaninfo page. This property will
control the mode of the file dialog: save or load.

Here is a brief outline of what you will be doing:

1. Create a property called mode for the ToDoFile class in the Beaninfo page.

2. Create a new file dialog bean in the ToDoFile class to replace the two file dialog
beans in the ToDolList class. Connect this file dialog to the new mode property.

3. Modify the readToDoFile and writeToDoFile methods in the ToDoFile class. Make
the updated methods available as features.

4. Remove the old file dialog beans from the ToDolList class and reconnect the
ToDoFilel bean.

Before you start, ensure that you have versioned the latest edition of the package that
contains your ToDoFile and ToDolList classes.

To create a new property in the ToDoFile class:

1. In the Workbench, select the ToDoFile class and select Open To then Beaninfo
from the Selected menu.

2. The BeanlInfo page appears. It should look like this:

Chapter 7. What else you can do 107

G LI e jo] @ gl il e Talkabels 1

3. Select Create Property Feature from the tool bar: H . The New Property
Feature SmartGuide appears.

4. In the New Property Feature SmartGuide, enter mode in the Property name field.

5. Select int in the Property type field.

6. Ensure that Readable, Writeable , and bound are selected. Select Finish .
VisualAge for Java creates the new property, as well as functions to set and get it.
A ToDoFileBeanlInfo class is also created.

7. Now the Features and Definitions panes of the BeanInfo page should look like
this:

Now you are ready to add a file dialog bean to the ToDoFile class. This bean will
replace the two file dialog beans in the ToDoList class, and it will get its mode from the
mode property you just created.

To add a file dialog bean to the ToDoFile class and connect it to the mode property:

1. Select the Visual Composition page.

2. Select the Containers category in the beans palette: |

108 VisualAge for Java: Getting Started

3. Select the FileDialog bean:

4. Click mouse button 1 on the free-form surface. A new file dialog bean called
FileDialogl appears.

5. Select the new file dialog bean and double-click mouse button 1 to open the Prop-
erties window.

6. In the Properties window, enter c:ll as the directory value and close the Properties
window.

7. Now make a connection to set the mode of the file dialog to be equal to the mode
property you created:

¢ Click mouse button 2 on the free-form surface and select Connect from the
menu that appears. The Start connection from window appears.

¢ In the Start connection from window, select mode from the Property list and
select OK.

e To complete the connection, click mouse button 1 on the file dialog bean and
select All Features from the pop-up menu that appears. In the Connect prop-
erty named window that appears, select mode from the Property list and
select OK.

8. Select Save Bean from the File menu.

Now the free-form surface for the ToDoFile class should look like this:

&H

FimDRieg

Now you are ready to modify the readToDoFile method:

1. Select the Methods page and select readToDoFile from the Methods list. The
source for this method appears in the Source pane.

2. The readToDoFile method will be getting the directory and file values directly from
the file dialog, so you can remove the first two parameters in the method declara-
tion. The modified signature should look like this:

public void readToDoFile (List fillList)

3. Now, add statements at the very beginning of the method to set the mode property,
to call show() and dispose() for the file dialog, and to get the file and directory
values from the file dialog. After you have made all the changes, the beginning of
the method should look like this:

Chapter 7. What else you can do 109

public void readToDoFile (List fillList) {
setMode(java.awt.FileDialog.LOAD);
getFileDialogl().show();
getFileDialogl().dispose();
String fileName = getFileDialogl().getFile();
String dirName = getFileDialogl().getDirectory();
FileInputStream fileInStream = null;

4. Select Save from the Edit menu to save your changes.
Now make similar changes to the writeToDoFile method:

1. Select writeToDoFile from the Methods list in the Methods page.

2. Modify the beginning of the writeToDoFile method to look like this:

public void writeToDoFile(List fillList) {
setMode(java.awt.FileDialog.SAVE);
getFileDialogl().show();
getFileDialogl().dispose();
String fileName = getFileDialogl().getFile();
String dirName = getFileDialogl().getDirectory();
FileOutputStream fileQutStream = null;

3. Select Save from the Edit menu to save your changes.
Now that you have updated these methods, make them available as features:

1. Select the BeanInfo page and select Add Available Features from the Features
menu. The Add available features window appears.

2. In the Add available features window, select readToDoFile(java.awt.List) and
writeToDoFile(java.awt.List) from the list and select OK.

3. Now both readToDoFile and writeToDoFile should appear in the Features pane of
the BeanlInfo page.

You have finished all your updates to the ToDoFile class. Now you are ready to update
the ToDolList class by removing the old file dialog beans and revising the connections.

1. In the Workbench, select the ToDolList class. If you see an "x" beside the ToDoList
class, it means that there is an unresolved problem. The connections between the
Open To-Do File and Save To-Do File buttons and the ToDoFilel bean are no
longer valid because you have changed the number of parameters in the
readToDoFile and writeToDoFile methods. Don't worry if this happens. You are just
about to fix the problem.

2. Select Open To then Visual Composition from the Selected menu. The Visual
Composition Editor opens on ToDolList.

3. Delete the following items by selecting them and pressing the Delete key. If a
warning message appears about deleting the bean and all its connections, select

110 VisualAge for Java: Getting Started

OK. If you make a mistake, remember that you can undo it by selecting Undo from
the Edit menu:

The connection between the Open To-Do File button and the ToDoFilel bean.
The connection between the Save To-Do File button and the ToDoFilel bean.
The OpenFile bean.

The SaveFile bean.

4. Create a new connection between the Open To-Do File button and the ToDoFilel
bean:

Select the Open To-Do File button and click mouse button 2. Select Connect
then actionPerformed(java.awt.event.ActionEvent) from the menu that
appears.

Click mouse button 1 on the ToDoFilel bean and select All Features from the
pop-up menu that appears.

Select readToDoFile(java.awt.List) from the Method list in the Connect event
named window and select OK.

To complete this connection, select it and click mouse button 2. Select
Connect then fillList from the pop-up menu that appears. Click mouse button
1 on the List and select this from the pop-up menu that appears.

5. Create a new connection between the Save To-Do File button and the ToDoFilel
bean:

Select the Save To-Do File button and click mouse button 2. Select Connect
then actionPerformed(java.awt.event.ActionEvent) from the menu that
appears.

Click mouse button 1 on the ToDoFilel bean and select All Features from the
pop-up menu that appears.

Select writeToDoFile(java.awt.List) from the Method list in the Connect event
named window and select OK.

To complete this connection, select it and click mouse button 2. Select
Connect then fillList from the pop-up menu that appears. Click mouse button
1 on the List and select this from the pop-up menu that appears. Now the
free-form surface should look like this:

Chapter 7. What else you cando 111

" . —

" Dipeeni To-Do File. |
L

. fl‘l-Tﬂ-l.'-'ﬂ Filg.. |

6. Select Save Bean from the File menu.

7. Now run your revised program by selecting the ToDolList class in the WorkBench
and selecting Run then Run main from the Selected menu. Test to ensure that
you can open and save files.

Congratulations! You have completed an alternate implementation of the To-Do File
program that takes advantage of the features of the BeanInfo page.

Customizing the Workspace

VisualAge for Java gives you a range of characteristics that you can change to cus-
tomize the workspace to suit your own needs and tastes. This section shows you how
to set customization options and gives you a brief overview of the items that you can
customize.

Setting customization options

In VisualAge for Java, you customize the workspace by setting options in the Options
secondary window. Let's examine how this window works by setting the option that
determines what happens when you double click on a program element.

By default, double clicking on a program element icon expands or collapses the
program element tree beneath that icon. For example, when you double click on a
package icon, VisualAge for Java displays all the classes that are in the package. You
can change this behavior so that double clicking on a program element icon opens the
program element in a browser of its own.

To specify that double clicking on a program element opens the program element:

112 VisualAge for Java: Getting Started

1. Select Options from the Workspace menu. The Options secondary window
appears.

2. Select the Behavior page.

Chapter 7. What else you cando 113

2oosanee| ook Behents | Hep| Ted Edting] Luin | P
T A . o
" [Expard Fioblars: Fage on qparng 5 hoes 80 Frcblard
[P ———
= Erang Aeplacsz Topes
| & Amza seving b

Mawanobpisonfensy B =]
i Pl o il rosrs P =

= Lotz popost In thews dnrissd dan

Zioay Pt s [0 oy 1 Busples: Im 5
v Ciensble [Exparee ™ Diaubla Chcd Opare |

Hiram bahasr

Cusiye ks Bl pop oai. |21-|2l ™ |

O |

[] cwew |

3. In the Behavior page, select Double Click Opens and select OK.

Now, when you double click on a program element icon, the program element is
opened in a browser.

To set all of the options on a page back to their default values, select Defaults and
then select OK.

The following pages are available in the Options secondary window:

e The Appearance page displays options for specifying the appearance of the
Workbench window and the other browsers, including:

Whether the type is included in field and method labels
Whether edition names are shown by default

Whether generated methods are marked

The proportion and orientation of text panes

The string that marks the edition (in a list of editions) that is currently in the
workspace

e The Applet page displays options for specifying the width and height of the applet
viewer window.

114 visualAge for Java: Getting Started

¢ The Behavior page displays options for specifying the behavior of the Workbench
window and the other browsers, including:

— Expansion of the Unresolved Problems page

— Whether saving with a new name replaces methods and types
— Whether existing browser windows are reused

— The maximum number of objects and files on the File menu

— Whether lists pop out to show obscured items and if so, the delay before the
list pops out

— The zoom percentage for graphs

— Whether double clicking a program element expands it (displays the program
elements included in it) or opens it.

¢ The Help page displays options for specifying which web browser is used to
display the help information.

e The Text Editing page displays options for text editing panes, including:
— Font settings for different text types, such as comments, keywords, and literals
— Foreground and background colors
— Style of indentation

e The Lists page displays options for specifying the font and colors of lists.

¢ The RMI page displays options for Remote Method Invocation (RMI).

Chapter 7. What else you cando 115

116 VisualAge for Java: Getting Started

Chapter 8. Accessing enterprise data

[EMTERPRINE]

You now have a solid grounding in how to use the core features of VisualAge for Java.
You can create, debug, test, and manage editions of Java applets and applications.
With VisualAge for Java Enterprise, there's still more under the hood for you to dis-
cover.

The VisualAge for Java Enterprise Access Builders let you easily code access to legacy
applications and data. These builders generate JavaBeans for you, which you can
connect to your user interfaces with the Visual Composition Editor.

Data Access Builder

Generates beans to access JDBC/ODBC-compliant relational databases. See
“Data Access Builder” for details.

CICS Access Builder

Generates beans to access CICS transactions through the CICS Gateway for
Java and CICS ECI client. See “CICS Access Builder” on page 127 for details.

RMI Access Builder

Generates proxy beans so you can distribute code for remote access, enabling
Java-to-Java solutions. See “RMI Access Builder” on page 132 for details.

C++ Access Builder

Generates beans and C++ wrapper classes that let your Java programs
access C++ DLLs. See “C++ Access Builder” on page 139 for details.

Note: Thusfar, Getting Started has led you through detailed, hands-on examples. Given
the complexity of the material on the Enterprise Access Builders, we'll be taking a more
conceptual approach here, with a special focus on understanding the deployment sce-
narios.

If you have purchased VisualAge for Java Professional and would like more details on
upgrading to VisualAge for Java Enterprise, visit the VisualAge for Java Web site at
www.software.ibm.com/ad/vajava or contact your IBM sales representative.

Data Access Builder

The VisualAge for Java Data Access Builder and other visual tools let you rapidly
develop data access programs.

© Copyright IBM Corp. 1997 117

Before Java came along, you may have used CGI programs, HTML forms, and slower
protocols to provide internet-based access to relational databases. The power and flexi-
bility of Java deliver more robust access to databases.

JDK 1.1 includes the JDBC (Java Database Connectivity) API, which you can use to
code your data access components. In much the same way that the ODBC standard
defines an API that enables applications to access any ODBC-compliant database, the
JDBC standard defines a common base on which other data access tools can be built.
If you want to leverage existing ODBC databases using Java, Sun's JDBC-ODBC
bridge driver translates JDBC calls into ODBC calls.

Thin-client model

118

There are various ways to deploy your data access program. The diagram below illus-
trates a 3-tiered thin-client model.

applet

Web RMI Java
Browser Proxy Server

Clieat JOBC
DB2 Glignt Database
Imtermediate DB2 Servet

Senrver

1. The end user downloads a thin Java client from an HTTP server to a Web browser.
The applet only includes distributed front-end code, not the data access business
logic.

2. The Web browser communicates with an intermediate server through remote
method invocation calls using a TCP/IP protocol. Your generated data access
classes reside on this server. Because of applet security restrictions, the applet
and data access classes must reside on the same machine.

3. Your data access classes access the DB2 client through JDBC calls, which also
reside on the intermediate server.

4. The DB2 client connects to the JDBC-compliant database.
The largest benefit of this scenario is that the end-user only requires a web browser to

interact with the database. The DB2 client and all the data access Java code reside on
an intermediate server.

VisualAge for Java: Getting Started

VisualAge for Java makes developing this scenario easy. Use the Data Access Builder
to generate your data access JavaBeans for you. The generated code includes not only
code with the appropriate JDBC method calls, there is also a generated class that you
may optionally use as a GUI prototype.

Now let's look at how this scenario is built. Here's a summary of the high-level steps:

1. Generate the schema mapping

2. Customize the schema mapping
3.
4

Generate the data access beans

. Connect the generated beans to the user interface (this is already done for you

you use the generated GUI)

Distribute and deploy the GUI

Generating the schema mapping
The first step in creating your data access classes is to start the VisualAge for Java
Data Access Builder:

In the Workbench, select the package in which you want to place the access
classes.

From the pop-up menu, select Tools and then Data Access and Create Data
Access Beans . The Data Access Builder now appears with a clear window.

if

From the File pull-down, select Map Schema to create a nhew schema mapping.

The Data Access Builder SmartGuide appears (shown below).

The Data Access Builder SmartGuide

Chapter 8. Accessing enterprise data

119

Liala fccana Huwlde

Use the Data Access Builder SmartGuide to create an initial schema mapping. This
multi-page SmartGuide helps you specify the database tables that will be accessed by
the generated Java classes. To define this information, you can filter through a list of
tables and select to an existing table, or you can submit an SQL statement that dynam-
ically joins the specified tables to create a schema. The database you select must be
JDBC/ODBC-compliant so that the JDBC API calls that will form part of the generated
Java code can access the database.

When you're done specifying input for the schema definition in the SmartGuide, select
Finish to generate the schema mapping.

The generated schema mapping

120 VisualAge for Java: Getting Started

The generated schema mapping now appears as a set of hierarchically-linked icons in
the Data Access Builder window. The image below shows three schema mappings, for
DEPARTMENT, EMPLOYEE, AND EMP_PHOTO.

fin Zalactad Yww Qpfiora Heg
= B CEPARTMENT =]
- my [aparrand

|& focanon
| scrordepd

I mro
& ecrurs

SETTE

- i EMFLLT ﬁihl
- my Erpinas

& ==
& =ome
|& calars
& =ricas
i o=
|l et
& ==
|l redaia
& =rorans
| oeerhcapa
|& tartarra
| e
|& rasra

& =rer=
- i ewe_PHOTO
5 my Emp_iphoin

Ll

Completed.

The icons in the Data Access Builder window represent:

E schema: representation of the database

®* mapping : defines characteristics of access to the database, and is used as input
to generate the Java classes

@ attribute : corresponds to a table column

D data ID: corresponds to a set of columns that uniquely identifies each row

This is the initial mapping. You can now select any mapping object and customize it.

Customizing the schema mapping
Now that the SmartGuide has generated an initial schema mapping, you can modify it
before generating the Java access methods. You can also add user-defined methods
(for rows or collections of rows) either by specifying an SQL statement, or by accessing
stored procedures defined in the database. Unused methods and attributes can be
deleted from the initial schema mapping.

Chapter 8. Accessing enterprise data 121

Customized SQL statements

To add or modify a method with an SQL statement:

e Select a mapping and from the pop-up menu, select Methods . (Select Manager
Methods if the method returns a collection of rows.)

e Select Add to to bring up a secondary window to define the SQL statement.

S Stalmmant;

Walimate |

select countfempna] from employee where workdepi=1 =]

ol

Mathod Mame! [numEmpinliep
= Thamer nxcephion # multiple rmows. affeciod

Parmmeiems
| f?ﬂ [T [Hsgeare | 500K
| paaarni Fanursaine sl
T || Fraireds
1] | H
Prameter Type: SO0 Nama: SOHL Typa:
I I
Mapped Ta: Mame: Type:
| | ¥ Parsmeter | | |
| amnibute ['
E7 | Heetawm Value | E |
.f"- & v
| Wiseliy |
hruld num Emsplniepa]]

By entering an SQL statement in the SQL Statement field, you can define the parame-
ters of a Java method. Click the Validate button to validate the SQL syntax and check
that all database references are reflected in the schema. Once validated, the elements
of your SQL statement are populated in the fields of the secondary window. You can
then customize each parameter in terms of type, SQL name, attributes, and so on. This
SQL statement is invoked on the DB2 client when the corresponding Java method is

called.

Stored procedure calls

If your database contains stored procedures, you can define the parameters of Java

methods that call the stored procedures.

122 VisualAge for Java: Getting Started

Select a schema and from the pop-up menu, select Stored Procedures . The
Stored Procedures List secondary window appears.

Select Get Stored Procedures to list all the stored procedures in the specified
database. This database must be currently accessible.

Select Import to retrieve the signature of the stored procedure call method.

To define the stored procedure call method, select a mapping and from the pop-up
menu, select Methods (or Manager Methods if the stored procedure returns a col-
lection of rows). Select Add beneath the stored procedure call.

Procedwmn Mama! |mmnv2‘hnlw|=n-' 'l Shaw Pracedures i
Method Hame! [spckiethnd
[Pyrameirie 1
| 1
{ .':‘.:1 AR in Fumwtn |
| W2 CHAR Dud Anibeir |
E Ly 3 CHAR Fimtemn '¥shum Fistumn 'vahs
| lad | il
Paramatnr Type: S0 Name; SO Typa: |
|F|.|!|:url'l'ﬂit F] CHAR
| | Mapped Ta: Hame: Type:
| Parsmeter | ‘.J
o amibite | =
= Fetwim Value Si¥ing -
"~ Hpme |
o | |
|Sming spokietbnd{Siring parm| ﬁ
ok | cemcer | e |

As with the method defined by an SQL statement, you can modify the attributes of
existing stored procedure calls. You must ensure that you map the parameters correctly

in this window. When called by your Java applet, the stored procedure runs on the DB2
server.

Generating the data access beans
From the Data Access Builder window, generating your data access Java classes is
easy.

¢ From the File pull-down menu, select Save.

Chapter 8. Accessing enterprise data 123

The data access classes are automatically generated and now appear in the package
you had selected. Below is a sample of some of the generated classes.

+ {3 Dapmieant 2

PN [e e a—— - |

+ (3 DepmieardEaminka 3

+ (3 DapaisantDaladd @

3 DapmireantD alsl cBsaani nka /@

+ {3 DapaisardDadsl oFcon T

+ {3 DapaieentD sl ddanage 3

+ [CapmisardDalsl dMansgaBaminka 3
+ (B DapaireantD alal didap @

+ (3 DapaisardDalsl dlaodFran 0
+ (B DapwisatDslaaw

+ B D] Faaari a0
+ [DepmiearForn d

+ (B DepmisardHansga 3

+ (3 DepmieaHnsgeBaminka D
+ [Depmimantidp T

+ {3 DepmeatfAszdFon @

Notice that a data access table icon is beside each class name, providing you with a
visual reminder that these classes were generated by the Data Access Builder.

The classes have been generated and, by default, have been named using the
mapping name. In the examples shown, classes have been generated using the
Department mapping. The main types of generated code include:

e DepartmentDatastore represents and manages connections to the database.

e Department represents rows from the mapping. This class contains database
access methods, including user-defined methods, if defined.

e DepartmentDatald represents the set of columns that uniquely identify a row. This
class is only generated if the mapping specifies at least one data ID column.

e DepartmentManager enables you to select and work with a collection of rows. This
class contains user-defined manager methods, if defined.

e DepartmentDataldManager enables you to select and work with a collection of data
IDs from the table. This class is only generated if the mapping specifies at least
one data ID column.

e DepartmentAccessApp is an executable GUI that integrates the basic features of
the mapping.

¢ Beanlinfo classes enable the Visual Composition Editor to use the generated data
access classes by providing notification of changes to object properties.

124 visualAge for Java: Getting Started

e Form support classes are prefabricated GUI components that reflect the basic fea-
tures of your generated classes. You can add these beans in the Visual Composi-
tion Editor to help create the user interface that will access the data.

Because the Data Access Builder generates these classes, you no longer need to
hand-code your JDBC calls.

Using the generated GUI
One of the classes generated by the Data Access Builder is a graphical user interface
class. This class, called an AccessApp, includes a standardized layout that reflects the
publicly accessible data and methods, as specified by the schema mapping. (In the list
of generated classes seen earlier, DepartmentAccessApp is the AccessApp.) This
simple GUI makes use of the generated classes to connect to datastores and manipu-
late data.

AccessApp classes help you with rapid application development. They're useful for
demonstrating and prototyping database access, testing the generated classes, or using
as your final program user interface. AccessApp classes can be invoked as applets or
applications.

Below is one page of a generated AccessApp.

dizzarimaznd

FMATION CENTER

The AccessApp class lets you connect and disconnect from the database, and retrieve,
update, and delete rows. Visual indicators also help you sift through the data. For
example, the key icon in the screen above indicates that the deptno field represents a
primary key column in the table.

With AccessApp classes, you can completely bypass programming the user interface in
the creation of your data access program.

Chapter 8. Accessing enterprise data 125

Connecting to your own GUI
Instead of using the AccessApp class, you can also create your own user interface. The
Visual Composition Editor provides rich support for creating a data access user inter-
face.

As you would create other user interfaces in the Visual Composition Editor, begin by
adding buttons, labels, and other visual beans. Then add the generated nonvisual data
access beans.

Adding visual data access beans to the free-form surface

1.

From the left column of the bean palette, select the Enterprise Access category to
display the Enterprise Access beans in the bean column. Several of these beans
are intended for use in data access programs.

Select a data access bean from the bean column and add it to the free-form
surface. Some examples include:

. IU JDBC Datastore

\d .
J d Data Exception
You can also add one of the generated form support classes:

a. In the Visual Composition Editor, select Add Bean from the Options pull-down
menu.

b. In the Add Bean dialog, click on Browse beside the Class Name field.

c. In the Choose a valid class secondary window, select one of the generated
form support classes and select OK.

For example, DepartmentForm is a panel with entry fields for use with a single
object, and DepartmentResultForm is a multicolumn list box tailored to reflect the
class result set.

Adding nonvisual data access beans to the free-form surface

1.

In the Visual Composition Editor, select Add Bean from the Options pull-down
menu.

In the Add Bean dialog, click on Browse beside the Class Name field.

In the Choose a valid class secondary window, select one of the generated classes
that contains business logic and select OK.

On the free-form surface, move the cursor to an area outside the visual section
and click mouse button 1. The bean is now visually represented.

You need to repeat these steps for all the beans you want to import into the Visual
Composition Editor.

126 VisualAge for Java: Getting Started

To enable interface access to the methods and fields of the nonvisual data access
beans, use the connection features of the Visual Composition Editor, as demonstrated
in previous sections.

Distributing and deploying the GUI
The thin-client scenario illustrated at the outset of this section indicated that the data
access client is distributed between the client applet and the intermediate server. To
distribute the class representing the GUI, whether this is the AccessApp class (such as
DepartmentAccessApp seen earlier) or your own GUI class, you can use the VisualAge
for Java RMI Access Builder. This tool takes your bean and generates client-side and
server-side proxies that communicate using RMI, as defined by the JDK 1.1 API.

For more information on distributing beans in a Java-to-Java, client-server environment,
see “RMI Access Builder” on page 132.

You can now deploy the program by linking the distributed GUI class into a Web page
and placing the other data access and RMI classes on the intermediate server.

You've done it! Putting together a web-based application to access a relational data-
base is easy with VisualAge for Java. The Data Access Builder helps you define a
schema mapping and generates Java code for you. This rapid application development
environment also generates an AccessApp for you, so you can quickly test your code in
a standardized interface.

CICS Access Builder

With the VisualAge for Java CICS Access Builder, accessing CICS transactions from
your Java programs is made easy.

Before Java came along, you accessed your CICS transactions through the CICS Client
using ECI (External Call Interface) API calls in your C or C++ programs. Then the Java
wave brought with it the IBM CICS Gateway for Java, a Java version of the CICS client,
which allows Java clients to access CICS transactions. The Java ECI method calls
handled by the CICS Gateway for Java generally match the corresponding ECI method
calls one-for-one.

The common stumbling block introduced by both the CICS ECI and the Java ECI APlIs,
however, is that the data types in the calling programs (Java, C, C++) don't map well to
the data types used in the CICS program, which is written in COBOL. Making the two
programs communicate correctly to one another requires you to write code to perform
these mappings. But no more! The CICS Access Builder creates a robust CICS access
bean and associated classes for you; you no longer need to code the conversions
between languages.

Chapter 8. Accessing enterprise data 127

In this section, we'll review the high-level steps required to create Java-based, CICS
access programs with VisualAge for Java:

Use the Create COMMAREA Bean SmartGuide to generate a communications
area bean

Create an instance of the Unit of Work bean

Connect the CICS access beans to the Java client user interface

CICS access overview
The following diagram illustrates the traditional path taken between your Java client and
the CICS server.

KT =2 a T BT

[[CICs
Sy ” Client
fee Joma

.
HTTE

a il
Reque WaH

EET
L L
D F L i

P A

N Froggag

The flow of requests are:

The end-user downloads the CICS access applet from an HTTP web server.

The Java client sends Java ECI requests and transfers data for the COBOL com-
munications area to the CICS Gateway for Java.

The CICS Gateway for Java forwards the Java ECI requests as ECI requests to
the CICS Client. Due to applet security restrictions, both the CICS Gateway for
Java and the CICS Client reside on the same host as the web server.

The CICS Client forwards information to the MVS CICS server, where the
CICS transactions reside.

128 VisualAge for Java: Getting Started

By delivering the beans you need for step 2 above, VisualAge for Java makes CICS
access programming a safer journey. The problems associated with data type conver-
sions are handled for you.

¢ The CICS Access Builder generates a communications area bean and other
support classes.

¢ You can easily create an instance of the CICS Gateway for Java wrapper class,
the Unit of Work bean, in the Visual Composition Editor.

Let's now see how these beans are created.

Using the Create COMMAREA Bean SmartGuide
The Create COMMAREA Bean SmartGuide leads you through the process of gener-
ating the communications area bean. To invoke the SmartGuide:

¢ In the Workbench, select a package into which you want to place the CICS
COMMAREA bean and associated classes.

e From the pop-up menu, select Tools, then select Host
CICS Access and Create COMMAREA Bean . The SmartGuide now appears.

e o uerle - Lisads (00 e el HOE B Sip s

Erited dyokses raindy od B niidt CT1AIRLERES b
[l38 Hows]

Eried ivs CIC5 pkastion Droghes nkavabat
COROL Rk |
COMMARES Fiskd Howe: |

Progass Hawe: |

Fasheso 5 pacpsot o & pesokags
Progect [ey w08 DrOOLY e
Pakags R

¢ In the Class Name field, enter a name for the new communications area
(COMMAREA) bean.

¢ In the COBOL File field, enter the name of the local copy of the COBOL file.

¢ |n the COMMAREA Field Name field, enter the record name of the communi-
cations area defined in the COBOL file. Often, the record name is
DFHCOMMAREA.

¢ In the Program Name field, enter the name of the CICS program as it's known on
the MVS host.

Chapter 8. Accessing enterprise data 129

e Select Finish .

As an example, assume the following COBOL file was used as input:

identification division.

program-id. ADDER.

environment division.

data division.

working-storage section.

01 tmp pic a(40).

LINKAGE SECTION.

01 DFHCOMMAREA.
02 opl PIC S99999 DISPLAY.
02 op2 PIC S99999 DISPLAY.
02 res PIC S99999 DISPLAY.

procedure division.

start-para.
add opl to op2 giving res.
move 'ADDER transaction executed.' to tmp.

EXEC CICS WRITE OPERATOR TEXT(tmp) TEXTLENGTH(27)

ACTION(2) END-EXEC.
EXEC CICS RETURN
END-EXEC.

The SmartGuide generates three classes, each with a CICS symbol beside it.

= B reCOvLFEE
= wpllHAFEN]
i e nzd 00 i s cicr i CalHardalicz |
milpl]
milpl]
mifiar ||
robpt]
zat Coararsd s (00 b v picz. BCalH arcieCicr
satllpl_frd
satllpd i
oatHuz_{md]
B rpl TSRS DRHC RS
(B rpCOMAAFE S8 narini]

E B & = & B & B &

e myCOMMAREA is the main communication area class to invoke CICS trans-
actions, and contains set and get methods for the basic data types of the CICS
communications area and event triggering to notify listeners about changed proper-

ties.

e myCOMMAREA DFHCOMMAREA contains all primitive type fields of one level of
the CICS transaction communications area. Methods of this class are responsible

for converting data to and from wire representation.

¢ myCOMMAREABeaninfo describes the bean features (events, methods, properties)

of myCOMMAREA bean.

130 VisualAge for Java: Getting Started

The Unit of Work bean

The workspace includes a class called 1VJCicsUOWInterface that you can use as an
interface to IBM CICS Gateway for Java in any CICS access program. This class acts
as a wrapper that manages all requests between the Java client and the CICS Gateway
for Java. As the focal point of all work on the Java client, it has been dubbed the Unit
of Work bean.

Portions of this class are shown below:

public class UOWInterface {

}

public void startUOW() {};

public void endUOW() {};

public void commitUOW() {};

public void backoutUOW() {};

public void invokeTxn(CommAreaBase bean) {};
public void asynchInvokeTxn(CommAreaBase bean) {};

With the Unit of Work bean, you can:

Start and end a unit of work with the CICS Gateway for Java
Commit or roll back changes introduced during this unit of work

Pass the communications area bean (generated by the CICS Access Builder) to
the host-based CICS program, to run the transaction both synchronously and
asynchronously.

You can create and use an instance of the Unit of Work bean in the Visual Composition
Editor.

Connecting the CICS access beans to the user interface

You can connect the CICS access beans to the user interface in the Visual Composi-
tion Editor.

Follow these general steps to assemble the client:

In the Workbench, select the class that represents the user interface. From the
pop-up menu, select Open To and then Visual Composition

From the bean category of the bean palette, select the Enterprise Access category.
Select the CICS Unit of Work bean, move the cursor to a nonvisual bean area and
click mouse button 1. This creates a nonvisual part that represents an instance of
the Unit of Work bean.

9]
CICS Unit of Work bean

Chapter 8. Accessing enterprise data 131

To import the communications area bean, select Add Bean from the Options pull-
down menu.

In the Add Bean dialog, click on Browse beside the Class Name field. In the
Choose a valid class secondary window, select the communications area bean and
select OK.

For the connections, actions that interact with CICS transactions (for example,
clicking a button) are represented by connecting the event-generating object (for
example, the button) directly to the Unit of Work bean, which receives input from
the communications area bean.

With the CICS Access Builder, it's that simple. Your host-based CICS transactions can
be accessed by any user across the web!

RMI Access Builder

Are you trying to develop Java-to-Java solutions in a distributed, client-server environ-
ment? If so, chances are that you're facing one or both of the following problems:

You find it difficult to integrate distribution-specific code with non-distributed,
application-specific beans.

If you've been coding with the RMI API supplied with JDK 1.1, you've noticed that
the object distribution protocol doesn't support the distribution of bean events.

The VisualAge for Java RMI Access Builder helps you overcome these problems, ena-
bling you to easily provide remote access to your beans in a client-server environment.
In addition, the RMI Access Builder integrates your RMI development more tightly and
generates source code for you that supports distribution over RMI:

The RMI Access Builder generates server proxies, one of which you can use in the
client program to access and act as the server bean.

VisualAge for Java tightly integrates the RMI tool into the Workbench, enabling you
to produce an end-to-end distributed solution from within a single development
environment. (The RMI compiler bundled with JDK is run from the command-line,
and isn't integrated into a development environment.)

The RMI Access Builder provides a quick way to turn a local bean into a server bean
by distributing it over RMI.

In this section, we'll review how to use these components to create Java-to-Java sol-
utions.

Use the Create Proxy Bean SmartGuide
Create RMI stubs and skeleton classes
Connect the client-side server proxy to your Java client

Start the server programs

132 VisualAge for Java: Getting Started

Overview of RMI access through proxy beans
The following diagram illustrates a typical RMI scenario:

Client Server

Javm Program & Rernote Dhject Iretance Manager

Cliant-sida)

perver promy Y Server bean
Jevm Progam B

Bl
regisng
Client-alde - ™ Genverade
B LY [T sarver promy

server bean The bean that you would like to distribute and access remotely. Server
bean methods can be invoked by your Java client program, and the server
bean can generate events that are received by the client.

client-side server proxy A local representative of the remote server bean. The remote
method access and event generation capabilities of the client-side server
proxy allow you to treat the proxy as if it were the server bean itself.
Because this proxy performs RMI initialization and the actual remote
method invocation, the other code in your program does not need to deal
with RMI code.

This local proxy can be connected to your Java client program as a non-
visual bean in the Visual Composition Editor, and becomes part of your
applet or application.

Multiple copies of clients from different systems or machines can access
the same server-side server proxy, each in their own instance process.

server-side server proxy A companion class to the client-side server proxy, which
facilitates the communication of the client-side server proxy over RMI. The
server-side server proxy is deployed on the server to access the server
bean, and to relay events and exceptions from the server bean back to the
client-side server proxy. In effect, server events are recreated on the client.

Remote Object Instance Manager A separate, long-running server process that
creates and monitors instances of the server bean through its associated
server-side server proxy. The Remote Object Instance Manager can
manage multiple server bean objects.

You provide the program bean that acts as the server bean. The rest of the code
required to implement a distributed solution is generated by VisualAge for Java.

Chapter 8. Accessing enterprise data 133

The steps to create a distributed solution are:

1. Run the RMI Access Builder against your server bean to create a proxy bean and
associated classes and interfaces.

2. Generate RMI stubs and skeleton classes from the generated proxy bean, classes,
and interfaces.

3. Connect the client-side server proxy to the user interface in the Visual Composition
Editor.

4. Deploy your code and start the RMI registry and the Remote Object Instance
Manager on the server.

Using the Create Proxy Bean SmartGuide
To begin the process of distributing the server bean, you first need to create a proxy
bean:

¢ In the Workbench, select a class that you want to distribute over RMI. This will
become the server bean. The generated classes and interfaces that make up the
proxy bean will be placed in the same package that contains the class to be distrib-
uted.

¢ From the pop-up menu, select Tools, then select Remote
Bean Access and Create Proxy Beans . The SmartGuide now appears.

SmanPh umle - Limale Proeop Hean

Erted o vy bomarn rubines Than s b vvesd i il od (o o] Cimdess v sl soes,
Prosy Bean by [Frs

Basbei 1 dmtben] Olawg) Jaslsbbs bo el ol e SN ey
Clis Mo frees

Fanl 5 P [psr S a0 boage
Proseck s e R
Package JFedliargs

I Irkuts inbesribs] rasiuads i s it inislce:
FF Comate PO s s shosbotion, o geveistiad allstsy
=

¢ In the Proxy Bean Name field, specify the name of the proxy bean. This name is
assigned to the client-side server proxy, and serves as a prefix in the names of the
other generated classes and interfaces.

¢ In the Class Name field, the server bean name is already filled in.

134 visualAge for Java: Getting Started

e Select the Include inherited methods in the proxy interface checkbox if you
want the client to have access to the inherited methods of the server bean.

¢ Select the Create RMI stub and skeleton for generated classes checkbox if you
want the SmartGuide to produce RMI stubs and skeletons automatically, using the
generated classes and interfaces of the proxy bean as input. A stub/skeleton pair
of classes is generated for the generated server-side server proxy. An additional
pair is generated for the client-side server proxy if the client-side server proxy
needs to regenerate events on behalf of the server bean.

¢ Select the Instantiate server object checkbox if you want to start the RMI registry
and the Remote Object Instance Manager. The Remote Object Instance Manager
instantiates the server bean through its associated server-side server proxy imme-
diately after the proxies are generated. This is handy if you want to test the remote
access connections during development, rather than waiting to test after deploy-
ment.

¢ Select Finish .

The generated classes and interfaces now appear in the Workbench package.

r i i
+ i3 hnllﬂnﬂuﬁ:
Il S-DmIIIF:
+ I3 5:--.1:1?.{

Notice that a remote communication icon is beside some of the class and interface
names, providing you with a visual reminder that these objects were generated by the
RMI Access Builder. The bottom two classes were generated by the RMI compiler (dis-
cussed below). The name of each generated class or interface shares a common root,
as specified in the Proxy Bean Name field of the SmartGuide.

In the example above, the generated code includes:

e Serverl is the client-side server proxy. This is the main class that implements the
proxy bean.

e ServerlBeaninfo contains information on the client-side server proxy bean inter-
face, enabling you to view and edit the bean features (properties, events, methods)
from the BeanlInfo page for the class.

e Serverllfis the server-side server proxy's RMI interface, which defines which
server bean public methods are accessible through the client-side server proxy.

e ServerlS is the server-side server proxy.

e ServerlS_Skel is the RMI skeleton class that is generated by the RMI compiler,
using the server-side server proxy as input.

Chapter 8. Accessing enterprise data 135

e ServerlS_Stub is the RMI stub class that is generated by the RMI compiler, using
the server-side server proxy as input.

Creating RMI stubs and skeleton classes
In the Create Proxy Bean SmartGuide, if you had selected the Create RMI stub and
skeleton for generated classes checkbox, the RMI stub and skeleton code would
have already been generated for you. The stub and skeleton code facilitates communi-
cation. Whether you choose to generate this code manually or automatically (via the
SmartGuide), this is a two-step process:

1. Generating the server proxy and its associated classes and interfaces

2. Generating RMI source and compiled output
You may choose to generate your access classes in two steps if you prefer to use your
own RMI source. VisualAge for Java integrates an RMI compiler in the Workbench
(compatible with the JDK 1.1 RMI compiler), so even this two-step process is easy:

1. In the Workbench, select the class that represents the server-side server proxy.

2. From the pop-up menu, select Tools, then select Remote Method Invocation and
Generate Proxies .

3. If your server bean generates events, you'll need to repeat steps 1 and 2 on the
client-side server proxy.

The RMI compiler processes the proxy, generating Java stubs and skeleton code. The
new classes are placed in the same package as the proxy classes.

Connecting the client-side server proxy
Now that you've created the proxy bean and its supporting classes and interfaces,
you're ready to add the proxy bean (specifically, the client-side server proxy) to your
application interface.

Follow these steps in the Workbench:
1. Select the class in the package that represents the user interface, and from the

pop-up menu, select Open To and then Visual Composition

2. In the Visual Composition Editor, select Add Bean from the Options pull-down
menu.

3. In the Add Bean dialog, click on Browse beside the Class Name field.

4. In the Choose a valid class secondary window, select the client-side server proxy
and select OK.

5. On the free-form surface, move the cursor to an area outside the visual section
and click mouse button 1. The client-side server proxy is now visually represented.

6. Connect the proxy bean to the interface as required. As seen in previous sections
that demonstrate connections, the features of the proxy bean can be accessed.

136 VisualAge for Java: Getting Started

7. Set proxy bean properties as required.

Now that you've developed all your code, let's discuss some test considerations.

Starting the server
Before you test your code in the Workbench, you need to:

1. Start the RMI registry

2. Start the Remote Object Instance Manager

The RMI registry

The RMI registry is a server-side program that allows clients to get a reference to the
server-side server proxy, through which the server bean is accessed. Registry entries
are URL-based. Once a server-side server proxy is registered on the server, clients can
remotely reference the server-side server proxy by name and remotely invoke its
methods.

The Integrated Development Environment lets you specify RMI registry startup and
processing status. To see the RMI options that are set in your development
environment:

¢ Select the Options menu item from the Workspace pull-down and go to the RMI
page.

bmamanca fopiet| Buhue| Haip| Tad Edting| Coier P |

| Siwhg

ot Mershar —

" Ciafandl post rrsbar
| A7 Custean pard rasnban |
| P Cioanired

| A procszms e ol cumnlly unnng.

Restor P Processes_ | ¥ |
Detas
Tha datis ot vel b crucd e s R -
[=] coout |

Chapter 8. Accessing enterprise data 137

These options let you:
e Indicate if the RMI registry will be started when the Integrated Development Envi-
ronment is started.
e Specify a port number

e Start and stop RMI processes during development

The Remote Object Instance Manager
The Remote Object Instance Manager is a server program that creates and manages
instances of server beans and server-side server proxies.

You can manage the instantiation and removal of server objects through the Remote
Object Instance Manager console.

o Feemale Dbpsol Inetend s Mensdge

Hanager “Ya Font Haelp

Heiver Bl st

Chipacks rapisierad i Bl P g ki o o © okrfa ol pan ;]
Haymber of abjects netaniabed = 1
T i o o T i e 1

" o

B i LEW &

Foavecrba 00 bt et g I ot e iniia e =
RODAGIE Thes R abiect R samples Sever] 5 has bhessn netaniiaied

&) e

The Server Statistics pane displays information on the status of calls made to the
server objects and the number of instantiated objects. The Server Logs pane displays
status messages and the names of objects that have been instantiated. Use the menu
options to instantiate or remove server objects.

The RMI registry must be started before the Remote Object Instance Manager can be
started.

Starting the server programs

Recall that the Create Proxy Bean SmartGuide includes a checkbox labeled Instantiate
server object which, when selected, automatically starts both the RMI registry and the
Remote Object Instance Manager immediately after the creation of the proxy bean and
its associated classes and interfaces.

138 VisualAge for Java: Getting Started

If you didn't select the checkbox, you must start them manually:

¢ In the Workbench, select the class representing the server-side server proxy.

e From the pop-up menu, select Tools, then Remote Bean Access and Instantiate
Bean in Server . The RMI registry and Remote Object Instance Manager are
started, and instances of the server bean are created.

Summary

With the VisualAge for Java RMI Access Builder, developing distributed, Java-to-Java,
client-server code is simple. The RMI Access Builder generates proxies, beans, and
RMI access code in an integrated environment. You just need to supply the server
bean that will be distributed, and VisualAge for Java takes over from there.

C++ Access Builder
With the VisualAge for Java C++ Access Builder, you can access your C++ DLLs from
your Java applets and applications.
The advantages of accessing your C++ code from a Java client program include:
e You don't need to rewrite your C++ code in Java. Leverage your existing C++
libraries for quicker Java development.

¢ You can port a C++ application in steps, instead of all at once. This is vital if you
have some sensitive or critical C++ code that can't be quickly ported, yet you still
need to provide flexible Java access fast.

¢ You can code features that are not currently available in the Java language.

e Speed. A constant (and sometimes unfair!) complaint about Java is that what you
gain in portability you lose in performance; platform-independent bytecodes can't
run as fast as optimized native binary code. Some C++ applications, particularly
server applications, need to run fast. Write performance-sensitive parts of your
program in C++, and still take advantage of Java's flexibility and ease-of-use.

In this section, we'll review the high-level steps required to access C++ code from Java:

¢ Generating the C++ wrapper and stub beans
¢ Working with the generated makefile
¢ Importing the stub beans into the IDE

¢ Distributing and connecting the stub beans

Generating the C++ wrapper and stub beans
The C++ Access Builder creates a bridge between Java and C++ by creating:

e A C++ wrapper for each accessible class in your C++ DLL

¢ A JavaBeans stub class that corresponds to each C++ wrapper

Chapter 8. Accessing enterprise data 139

¢ A makefile that you can use to compile both the generated C++ source and Java

source
L ™
Jove Frogrosr
............ i INENENEEE] *| .
i mewe J o |
ol e e
E Co# Access |
Cev Wruppers Bolder -
£+ Taxe Tmplemestefon
AN "y

To construct the C++ wrapper, you need to provide two essential pieces of information
to the C++ Access Builder:

e A base name, used to specify the name of the shared library and other files used
to build the library

e Header files, which contain definitions of all the C++ classes you wish to access
from Java. For example:

class Rect: public Shape
{
public:
Rect(double width, double length);
virtual double area();
private:
double _width;
double _length;
}s

This header file is used as input in the example below.

The name of the generated DLL is not required. In fact, the DLL doesn't even need to
exist; the generated makefile (discussed later) includes commands to create the DLL
based on the header file information.

You can also optionally provide the following information:

¢ A Java package name for the stub beans (recommended if the stub beans will be
imported into the Integrated Development Environment)

140 VisualAge for Java: Getting Started

C++ preprocessor and compiler commands to process the supplied header files
A target directory
C++ source files used to generate the DLL you want to wrap

Shared libraries to link with the DLL

Unlike the other Enterprise Access Builders, the C++ Access Builder is run from the
command line. The ivj2cpp command invokes the C++ Access Builder from the
command line. Enter ivj2cpp -h on the command line to see the tool options. Here's an
example of invoking the C++ Access Builder:

ivj2cpp myLib Rect.hpp -p myServerApp -c "icc /Pd"
-s Rect.cpp -d c:\output

where

ivji2cpp invokes the C++ Access Builder
mylLib is the base name

Rect.hpp is the header file

myServerApp is the name of the package

"icc /Pd" invokes the VisualAge for C++ compiler and preprocessor to pre-
process myClass.hpp. The /Pd preprocessor option redirects output to
stdout.

Rect.cpp is the C++ source file used to generate the DLL. The source file
is specified in the generated makefile.

"c:\output" is the directory where the generated C++ wrappers and stub
beans will be placed

In this example, the C++ Access Builder generates the following files:

Rect.java
RectWrapper.cpp
Makefile
myLib.mk

The generated bean includes declarations for the native methods, as well as a static
load of the required C++ library.

Chapter 8. Accessing enterprise data 141

/*

* This file was generated by the IVJ2CPP tool.
* DO NOT EDIT THIS FILE.

*/

package myServerApp;

import COM.ibm.ivj.eab.j2cpp.*;
public class Rect extends Shape {

private native double area p();
public double area() {
return area p();

1
static {
System.loadLibrary("myLib");

}
/*

* End of file generated by the IVJ2CPP tool.
*/

Notice that only the declarations for the C++ methods are included here. The defi-
nitions, of course, appear in the C++ DLL. The loadLibrary method call specifies the
DLL base name as a parameter.

The generated C++ wrapper code uses the Java Native Interface (JNI) to communicate
with the stub beans.

Working with the generated makefile
The C++ Access Builder also generates a makefile that includes commands to:

e Compile the generated C++ wrappers with the specified C++ preprocessor and
compiler commands. The default compiler used is the IBM VisualAge for C++ com-
piler, although you can also use the Microsoft Visual C++ tools.

e Compile the generated stub beans using the javac compiler provided with the JDK.
If you subsequently import the beans into the Integrated Development Environment
(as we'll demonstrate), this compilation is not necessary; we've already seen that
the IDE compiles your source for you.

e Create a new DLL that combines the original library with the generated code.
Of course, you are not obligated to use the makefile as is. You can modify it or incorpo-
rate parts of it into existing makefiles. You will need a makefile processing tool, like the

VisualAge for C++ NMAKE tool, to process the makefile, or you can manually enter the
compile and link commands.

142 visualAge for Java: Getting Started

Using the C++ Access Builder is this simple. Now you're ready to integrate the stub
bean with your Java client. But first, let's go through a brief discussion of deployment
scenarios.

Local and remote access scenarios
Do you plan to access the C++ DLL from a Java applet or application? Do you want to
minimize the requirements on the client machine or download time? You can't download
a DLL at the same time that you're viewing an applet on a web page. And because of
applet security restrictions, a web page applet cannot access a DLL that doesn't reside
on your local machine.

Two common scenarios for accessing the DLL include the local and remote scenarios:

Local scenario

Imagine a scenario where end-users access an application through a common,
platform-independent front-end (written in Java), and some of the business logic is
written in C++ for performance benefits or because you want to leverage your existing
C++ code base. The Java client application and C++ DLL both reside on the local
machine.

However, perhaps you don't want to trouble end-users with installing this code locally.
Each operating system would require a different flavor of the DLL. You'd prefer to let
the user access your code across the web, requiring only a web browser.

Remote scenario

To avoid the applet security restrictions, you can distribute the stub bean in a two-tiered
model. The stub bean and C++ DLL reside on the server, connected to the client
through a proxy bean that accesses the remote stub bean using RMI services. The stub
bean becomes the distributed server bean.

Note that if the stub bean references non-primitive objects, you need to create a serial-
ized interface for the stub bean. In this case, you will distribute the serialized interface
in the two-tiered model, not the stub bean.

With the C++ code and run-time code on the server, you don't need to worry about
accommodating multiple platforms; the downloadable client code is all Java.

Using the RMI Access Builder discussed in “RMI Access Builder” on page 132, the
VisualAge for Java suite of tools lets you quickly put together this remote access sce-
nario.

Importing the beans into the IDE
After creating the Java-C++ bridge (stub bean and C++ wrapper), you're ready to import
the bean into the Integrated Development Environment for use with the rest of your
Java program. The following steps show you how you would bring it all together:

¢ In the Workbench, create a new project or select the project that contains the Java
client.

Chapter 8. Accessing enterprise data 143

From the File pull-down menu, select Import . Within the Import Type SmartGuide,
specify the name of the class source (.java) you'd like to import. The C++ Access
Builder creates a Java package specification to contain the stub class. When the
stub source file is imported, the package is automatically created. If you had to
create a serialized interface for the stub bean, you must import that class as well.

Of course, when you imported the classes into the IDE as working editions, open edi-
tions of the classes were compiled and saved in the repository.

Distributing and connecting the stub bean
Now that the stub bean (or serialized interface) is in the Integrated Development Envi-
ronment, we can distribute it for remote access. Follow the same set of tasks as out-
lined in the previous section on RMI:

Select the stub bean (or serialized interface), and from the pop-up menu, select
Tools.

Select Create Proxy Beans to open the SmartGuide for the RMI Access Builder
and fill in the fields, ensuring that the stub bean (or serialized interface) is specified
in the Class Name field. RMI source classes are generated.

Use the RMI compiler (also from the Tools menu) to generate the RMI stubs and
skeletons.

To wire a bean into the client interface, go to the Workbench:

1.

Select the class in the package that represents the user interface, and from the
pop-up menu, select Open To and then Visual Composition

In the Visual Composition Editor, select Add Bean from the Options pull-down
menu.

3. In the Add Bean dialog, click on Browse beside the Class Name field.

In the Choose a valid class secondary window, select the client-side server proxy
(created in the steps above on RMI) and select OK.

On the free-form surface, move the cursor to a nonvisual bean area and click
mouse button 1. The client-side server proxy of the stub bean is now visually
represented.

Connect the proxy bean to the interface as required. As seen in previous sections
that demonstrate connections, the features of the stub bean (or serialized interface)
can be accessed.

That's it! By following these steps, you'll be able to create Java programs that leverage
your existing C++ code.

144 visualAge for Java: Getting Started

Chapter 9. More information about VisualAge for Java

This Getting Started document is only a brief overview of what you can do with
VisualAge for Java. For more complete information, see the complete set of online help
that is available from the Help menu of any window in VisualAge for Java.

This online help is organized into three categories, all of which are directly accessible
both from the home page of the Help and from any of the content pages:

e Concepts - definitions and overall grounding in the concepts you need to know to
use VisualAge for Java

¢ References - operational details and other kinds of reference information organ-
ized to make it easy for you to retrieve what you need

¢ Tasks - how to perform tasks: step-by-step guidelines for accomplishing specific
goals

Printing material

You can print any topic in the help for VisualAge for Java. To print a topic:

1. Display the help topic you want to print.

2. Select the content frame (the bottom-right frame) by clicking mouse button 1 on the
frame.

3. Select Print Frame from the File menu.

© Copyright IBM Corp. 1997 145

146 VisualAge for Java: Getting Started

Index

A

adding beans to the free-form surface 14
aligning beans 15, 60
applet
creating 11
applications
running 50
arranging connections 76

B

BeanlInfo classes 105
BeanInfo page 105, 107
creating a new property 107
beans 5, 104
adding to free-form surface 44
aligning 15, 16, 42, 60
BeanlInfo classes 105
Buttons 15
changing properties 62
changing text 14
color portability 65
colors 63
connecting 17, 65
connecting buttons 47
copying 59
deleting 59
deselecting 58
displaying pop-up menus 12
distributing evenly 61
dragging 12
features 104
file dialogs 45
font portability 65
fonts 64
Labels 14
Lists 14
manipulating 57
matching dimensions 61
matching width 16
moving 58
multiple selection 58
Properties window 62
saving 17, 20
selecting 57

© Copyright IBM Corp. 1997

beans (continued)
selecting more than one 12
setting properties 26
sizing 15, 60
testing 20
Text 14
beans palette 5, 14
Breakpoints 93, 101
Breakpoints window 102
browsing 97
classes 99
interfaces 99
methods 100
packages 98
projects 97
browsing connections 75

C

C++ Access Builder 139
connecting the stub bean 144
distributing the stub bean 144
generating stub beans 139
generating the C++ wrapper 139
importing beans into the IDE 143
local access scenario 143
remote access scenario 143

working with the generated makefile 142

changing bean properties 62
changing the color of a bean 63
changing the default printer 90
changing the font of a bean 64
changing the text of a bean 14
CICS Access Builder 127

connecting the CICS access beans 131
Create COMMAREA Bean SmartGuide 129

overview 128
Unit of Work bean 131

classes 1
browsing 99
creating 33

comparing editions 86

connections 5, 17, 27
arranging 76
changing endpoints 76
changing properties 72

147

connections (continued)
deleting 74
event-to-method 17, 67
event-to-script 69
hiding 75
parameter connections 69
parameter-from-property 17
parameters 72
property-to-property 66
reordering 75
showing 75
To-Do File program 47
Console 91
copying beans 59
correcting mistakes 17
Create Class SmartGuide 33
creating a new class 33
creating a new edition 82
creating methods 27, 35
customizing the workspace 112

D

Data Access Builder 117
connecting to your own GUl 126
customized SQL statements 122
customizing the schema mapping 121
distributing and deploying the GUI 127
generating data access beans 123
generating the schema mapping 119
stored procedure calls 122
thin-client model 118
using the generated GUI 125
Debugger 92
Debugger window 102
debugging 100
removing breakpoints 101
setting breakpoints 101
using the Debugger window 102
deleting beans 59
deleting connections 74
deselecting beans 58
distributing beans evenly 61

E

editions 2, 24
managing 79

Enterprise Access Builders xiii, 117
C++ Access Builder 139

148 VisualAge for Java: Getting Started

Enterprise Access Builders (continued)
CICS Access Builder 127
Data Access Builder 117
RMI Access Builder 132
events 5
examples in the repository 87
exporting code 3

F

features 104
file dialog beans 45
file input and output 31
finding program elements 23
free-form surface 5

adding beans 44

H

hiding connections 75

importing code 3

installation 9

interfaces 1
browsing 99

J

JavaBeans 5, 104
JDBC 117

L

Log 91

M

managing editions 79
comparing editions 86
creating a new edition 82
examining examples 87
exploring the repository 85
returning to a previous edition 85
versioning 81

manipulating beans 57

matching bean dimensions 61

methods 1,5

methods (continued)
browsing 100
creating 27, 35
moving beans 58
moving between windows 90

N

navigating 90

O

online help 145
open editions 80
Options window 112

P

package
creating 11
packages 1
browsing 98
primary selection 58
printing
changing the default printer 90
material from the online help 145
printing program elements 89
program elements 1, 2

browsing 97
printing 89
searching 94
projects 1
browsing 97
creating 11
properties 5, 26, 62
enable 27

Properties window for beans 62
proxy bean 134

Quick Start 10

R

rapid application development 1
readToDoFile method 49

redo 17

removing breakpoints 101

reordering connections 75

repository 2, 79

Repository Explorer 85, 92

returning to a previous edition 85

RMI Access Builder 132
connecting the client-side server proxy 136
Create Proxy Bean SmartGuide 134
creating RMI stubs 136
creating skeleton classes 136
overview 133
Remote Object Instance Manager 138
RMI registry 137
starting the server programs 138

running applications 50

S

samples
adding state checking 23, 25
Beanlinfo version of To-Do File program 107
in the repository 87
To-Do File program 31
behavior 31
creating a new class 33
steps to create 32
To-Do List applet 9, 13
To-Do List counter 81
saving 20, 30
saving the workspace 21
saving your work 17
schema mapping
customizing 121
generating 119
Scrapbook 41, 91
searching 94
Search window 94
Workspace menu 96
selecting beans 57
selecting beans from the beans palette 14
selection handles 57
setting breakpoints 101
setting options 112
setting properties 26
showing connections 75
sizing beans 15, 60
SmartGuides 1
Create Applet 11
Create Class 33
Create COMMAREA Bean 129
Create Method or Constructor 27

Index

149

SmartGuides (continued)
Create Proxy Bean 134
Data Access Builder 119
Method Properties 35
Versioning Selected Items 24, 55
source of a connection 5
starting VisualAge for Java 9
state checking 23
saving and testing 30
status area 5

T

target of a connection 5

testing 20, 30, 41, 50

To-Do File program
adding buttons 42
adding file dialog beans 45
adding the ToDoFile class 44
Beaninfo version 107
behavior 31, 32
connecting beans 47
connecting buttons 51
creating a new class 33
creating a skeleton class 33
disposing of the file dialog 48, 52
invoking readToDoFile 49
invoking writeToDoFile 53
readToDoFile method 35
saving 55
showing the file dialog 48, 52
testing 50, 55
ToDoFile class 33
using the Scrapbook 41
writeToDoFile method 38

To-Do List applet 9

To-Do List counter 81

tool bar
Visual Composition Editor 5
Workbench 3

U

undo 17

V

version control 2
versioned editions 80

150 VisualAge for Java: Getting Started

versioning editions 24, 81
Visual Composition Editor 5

adding beans to the free-form surface 44

aligning beans 15, 60
bean colors 63
bean fonts 64
changing bean properties 62
connecting beans 65
connection parameters 72
connection properties 72
copying beans 59
deleting beans 59
deselecting beans 58
detailed description 57
distributing beans evenly 61
event-to-method connections 67
event-to-script connections 69
manipulating beans 57
manipulating connections 74
matching bean dimensions 61
moving beans 58
multiple selection 58
opening 25
parameter connections 69
portability of colors and fonts 65
Properties window 62
property-to-property connections 66
saving your work 17
selecting beans 57
sizing beans 15, 60

VisualAge for C++ 142

W

where to find more information 145
windows

Breakpoints 93, 102

Console 91

Debugger 92, 102

Log 91

Options 112

Quick Start 10

Repository Explorer 85, 92

Scrapbook 41, 91

Search 94

Workbench 10
Workbench 3, 10

finding program elements 23
workspace 2, 79

saving 21

Part Number: 4304086

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

4304086

