
SG24-2157-00

San Francisco Concepts & Facilities

February 1998

International Technical Support Organization

San Francisco Concepts & Facilities

February 1998

SG24-2157-00

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special Notices” on page 115.

First Edition (February 1998)

This edition applies to the IBM San Francisco Business Process Components Version 1 Release 1 Modification 0
(V1R1M0).

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Contents

Figures . vii

Preface . ix
The Team That Wrote This Redbook . x
Comments Welcome . xiii

Chapter 1. Introduction to San Francisco . 1
1.1 How This Book Is Organized . 1
1.2 The Evolution of Automated Business Management Systems 1

1.2.1 Client/Server Architecture . 2
1.2.2 Object-Oriented Programming . 2
1.2.3 Commercial Frameworks . 3

1.3 The San Francisco Frameworks . 5
1.3.1 San Francisco Frameworks: Value Proposition 5
1.3.2 The Future of San Francisco . 6

1.4 Conclusion . 7

Chapter 2. San Francisco Architectural Approach 9
2.1 San Francisco Layers and Levels of Abstraction 9

2.1.1 Foundation Layer . 10
2.1.2 Common Business Objects (CBOs) Layer 12
2.1.3 Core Business Processes Layer . 14
2.1.4 Commercial Applications (Business Domain) 15

2.2 Platform Independence . 16
2.2.1 Operating System Independence . 16
2.2.2 Data Store Independence . 20

Chapter 3. San Francisco Foundation . 23
3.1 Purpose of the Foundation Layer . 23
3.2 Foundation Classes . 23

3.2.1 Entity . 24
3.2.2 Handle . 26
3.2.3 Persistence . 26
3.2.4 Ownership . 28
3.2.5 Locking and Commitment Control . 29
3.2.6 Dependent . 30
3.2.7 The Base Factory . 31
3.2.8 Command . 31
3.2.9 Collections . 31
3.2.10 Query . 32
3.2.11 Notification . 33
3.2.12 Security . 34
3.2.13 Naming . 34

3.3 Foundation Library Classes . 35
3.3.1 The DDecimal Class . 35
3.3.2 The DTime Class . 35
3.3.3 Locale Support . 35

3.4 The San Francisco Programming Model . 37

Chapter 4. San Francisco Common Business Objects (CBOs) 39
4.1 Introduction to Common Business Objects 39

Contents iii

4.2 Using Common Business Objects . 40
4.3 Common Business Object Categories . 41

4.3.1 General Business Objects . 42
4.3.2 Financial Business Objects . 46
4.3.3 Generalized Mechanisms . 47

Chapter 5. San Francisco Core Business Processes 49
5.1 What Are Core Business Processes? . 49
5.2 Using Core Business Processes . 50
5.3 Core Business Process: San Francisco General Ledger 50

5.3.1 General Ledger Overview . 51
5.4 General Ledger Framework Categories . 53

Chapter 6. San Francisco Patterns . 55
6.1 What is a Pattern? . 55
6.2 Why Use Patterns? . 56
6.3 San Francisco Patterns . 56

6.3.1 Factory Class Replacement . 56
6.3.2 Commands . 57
6.3.3 Property Container . 58
6.3.4 Policy . 59
6.3.5 Controller . 60
6.3.6 Keys and Keyables . 61
6.3.7 Cached Balances . 62
6.3.8 Extensible Item . 63

Chapter 7. San Francisco Utilities . 65
7.1 Configuration and Server Management Configuration 65

7.1.1 The Logical San Francisco Network . 65
7.1.2 The Server Management Configuration Console 68
7.1.3 Container Configuration . 69
7.1.4 Configuring Entities to Containers . 71

7.2 Security Configuration . 72
7.3 Conflict Control . 75
7.4 Print Utility . 75
7.5 Schema Mapping Tool . 77

Chapter 8. San Francisco Application Development Methodology 81
8.1 Representing Business Domains in San Francisco 81
8.2 San Francisco Development Approach . 82

8.2.1 San Francisco Application Development Team 83
8.2.2 San Francisco Development Cycle . 83

8.3 The San Francisco Roadmap . 84
8.3.1 Collect and Document Requirements 84
8.3.2 Perform Analysis . 85
8.3.3 Perform Design . 86
8.3.4 Coding and Testing . 87

8.4 Building the San Francisco Framework Based Application 87
8.4.1 Including New Function . 87
8.4.2 Extending San Francisco Framework Classes 87

8.5 Integration with Legacy Applications . 90
8.5.1 Schema Mapping . 91

8.6 Plans of Transition to San Francisco . 92

Chapter 9. San Francisco Open Tools Strategy 93

iv San Francisco Concepts & Facilities

9.1 Foundation . 93
9.2 Vision of San Francisco Tools End Game 94
9.3 San Francisco V1R1 Available Tools . 96

9.3.1 Rational Rose . 97
9.3.2 San Francisco Code Generator . 97
9.3.3 IDE and Version Control in San Francisco 98

Chapter 10. Developing Applications on Top of San Francisco 99
10.1 Applications and Applets . 100
10.2 Client Programming with San Francisco 102

10.2.1 Transaction Model . 102
10.2.2 Processes and Threads . 103
10.2.3 Creating and Deleting Entities . 104
10.2.4 User Aliases . 104
10.2.5 Accessing Entities . 104
10.2.6 Collection Element Access . 105
10.2.7 Updating Entities . 105
10.2.8 Notification Service . 105

10.3 The San Francisco User Interface Style Guide 106
10.3.1 The Standard Frame . 106

10.4 The San Francisco User Interface Framework 108
10.4.1 Basic Concepts . 109
10.4.2 Views . 109
10.4.3 Frames . 110
10.4.4 Forms . 110
10.4.5 Maintainers . 112
10.4.6 Client Area Controls . 112

Appendix A. Special Notices . 115

Appendix B. Related Publications . 117
B.1 International Technical Support Organization Publications 117
B.2 Redbooks on CD-ROMs . 117
B.3 Other Publications . 117

How to Get ITSO Redbooks . 119
How IBM Employees Can Get ITSO Redbooks 119
How Customers Can Get ITSO Redbooks . 120
IBM Redbook Order Form . 121

Index . 123

ITSO Redbook Evaluation . 125

Contents v

vi San Francisco Concepts & Facilities

Figures

1. Evolution of Business Management Systems 2
2. Difference Between Class Library and Framework Repository 4
3. San Francisco: The Outlook . 7
4. Overview of the San Francisco Architecture 10
5. San Francisco Foundation Layer: The Control Tower 11
6. CBO: A Categorization . 12
7. An Example of CBO: A Company Hierarchy 13
8. Core Business Processes Examples . 15
9. Operating System Support in San Francisco 16

10. Running a Java Application . 17
11. Remote Method Invocation . 18
12. The Foundation Classes . 24
13. San Francisco Persistence: Several Options 27
14. Optimistic Lock Scenario . 29
15. San Francisco Dependent Classes . 30
16. San Francisco Entity Collections . 32
17. San Francisco Query Commands . 33
18. San Francisco Notification Mechanisms 34
19. Common Business Object Categories . 42
20. A Logical San Francisco Network . 66
21. Processes and Services in an LSFN . 68
22. The Server Management Configuration Console 69
23. Container Configuration . 70
24. San Francisco Containers . 71
25. Container Class Configuration . 72
26. The Security and User Configuration Windows 73
27. The Access Right Administration Window 74
28. The Conflict Control Administration Utility 75
29. The Document Designer . 76
30. The Print Formatter . 77
31. Schema Mapping . 78
32. The Schema Mapping Tool . 79
33. Development Cycle of San Francisco . 84
34. Framework Extension using Class Replacement 89
35. Extending Frameworks through Properties 90
36. Techniques to Integrate Legacy Applications 91
37. San Francisco Tools Vision . 95
38. The Client Role Defined by the Programming Model 99
39. San Francisco Client using Middle Tier 101
40. Application Architecture . 102
41. Notification Mechanisms . 106
42. An Example of the Standard Frame and its Controls 107
43. The User Interface Architecture . 109
44. Reusing a Form . 111

Figures vii

viii San Francisco Concepts & Facilities

Preface

This book provides an overview of the IBM San Francisco Business Process
Components and their benefits. It introduces San Francisco, its major
components, key concepts, and considerations. It also provides an overview of
application development using San Francisco.

The intended audience for this book is people with business knowledge as well
as people with an information technology background. The book is not intended
to be a technical reference; the San Francisco documentation provides the
information you need to develop an application.

The book guides you through San Francisco in the following manner:

Introduces the San Francisco approach to an application
Explains the San Francisco value proposition
Describes the layers of the San Francisco components and concepts
Introduces the design patterns used for implementing San Francisco
Discusses the utilities which are part of the San Francisco Base
Gives an overview of application development with San Francisco
Explains the methodology that is introduced by the San Francisco Roadmap
Points out the issues to consider when planning to move to San Francisco
Discusses the tools that are needed to develop with San Francisco

San Francisco requires knowledge of object-oriented technology and Java
programming. This book also assumes familiarity with these base concepts.
The bibliography points you to reference works that can help you acquire the
necessary skills in these areas.

As an executive or manager, you should read the following sections:

Chapter 1, “Introduction to San Francisco” on page 1
Chapter 2, “San Francisco Architectural Approach” on page 9
Introduction to each of the subsequent chapters

As a domain expert or business analyst, you should read the following sections:

Chapter 1, “Introduction to San Francisco” on page 1
Chapter 8, “San Francisco Application Development Methodology” on
page 81.
Chapter 5, “San Francisco Core Business Processes” on page 49
Introduction to each of the other chapters

As a technical developer, you will find most of the book helpful.

Preface ix

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Rochester Center.

Srinath Abi navam is a Consultant working for Fast, an
IBM Business Partner in New York. He has more than 4
years of experience in the I/T technology industry. His
areas of expertise include object-oriented technology,
mainly focusing on C + + and Obsydian programming.
He holds a degree in Electronic Engineering from the
Bharathiar University and a diploma of Systems
Management from the NIIT, India.

Amit Buch has worked as a Scientist in the Indian Space
Research Organization (ISRO) in India for 10 years.
Currently, he is a Consultant working for Fast, an IBM
Business Partner in New York. His areas of interest
include object-oriented analysis and design for complex
systems, knowledge-based systems, and artificial neural
networks. He holds a master's degree in Physics from
the University of Saurashtra, India.

Eric Cattoir is a Support Engineer for San Francisco. He
joined IBM Belgium in 1994, where his major task was to
get IBM Business Partners up to speed modernizing their
application suite. In this job, he got a lot of experience in
C/S development, AS/400 connectivity, OO technology,
and mentoring. In his current job, he is responsible for
educating software developers on San Francisco. He
holds an engineering degree in Electronics from the
University of Ghent, Belgium.

Michele Chilanti is a Support Engineer for San Francisco.
He has 8 years of experience in the AS/400 field. He
holds a degree in Electrical Engineering. His areas of
expertise include application development, database, and
object-oriented programming. In his current job, he is
responsible for educating software developers on San
Francisco.

Sherif El-Rafei is an Object-Oriented Technical Consultant
and Mentor at IBM Middle East's Arabic Competence
Center (ACC) in Cairo. He joined ACC in 1984 as an
Application Designer. He has worked for 3 years in IBM
Toronto Lab as an Architect, and has been involved with
standards organizations (ISO, X/Open, and Unicode). His
current interests are OO modeling, frameworks, and
architectures. He also conducts OO mentoring and
education at IBM's education center in La Hulpe. He
holds a BSC in Electronics from Cairo University.

x San Francisco Concepts & Facilities

Thanks to the following people for their invaluable contributions to this project:

William F. Berg
Java Development, Rochester Lab

Curtis H. Brobst
San Francisco Base Development, Rochester Lab

James E. Carey
San Francisco CBOs and Core Business Process Development, Rochester Lab

Brent A. Carlson
San Francisco CBOs and Core Business Process Development, Stockholm Lab

Mary K. Dangler
San Francisco course developer/instructor, Partners in Development, Rochester Lab

Chuck S. Gauthier
San Francisco Tools Development, Rochester Lab

Scott A. Gerard
Persistent Object Management, Rochester Lab

Greg A. Hoffa
Object-Oriented Technology, Rochester Lab

Alan Krause is an Application Consultant working for
Management Technology Group, an IBM Business Partner
in Denver, Colorado. He has 28 years of I/T experience
and has specialized on the AS/400 system in the areas of
application design and development, performance tuning,
and CA/400. Most recently, he has designed and
developed AS/400 client/server applications using Visual
Basic, PowerBuilder, and Java. He has also developed
and presented many classes and workshops on the
AS/400 system and other PC programming subjects.

Werner Müller is an I/T Specialist in IBM Austria. He has
more than 10 years of experience in application
development on the IBM System/36 and the AS/400
system. He has 5 years of experience in developing
object-oriented applications in a client/server
environment as well as framework development. His
special area of interest is GUI development. He holds a
degree in Informatics from the Technical University of
Vienna, Austria.

Fernando Zuliani is an AS/400 Certified I/T Specialist in
the ITSO Rochester. He has more then 10 years of
experience in the I/T field. He has worked at IBM for 9
years. His areas of expertise include OS/400,
client/server programming, VisualAge Generator,
application development, and performance. In his
current job, he is the ITSO Project Leader for San
Francisco. He holds a master's degree in Mathematics
from the University of São Paulo, Brazil.

Preface xi

Tim C. Hung
San Francisco Project Support, Rochester Lab

Katie A. Imming
San Francisco Project Support, Rochester Lab

Michael N. Jacobs
San Francisco Tools Development, Rochester Lab

Günther Kalod
San Francisco User Interface Development, APDC Vienna, Austria

Teresa C. Kan
Java Object Transaction Services and Schema Mapping, Rochester Lab

Thomas C. Lindner
I/T Specialist, ADCC Vienna, Austria

Victoria J. Mathews
San Francisco Consumability Team Leader, Rochester Lab

Mike D. McKeehan
San Francisco Base Development, Rochester Lab

Paul B. Monday
Java Beans for San Francisco Development, Rochester Lab

John J. Palof
San Francisco Tools Development, Rochester Lab

Mark A. Pasch
San Francisco Performance, Rochester Lab

LindaMay R. Patterson
San Francisco course developer/instructor, Partners in Development, Rochester Lab

Dianne E. Richards
San Francisco Base Development, Rochester Lab

Paula H. Richards
Java and San Francisco Application Development, Partners in Development, Rochester Lab

Brad S. Rubin, PhD.
San Francisco Lead Architect, Rochester Lab

Jeff M. Ryan
San Francisco Base Development, Rochester Lab

Clark A. Scholten
San Francisco course developer/instructor, Partners in Development, Rochester Lab

John R. Stoeckel
AS/400 Java Development, Rochester Lab

Toni Taliaferro
San Francisco Information Development, Rochester Lab

xii San Francisco Concepts & Facilities

Jay D. Toogood
San Francisco Tools Development, Rochester Lab

Albert Unterfrauner
Product Development, APDC Vienna, Austria

Robert G. Waite
San Francisco Information Development, Rochester Lab

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

Fax the evaluation form found in “ITSO Redbook Evaluation” on page 125 to
the fax number shown on the form.

Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

Send us a note at the following address:

redbook@vnet.ibm.com

Preface xiii

xiv San Francisco Concepts & Facilities

Chapter 1. Introduction to San Francisco

This chapter provides a context for understanding the value of San Francisco.
Section 1.1, “How This Book Is Organized” explains the structure of this book.
Section 1.2, “The Evolution of Automated Business Management Systems”
identifies the information technology trends that have influenced the San
Francisco product. Then section 1.3, “The San Francisco Frameworks” on
page 5 gives a high-level introduction to San Francisco and demonstrates the
value of the product.

1.1 How This Book Is Organized
This book is an introduction to San Francisco and, therefore, is suitable for a
broad audience. Information technology specialists, business domain experts,
and technical leads of application development teams will all benefit from
reading this book by becoming familiar with the aspects of San Francisco that
are relevant to their activities. We have structured this book as follows:

Chapter 1, “Introduction to San Francisco” positions San Francisco as an
asset in your application development strategy.

Chapter 2, “San Francisco Architectural Approach” on page 9 gives an
overview of the architecture and content of San Francisco.

Chapter 3, “San Francisco Foundation” on page 23, Chapter 4, “San
Francisco Common Business Objects (CBOs)” on page 39, and Chapter 5,
“San Francisco Core Business Processes” on page 49 deal with each of the
layers of the architecture in more detail.

Chapter 6, “San Francisco Patterns” on page 55 introduces the important
concept of design patterns and shows how these are utilized and applied by
San Francisco.

Chapter 7, “San Francisco Utilities” on page 65 gives some guidelines on
available utilities that you can use while developing applications based on
San Francisco.

Chapter 8, “San Francisco Application Development Methodology” on
page 81 explains what methodologies are recommended for application
development with San Francisco.

Chapter 9, “San Francisco Open Tools Strategy” on page 93 establishes a
San Francisco Open Tools Strategy, and highlights some of the tools already
available.

Chapter 10, “Developing Applications on Top of San Francisco” on page 99
discusses the considerations you need to address to develop an application
based on San Francisco.

1.2 The Evolution of Automated Business Management Systems
Business management systems have been in use for nearly three decades.
Many existing business management systems have problems in dealing with
today's rapidly changing business environment, especially when it comes to
integrating changes in the business processes and modernizing the development
environment. In addition, traditional business management systems tend to be

Chapter 1. Introduction to San Francisco 1

highly platform specific. The following technology trends have influenced and
complicated this evolution further.

Figure 1. Evolution of Business Management Systems

1.2.1 Client/Server Architecture
Large enterprises employing an array of such systems felt a strong need to
migrate to a more flexible computing architecture that grants broader autonomy
to the end users. This led to the client/server (C/S) computing model, which
enables multiple users (clients) to connect to a single server or cluster of
servers through a communications network. This architecture leverages the
ability of the servers to ensure data and transaction integrity and at the same
time grants a high degree of autonomy to the clients. In exchange for their
increased flexibility, these systems turned out to be tightly coupled to the
underlying operating system and to its hardware resources. Recent versions of
client/server systems employ object-oriented (OO) technology to encourage
reusability and to lower the cost of maintenance.

1.2.2 Object-Oriented Programming
Object-oriented systems have gained tremendous industry focus, and
consequently, investment. The main difference between traditional systems
design and the object-oriented approach can be summarized as follows.
Traditionally, systems are designed top-down (analysis, then design, then
implementation). A rather rigid barrier separates data from processes.
Business entities are represented by one or more relational database tables.
Processes are implemented by more or less modular programs that reference
the relational tables.

This approach presents some problems and can be unsuitable for the increased
complexity and volatility of today's business environments. For example:

Top-down methodology implies that little or no prototyping is possible.
Users will experience the system when coding has been completed.
Implementing changes for this environment is costly.

Changes to business processes are hard to implement. Changing the data
representation may impact applications in multiple places. Changing and
testing the programs effected is often a complex task.

2 San Francisco Concepts & Facilities

According to the object-oriented approach, the system models reality as closely
as possible. The model is made up of a set of objects that contain data and
behaviors. These behaviors are operations that can be performed on the data.
Objects are meant to represent the business entities that are involved in a
specific business domain. A business process is represented by a series of
interactions among the various objects. The key concept of object-orientation is
the concept of class. A class is a template for creating objects of the same kind,
such as customers, bank accounts, or employees. When an application needs to
create a new customer, it refers to the customer class and creates one by
specifying the characteristics of the new customer.

The power of classes resides in the fact that they can be easily extended by
using a mechanism called inheritance. New classes can be derived by
extending existing ones. The new classes inherit all the characteristics of the
old ones and are changed to include additional behaviors and data. If the
business requires a more complex type of customer, you can capitalize on the
simpler existing customer class and create a new, specialized class that
incorporates new characteristics.

This approach encourages a cyclic approach to developing systems based on
step-wise refinement. Simpler aspects are implemented first, and more complex
features can be added later on. This approach is suitable for prototyping.
Objects can be provided with a subset of their data and behavior and can still
interact to demonstrate the validity of the underlying analysis and design. It is
even possible to keep refining the draft model with the help of the end users
until requirements are fully met.

As objects encapsulate behaviors and data in a single unit, changes to the
business model translate into localized changes to the object model. In most
cases, even the interaction among objects resides in specific objects, further
enforcing the concept of isolation of changes. The dangerous "ripple effect"
across the entire system is much less likely to happen.

Object-oriented technology has encouraged software providers to offer sets of
reusable classes that address specific programming issues. Most readers are
probably familiar with the concept of graphical user interface class libraries.
Most vendors of application development tools integrate such a class library in
their development environment. These libraries contain a set of components
that can be directly reused, combined, or extended to create graphical
interfaces.

1.2.3 Commercial Frameworks
After reviewing various business management systems, it became clear that
there are a significant group of capabilities which are common within a
particular application domain. These capabilities support the core business
activities (processes) performed by any business within this domain.

For instance, you can expect that the degree of overlap among various
implementations of General Ledger as they are available on the market can
reach a significant amount of the business processes. Therefore, building an
application from scratch means that a large percentage of the total investment
goes into building components that implement standard procedures rather than
into creating functions that represent added value.

Chapter 1. Introduction to San Francisco 3

These considerations led to the idea of commercial application frameworks,
which are a set of classes representing business entities that cooperate to
implement core business processes. The availability of object-oriented
frameworks allows developers of business management systems to rely on a
base of existing business processes and business objects. Developers can,
therefore, concentrate their efforts on the aspects that are going to differentiate
their final implementation from others in the marketplace.

Frameworks are profoundly different from class libraries.

Figure 2. Difference Between Class Library and Framework Repository

As Figure 2 shows, frameworks includes a dynamic aspect that is totally absent
in class libraries. In class libraries, the only relationships that you need to be
aware of are static relationships. For example, when using a GUI class library,
you need to know that a pull-down menu inherits from a more general menu
class and that a window may contain a pull-down menu and multiple push
buttons.

In a framework, classes are also tied together by static relationships just the
same as a class library, but the classes are also connected so that they embody
a process. A framework contains some application logic that ties the various
classes together.

Here is a simple example. A General Ledger framework can provide you with a
Bank Account class which you can use to represent bank accounts that your
business deals with (internal or external). In this case, the framework already
includes the logic that is needed to transform a bank account transaction into the
appropriate entries of your General Ledger journals. One of the reusable
aspects of such a framework is the Bank Account class, but another important
reusable aspect of the framework is the process of creating a bank movement
and the way it affects the General Ledger journals. Understanding the dynamic
aspects of a framework is essential if you want to be able to take advantage of it.

4 San Francisco Concepts & Facilities

1.3 The San Francisco Frameworks
San Francisco provides flexible application business frameworks that reduce the
complexity, expense, and time-to-market for Independent Software Vendors
(ISVs) to build customized multi-platform systems. Using San Francisco, ISVs
can produce robust solutions built on top of high-level reusable business
frameworks that are Internet-enabled, scalable, and deployable on multiple
client/server platforms.

1.3.1 San Francisco Frameworks: Value Proposition
The brief historical perspective we have outlined in the previous sections
illustrates the rationale that pushed IBM to invest in the San Francisco project.
Software providers and the information technology industry in general have
expressed the following needs:

The ability to build applications starting from tested and robust components.
Application development is moving toward using componentry, which plays a
key role in lowering cost and improving quality.

Platform independence

Distributed and networked computing

An established architecture for application development

IBM is convinced that commercial frameworks (and in particular, San Francisco
Business Process Components) provide the answer to this demand.

The San Francisco value propositions are:

A proven and tested OO technology base to enable transition to Java
technology.

Reusable common application elements to shorten development cycles

Lower application development costs for software developers

Faster development for multiple deployment platforms

Redirected focus of software developers on business or domain problems
instead of programming and technology infrastructure problems.

From an application provider's perspective, San Francisco provides the
advantage of making available reusable common business processes that have
been implemented in a robust and extensible way. Therefore, developers can
concentrate their resources in creating those functions that represent a
competitive advantage in the marketplace. San Francisco aims to save about
40% of the overall effort it takes to build an application from scratch.

Platform independence and portability are achieved by the fact that San
Francisco is almost 100 percent pure Java. Therefore, it can be supported by a
wide range of platforms.

San Francisco also allows business objects to be distributed across a network.
The participating systems must be connected through TCP/IP and can run any
operating system that San Francisco supports, even in a heterogeneous
configuration of multiple platforms in the same network.

San Francisco is structured using a layered architecture that shields developers
from the technical implementation of the system. Issues such as distributed

Chapter 1. Introduction to San Francisco 5

computing, platform independence, interaction among distributed objects, and
transaction integrity are transparent to developers.

The book Design Patterns, Gamma et al. points out that frameworks form the
architecture of your applications. This means that a framework tries not to
minimize constraints as far as the functional content of an application built on
top of it. The framework shows how software providers are supposed to
customize it and complete it into a full-fledged application. However, a few rules
lower the risk and the cost of integrating different applications. San Francisco
provides more than just a set of architectural recommendations in this area. It
also includes a series of classes that implement design patterns, which provide
an architected way to resolve recurring programming issues. In addition, San
Francisco clearly defines extension points, which are the classes that software
vendors primarily modify, extend, or replace to plug their needed functionality
into the frameworks.

From the standpoint of the end users, San Francisco presents a solid
technological foundation and a sound design process. Frameworks are also
structured in a way that makes it a straight forward process to integrate
applications that come from different software providers. Software vendors,
especially in the marketplace of small and medium business solutions, tend to
excel in specific business domains. Integrating the best of breed of the various
domains is a complex and failure-prone process. As we stated, San Francisco
intends to lower the efforts and the risks involved in integrating different
applications, which gives the customer the opportunity to choose from various
software vendors.

1.3.2 The Future of San Francisco
San Francisco is not only about technology. It is also about commercial
computing. San Francisco delivers server code that can run on a variety of
platforms. San Francisco has delivered a beta version of GUI frameworks aimed
at enabling vendors to create user interfaces with a consistent look and feel.
Software developers are free to choose other GUI technology to interface with
San Francisco business processes and objects.

San Francisco will be rolled out in stages and will keep growing as new
frameworks are created by IBM or by Business Partners and ISVs.

Common Business Objects (CBOs) provide the most common business entities
(Company, Currency, Business Partner, Natural and Fiscal Calendar, and so on)
and some generalized mechanisms that apply to business needs.

San Francisco is available, together with the General Ledger Core Business
Process on the Windows NT and AIX platforms. In the near future, we should
see an Order Management Core Business Process, a Warehouse Management
Core Business Process, and a Ledger Core Business Process (AP/AR). All these
Core Business Processes will be available on current platforms and the AS/400.

Figure 3 on page 7 shows an outlook of the multi-layer architecture of San
Francisco.

6 San Francisco Concepts & Facilities

Figure 3. San Francisco: The Outlook

Like any programming language, Java has its idiosyncrasies that can translate
to poor performance if you are not aware of them. San Francisco development
is dedicated to ensuring that Java performance, and thus San Francisco
performance is a top priority.

1.4 Conclusion
San Francisco gives you a set of advantages in moving toward a well-structured
object-oriented application development environment. It provides you with
assets at the business domain level, at the technological level, and at the level
of physically implementing your applications. To benefit from San Francisco, you
need to be aware of its architecture, of its contents and of the methodology to be
applied when using it. The rest of the book explains each of these topics in
more detail.

Chapter 1. Introduction to San Francisco 7

8 San Francisco Concepts & Facilities

Chapter 2. San Francisco Architectural Approach

The purpose of this chapter is to explain the San Francisco architecture and how
the frameworks provided by San Francisco let software vendors focus on their
specific domain areas while taking care of the core concepts and technological
issues. San Francisco is a layered architecture that shields developers from the
details of the technical implementation of functions such as distributed
computing or transaction integrity.

Using San Francisco, software providers can reallocate their resources to the
aspects of their business that differentiate their product in the marketplace. San
Francisco addresses not only the technological aspects of modern application
development, it also provides the foundation for creating new applications for a
specific industry segment.

It is important to become familiar with the San Francisco architecture to
understand the advantages of using San Francisco. This chapter introduces the
San Francisco architecture showing its layers and levels of abstraction. It
contains the following sections:

Section 2.1, “San Francisco Layers and Levels of Abstraction” describes, at
a high level, the San Francisco layers. For each layer, there is a chapter in
this book describing it in more detail.

Section 2.2, “Platform Independence” on page 16 highlights some of the
platform-independent aspects of San Francisco.

2.1 San Francisco Layers and Levels of Abstraction
San Francisco is a multi-layer, shareable, and flexible framework-based system
for development of platform-independent, distributed, and object-oriented
software solution using both published as well as specialized design patterns.
The complete San Francisco system is comprised of three integrated layers:

Foundation

Common Business Objects (CBOs)

Core Business Processes (also known as "Towers")

San Francisco provides a complete technology wrapper for a real-time
platform-independent distributed business system. The conceptual San
Francisco architecture is illustrated in Figure 4 on page 10.

Chapter 2. San Francisco Architectural Approach 9

Figure 4. Overview of the San Francisco Architecture

2.1.1 Foundation Layer
Foundation Highlights...

It is the distributed computing infrastructure for San Francisco
underpinnings of San Francisco's middleware.

It masks technologies from applications by providing common
cross-platform, cross-application functions for application development
and deployment.

It includes APIs for distributed computing services such as security and
transactions.

It provides consistent behavior and common methods for administration
of applications.

It is the basis for managing distributable objects in San Francisco

It promotes an architecture where a distinct object's role exists in the
client/server paradigm:

− Separation of user-interface from business logic
− Isolation from the underlying mechanisms for persistence
− Separation of command and selection logic from business data and

user interface.
− Distribution of business processing to allow for optimum performance

The Foundation layer is the core technological layer of San Francisco, and
provides the fundamental services such as distributed object creation,
synchronization, persistence, and a consistent application development model.
It encapsulates the technological aspects of cross-platform distributed object
management and provides an easy-to-use API (Application Programming
Interface). It also includes core functionality to support security, distributed

10 San Francisco Concepts & Facilities

transaction processing, and forms a middleware between a client application
and server.

The Foundation provides you with the distributed architecture through its set of
Foundation classes. Using those Foundation classes provides a means to set up
a distributed application. Because the Foundation masks the technology
differences between different platforms, it supports reaching true portability and
multi-platform environments. The Foundation also provides classes that form an
interface to the different object services.

By using the Foundation and complying with the San Francisco programming
model, you can implement several OO paradigms.

Note: Refer to reference 5 on page 117 in B.3, “Other Publications” on
page 117 for detailed information about “Distributed OO paradigms.”

The Foundation allows you to divide processing between several systems, which
gives you a control of the performance and scalability of your application.

For further details on the Foundation layer, refer to Chapter 3, “San Francisco
Foundation” on page 23.

2.1.1.1 Foundation: The Control Tower
Figure 5 shows the Foundation as the control tower of San Francisco; most of
your requests are accepted and routed by the Foundation layer. The Foundation
is your interface to the different services. It deals with the persistent data stores
and makes it easy to switch between different methods of persistence without
having to recode your application or modify your business objects. Changes are
made through the configuration data, which can be updated at run time.

The Foundation layer is also the interface to the Factory mechanism that plays
an important role in managing distributed objects. We discuss the Factory in
more detail in Chapter 3, “San Francisco Foundation” on page 23, but
remember that all object maintenance (create, delete, copy, and so on) must be
done through the Factory.

Figure 5. San Francisco Foundation Layer: The Control Tower

Chapter 2. San Francisco Architectural Approach 11

2.1.2 Common Business Objects (CBOs) Layer
CBO Highlights...

Contains functions and objects commonly needed across business
domains:

− It represents a variety of constructs common to most business
environments

− The Core Business Processes use CBO classes extensively
− It includes classes of various complexity

Interfaces to the financial Core Business Processes:

− Posts to General Ledger

Common Business Objects (CBOs) is built on top of the Foundation layer. This
layer, together with the Foundation and Utilities, form the Base as shown in
Figure 4 on page 10. The Common Business Objects layer consists of objects
that perform functions commonly needed across business domains. They fall
into one of the three categories described in Section 2.1.2.1, “CBO: A
Categorization.”

2.1.2.1 CBO: A Categorization
Figure 6 shows a categorization of Common Business Objects providing a
means of thinking about them.

Figure 6. CBO: A Categorization

General Business Objects: These categories include classes that most
commercial applications have to deal with such as a Business Partner
(Customer), Address, Currency, and so on. You can also see that the Company
class is reported here. A Company has special importance in San Francisco.
Usually other business objects belong to a Company object.

12 San Francisco Concepts & Facilities

Using the Common Business Objects ensures that San Francisco-based
applications from different vendors can cooperate. Examples of CBOs include
Company, Currency and Address.

Financial Business Objects: All businesses have to deal with money and
virtually all businesses need to deal with Bank Accounts, Currency Gain/Loss
Accounts, and so on.

Generalized Mechanisms: We have grouped here some mechanisms that are
common to many aspects of business in general. Cached Balances, for
instance, are totals that can be maintained over inventories or other
summarizable containers of information.

2.1.2.2 An Example of CBO: Company
Example: Company

A fundamental class:

− Allows for a hierarchy of Companies
− The Enterprise is the root of the organization
− The Company Controller manages the hierarchy

Most objects in an application will typically belong to the Company

Figure 7. An Example of CBO: A Company Hierarchy

Figure 7 shows an example of a hierarchy of the Company category. The
diagram shows that CBO includes an Enterprise class, which inherits from
Company. Thus, when we say Company, this includes the Enterprise. The only
difference is that the Enterprise is the root of a multi-company organization. It is
also the only Company of a single-company organization. In a multi-company

Chapter 2. San Francisco Architectural Approach 13

organization, the Company Controller keeps track of all of the companies in the
hierarchy and the actual hierarchy is managed by the relationships between the
companies. The Company is meant to represent the organization of the
business that runs the application. Customers and suppliers of this business can
be represented by using the Business Partner class in CBO.

Despite of the simple appearance of this diagram, the Company is a complex
object. The Company class inherits from Describable Dynamic Entity. A
Dynamic Entity is a subclass of Entity that implements the design pattern of the
Property Container. This design pattern is discussed in more detail later in
Chapter 6, “San Francisco Patterns” on page 55. Here it is sufficient to mention
that the Property Container allows applications to extend the attributes and the
behavior of an object by dynamically adding properties to it. This design pattern
allows you to change the characteristics of objects without creating new
subclasses.

The Company allows you to define a wide variety of properties. Actually, the
Company is supposed to contain a relatively large number of properties that San
Francisco applications always refer to during execution. Most of these
properties are Controllers that keep track of key characteristics of the business
such as which currencies are used in the business, what kind of exchange rate
policies are used, and which banks the business deals with. For this reason, we
can affirm that most of the CBOs need the Company to be able to work. It is
virtually impossible to create an application using San Francisco CBOs without
creating an instance of the Company.

2.1.3 Core Business Processes Layer
CBP Highlights...

Core Business Processes contain classes that are particular to a
business domain.

General Ledger (GL) is currently available

In the near future, the Core Business Processes will include:

− Warehouse Management
− Order Management
− Combined Ledger

Core Business Processes is the top layer of San Francisco and provides an
extensible connection mechanism between the basic structural objects (including
CBOs) and fundamental (or default) behavior. This layer is, in other words, a
layer providing generic business processes. The rest of the application provides
for domain or application specific processes (for example, special GL journals,
lead time calculation policies, and so on) is integrated with this layer through the
framework extension mechanisms. For example, San Francisco contains the
General Ledger Core Business Process, which includes the architecture, design,
and default logic to build a General Ledger application. The developer, instead
of building it from scratch, needs only to enhance and extend this layer to build a
customized General Ledger application.

The application domain frameworks contain the processes that are specific for a
certain domain and cannot be used for other domains.

14 San Francisco Concepts & Facilities

See Figure 8 on page 15 for an example of some functions provided by each
Core Business Process. Also refer to Chapter 5, “San Francisco Core Business
Processes” on page 49 for a complete description about the General Ledger
(GL) Core Business Process.

Figure 8. Core Business Processes Examples

In the San Francisco architecture, these Core Business Processes are almost
applications on their own. If you build a user interface on top of the model
included in the application domain business objects, you have a simple
application. It is up to the application programmer to extend this framework
where needed and replace default policies that implement the most common
behavior. It will also be possible to adapt the framework to implement local
regulations or customer requested features. The architects of the San Francisco
project have designed special classes into the frameworks that encapsulate
business logic that is likely to change. These classes are identified in the
documentation as extension points. Extension points typically follow one of the
San Francisco patterns so their use and behavior can be well understood. For
further details on Core Business Processes, refer to Chapter 5, “San Francisco
Core Business Processes” on page 49.

2.1.4 Commercial Applications (Business Domain)
The commercial applications (Business Partner application) is the actual,
real-life application developed using San Francisco-supplied core functionality as
well as user-provided customized functionality.

The software built over the San Francisco layers is created by application
developers. They extend the San Francisco Core Business Processes. In all
cases, commercial applications will be created using Java.

Since San Francisco is a new concept, it is not yet clear how much of the total
effort to create an application will be provided. For now, IBM is suggesting a
conservative 40%. In reality, it will never be possible to measure accurately
since those that use this process to develop applications will do things differently
than they would in a traditional programming environment. As developers
create their own unique applications, they can choose how much of San
Francisco they need or want to use within their solutions.

For further information on the design and development of commercial
applications, refer to Chapter 8, “San Francisco Application Development
Methodology” on page 81.

Chapter 2. San Francisco Architectural Approach 15

2.2 Platform Independence
This section covers the fact that the Java Virtual Machine will insulate San
Francisco from the operating system. There are, however, other additional
things such as the name configuration and the containers, which make it possible
to change, for example, from one server to another or to switch between data
stores. Additionally, we also describe the security model, which isolates the
application from the operating system security.

Platform independence is one of the salient features of San Francisco. By
platform independence, we mean not only portability across different operating
systems, but also independence of used data storage management system and
communication protocols and of physical configurations. This section highlights
some of the platform-independent aspects of San Francisco.

2.2.1 Operating System Independence
Multiple operating system support is one of the primary targets of San Francisco.
Several server and client platforms are supported, or planned to be supported;
see Section 2.2.1.1, “Operating System Support.” This is achieved by providing a
layer of indirection between San Francisco applications and the underlying
operating system (for more details, see Section 2.2.1.2, “Java - Platform and
Communications Independence” on page 17). Additionally, San Francisco
provides some of the high-level services usually provided by the operating
system to further shield the application writer and the administrator from
operating system specifics (for more details, see Section 2.2.1.3, “High-Level
Services in San Francisco” on page 19).

2.2.1.1 Operating System Support
San Francisco is planned to eventually run wherever an appropriate Java Virtual
Machine is provided (see Section 2.2.1.2, “Java - Platform and Communications
Independence” on page 17). Figure 9 illustrates the San Francisco vision.

Figure 9. Operating System Support in San Francisco

16 San Francisco Concepts & Facilities

Currently, Windows NT and AIX are the first server operating systems running
San Francisco as of July 1997. Meanwhile, the AS/400 system is expected to
play a major role as a San Francisco server in the near future.

As far as clients are concerned, the objective is to enable any client providing a
Java run time environment to run San Francisco. The currently available clients
are Windows 95, Windows NT, and Java-enabled Internet browsers.

2.2.1.2 Java - Platform and Communications Independence
The objective of operating system independence has been one of the compelling
reasons for using Java to develop the frameworks. First, we briefly introduce
Java, and then we describe what makes Java a good candidate for developing
platform-independent applications.

Java is a programming environment similar to C+ + but much easier to use. It
has been created by Sun Microsystems and released through the Internet in late
1995 originally for sprucing-up Web pages through applets (“light weight
applications”). Java has been met with an extremely fast adoption rate.

a Definition of Java

“A simple, object-oriented, distributed, interpreted, robust, secure,
architecture neutral, portable, high-performance, multi-threaded, and dynamic
language.”

(Source: The Java Language: A White Paper, by Sun Microsystems,
http://www.javasoft.com/nav/read/whitepapers.html).

Java is an interpreted language suitable for building Web page applets or full
stand-alone applications. Figure 10 illustrates steps taken to run a Java
application.

Figure 10. Running a Java Application

Chapter 2. San Francisco Architectural Approach 17

1. The Java source code is compiled to what is called the common
intermediate code (also known as byte-code). Intermediate code is executed
on a Java Virtual Machine.

2. A Java Virtual Machine (VM) interprets (that is, runs) the Java byte-code. It
provides the services needed to run a program. While doing so, it calls the
necessary operating system services itself, shielding the Java programmer
from the operating system used.

A virtual machine is ported by vendors to operating systems or enabled in
Internet browsers. Once a VM is ported to an operating system or a browser,
Java byte-code can be interpreted there without change.

Java also includes a set of standard features that support distributed computing.
For example, the following features are introduced by successive levels of Java
Development Tool Kits (also known as JDKs):

JDK 1.0 Introduced classes implementing sockets and URLs as part of the
Java.net package.

JDK 1.1 Introduced implementation of Java Database Connectivity (JDBC) and
Remote Method Invocation (RMI).

JDK 1.2 Plans to incorporate a bridge between RMI and CORBA's IIOP
(Internet Inter-Orb Protocol).

The RMI is of special interest for San Francisco as it is used for handling
interactions between client and server objects. More importantly, users of RMI
are shielded from the underlying communication protocol. Figure 11 illustrates
the layered architecture of RMI and how it provides a layer of indirection (that is,
the Remote Reference Layer) between its users and the transport layer
implementing the communication protocol. This enables San Francisco to take
advantage of future technologies without affecting any existing San Francisco
applications.

Figure 11. Remote Method Invocation

In addition to portability, Java also offers many attractive features, some of
which are:

18 San Francisco Concepts & Facilities

Robustness

Pointers are not used in Java language; hence, Java eliminates problems
related to pointer manipulation such as accidental access to another object
in the same address space.

Automatic garbage collection is a feature provided by Java to remove objects
no longer in use, automatically freeing memory occupied by them.

Compiler enforces that exceptions are properly handled in addition to run
time support for exceptions provided by the VM.

Ease of Use

The reduced complexity of Java (for example, simpler syntax, no pointers, no
operator overloading, no templates, and so on) makes the language much
easier to use.

The standard features of the language (for example, automatic garbage
collection) reduces program complexity, and frees programmers to focus on
the solution.

Broad Market Acceptance

Java has witnessed an extremely fast adoption rate since announcement by
Sun in fourth quarter 1995.

Java has gained acceptance as a Web development as well as non-Web
application development language.

Emphasizing this wide acceptance is the numerous Integrated Development
Environments (IDEs) available (about 30 in the fall of 1997 and counting).

2.2.1.3 High-Level Services in San Francisco
San Francisco offers a set of high-level services to both programmers and users.
Some of these services are San Francisco unique (for example, Configuration
Utility), while some are the San Francisco version of operating system services
(for example, Security). These services include:

Security: Allows definition of users and user groups, user profile creation and
maintenance, authority and access rights assignment, and customization of
password rules. It is managed through a graphical user interface, and it
provides a set of APIs for applications to interact with the San Francisco security
model. For more details, see Section 7.2, “Security Configuration” on page 72.

Printing Utility: Enables you to quickly create your report layouts using a
WYSIWYG (What You See Is What You Get) editor. These layouts can be later
used by applications to format business data for printing using a Print Formatter
class in your application. Existing class definitions and actual objects can be
referenced while creating the report layouts to facilitate formatting. This utility
generates reports in PostScript; however, several different print output types will
be supported (for example, Advanced Function Printing - AFP). For more details,
see Section 7.4, “Print Utility” on page 75.

Additional services are also provided by San Francisco; these are covered in
Chapter 7, “San Francisco Utilities” on page 65.

Chapter 2. San Francisco Architectural Approach 19

2.2.2 Data Store Independence
One of the key benefits of San Francisco architecture is data store
independence. This means that San Francisco applications are not only
uncoupled from the storage technique used, but also they are not aware of the
physical location of the data store being used. Thus, the implementers of San
Francisco applications are free to switch to the latest data storage technology,
support multiple storage techniques in the same application, and apply their
applications on a variety of system configurations without even recompiling their
code. These concepts are highlighted in the following paragraphs.

Data in San Francisco is encapsulated within persistent business objects. San
Francisco defines storage pools for its persistent objects called containers.
Containers are named data stores that are configured at run time through the
Configuration utility in the Foundation. There are different types of containers
that are currently supported by San Francisco; these are:

Posix These containers are basically flat (stream) files in Posix directories
such as a Windows directory or an AS/400 IFS directory. Every object
is contained in a separate file. This option is suitable for testing
purposes only and not recommended for production.

ODBC These containers store objects as rows in relational DB tables. DB2
family databases and Oracle are currently supported with an
objective to support other popular RDBMS. There are two
alternatives when defining these containers: either you direct San
Francisco to automatically define the tables needed to store the
persistent objects, or you manually control the definition of these
tables (for example, to integrate with existing legacy databases).
These alternatives are supported by a San Francisco utility called the
Schema Mapper.

The power of San Francisco architecture arises from its layered style. All object
creation, storage, retrieval, and deletion is done through the Foundation. A
special object in the Foundation, called the Base Factory, offers
architecture-neutral interfaces for these services. The Foundation services
provides the definition of a default container for each San Francisco class as part
of the run time configuration. An application need not know anything about
containers. For example, when creating an object, an application may either
request creation in the default container, or in the same container as that of
another object passing in the other object reference. The Base Factory
determines the default container, or the container of the passed-in reference
using the Foundation's Naming services, and handles the specific interactions
appropriate to the type of container used. Thus, the Base Factory encapsulates
all needed functionality of locating and interacting with the different types of
containers.

Once a storage technique is supported by San Francisco, it is readily available
to all existing San Francisco applications. This gives rise to many advantages,
for example:

Existing San Francisco applications can immediately take advantage of new
storage techniques without recompiling.

Multiple storage techniques may be used in the same application enabling
optimum usage of deployment platforms (for example, in a network of AS/400
systems and RS/6000 systems running AIX, an application may concurrently
use DB2 containers on an AIX system and SLS containers, when available,

20 San Francisco Concepts & Facilities

on the AS/400 system). Multiple storage types (containers) per system are
also allowed.

An administrator is free to distribute the containers with regards to the
network configuration without affecting the applications. For example, an
administrator may move a container to a different server for load balancing
(however, special care must be taken for moving the contents of the
container).

Chapter 2. San Francisco Architectural Approach 21

22 San Francisco Concepts & Facilities

Chapter 3. San Francisco Foundation

This chapter describes the contents and the functions of the San Francisco
Foundation layer. This chapter provides an overview, not technical details or
specific programming issues. We recommend you refer to the San Francisco
Programmer's Guide for a comprehensive description of those issues.

This chapter contains the following sections:

Section 3.1, “Purpose of the Foundation Layer” explains the purpose of the
Foundation layer as part of the San Francisco architecture.

Section 3.2, “Foundation Classes” contains a detailed view of the
fundamental Java classes included in the Foundation layer.

Section 3.3, “Foundation Library Classes” on page 35 gives a quick overview
of the Foundation Library Classes contents.

Section 3.4, “The San Francisco Programming Model” on page 37 lists and
briefly explains the San Francisco programming model, which defines a set
of rules programmers should follow to be complaint with a certain standard
or to correctly use certain services.

3.1 Purpose of the Foundation Layer
Object technology raises several formidable challenges when objects move into
a distributed environment. To provide real value to application developers,
platform independence is a primary need. Satisfying this need becomes
mandatory in a distributed world. Once objects are distributed, a program must
be able to refer to instances that do not reside in the same address space as the
program itself. These instances may be created on the same system as the
client program or on some remote system running a different operating system
on a completely different hardware context. Nevertheless, we need to ensure
that the client program can access those objects with total transparency as if
they were created locally. Method calls, parameters, and return values must
flow transparently between the client program and the distributed objects.

Persistence is also a major challenge. We need to create objects that survive
beyond the life of a single application session. Distributed and persistent objects
are then visible by multiple users at the same time. Therefore, the system must
provide mechanisms to lock objects and transaction services to ensure data
consistency. Objects also need to be uniquely identified within the entire
network and users must be able to assign user-defined names to their objects.

Java and the JDK address only a subset of these aspects. The San Francisco
Foundation layer provides the services and the facilities that are needed for
programmers to work with distributed objects.

3.2 Foundation Classes
The Foundation layer includes a series of fundamental Java classes that
represent the root of the inheritance tree for the San Francisco business objects.
Programmers must inherit from these classes if they want to take advantage of
the services that the Foundation provides.

Chapter 3. San Francisco Foundation 23

Figure 12 on page 24 shows the inheritance hierarchy for the most commonly
used Foundation classes.

Figure 12. The Foundation Classes

3.2.1 Entity
Programmers can extend the Entity class whenever they need to create business
objects that are inherently persistent, that can be shared among multiple
processes, and that can participate in a transaction.

Although transient instance of Entity can also be created upon request, in the
vast majority of the cases this class is used to create persistent instances.
Programmers only need to request the creation of an instance to make it
persistent. Programmers can also retrieve existing instances once they have
been created and committed to permanent storage. No additional programming
effort is required to make an instance persistent and, if the logic of the
application requires it, programmers can be totally unaware of the physical data
store that eventually contains the instances.

Once an instance of a persistent business object is instantiated (either created
from scratch or retrieved from the data store), it behaves the same as any
regular Java object. Client programs can call methods on those instances even
if they live in separate address spaces, possibly on a remote system.

In accordance with the San Francisco programming model, you do not create
instances of San Francisco business objects by using the new Java operator. In
order to take advantage of the San Francisco Foundation, the instance you
create does not benefit from the services of the Foundation layer. Whenever you
need to create an instance, use the methods provided by a special San
Francisco object called the Base Factory, which provides a level of indirection for
run time choice between local/remote, server location, etc. The Base Factory is

24 San Francisco Concepts & Facilities

the major mediator between programmers and the services provided by the
Foundation. The role of the Base Factory is described in Section 3.2.7, “The
Base Factory” on page 31. At this point, it is sufficient for you to understand
that programmers need to ask the Base Factory to create a new instance or to
retrieve an existing one.

The Base Factory returns a normal Java reference as a result of the
programmer's request. Once the Java reference is obtained, you can use it as if
you got it from the new operator. You only need to start a transaction before
you request the creation or the retrieval of a persistent business object. You
also need to keep in mind that as soon as the transaction is concluded by a
commit or a rollback operation, the Java reference that you obtained is no
longer usable. If you need to reference the same instance again, reissue the
request to the Base Factory.

Another interesting consideration of the Base Factory is regarding objects
deletion. A major advantage brought by Java to the programmers' community is
automatic garbage collection. Unreferenced Java objects automatically cease to
exist and the storage they occupied is made available for use. This mechanism
in San Francisco only applies to transient instances of business objects.
Persistent instances are not garbage collected. It is up to the applications to
explicitly ask the Base Factory for the deletion of a persistent instance. Also see
Section 3.2.4, “Ownership” on page 28 for more details on this aspect.

More details about this issue are in Section 3.2.8, “Command” on page 31.

3.2.1.1 Home Mode versus Local Mode
At the core of the San Francisco Foundation, we find the mechanisms that
enable objects to be distributed across a network. As we mentioned in Section
3.1, “Purpose of the Foundation Layer” on page 23, one of the requirements of
every distributed object architecture is to enable a client program to create
instances of objects that may live in separate address spaces. These instances
are then used as if they are local to the requester, in total transparency.

The San Francisco Foundation introduces an additional degree of freedom: you
can request to access distributed objects in home mode or in local mode.

When you choose home mode, the San Francisco Foundation dynamically and
automatically creates a proxy object in the address space of the requester. The
proxy looks the same as the real instance; that is, it has the same interface. The
client transparently invokes methods on the proxy and the proxy routes the
method calls to the real instance. This mechanism relies on the Java RMI
(Remote Method Invocation) software layer.

If local mode is chosen, the Foundation returns a copy of the real instance to the
requester program. Depending on the lock mode you selected, the Foundation
may also automatically reflect all changes back onto the real object at commit
time. See Section 3.2.5, “Locking and Commitment Control” on page 29 for
more details on the lock modes.

The choice between home and local mode can be made by the application at run
time or by using the Configuration utility at installation time. This choice does
not impact the programming logic and is administrative. Whether an object is
accessed in home or local mode is totally transparent to programmers. You can
obtain a reference to the instance and then use it as you do with any regular
Java object.

Chapter 3. San Francisco Foundation 25

There is an important performance trade-off that should guide you in choosing
between home and local access mode. Accessing an object through a proxy is
convenient; on the performance side, you must remember that every method call
translates into a remote call and has to penetrate the RMI and TCP/IP stacks.
On the other hand, if an object is accessed in local mode, every method call is
local and, therefore, more efficient. However, in this case, a copy is taken and if
the object encapsulates a large amount of data, that may impact performance.
Home mode is ideal when executing a limited number of method calls on a large
object, whereas local mode works the best when executing a large number of
method calls on a small instance. Refer to Section 3.2.8, “Command” on
page 31 to understand how Commands can also play an important role in tuning
San Francisco applications.

3.2.2 Handle
As we pointed in Section 3.1, “Purpose of the Foundation Layer” on page 23,
persistent and shareable objects can be accessed from outside the process that
has created them. In a distributed environment, persistent objects need to be
accessible to processes that may run on different systems, possibly on different
platforms. Persistent and distributed objects must, therefore, be uniquely
identified in the distributed environment they belong to.

San Francisco automatically generates an object identifier for persistent objects
at instance creation time. This identifier is guaranteed to be unique within the
Logical San Francisco Network, which is the group of systems and processes
encompassed by a certain San Francisco installation.

This unique identifier is then encapsulated into a special object called the
Handle for that persistent object. Only persistent objects (Entities) have a
Handle. Handles are extremely important in a San Francisco application
because they allow objects to store a reference to other persistent objects and
client programs to request the retrieval of existing instances.

If a San Francisco business object has a persistent object among its attributes
(for instance, an invoice having a customer), it only needs to store the Handle to
the contained object.

Handles can also be used to retrieve a persistent instance. The Base Factory
can locate and materialize the instance based on the information contained in
the Handle. This is the preferred way for retrieving instances in San Francisco.
You also have the option of giving persistent objects a name (user alias) and to
retrieve them based on this information. However, this technique should be only
applied to a limited number of top-level objects. Assigning, maintaining, and
using user aliases is not as efficient as using Handles.

3.2.3 Persistence
As we mentioned, San Francisco objects are made persistent automatically and
transparently. Programmers do not have to worry about how and where objects
are written to permanent storage.

San Francisco supports various ways for making persistence happen. You can
store your objects in a relational database or you can choose to store objects in
a Posix data store (stream files in a Windows or Unix directory). On the AS/400
system, San Francisco developers are planning to introduce a rather unique

26 San Francisco Concepts & Facilities

form of persistence, often called single-level store persistence model. In this
section, we provide a quick overview of the various forms of persistence.

It is important for you to understand that choosing the persistence model is a
purely administrative task that can be performed without influencing the
application coding. You can configure your persistent data stores with an
administrative utility, which we briefly discuss in Chapter 7, “San Francisco
Utilities” on page 65. If you later need to modify your choices in terms of
persistent stores, you can do it without modifying a single line of code.

This extremely powerful feature allows you to configure the same application in
completely different ways as far as persistence is concerned. You may install an
application for a small customer who only uses a single database server, and
later you may install the same application at a larger customer's site where
multiple distributed databases are used. In the first case, you may choose to
concentrate all the persistent data on a single database; in the latter case, you
can distribute objects across multiple data stores. All this does not require a
single change to the application code.

Figure 13 shows that persistent objects with San Francisco can be stored in
several different ways, which are referred to as container types.

Figure 13. San Francisco Persistence: Several Options

3.2.3.1 Posix Persistence
If you choose this option, data contained in business objects is written by the
Foundation into stream files. Every instance is contained in a separate stream
file and for every class, a new directory is created.

All the services of the Foundation are supported also with this form of
persistence. A limitation you must be aware of, though, is that only single-phase
commitment control is supported.

However, even though Posix persistence works fine, consider using it only for
demonstration or prototyping purposes. The level of performance, robustness,
and of integration with legacy databases guaranteed by Posix persistence is
probably unsatisfactory for the needs of most application environments.

Chapter 3. San Francisco Foundation 27

3.2.3.2 RDB Persistence
San Francisco makes objects persistent in relational database tables through
OBDC.

At present, San Francisco supports the following database management systems
for persistence purposes:

DB2 for Windows NT
Oracle on Windows NT
DB2 Common Server on AIX

There are two ways you can instruct San Francisco to make objects persistent in
relational tables. You can just turn on ODBC persistence using the Configuration
utility (see Section 7.1.3, “Container Configuration” on page 69) and let the
Foundation create the relational tables for you using the Default Schema
Mapper. In this way, the first time an instance of a certain class is created, San
Francisco creates the corresponding table using a default mapping between the
data types of the attributes and the relational database columns. The default
mapping might not be totally satisfactory if integration with legacy and
performance is essential. For example, every String attribute is mapped to a
variable-length character field, which might not be efficient; in addition, for every
new class, the Foundation generates a separate table.

A second option consists of using the Extended Schema Mapper tool. This tool
allows you to perform a more refined mapping between objects and columns.
The tool allows for instance to map an Invoice Number field to a 10-character,
fixed-length data type in your database and to map the unique object identifier
generated by San Francisco to a user-defined primary key. The Extended
Schema Mapper is, therefore, an essential element for ensuring a good degree
of coexistence between San Francisco and legacy data. We discuss the potential
of the tool in Chapter 7, “San Francisco Utilities” on page 65.

Relational database persistence also allows San Francisco to exploit two-phase
commitment control using the XA/Open standard, allowing objects to be
scattered across multiple database servers.

3.2.4 Ownership
We have mentioned that when a business object contains another object, it
stores the Handle of the contained object as a reference to it. An invoice may
bear a customer Handle among its attributes as a reference to the customer for
which it was issued. It may also store the Handle of a chase letter object if the
customer is not solvent. What happens to the customer and to the chase letter if
the invoice is deleted? You probably expect that the chase letter should be
removed as well since it does not make much sense without the corresponding
invoice. You also expect that the customer will not disappear as a result of
deleting an invoice. This scenario is a good example to illustrate the concept of
Ownership. If an Entity owns another Entity, the life cycle of the owned Entity is
tied to the life cycle of the owner. Whenever the owning object is deleted, the
owned objects are deleted as well. This is the case of the invoice and the chase
letter. The invoice owns the chase letter.

Objects may also be associated by relationships that express pure containment.
In this case, deleting the containing object does not trigger the deletion of the
contained object such as in the invoice-customer relationship.

28 San Francisco Concepts & Facilities

This concept and its consequences to the San Francisco application design are
of extreme importance. The San Francisco programming model (discussed in
Section 3.4, “The San Francisco Programming Model” on page 37) defines,
among other things, the rules you need to follow to establish and manage these
relationships among business objects. It is absolutely imperative that you follow
these rules when you develop San Francisco applications to ensure data
consistency.

3.2.5 Locking and Commitment Control
The discussion about Entities brings about the subject of transaction integrity
and locking support. The San Francisco Foundation is responsible for granting
these services to programmers.

You can obtain different types of locks on persistent objects. Once you obtain a
Read or a Write lock, you can be sure that no one else can modify or, in the
case of a Write lock, no one else can read the object you are working with.
These two types of locks belong to the category of the Pessimistic locks.

Optimistic locks work on the following principle: a copy of the object is taken and
the requesting program works on the copy. At commit time, the changes are
copied back to the original object if no one else has changed it in the meantime.
If the original has changed, the commit operation will fail. This type of locking
technique is based upon a trade-off between maximizing concurrent access and
the risk of experiencing a failure at commit time. While you hold an Optimistic
lock, other users may acquire a Read, Write, or Optimistic lock. Many traditional
applications also work according to this principle.

Figure 14 shows an Optimistic lock scenario.

Figure 14. Optimistic Lock Scenario

Chapter 3. San Francisco Foundation 29

When you acquire an Optimistic Clean lock, you want to access a business
object in a read-only mode, but you also want to make sure that commit
succeeds only if the object for which this lock was granted has not changed
during the transaction. This is the case, for instance, of a stock exchange
transaction. The decision to buy or sell a certain amount of shares depends on
the value of the share. Your application can read the value and the operator can
let the customer know. If the value changes during the transaction, the decision
needs to be reconsidered. This case is a good candidate for the use of
Optimistic Clean locking.

A special type of locking is represented by the NO_LOCK mode. When you
request this level of locking, you receive a read-only copy of the object. The
copy can even be taken outside of transaction boundaries and the Java
reference you receive will survive across multiple transactions. This is the only
case in which you are allowed to acquire a reference to a persistent object
outside of transaction boundaries. NO_LOCK copies can be convenient. For
instance, if you intend to show a list of objects in a GUI listbox from which a user
can make selections, NO_LOCK copies offer an ideal solution since you can
build the list outside of transaction boundaries and reuse it across multiple
transactions.

3.2.6 Dependent
Whenever an object is logically part of something else and it is not meant to be
shared by multiple objects, consider extending the San Francisco Dependent
class in your code. Dependent objects are not inherently persistent. They can
become persistent if they are contained in a business object that is persistent.
They are private to the object that contains them. Dependent objects are not
assigned a Handle and they can only be passed by copy.

Figure 15 shows an example of accessing Dependent objects where client
programs are only allowed to work on transient copies.

Figure 15. San Francisco Dependent Classes

Dependent objects are lighter weight than Entities and, in the right
circumstances, can improve performance. Creating Dependent objects requires
less effort on behalf of the Foundation and, therefore, performance can benefit.
However, if a Dependent object is frequently accessed from outside of the object
that contains it, a copy is taken for every access and performance may
ultimately suffer. This is an indication that the Dependent object needs to be
shared and that you should have preferred an Entity subclass to represent it.

30 San Francisco Concepts & Facilities

3.2.7 The Base Factory
Most of the services offered by the San Francisco Foundation are accessible
through the Base Factory object. You can obtain a reference to the Base Factory
by invoking the Global.factory() method in your code.

The following list is a partial list of services that are accessible through the Base
Factory:

Starting a transaction (Global.factory().begin())

Committing/Rolling back (Global.factory().commit() or rollback())

Creating business objects (for instance, Global.factory().createEntity(...) ,
Global.factory().createDependent(...))

Deleting persistent business objects

Requesting lock levels on business objects

Accessing the notification mechanisms

3.2.8 Command
A special subclass of the Dependent class is the Command class. In San
Francisco, Commands are meant to encapsulate series of actions that are part of
a specific business process. In his book Object-Oriented Software Engineering,
Ivar Jacobson established the need for Command objects to fulfill this role.
There are two good reasons for isolating specific business logic in Command
objects:

1. Reuse of Entity classes is improved by the fact that they are more generic
when used in conjunction with Commands.

2. If business rules change, you can quickly identify which parts of your
application need to be modified.

You can also use Commands to edit attributes of business objects. In this case,
you can also provide undo() and redo() methods to your Commands. Query
Command is a special subclass of Command that is meant to encapsulate a
query request to be executed on a collection of objects. We expand on this
subject in Section 3.2.9, “Collections.”

Commands can play an important role in tuning applications for performance. If
a process involves dealing with multiple Entities and invoking a relatively large
number of methods, both home mode and local mode might turn out to be
unsatisfactory. In these cases, it might be worthwhile creating a Command that
works in the remote address space and that execute the process, accessing the
various Entities locally. San Francisco application performance may vary
dramatically depending on this type of tuning.

3.2.9 Collections
Among the San Francisco Foundation classes, there are a series of Collection
classes that are intended for organizing groups of business objects to fit specific
needs. From a semantic point of view, San Francisco provides:

List Collections They remember the order of insertion and allow duplicate
objects.

Set Collections No duplicates are allowed and no specific order is maintained.

Map Collections Allow objects to be retrieved by a specific key.

Chapter 3. San Francisco Foundation 31

All Collections support the Iterator pattern. Iterators allow scanning the
collection of objects from top to bottom in a way that does not depend on the
internals of the Collection.

In Figure 16, you can see that there are two major families of Collections: those
that own the elements they contain (Entity Owning...) and those that do not. The
Owning Collections can only contain Entities. The other Collections can contain
Entities, Dependents, and Strings. Keys of any type of Map collection can be
Entities, Dependents, or Strings. When you delete an Owning Collection, all the
contained elements are deleted as well.

Figure 16. San Francisco Entity Collections

A special type of Collection is the Entity Owning Extent Collection. It supports
keyed access in a slightly different way than a normal Map Collection. It has
been specifically designed to be associated with a relational database table and,
therefore, is well-positioned for containing a large number of objects.

When you access an object in an Entity Owning Extent, the San Francisco
Foundation can exploit the keyed access mechanisms of the underlying
relational database.

The Entity Owning Extent plays a key role in San Francisco applications when it
comes to managing high volumes of data and to integrating new functions
developed with San Francisco with legacy applications around a common
relational database.

3.2.10 Query
Objects in San Francisco Collections can be queried using an object query
language whose syntax resembles closely the SQL ANSI-92 standard. As a
result of a query on a San Francisco collection, you receive a transient collection
that stores the objects that meet the query criteria.

The query language provided by the Foundation offers some extensions to the
standard SQL language and includes some limitations. You can query objects
comparing the results of method calls with your query selection criteria such as
in the following simple case:

32 San Francisco Concepts & Facilities

Figure 17. San Francisco Query Commands

Figure 17 shows that as a result of this query, the result of the method
getSalary() is compared with 10 000 for all the objects in the collection. Those
objects that satisfy the condition are selected and put into the resulting
collection. It is syntactically allowed to call any type of method. You are not
limited to getter methods. However, the syntax previously shown only allows
methods that return a Java primitive data type such as a number or a string. If
you need to perform more complex comparisons, you can use the Select
Compare object. The Select Compare object is described in detail in the San
Francisco Programmer's Guide and it represents a powerful extension to the
normal SQL syntax.

3.2.11 Notification
The Foundation also offers a notification service. They can generate an event
whenever their state changes or whenever certain conditions are met.

Any Java object can become an observer of these Entities and be notified when
an event belonging to a certain category (Interest) occurs. Observers can be
San Francisco Entities or normal Java objects such as user interface
components. In fact, the notification mechanism is primarily applied to develop
graphical interfaces to San Francisco server code.

Two types of notification approaches are supported in San Francisco:

Asynchronous When this approach is chosen, the notification service takes
care of directly notifying the observers by invoking an update()
method they need to implement.

On demand When this approach is chosen, the Foundation posts the event
notifications in a mailbox from which the observer later retrieves
them.

Figure 18 on page 34 illustrates the two different notification mechanisms that
are available in San Francisco. Both mechanisms are based on the relationship
in-between an observable and an observer. The observable is the source of the
notification and needs to be a persistent Entity.

Chapter 3. San Francisco Foundation 33

Figure 18. San Francisco Notification Mechanisms

Objects that want to become observers need to register with the Base Factory,
specifying which observable objects they want to monitor and what their interest
is.

3.2.12 Security
San Francisco allows the creation and the administration of users and
passwords. You can also define your password policy, which establishes rules
about the format and the expiration of passwords. Users and passwords can be
administered with an appropriate utility provided by the Foundation (the User
Administration utility). Once users have been defined, users have to identify
themselves to San Francisco before they can access any application.

Another aspect of security is represented by the definition of secure tasks. You
may want to make certain activities restricted to a subset of users. For instance,
customer maintenance should only be accessed by some individuals in the
marketing department. In this case, you can make customer maintenance a
secure task and authorize only certain users to this task. San Francisco
provides you with a series of APIs that can be used from within the applications
to initiate secure tasks. The User Administration utility allows you to authorize
individual users to the various tasks. You can further restrict the user's
authorization to a secure task to be used only for the objects of one or more
specified companies.

3.2.13 Naming
The Naming service is responsible for some key run time functions of the San
Francisco architecture and insulates application coding from some underlying
technical aspects such as persistent data stores.

There are three main areas where the Naming service plays an important role:

1. Assignment of user aliases and retrieval of objects based on user aliases.

2. Making objects persistent in the data store (container) configured for them.

3. Performing class replacement. When an application requests the creation of
an instance, it uses a class token to indicate the San Francisco class the
instance belongs to. The Naming service can dynamically replace this class

34 San Francisco Concepts & Facilities

name with a different one, defined outside the application by using the
configuration tools. This mechanism ensures that if you want to globally
substitute a class with a different one (typically a subclass), you can do it
without modifying the applications. Suppose you run an application that
uses a Customer class. You might want to integrate with your own
application that uses a subclass of Customer, say MyCustomer. Class
replacement allows you to instruct the Naming to use MyCustomer whenever
Customer is referenced.

The Naming service runs in the Global Name Server, which is discussed in
Chapter 7, “San Francisco Utilities” on page 65.

3.3 Foundation Library Classes
Some commonly used classes are included in a category called the Foundation
Library Classes. This section only gives a quick overview of the content.

3.3.1 The DDecimal Class
Decimal data types are widely used in commercial applications to represent
numerical values. Decimal data types guarantee that the appropriate precision
is preserved in calculations and that is why they are preferred to floating-point
arithmetic.

The San Francisco Foundation includes a DDecimal class that allows you to
represent decimal amounts in your applications. You can represent signed
decimal numbers with an arbitrary precision. This class supports all the
necessary arithmetic operations and, for each of them, it supports various forms
of rounding results (raising, truncating, rounding, and so on).

3.3.2 The DTime Class
DTime objects store a point in time of a Gregorian calendar date (year, month,
and day) and a time in that day (hours, minutes, and seconds). They represent
an actual date and time. When you create a DTime instance, you specify a
precision that allows you to ignore certain portion of the Dtime instance. For
example, if you decide to ignore its minutes, seconds, and milliseconds, you
specify an hour precision. The default is the highest possible precision
(milliseconds). You can perform date and time arithmetic with DTime objects.
For instance, you can determine how many days there are between two dates, or
add a certain time to a date to obtain a new one. For more complex date-related
calculations such as determining the number of working days between two
dates, look at the Natural Calendar class in the Common Business Object layer.

3.3.3 Locale Support
San Francisco has been designed with great consideration for the issues that
relate to internationalizing applications. For this purpose, Locale objects are
used to define a series of parameters that depend on a specific country,
language, or cultural environment. The date format, the time format, the decimal
point format, and the character set are some of the parameters that are locale
dependent.

This information is not kept by the Locale objects, but by the locale sensitive
class. The Locale objects are only used as an identifier of the set of

Chapter 3. San Francisco Foundation 35

culture-dependent parameters. The classes that are locale sensitive also have
the responsibility for implementing the locale-dependent behavior.

San Francisco allows your applications to work with multiple locales. At
application setup time (or through a maintenance procedure), you must create
all the locales that are supported by your application.

Some classes in San Francisco are locale sensitive. Their behavior may change
depending on the locale. In general, these classes implement the Translatable
interface or the Describable interface.

When a class implements Translatable, it has to implement two versions of a
format() method. The first version takes no parameters and returns a formatted
version of the object according to the active locale. The second version takes a
parameter that is a Locale object and returns the object formatted according to
the passed locale. DTime, DDecimal, and DCurrencyValue (CBO layer) are
translatable and can be formatted according to the supported locales.

If a class implements Describable, it has to support some methods that allow
defining and retrieving descriptions in multiple languages. A Product, for
instance, might have as many descriptions associated with it as many languages
are supported by the application. In the San Francisco Foundation, there is
already a subclass of Entity that implements Describable. It is called
Describable Dynamic Entity and can be used to create persistent business
objects that need to support multiple descriptions. Dependent objects can also
be provided with multilingual descriptions by extending the Describable
Dependent class. Most classes in the CBO layer extend either of these two
describable classes. These classes make use of the Descriptive Information
class, which in turns encapsulates and allows you to manage multiple
descriptions.

The San Francisco Foundation also includes a set of classes that allow you to
easily manage the multilingual resources in your applications. For example, the
Locale Resource Controller holds and manages the set of repositories (message
catalogs) where the various locale sensitive messages are stored.

In San Francisco, we have three categories of locale sensitive objects:

Static messages, which are immutable and primarily used to describe error
conditions. They are contained in Static Message Catalogs.

Dynamic messages, which can change over time. They can be used as
Describable Entities and Dependents and are contained in Dynamic Message
Catalogs.

Entities, Dependents and Strings are also locale sensitive

Refer to the San Francisco Programmer's Guide for more details on developing
multilingual applications using these classes.

One of the methods that are defined by Describable is the getDescription()
method. When this method is invoked with no parameters on a Describable
Dynamic Entity, San Francisco will automatically try to retrieve the description
that corresponds to the language indicated by the active locale. This mechanism
enables an application to generically retrieve descriptions; at run time, the active
local could be set appropriately and San Francisco would retrieve the correct
description automatically.

36 San Francisco Concepts & Facilities

3.4 The San Francisco Programming Model
A programming model defines a set of rules programmers should follow in order
to be compliant with a certain standard or to correctly use certain services. San
Francisco defines a programming model which specifies rules that depend on
the role programmers are assigned to:

Developer role: It applies to programmers that need to develop new business
objects or to extend existing classes to create new ones. This programming
model addresses issues such as what methods need to be provided and how
relationships among business objects need to be implemented.

Client role: It applies to programmers who use existing classes and deals with
issues such as creating instances of business objects, starting and concluding
transactions and so on.

The purpose of the San Francisco programming model is to ensure that
programmers make a correct and safe use of the services offered by the
Foundation. In addition, the programming model intends to guarantee a high
degree of structural consistency across applications. For example, whenever
you derive a new subclass of Entity, the programming model wants you to create
a class factory that client programmers will have to use when a new instance
needs to be created. If you are coding a Customer class, you will therefore have
to provide a Customer Factory class with appropriate createCustomer() methods.
These methods will in turn invoke the createEntity() method of the Base
Factory. Client programmers will never invoke the createEntity() method; they
will invoke createCustomer() on the class factory.

Thanks to these rules, the process of creating new instances is highly
standardized across every San Francisco application. In addition, client
programmers will be shielded from the complexity of using the Base Factory and
are provided with a standard way for creating instances of any class.

Understanding the programming models is the first step you need to take before
you start developing with San Francisco. The programming model needs to be
strictly followed and some of the tasks that it entail are highly repetitive. For this
reason, the San Francisco Code Generator (see 9.3.2, “San Francisco Code
Generator” on page 97) is of extremely great help in developing San Francisco
applications, as it automatically generates code that complies with the
programming model.

Chapter 3. San Francisco Foundation 37

38 San Francisco Concepts & Facilities

Chapter 4. San Francisco Common Business Objects (CBOs)

The purpose of this chapter is to introduce the Common Business Objects layer
of San Francisco and to explain the role that the Common Business Objects play
in San Francisco application development. The last section of this chapter is an
overview of the categories of Common Business Objects that are available in
San Francisco.

This chapter contains the following sections:

Section 4.1, “Introduction to Common Business Objects” describes the
concept of a Common Business Object.

Section 4.2, “Using Common Business Objects” on page 40 discusses using
Common Business Objects to develop applications.

Section 4.3, “Common Business Object Categories” on page 41 gives an
overview of the existing Common Business Objects in San Francisco.

4.1 Introduction to Common Business Objects
Common Business Objects (CBOs) are a set of classes organized into groups,
called categories, which perform functions commonly needed within business
applications. These categories are derived from the need for the same function,
or class, in more than one of the frameworks. By placing these categories in the
San Francisco CBO layer and not in an individual framework, they can be used
in several frameworks as well as in applications written directly to the CBO
layer.

The CBOs can be divided into three groups:

Those that contain business objects which are common across business
domains.

Those that contain function used to solve problems common across business
domains.

Those that provide a way for financial status to be affected from outside of
the financial domain.

The first group of CBOs consists of business objects common across business
domains. They are the objects that are needed in many applications. For
example, the Company category contains the Company and Enterprise classes,
which are used to represent the company and/or company hierarchy of the
domain. And the Business Partner category contains the Business Partner
class, which is used to represent those individuals, companies, and/or company
hierarchies that our domain does business with.

The second group of the CBOs consists of function used to solve problems
common across business domains. These functions are provided in a very
flexible form so that they can be used to solve problems within the domain which
are similar. This kind of function is called a pattern, for a more formal definition
of patterns see Chapter 6, “San Francisco Patterns” on page 55. An example of
this kind of pattern is contained in the Cached Balances category. This category
provides function which is the basis for defining, maintaining and manipulating
cached aggregations. A cached aggregation can be anything you add up. For
example when trying to determine the balance of your bank account, you can

Chapter 4. San Francisco Common Business Objects (CBOs) 39

either add up all transactions you have ever had with the bank, or you can keep
(cache) and update (maintain) the balance. In most domains, it is more complex
than this, with each transaction having many criteria over which balances of
single and/or multiple criteria are desired.

The final group of the CBOs provides a way for financial status to be affected
from outside of the financial domain. This is provided as part of the CBOs,
because most domains will have an affect on financial status. For example, if
you sell something, in the simplest case, you must tell the financial domain to
reduce the value of your inventory (by what it cost you) and increase your cash
on hand (by the amount you received). An example of this kind of category is
the Interface to General Ledger category. This category contains classes which
allow you to give financial information to the General Ledger. It allows domains
outside of the General Ledger to tell the General Ledger about financial status
changes without having to know the details of the General Ledger or to know if a
General Ledger is even present.

The Common Business Object layer, by its very nature, will continue to grow as
more classes and function, as defined above, are identified by application and
framework development.

4.2 Using Common Business Objects
CBOs can be used indirectly through the Core Business Processes and used
directly. The way in which the CBOs are used depends on how the application
scenarios map to the Core Business Processes. When an application scenario
maps directly to a Core Business Processes scenario, CBO are used as part of
using that scenario. When a Core Business Processes scenario is extended, it
may require working with CBOs directly to implement the extension. When the
application scenario does not map to any Core Business Processes scenario, the
CBOs will be used directly. Regardless of how the CBOs are used, they provide
an extensive set of classes and function that can be used.

For example, suppose we need to create the part of an application used in an
exchange bureau. The clerk behind the counter needs to be able to enter an
amount in a certain currency, select another currency and calculate the value of
that amount in the new currency. At this time, this scenario is not provided by
any of the Core Business Processes. However, if we look at the CBOs, we
discover that within the Currency category, the functions and classes to
represent the amounts and do the conversion are supplied. Thus the CBOs are
very helpful in implementing the exchange rate calculator.

Common Business Objects, however, are not used like a class library where you
can select a single class and use it in isolation. The CBOs are a framework,
where using a class requires using the class within its collaborative
relationships and understanding its interactions with other classes. In the
example above, a number of collaborating classes from the Currency category
are used to implement the exchange rate calculator.

One aspect of this collaboration is that in order to use a particular category in
the CBOs, setup of another CBO category may be a prerequisite. For example,
some CBOs work closely with the Company category, so the Company category
must be setup prior to using those CBOs.

40 San Francisco Concepts & Facilities

For example, the Currency category contains exchange rates which are
associated with a particular company (contained in the Company category), thus
the Company category must be setup first.

The company is normally one of the key things to setup when using the CBOs.
There are two main reasons for this:

The Company category provides the ability to represent our own
organization and its hierarchy. It allows us to contain specific data about
each of the companies, division and groups of our organization.

Normally it is our organization that owns many of the business objects.
Typically these are the business objects that are not naturally owned by
another business object or are applicable across the entire organization. In
the exchange calculator example above, the different currencies available in
our organization would be owned by the organization, thus the Company
category must be setup prior to defining the available currencies.

Another consideration when using the Common Business Objects is how
different applications which use the CBOs will coexist and interact. For example,
we need to be able to define the organizations we deal with, using the Business
Partner category, and have them used by both our order entry application and
our accounts receivable application. A potential problem could lie in the fact
that each application may need to extend the classes in Business Partner to add
information for their business processes. By using the San Francisco extension
mechanisms with the associated rules to extend CBOs, the extended CBOs are
able to coexist and interact. See the the San Francisco Extension Guide for
these extension mechanisms and the associated rules.

4.3 Common Business Object Categories
The Common Business Objects categories can be divided into three groups:

General Business Objects: This group consists of business objects that are
common across business domains (and the common functions associated with
them).

Financial Business Objects: This group consists of business objects related to
financials that are common across business domains (and the common functions
associated with them), and categories that provide a way for financial status to
be affected from outside the financial domain.

Generalized Mechanisms: This group consists of function used to solve
problems common across many business domains. This function has been
abstracted so that it can be used in many different ways. In many cases it is
provided as a small framework, which is independent of the other CBOs.

Figure 19 on page 42 shows which group the current CBO categories are in.

Chapter 4. San Francisco Common Business Objects (CBOs) 41

Figure 19. Common Business Object Categories

In this section we give an overview of the Common Business Object categories.
However, because most of the categories in the Generalized Mechanisms group
are patterns, they are described in Chapter 6, “San Francisco Patterns” on
page 55. The descriptions are not duplicated in this chapter.

4.3.1 General Business Objects
These are the classes in the General Business Objects category currently
available in the San Francisco Common Business Object layer.

4.3.1.1 Address
This category provides the classes and function for representing and storing
addresses in the framework. The concept of address is used in a very broad
sense and is conceived in a way that it can be extended for specific purposes.
In particular the address represents and stores a specific physical location and
the information for reaching (through many possible means) a business or
individual. This category also covers the concepts of country and area. The
area allows addresses to be classified. An example of area is dividing the USA
into three regions: the East Coast, the West Coast and the Midwest.

4.3.1.2 Business Partner
The Business Partner category provides the classes and function for
representing and working with Business Partners and their hierarchies. A
Business Partner is any individual or organization with which we have a
business relationship. For example, the customer for an order, or the supplier
for a purchase order. This category supports the ability to spread the Business
Partner information across the company hierarchy, having a portion of
information, such as the Business Partner address, shared across all companies
and other portions, such as the credit limit, applicable to only one company.

42 San Francisco Concepts & Facilities

4.3.1.3 Classification
The Classification category supports grouping or classifying things in a dynamic
manner. For example, a classification type can be defined, such as Color and
then the values for that classification can be defined, such as Red, Green, and
Blue. Then by associating a value, Green, with something, it is classified with
respect to that type, Color. This classification is dynamic in the respect that new
types can be defined and the values for a type can be modified. For example, a
new type, Size or a new value, Purple, can be added at any time. In addition,
the different types can be connected into a hierarchy.

Reason Code: Reason codes are used to record the rationale behind creating
certain types of transactions (for example, write-offs). Since this is a form of
classification, this category simply documents that the Classification category,
above, is used for this function.

4.3.1.4 Company
This category provides the classes and function for two important roles:

Organization representation

Owner for unowned objects

The first role is to represent our own organization. It provides a means for
containing information (data) about the different parts of an organization's
hierarchy. The hierarchy consists of both legal and structural portions, which
allows for representation of divisions or departments.

The second role is to own objects that do not have a natural owner. These are
typically the business objects that are used almost everywhere, but for which
another domain object which owns them cannot be found. In some applications
these are the object that are already thought of as being owned by the company.
For example, currencies are used in many business processes, but they do not
have a natural owner, so they are owned by the company. However, addresses
are always owned by another object, such as the business partner they are
associated with, so in this case business partner is the natural owner.

4.3.1.5 Currency
This category supports the definition of currencies and exchange rates, and
working with values associated with a particular currency.

The definition of currencies consists of defining things like the information
necessary for formatting and displaying monetary values in a particular
currency. For example, how many digits are significant.

Exchange rates, which define how to convert from one currency to another, are
supported in a very flexible way in San Francisco. For example:

Exchange rates can be based on dates or on the periods defined in the fiscal
calendar.

Multiple tables of exchange rates can be created and used. For example,
having a special exchange rate table for tax purposes.

The use of exchange rates can be customized with respect to how the tables
are used. For example, to convert from Deutsche Marks to US Dollars,
would the best course of action be to go from Deutsche Marks to French
Francs and then from French Francs to US Dollars?

Chapter 4. San Francisco Common Business Objects (CBOs) 43

This category provides the support for working with a single value associated
with a currency, called a currency value, and it supports working with two
related currency values, called a transaction value. Both support the basic
arithmetic operations, such as add. The transaction value allows an application
to support multiple currencies. It allows the transaction to be recorded both in
the base, system, currency and the prime, transaction, currency. For example, a
French company would have a base currency of French Francs, but when billing
a Germany company they would bill them in Deutsche Marks. This transaction
value captures the amount on the actual bill, what we expect to get in Deutsche
Marks and the equivalent amount in French Francs, and then allows us to
manage our company in French Francs.

4.3.1.6 Fiscal Calendar
This category implements the basic behavior for the fiscal calendar. The fiscal
calendar represents the accounting year and periods of the company. The fiscal
calendar consists of fiscal years, which do not need to correspond to a normal
year. Fiscal years covering parts of two calendar years are common when, for
instance, the business of a company follows a yearly cycle that starts in the fall
and ends in the summer. The fiscal year consists of fiscal periods, which do not
necessarily correspond to months. For example, the fiscal periods may be four
weeks, so that each period is the same length of time. The fiscal periods are
used for recording transactions so that the costs and earnings are assigned the
proper place in time. The fiscal periods are either dated or undated and have a
particular type. The dated periods are used for normal accounting. The undated
periods are opening or closing periods at the start or end of a fiscal year, and
adjustment periods, which are used to make accounting adjustments.

This is similar to the support provided by the Periodized Calendar category
(refer to Section 4.3.1.10, “Periodized Calendar” on page 45), however, the
Periodized Calendar category only supports breaking the calendar into periods.
It would be used in non-financial situations.

4.3.1.7 Initials
The Initials category supports the identification of certain roles of users of the
system. An example is distinguishing supervisors from normal operators in an
order entry system. Supervisors can approve high value orders and can allow a
customer to, temporarily, go over the credit limit. A normal operator does not
have these capabilities.

The Initials category is completely separate from San Francisco security.

4.3.1.8 Natural Calendar
The Natural Calendar category provides the support for defining and working
with the calendar. As part of the definition, it allows information to be
associated with particular days, such as working and non-working status and, for
working status days, the working hours. This allows you to identify holidays as
non-working and to identify a working day having only 3 hours. When working
with the calendar, this information can be taken into account. As well as the
normal calendar functions, it supports functions such as calculating the number
of working days between two dates, and calculating the date which is a number
of working hours from a given date.

44 San Francisco Concepts & Facilities

4.3.1.9 Number Series
The Number Series category provides the support for generating numbers
according to a specific numbering scheme. The support includes deciding where
to start, end, increment, and how to build the generated number. For example,
you could decide to start at 1, end at 203, increment by 3, and have a prefix of
"MyNumber" with the number padded, with zeros, to 3 digits. Thus the number
series would generate "MyNumber001", "MyNumber004", and so on.

The number series category also supports the concept of subseries, which
allows a definition of a group of generated numbers that have the same
characteristics. This is useful when the same characteristics are used from year
to year, but each year we want to start over with the same initial value.

4.3.1.10 Periodized Calendar
This category provides a generic periodized calendar. The periodized calendar
consists of periodized years. The periodized year can be defined with start and
end dates different from a normal year. The periodized year consist of periods.
Periods can be dated or undated and do not necessarily correspond to months.
The periods cannot overlap and, within a periodized year, there cannot be any
gaps between them.

This is similar to the support provided by the Fiscal Calendar category (refer to
Section 4.3.1.6, “Fiscal Calendar” on page 44), however, the Fiscal Calendar
category has the support necessary for financial use and should be used in
those cases.

4.3.1.11 Project
This category supports the definition of project identifiers. These identifiers are
associated with business objects, such as purchase orders, involved with a
particular project so that those objects can then be grouped together to look at
costs and revenue for a particular project.

4.3.1.12 Unit of Measure
This category supports definition of all the quantity related information relevant
to a physical unit. It supports categorizing them by their physical properties and
stores them by the category they are assigned to. In particular, it support
includes:

Defining units of measure. For example case, pallet, or 6-pack

Working with values associated with a unit of measure. For example, 3
cases, 1 pallet, or 23 6-packs.

Conversion between different units. For example, for one product we could
have 1 000 kg of sugar which corresponds to 1 000 packs of 1 kg, and also to
4 pallets.

Combining the quantity unit the transaction is carried out in with a base
quantity unit. For example, our transaction would be carried out in kg of
sugar, but internally we would track pallets of sugar.

Defining the physical properties or dimensions of a concrete object. For
example, the space 1 pack of sugar takes up in a warehouse or truck.

Chapter 4. San Francisco Common Business Objects (CBOs) 45

4.3.2 Financial Business Objects
These are the classes in the Financial Business Objects category currently
available in the San Francisco Common Business Object layer.

4.3.2.1 Bank Accounts
This category provides the ability to define and work with banks and internal and
external bank accounts. The banks are financial institutions you interact with.
The internal bank accounts are your business' accounts at one or more banks,
and the external bank accounts are the accounts of your business partners.

4.3.2.2 Currency Gain/Loss Accounts
This category provides the support for determining what General Ledger account
to use for currency gains and losses. A currency gain, or loss, occurs when
currency is revalued. An example of doing revaluation is when the exchange
rate fluctuates and we have a bank account in a foreign currency. In other
words, if we had a French Franc bank account with a balance of 200 French
Francs, but our business runs in US Dollars, we would have used an earlier
exchange rate to convert the French Francs to US Dollars. If the exchange rate
was 5 French Francs to 1 US Dollar, the balance would be 40 US Dollars. If the
exchange rate changes to 20 French Francs to 1 US Dollar, which translates to a
new balance of 10 US Dollars, that new balance needs to reflect the fact that we
now have 30 US Dollars less in the account. The currency gain/loss accounts
are used to determine what account to use.

This category supports accounts for both realized and unrealized gains and
losses. An unrealized gain or loss is when we do not know what the actual
value is, but we know that the exchange rate has changed and we want to reflect
that change. For example, if we are owed something in a currency other than
our base currency and we want to know how much it is worth now. A realized
gain or loss is when we know what the actual value is currency.

4.3.2.3 Financial Batches
This category provides the ability to process a group of financial items together.
Which items get grouped together is up to the application. For example, all work
by an individual, or all work for a particular session can be collected together.
The use of Financial Batches is optional.

4.3.2.4 Financial Integration
This category provides the support for mapping from a particular domain to the
General Ledger. In most businesses, whatever you do has an affect on the
financial status of your business. It is critical that other applications be able to
easily notify the General Ledger of changes to financial status. However, most
applications do not deal with items that have a one to one mapping into the
General Ledger. For example, within the warehouse we deal with products and
stock types, but the General Ledger views them as accounts. Getting from
products and stock types to the correct account is difficult to do.

What the Financial Integration category provides is a way of setting up the
mapping in such a way that someone in the application (or domain) causing the
financial status change can deal with the things they are familiar without having
to know the details of the General Ledger. In addition, the knowledge of the
mapping is centralized, so that the mapping expertise can be applied more
effectively.

46 San Francisco Concepts & Facilities

This category supports many mappings. Any number of domains can use it to
map to the General Ledger. The application provider can determine to what
extent the mapping are shared, if at all.

4.3.2.5 Interface to General Ledger
This category provides the clearly defined interfaces into the General Ledger. In
most businesses, whatever you do has an affect on the financial status of your
business. It is critical that other applications be able to easily notify the General
Ledger of changes to financial status. The interfaces defined by this category
are provided as part of CBOs, because they need to be available even when a
General Ledger is not. By using these interfaces in a well defined way, an
application providing information to the General Ledger does not need to know
any details about the General Ledger or even if a General Ledger is present.

When complex mapping is required to determine the correct account to use in
the General Ledger, the Financial Integration category (refer to Section 4.3.2.4,
“Financial Integration” on page 46) should be used.

4.3.3 Generalized Mechanisms
These are the classes in the Generalized Mechanisms category currently
available in the San Francisco Common Business Object layer.

4.3.3.1 Cached Balances
Refer to Section 6.3.7, “Cached Balances” on page 62.

4.3.3.2 Extensible Item
Refer to Section 6.3.8, “Extensible Item” on page 63.

4.3.3.3 Keys
Refer to Section 6.3.6, “Keys and Keyables” on page 61.

4.3.3.4 Validation Results
This category provides support for reporting back results of validation logic. It
provides the ability to collect validation results together, allowing validation
failures to be collected and returned together. This is used by all of the CBOs
and frameworks.

Chapter 4. San Francisco Common Business Objects (CBOs) 47

48 San Francisco Concepts & Facilities

Chapter 5. San Francisco Core Business Processes

The purpose of this chapter is to introduce the Core Business Process layer of
San Francisco and to explain the role that the Core Business Processes play in
San Francisco application development. We first introduce the general concept
of Core Business Processes and how they are used. We then look at the
General Ledger Core Business Processes and how they can be used. In looking
at the General Ledger, we begin with a brief overview of what a General Ledger
is, so that people unfamiliar with accounting are able to understand it as an
example of a Core Business Process.

This chapter contains the following sections:

Section 5.1, “What Are Core Business Processes?” explains the general
concepts of Core Business Processes.

Section 5.2, “Using Core Business Processes” on page 50 discusses using
San Francisco Core Business Processes to build applications.

Section 5.3, “Core Business Process: San Francisco General Ledger” on
page 50 introduces the San Francisco General Ledger as an example of a
Core Business Process.

Section 5.4, “General Ledger Framework Categories” on page 53 gives an
overview of the General Ledger categories.

5.1 What Are Core Business Processes?
Core Business Processes deliver a set of basic building blocks for an application
in a specific business domain. This is done by providing the core processes for
that domain. The core processes are identified by looking at various application
implementations in the domain and identifying those processes that are needed
by most of the applications within that domain. The San Francisco architecture
supports these core processes and provides a flexible means to imbed them into
ISV applications. An example of this flexibility lies in the volatile logic that is
built into these core processes. This volatility is a result of countries having
different legislation, different ways of doing things, and differing customer
preferences.

In these volatile areas, the ability to change the logic or extend it is captured
within extension points. For example, when using exchange rates to convert
between currencies, how the entries in the exchange rate table can be used
varies from application to application. In one case, only an exact match to an
entry in the table is acceptable. In another case, multiple entries in the table
can be used.

For example, if you need to convert from Deutsche Marks to US Dollars you can
either find an entry from Deutsche Marks to US Dollars to do the conversion, or
if the table entries are available, do the conversion by first converting from
Deutsche Marks to French Francs and then converting from French Francs to US
Dollars. So, in this particular case, how the exchange rate tables are used is
captured in an extension point. For more information on extension points, see
the San Francisco Extension Guide. Also, some extension points are discussed
in Chapter 6, “San Francisco Patterns” on page 55 and in Section 8.4.2,
“Extending San Francisco Framework Classes” on page 87.

Chapter 5. San Francisco Core Business Processes 49

San Francisco delivers the Core Business Processes as object-oriented
frameworks. A framework is a set of interacting and related classes that provide
the basic architecture, design, and functions of a business domain. These
functions can be extended to accommodate the specific needs of an application
built using it. Part of the Core Business Processes are the classes needed by
the particular domain. These classes represent the business objects, which are
uniquely part of this domain, which makes these objects familiar to experts in
that domain. Classes that have broader applicability (found in various domains)
are found in the Common Business Objects layer (refer to Chapter 4, “San
Francisco Common Business Objects (CBOs)” on page 39). The Core Business
Processes, and how the various business objects interact, also capture
identifiable portions of the domain's business processes and how those
processes interact.

5.2 Using Core Business Processes
The Core Business Processes are used to develop applications in a specific
domain. The Core Business Processes provide the core processes, in the form
of an object-oriented framework, for the domain. Using the Core Business
Processes consists of determining what your application will do and then
mapping this to what is provided by the Core Business Process framework and
the CBOs. A methodology for developing an application using Core Business
Processes along with a discussion of how to do this mapping, is described in
Chapter 8, “San Francisco Application Development Methodology” on page 81.

In Core Business Process mapping, there are three possible situations:

The Core Business Process provides all of the function that is needed for
your application. In this case, you can use only what is implemented in the
Core Business Process.

The Core Business Process provides what you want, but differs in the way
certain algorithms are implemented with respect to what you want your
application to do. In this case, you need to look for extension points in the
Core Business Process. Extensions points are places where the architecture
for the Core Business Processes has been made easy to change. For
example, separating a volatile algorithm into a separate object so that it is
easy to replace.

If an extension point is not found, a different means of extending the
framework should be considered. See Chapter 8, “San Francisco
Application Development Methodology” on page 81 for more information.

The Core Business Process does not have equivalent function to what your
application needs. In this case, your application will have to be implemented
using the Core Business Processes classes, the Common Business Objects
and the Foundation layer or by creating your own classes.

5.3 Core Business Process: San Francisco General Ledger
This section serves two purposes. The first is to provide an example of a Core
Business Process. The second is to provide an overview of what is provided by
the General Ledger Core Business Process. To serve both purposes, this
section is divided into a brief introduction to the concepts of a General Ledger
and an overview of what is provided by the San Francisco General Ledger Core
Business Process. Even though the introduction is intended for someone

50 San Francisco Concepts & Facilities

knowing little or nothing about a General Ledger, it also provides good base
information for a General Ledger expert. As an expert, it will help you to gain an
understanding of the terminology used in San Francisco's General Ledger.

At first the differences in terminology may be surprising, but many applications
from many countries were looked at, each with their own terminology, causing
us to settle on a general set of terms. Sometimes we implemented the abstract
portions of the Core Business Process, which required us to use more abstract
names for the business objects.

5.3.1 General Ledger Overview
The main purpose of the General Ledger is to report the flow of money for your
company. This is required for legal reasons and for managing your business. A
standard approach for this accounting process has been developed. This can be
illustrated in the accounting cycle. This cycle consists of three main steps:

Setting up the structure
Day-to-day activities
Periodic activities

5.3.1.1 Setting Up the Structure
The first step is to setup the structure for the information you want to keep in the
ledger. To set up this structure, you identify your chart of accounts. The chart of
accounts consist of all the accounts for which you want to keep information. The
purpose of the account is to group related transactions together. The chart of
accounts are customized depending on the kind of business you are running, the
level of detail you want in the final report generation, and the type of information
you want to keep in the accounts. The chart of accounts varies greatly between
companies and is influenced by country legislations.

To support these differences, the Core Business Process has the concept of a
Posting Combination. The Posting Combination represents ways to relate
transactions. In some applications, this is called the account. In others, the
account is one of many ways to relate transactions. For example, in a typical
Anglo-Saxon chart of accounts, the Posting Combination will be equivalent to
what is called an account. This account is broken down into many different
pieces, such as department and project. In a typical Scandinavian application,
one piece of the Posting Combination would be equivalent to the account, while
the remainder would be different classifications for analysis, such as department
and project.

The Posting Combination is divided into Analysis Groups. An Analysis Group
names a particular piece of the Posting Combination and controls the valid
values, called Analysis Codes, that can go into that piece. The validity of
analysis codes differ from application to application. This is the place where the
framework provides extension points to make it easy to define and enforce your
application's requirements.

The San Francisco General Ledger framework provides a flexible way of
identifying the type of account, such as balance accounts versus profit and loss
accounts. Balance accounts keep track of assets and liabilities and are are part
of the balance sheet. While, the profit and loss accounts keep track of revenue
and cost and are part of the profit and loss statement.

Therefore, defining the chart of accounts consists of:

Chapter 5. San Francisco Core Business Processes 51

Defining the Analysis Groups
Defining the Analysis Codes
Identifying what Posting Combinations are valid
Identifying the types of accounts for your application

5.3.1.2 Day-to-Day Activities
The second part of the accounting cycle is the day-to-day activities. This
consists of creating, working with and finalizing the transactions. A transaction
consists of a number of pairings of an account, (in San Francisco terms, the
Posting Combination), with an amount for a particular time period. In normal
circumstances, the transaction will balance conceptually. For example, for each
transaction, amounts will move between individual accounts. For example, when
you pay rent, you would record a debit in your Rent account and a credit in your
Bank account. In the San Francisco General Ledger, the pairing of a Posting
Combination with an amount is called a Dissection. The transaction, or set of
related Dissections, is called a Journal.

Within the Dissection, the amount is held as a Transaction Value, from the
Currency category of Common Business Objects. The Transaction Value allows
for the capture of both the prime and base values of the amount. The Prime
value is the value in the currency used in the transaction. The Base value is the
value in which the General Ledger is kept. For example, if a German company
purchases something from a US company, the prime value would be the amount
in US Dollars and the base value would be the amount in Deutsche Marks.

In some applications, quantities are included in the transactions. To support
this, the San Francisco General Ledger allows quantities, called Quantity
Dissections, to be associated with a Dissection. If a Dissection has a Quantity
Dissection, then amount is optional.

What makes a Journal valid is something that varies from application to
application and is an extension point in the framework. For example, an
application could require that certain types of Dissections must have Quantity
Dissections. When a Journal is classified final also varies between countries. In
some countries, until the Journal information is printed for the government, the
Journals can be changed. The framework provides an extension point for
enabling this.

Therefore, to do the day-to-day activities, Journals are created, Dissections, and
Quantity Dissections are added and removed until the Journal is valid to record,
then the Journal is made final by posting it.

5.3.1.3 Periodic Activities
The last step in the accounting cycle coincides to activities that occur
periodically, such as activities related to the fiscal periods and the generation of
reports.

Activities related to the fiscal periods are processes that are run after a period is
closed or at the end of the fiscal year. These processes include things such as
currency revaluation, closing out certain accounts, reconciliation, and
adjustments to correct mismatches. The way in which these tasks are
performed is ruled by the accounting practices and legislation applicable to your
application. The framework provides extension points to define these processes
for your particular application. Also, these processes, such as currency

52 San Francisco Concepts & Facilities

revaluation, are provided in such a way that they can either be done as part of
the period processing or on an as needed basis.

The main purpose of the General Ledger is to manage the flow of money. To
manage this flow, reports must be generated that allow the flow to be looked at
in many different ways. There are two main types of reports:

The balance sheet, which shows assets and liabilities

The profit and loss statement (or income statement), which shows the
revenue and costs.

For these main types, there are many different ways to report data. Because
reporting varies dramatically from application to application and because this is
a place where applications differentiate themselves from others, the San
Francisco General Ledger does not provide a report generator.

However, the San Francisco General Ledger does provide a flexible way of
getting the information necessary to produce any report. The framework has a
set of criteria that can be used to produce account balances. The set of criteria
could be something like: periods 1 through 4 and profit and loss accounts. The
set of criteria is an extension point, so the application can add new criteria (or
disable existing criteria). Also, the San Francisco General Ledger can identify
certain sets of criteria as needing to have fast access. Fast access is provided
by storing and maintaining the account balances associated with the set of
criteria. The framework provides the mechanism for maintaining and retrieving
the maintained balances, but leaves the definition of what balances should be
maintained to the application.

5.4 General Ledger Framework Categories
As with other layers of San Francisco, the General Ledger is divided into
categories. These categories group related processes, and their associated
classes, together. This section provides an overview of each of the categories in
the General Ledger.

Posting Combinations
This category provides the processes and business objects for
defining and working with the chart of accounts. Posting
combinations include the definition of the account, account validation
criteria, and the type of account.

Journal
This category provides the processes and business objects for
creating, maintaining, and finalizing transactions in the General
Ledger. Journal includes support for both value and quantities,
support for transactions in a currency other than your General
Ledger's currency, and support to define what makes a valid
transaction.

Balances
This category provides the basis for creating reports and balance
inquires. It provides the processes and business objects to flexibly
define criteria for which balances are needed. The criteria can
include the fiscal period, the type of account, and the prime currency.
Balances includes support to extend the criteria and to store and
maintain balances for specific criteria for fast access.

Chapter 5. San Francisco Core Business Processes 53

Budgets
This category provides the ability to include budgets in the General
Ledger. The San Francisco General Ledger keeps the budgets in the
same ledger, which allows for all of the same functions to be applied.
Although the two types of Journals are combined within the
framework, the application could decide to make it appear as if two
separate ledgers are used.

GL Fiscal Calendar
This category extends the Fiscal Calendar from the Common
Business Objects to add information about the Fiscal Periods with
respect to the General Ledger. In particular, whether the Fiscal
Period is open or closed, and the current (or default) period.

Closing
This category provides the processes and business objects to support
the closing of a fiscal year. The framework provides a simple
example of closing because this process varies dramatically between
businesses.

Bank Accounts
This category extends the Internal Bank Accounts in the Bank
category of the Common Business Objects. It supports associating
Posting Combinations with a particular Internal Bank Account. Also,
when the Internal Bank Account is involved in a transaction, the
correct Posting Combinations can be used for the bank account, bank
charges and bank suspense.

Banks
This category supports the processes and business objects for
dealing with the Bank. This includes tracking transactions within the
bank, managing bank statements, and reconciling the bank statement
with the bank transactions.

Revaluation
This category provides the processes and business objects to support
the revaluation of currencies. Currency is revalued when you have a
bank account in a currency other than your General Ledger's
currency (base currency) and when the exchange rate changes over
time. When this occurs, the original value in your base currency may
no longer reflect the correct value, so a revaluation is done using a
more current exchange rate. This category supports both realized
and unrealized gain and losses.

These categories covering the accounting cycle make up the core processes and
business objects needed for the General Ledger domain.

54 San Francisco Concepts & Facilities

Chapter 6. San Francisco Patterns

The objective of San Francisco Business Process Components is to enable
Independent Software Vendors (ISVs) to produce customized multi-platform
business applications. To achieve this objective, San Francisco makes extensive
use of design patterns. This chapter discusses design patterns and in particular
those patterns used by San Francisco to facilitate the understanding and use of a
framework. San Francisco uses both common and standard design patterns, and
patterns developed to support particular problems found in the business
domains.

To understand and extend a San Francisco framework, the application
developers must understand general patterns and those patterns developed for
San Francisco. This chapter introduces San Francisco design patterns and their
use in the frameworks. It contains the following sections:

Section 6.1, “What is a Pattern?” introduces design patterns.

Section 6.2, “Why Use Patterns?” on page 56 covers general advantages of
design patterns.

Section 6.3, “San Francisco Patterns” on page 56 identifies specific patterns
used by San Francisco and discusses their use.

6.1 What is a Pattern?
Design patterns are techniques aimed at solving recurring design problems. A
good explanation of patterns was introduced by Christopher Alexander, who
defined the concept of patterns in architecture, as follows:

A General Definition of Patterns

“Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.”

(Source: A Pattern Language: Town/Building/Constructions).

Although Alexander's “environment” was architecture, the idea of patterns can
be applied more generally. In the case of San Francisco, the idea of patterns
has been applied to recurring problems encountered in the framework. In
particular, a core set of patterns has been identified and used to introduce
flexibility into the framework, which makes it easier to learn how to use and
extend the framework.

The San Francisco development team used many of the patterns found in the
book, Design Patterns, Elements of Reusable Object-Oriented Software; Erich
Gamma, et al.; Addison-Wesley Publishing Company, 1994 (ISBN 0-201-63361-2).
This book defines and shows examples of applying patterns to design
object-oriented software. The following definition of design patterns in the
object-oriented world is from that book.

Chapter 6. San Francisco Patterns 55

A Definition of Patterns in Object-Oriented Design

“A design pattern names, abstracts, and identifies the key aspects of a
common design structure that make it useful for creating a reusable
object-oriented design.”

(Source: Design Patterns, Elements of Reusable Object-Oriented Software
Erich Gamma, et al.; Addison-Wesley Publishing Company, 1994).

The San Francisco development team used the patterns from this book whenever
possible. However, certain problems in the domain either had not been solved
before or had not been solved in a manner fit for a framework. When a problem
was encountered more than once (or when it is known to recur), a new pattern
was considered. Once a pattern was created, its definition and documentation
was iterated on as other uses of it were discovered and as the understanding of
the problem evolved.

6.2 Why Use Patterns?
The San Francisco patterns guarantee consistency throughout the framework.
Patterns systematically name, motivate, and explain a general solution that
addresses a recurring problem. Once you understand how the problem was
solved using a particular pattern, the next time you encounter the problem or
pattern you will understand the solution. Sometimes the solution is customized
to fit the special conditions of a particular need, however, the core basis of the
solution (pattern) is consistently used throughout the framework. Once
developers are familiar with patterns and their use in solving problems, they
articulate the solution to a particular problem through the use of one or more
particular patterns, thereby creating a language to express this and other
solutions.

6.3 San Francisco Patterns
Each of the patterns described in this chapter are structured as follows:

Intent States the intent of the pattern or the problem it is intended to solve.

Concept Gives a high-level description of how the pattern fulfills the intent.

Benefits Explains how the pattern serves the goals of extensibility and reuse.

It is important to note that patterns are often related to each other. We have
elected not to include that information here. The information is included in the
San Francisco Extension Guide, which discusses each pattern in detail.

6.3.1 Factory Class Replacement

6.3.1.1 Intent
Situations occur where a class needs to be modified to support a particular
business need. Client programs which create, access or maintain instances of
this class must be allowed to remain ignorant of the modifications to the said
class unless they wish to use the new information.

56 San Francisco Concepts & Facilities

6.3.1.2 Concept
Factory Class Replacement, similar to the Abstract Factory pattern from the
Design Patterns book, allows for specifying a substitute class that is created
instead of the one requested. When a client requests the creation of a new
object, it issues a request to the desired class factory. The class factory
requests the Base Factory (a San Francisco Foundation base class) to create a
new object. The Base Factory determines the actual class instance to be
created, which is returned to the client.

6.3.1.3 Benefits
The obvious advantage of using this pattern is the ability to replace a class
without affecting any users of that class. This relieves client programs from the
burden of needing to know about unrelated changes to the classes it uses.

6.3.2 Commands

6.3.2.1 Intent
The business environment changes over time and the application supporting that
environment needs to be able to react to those changes, while minimizing the
impacts to the overall application. An additional need is to provide a way to
update a group of objects at once while ensuring that if the complete group is
not updated successfully, the changes are all reversed. The business logic may
span many business objects (classes), which makes the placement of this logic
within one particular object impractical.

6.3.2.2 Concept
Commands (similar to the Command pattern in the Design Patterns book) are
objects with the sole purpose to provide a separate location for a specific piece
of business logic processing. By focusing this logic into a single object, the
particular business logic changes can be modified without impacting various
users, thereby isolating the users from the changes.

A Command often affects more than one business object, which may require that
all the objects affected are updated or all changes reversed. Commands support
a roll back capability that allows all these changes to be reversed.

Variations of the Command exist to support special requests. The Query
Command is a special type of Command that encapsulates a particular query
request, which then creates a subset of the elements of a collection. The Query
Command encapsulates features of an object query similar to SQL language,
including selection and sorting.

6.3.2.3 Benefits
The implementation of business logic affecting several distinct business objects
through Commands clearly brings advantages to maintenance and also allows
application designers to isolate activities. By encapsulating the business logic in
a Command object, using programs are isolated from changes in that piece of
logic. It then becomes much easier to replace, modify, or enhance a certain
piece of logic without impacting its users. Command objects also localize
business tasks, making it easier to locate them. This approach increases the
flexibility of the framework.

Chapter 6. San Francisco Patterns 57

6.3.3 Property Container

6.3.3.1 Intent
An ISV typically creates an application which supports a wide variety of
customers. Sometimes a particular customer needs to add specific information
to objects that are part of the application. This specific information may effect all
instances of objects of a class, or only specific objects. For example, an
application user may need to track the receiver of a particular invoice for those
invoices over a certain dollar amount into the associated GL account.

6.3.3.2 Concept
The Property Container design pattern is a good solution for this problem. A
property may be an additional piece of information (an attribute), or an
association with another object (relationship in the object model). Properties do
not effect the context (for example, the property does not effect any of the other
relationships this object is involved in) of the object when added to an existing
object. The property information is added, accessed and maintained as needed.
An application is then able to extend the same object without impacting other
users of the object. Furthermore, the pattern is used to allow selective extension
of individual objects at run time, as opposed to subclassing, which extends all
objects of the class at compile time.

Properties can be single attributes or more complex objects. Each property is
added to a Property Container with an identifying string that is considered the
property name. Properties are retrieved from a Property Container by specifying
its property name.

6.3.3.3 Benefits
Loose coupling is a key benefit of this pattern. Loose coupling refers to the
degree of “awareness” existing between coupled classes. By using Property
Containers, there are no changes to the classes of affected (coupled) objects.
Property Containers are implemented through generic interfaces inherited by all
classes implementing this pattern. These interfaces allow Property Containers
to manage properties, irrespective of their usage or type. Therefore, for any
class implementing Property Container pattern, the addition, retrieval or update
of properties does not require class changes. Classes are changed only if
tighter coupling is needed.

An important benefit of the Property Container pattern is that it allows concurrent
extensions of the same business object by multiple ISVs. Each ISV can add their
own properties to the same business object without affecting the other. Property
Containers are also useful where information does not need to be attached to
every object of a particular class, but only to certain objects as discovered
through business processing.

It is important to remember that Property Containers cannot directly cause
behavior changes (that is, the addition of new methods in containing classes).
To provide these capabilities, the developer should use other means, such as
subclassing or class replacement (discussed in Section 8.4.2, “Extending San
Francisco Framework Classes” on page 87).

58 San Francisco Concepts & Facilities

6.3.4 Policy

6.3.4.1 Intent
Each business has a series of business policies that define exactly how that
business participates in the marketplace. These policies are applicable for the
employees of the business and the business' customer set. These policies
include factors from the various layers of government, the business owners, how
the company moves the product and the types products the business sells.
Specific business policies (in the form of algorithms) are incorporated into the
business applications developed to support a business environment. Businesses
exist in ever changing environments, which can make these business policies
volatile. Changes to business policy often impact the business application,
which can require the application developers to make adjustments.

6.3.4.2 Concept
The Policy (similar to the Strategy Pattern in the Design Patterns book) pattern
encapsulates the business policy (algorithm) as the primary motivation for the
object. This allows these algorithms to be managed (created, replaced,
extended, and so on) independent of objects relevant to the situation. This
pattern also allows for the creation of families of related algorithms. For objects
implementing this pattern, a user may select a suitable policy from the family of
policies and dynamically associate it with a target object at run time. Thus, the
policy that is used for an operation may vary among the different instances of
the class.

San Francisco has identified three common scopes:

Object Specific
Implies that a Policy is defined at object creation time, or possibly
passed into the operation affected by it. Each instance of a used
class may have a different Policy.

Company Wide
Implies that a Policy (or family of Policies) is maintained at the
company level (for details on company hierarchy, see Chapter 4,
“San Francisco Common Business Objects (CBOs)” on page 39) and
is used for all instances of this class within this company. Objects in
different companies may have different Policies. These Policies are
set up at company setup time.

Application Environment Wide
Implies that a Policy is defined at the application level and is
applicable for all instances used in all enterprises defined by this
application. In this case, every object of this class in the entire
application uses this Policy. The Policy is decided at application
deployment through the configuration process.

A Policy may have state associated with it (that is, the Policy class may have
internal attributes), or it may be a pure algorithm with no state. Most of the
Policies in the framework are state-less (that is, they do not have internal
attributes). This keeps the Policies as light-weight as possible, and ensures the
exact algorithm that is executed for every instance of a specific Policy class
remains the same.

Chapter 6. San Francisco Patterns 59

6.3.4.3 Benefits
The Policy pattern allows for the isolation of volatile business logic making it
easier to identify and make changes to that logic while minimizing impacts to the
overall application. This pattern allows for the extension of default Policies
provided by a San Francisco framework without impacting the classes using
these Policies.

6.3.5 Controller

6.3.5.1 Intent
The business application needs to manage multiple instances of a business
object within its organizational structure. This is normally achieved by using
collections, however collections do not naturally cooperate with the
organizational structure.

For example, complex business environments need to support ways to provide
information at different levels within the overall business. For example, a
company can be made up of divisions which are include many departments. To
make the company run smoothly, certain information needs to be shared at
different levels.

6.3.5.2 Concept
Controllers are objects used to track and manage primary business objects
within a business domain. Controllers can be attached to the organizational
hierarchy. Controllers for specific business objects can be attached at different
levels in this hierarchy. The business objects held by the Controller and
association with a particular level of the organizational hierarchy may be shared
with, or isolated from, other levels. This is accomplished by the type of
Controller that is selected to hold the business objects. San Francisco provides
three types of Controllers:

Root This Controller manipulates only its immediately contained
objects; hence, it assumes that there is no higher level in the
organizational hierarchy. It does not have access to the objects
held at a higher level in the organizational hierarchy.

Aggregating This Controller allows sharing objects used by higher levels in
the organizational hierarchy. If a Controller of this type does not
find a requested object in its immediately contained set of
objects, it passes the request to the “parent” Controller (a
Controller above it in the organizational hierarchy). If the parent
Controller does not find the requested object, it passes the
request to its parent Controller. This process continues up the
hierarchy until the object is found or a root Controller is
encountered.

Hiding This is a special type of aggregating Controller that maintains a
collection of object IDs for objects held by the parent Controller
which are hidden (that is, treated as nonexistent). This
effectively restricts the use of these objects to their defined level
in the organizational hierarchy.

60 San Francisco Concepts & Facilities

6.3.5.3 Benefits
Controllers participate in the dynamic (that is, at run time) configuration of an
organizational hierarchy for sets of business objects, each pertaining to a
business area of interest (for example, business partners, banks, currencies).
They enable sharing, overriding and restricting the use of these business objects
at each level of the hierarchy. They also hide the complexity of the
organizational hierarchy by encapsulating calls to higher levels of the hierarchy.

A key benefit of this pattern is that Controllers may be added, removed, or
changed independently at any level of the organizational hierarchy
independently without impacting other Controllers. Controllers implement
indirect links through the organizational hierarchy. This means that changing a
Controller does not necessitate that all children Controllers have to update their
links to the new parent Controller (as the links are fixed by the organizational
hierarchy).

6.3.6 Keys and Keyables

6.3.6.1 Intent
Applications often need to work with information held in objects based on
specific characteristics. These characteristics can be directly identifiable with
the object, like attributes, or indirectly identifiable with the object based on the
particular use of the information (for example, using the purchasing Business
Partner to identify invoices).

The specific characteristics being used need to be separated from how the
characteristic is used. This separation is needed because the use of the
characteristics is usually stable, but the particular characteristics are adjusted
by the application and the end user to fit the current business need. For
example, wanting to identify invoices is stable, but the particular characteristics
(the invoice date or the currency) of an invoice can be volatile.

6.3.6.2 Concept
This pattern provides a way to associate characteristics with objects for a
particular use. This pattern separates the definition from the usage of the
characteristics by using the abstraction of a Key. A Key encapsulates a
particular set of characteristics, and allows the Key to be used without
knowledge of the actual characteristics. The individual characteristics in the
Key are encapsulated in Keyables, allowing the Key to work with the
characteristics in an abstract way. Two types of Keys are provided as part of
this pattern. One, called an access key, is used to encapsulate a set of specific
characteristics. The other, called a specification key, is used to encapsulate a
set of grouped characteristics. The specification key is very powerful because it
can be used to specify what characteristics are valid or invalid for use in access
keys.

For example, in a library, we want to be able to find items, such as books, videos
or magazines, based on certain characteristics. We would create, and maintain,
a mapping from an access key to the item, or items, with the given
characteristics. The access key could include characteristics such as the type
of item, the author, the subject, and the title by encapsulating them into
Keyables. We could then map from this access key to the item, or items, with
those particular characteristics. This would allow for the use of a specification
key to limit our access keys to only one particular item type, such as "book".

Chapter 6. San Francisco Patterns 61

The use of the Keys pattern supports the ability for the application provider and
end user to customize the characteristics used. By using the specification key, a
characteristic can be treated as if it does not exist, which allows for the
possibility for the set of characteristics to be customized. In the library example,
we could customize the specification key so that the author characteristic is not
used in the access keys.

6.3.6.3 Benefits
This pattern, by separating the usage and definition of characteristics, allows the
code that uses the Key to be reused, without change, when the Key is extended.
By combining specification keys with access keys, the application and end user
can customize the characteristics to fit their particular needs.

6.3.7 Cached Balances

6.3.7.1 Intent
Users often need to repeatedly calculate values that involve collecting data from
multiple objects. These calculations are usually needed on a continual basis
and are needed rapidly. These calculations could be done by collecting the
data from all of the objects each time it is needed. In many cases it is more
valuable to store and maintain the results of the calculation to get them more
rapidly.

6.3.7.2 Concept
This pattern provides a mechanism for defining what calculation results need to
be stored and maintained for rapid access. The user of this mechanism can
decide what level of control should be exposed, such as providing a predefined
set of calculations, or allowing the user to specify what calculations they are
interested in. This pattern uses the Keys/Keyables pattern to define the
characteristics associated with a particular result of the calculation.

For example, using the library example in the Section 6.3.6, “Keys and
Keyables” on page 61, we need to know the number of books by a specific item
type and author. In addition, this pattern provides the ability to use the stored
results to rapidly obtain derived results. In the library example, if we stored the
number of items by item type and author, we could have 3 books by Eric, 1 video
by Eric and 2 books by Mack. Then we can ask for the number of items by
author and, instead of having to recalculate, this can be derived from the
existing stored results. We would then have 4 items by Eric and 2 items by
Mack.

6.3.7.3 Benefits
The Cached Balances pattern provides a mechanism that can be used to provide
caching of dynamic information in a flexible way. It allows the classical trade-off
of speed versus storage to be deferred to the appropriate level, application or
end user. It also provides a means for leveraging the stored results to achieve
further derived results.

62 San Francisco Concepts & Facilities

6.3.8 Extensible Item

6.3.8.1 Intent
In certain circumstances, the behavior and/or attributes of an object need to
change dynamically, such as when its state changes. For example, an
employee's responsibilities can change from clerk to supervisor status. This
change in responsibility affects behavior of the employee. For example, as a
clerk, the employee could not terminate another employee, but as a supervisor,
they could.

6.3.8.2 Concept
The Extensible Item pattern defines a way to dynamically add, remove, or modify
methods and/or attributes of a particular object. The pattern also supports
temporarily overriding a method. This is done by keeping a stack of the different
version of the method (with the same name), allowing only the top one to be
used. For example, if we have a method print() and we add an extension with a
new version of print() , the original version of print() will be pushed down and
the new version put on the top of the stack. When the print() method is
invoked, the new version of the print() method will be used. If the new version
of print() is removed, then the previous version is made available for use.

6.3.8.3 Benefits
The Extensible Item pattern enables the definition of objects that undergo
extensive changes in their behavior. Because this pattern partitions the
behavior into extensions, the implementation of such objects is simplified and
their extensibility and clarity are enhanced.

Chapter 6. San Francisco Patterns 63

64 San Francisco Concepts & Facilities

Chapter 7. San Francisco Utilities

San Francisco's utilities are common services needed by most applications. For
users, they present a graphical interface to set up San Francisco's functionality
or to connect to the user's legacy database. For programmers, they define a set
of APIs to interact with the framework setup.

This chapter introduces the utilities provided with San Francisco. It contains the
following sections:

Section 7.1, “Configuration and Server Management Configuration”
introduces the Server Management Configuration mechanisms provided by
San Francisco and how a logical San Francisco network is defined.

Section 7.2, “Security Configuration” on page 72 introduces the Security
Configuration mechanisms provided by San Francisco.

Section 7.3, “Conflict Control” on page 75 introduces the Conflict Control
service provided by San Francisco.

Section 7.4, “Print Utility” on page 75 introduces the Print utility provided by
San Francisco.

Section 7.5, “Schema Mapping Tool” on page 77 introduces a San Francisco
tool that allows you to use a relational database as the persistent store for
San Francisco business objects.

7.1 Configuration and Server Management Configuration
San Francisco, as a distributed framework, allows multiple server processes to
manage different tasks. Server processes may run on the same computer or be
distributed across several computers while working together to implement San
Francisco's functionality.

7.1.1 The Logical San Francisco Network
A Logical San Francisco Network (LSFN) is a group of client and business object
processes that share the same instance of the Global Server Manager (GSM)
process. Processes in an LSFN can be physically located on separate
computers or reside on the same computer. TCP/IP is used to communicate
between the various San Francisco processes. In the same TCP/IP network,
multiple LSFNs can coexist (although they do not interoperate).

Chapter 7. San Francisco Utilities 65

Figure 20. A Logical San Francisco Network

The following roles are found in one LSFN:

Exactly one Global Server Manager (GSM) Process

Zero or more Business Object Processes (BOPs)

Zero or more client processes (although a network without clients makes no
sense).

The GSM Process contains several service objects that are critical to LSFN
functioning. These service objects are:

Global Server Manager (GSM) Service
This service is in charge of all the Business Object Processes
(BOP). It holds all of the BOP configuration information, tracks all
active and inactive BOPs, and is responsible for connecting clients
with specific BOPs.

Global Distributed Process Manager (GDPM) Service
This service tracks all active clients in its LSFN. It must be running
before clients can enter the LSFN.

Global Name Server (GNS)
This service is responsible for managing the naming space of the
LSFN. The component knows:

How to resolve the user aliases

Which classes ultimately have to be used to create instances of
business objects.

Where these instances must be created

How containers are configured (see Section 7.1.3, “Container
Configuration” on page 69).

66 San Francisco Concepts & Facilities

How security is configured (see Section 7.2, “Security
Configuration” on page 72).

What commit protocol is in use (see Section 10.2.1,
“Transaction Model” on page 102).

Other services that exist in the various BOPs are:

Local Server Manager Service
It is responsible for starting BOPs on first request. One instance of
this service must be on each computer. It exists in one of the
following processes:

GSM Process of the Global Server computer
SFSM Process for any other computer having BOPs

Security management is handled by security-controlling services:

Master Security Controller
This service manages authentication for the LSFN. It exists in the
GSM Process.

Server Security Controller
This service authenticates client requests. It exists in each BOP as
well as in the GSM Process.

Business object instances are managed by the following services:

Factory Manager
It is responsible for creating and holding instances of San Francisco
business objects.

Transaction Service
It monitors transaction processing and coordinates recovery. One
Transaction Service exists in each BOP that uses transactions
(usually the process that holds a Factory Manager).

Additional administrative functions are implemented in the last two services:

Problem Service
It's duty is problem logging for internal services. There is no
problem-recording interface for application programs.

Conflict Control Service
It manages conflict-controlled actions (see also Section 7.3,
“Conflict Control” on page 75).

Each of the last two services may run in any BOP, but only once in an LSFN.

Chapter 7. San Francisco Utilities 67

Figure 21. Processes and Services in an LSFN

7.1.2 The Server Management Configuration Console
The Server Management Configuration Console is used to configure servers in
the San Francisco logical network. The administrator defines:

Which hosts the BOPs will run on

Which BOPs the services will exist in

Which specific settings should be used when a BOP or service is invoked

68 San Francisco Concepts & Facilities

Figure 22. The Server Management Configuration Console

7.1.3 Container Configuration
San Francisco makes persistent object location transparent to business object
and application developers. The location of persistent business objects is
configured by placing them in business object containers. Developers are not
required to know where business objects reside. Instead, this task is left to an
administrator who has the knowledge about the underlying data store and
overall network configuration.

A business object container is a collection of business objects used by San
Francisco internally. Each Entity is held in exactly one container. The
administrator defines the following for a container:

The Factory Manager in which the container resides

The data store where the container's objects are to be stored

Chapter 7. San Francisco Utilities 69

Figure 23. Container Configuration

Currently, two types of containers are supplied:

RDB Containers
They store Entities in a relational database using either ODBC or
native database.

Posix Containers
They store Entities in a Posix file. Each Entity instance is a
separate file. These containers are not recoverable; nor is any
claim made to their scalability. It is presumed that these
containers will be used in a testing environment only, or as a
boot-strap to get San Francisco up and running.

70 San Francisco Concepts & Facilities

Figure 24. San Francisco Containers

7.1.4 Configuring Entities to Containers
Every container must be configured with the Entity class that the container is
capable of persisting. The configuration data that is required is based on the
type of container.

Chapter 7. San Francisco Utilities 71

Figure 25. Container Class Configuration

For the Posix Containers class, each Entity class is configured with the name of
the directory in which instances of the Entity class will be persisted. Each Entity
instance will reside as a separate file in this directory.

For the RDB Containers class, each Entity class must be configured with the type
of schema mapping that will be used to persist instances of the Entity class.
Default schema mapping can be specified if you want San Francisco to
completely manage the persistence, including creation of the tables used to
persist the Entity and the definition of the columns of the table. Extended
schema mapping can be specified if you want to use the Schema Mapping tool
to perform your own mapping of the Entities state to columns of a table.

7.2 Security Configuration
In general, security may be implemented on the following levels:

Application level

System level

San Francisco implements security on an application level for the reasons that
security administration:

Is done centrally

Uses a common interface on all platforms

Is consistent across all application servers

San Francisco provides the programmer with:

An easy way to use authentication API to present a fully featured logon
window. This is the recommended way of establishing a user's identity for
interactive applications. It handles erroneous input as well as expired
passwords.

A set of low-level APIs to implement authentication verification. These APIs
are used by the logon window itself, as well as by client programs with
specific needs for user authentication.

An API to define secure tasks consisting of a security-sensitive sequence of
actions. This API is typically used by the application's installation routine.
The administrator again authorizes individual users or groups of users to
execute various secure tasks.

72 San Francisco Concepts & Facilities

A pair of APIs to activate and deactivate a secure task around a block of
code.

All programmer interaction happens within the client role defined by the San
Francisco programming model. There is no security functionality implemented in
the business object layer.

The administrator defines the security for an LSFN by maintaining:

Security Policy, consisting of:

− User ID and password checking (one of the following):

- None
- User ID only
- User ID and password

− Enabling secure task checking

Users and user groups

Access rights, consisting of:

Actor A San Francisco user ID.

Resource An identifiable Entity (for example, the Company object set).

Action What the user is trying to do with the resource (the secure task).

San Francisco provides the administrator with graphical user interfaces to
maintain those definitions.

Figure 26. The Security and User Configuration Windows

Chapter 7. San Francisco Utilities 73

Figure 27. The Access Right Administration Window

74 San Francisco Concepts & Facilities

7.3 Conflict Control
Conflicts are actions or groups of actions that must not be executed at the same
time. The Conflict Control service manages the execution of conflicting actions.

An action can conflict not only with another action or group of actions; it can also
conflict with itself. An example is the end-of-day closing that must not be started
twice. Parameters can qualify actions (for example, the end-of-day closing for
company A may be started while the end-of-day closing for company B is
running).

San Francisco provides two ways of defining conflicts:

Interactive using the Conflict Control Administration utility
Batch using conflict definition files

The interactive Conflict Control Administration utility is used at the application
installation site to review the shipped conflicts and to refine them. At a
development site, this utility is also used to define conflicting actions.

Figure 28. The Conflict Control Administration Utility

The Batch utility is used during application installation to define actions, action
groups, and conflicts. It reads the definition files provided by the application and
creates the appropriate action and conflict objects.

7.4 Print Utility
The Print utility allows creating documents that contain business data such as
orders, invoices, or form letters. Data and presentation are separated by having
static data and design information kept in the layout description, while variable
data is stored in business objects only.

Chapter 7. San Francisco Utilities 75

The Document Designer is a graphical WYSIWYG (What You See Is What You
Get) layout editor to create print forms. It presents application object
information to the user and allows the user to arrange it on the page using
drag-and-drop. To collect information about the business object structure, the
Document Designer calls methods described by the San Francisco PrintableInfo
interface. This interface can be implemented by the business classes
themselves, or by a supposing print class, which in turn accesses the business
class for the correct data.

Figure 29. The Document Designer

The Print Formatter merges application data with a layout description and
produces a PostScript file. Java Development Kit (JDK) based print support is
planned. For printer management, an external tool has to be used.

76 San Francisco Concepts & Facilities

Figure 30. The Print Formatter

Documment Designer and Print Utility

Document Designer and Print Formatter are not stand-alone tools. They are
San Francisco utility classes that can be used by applications to provide
layout and print support. Thus, Design and Print menu items are not
provided by San Francisco itself. If available, they are provided by individual
applications that use those utility classes.

7.5 Schema Mapping Tool
To use a relational database as the persistent store for San Francisco business
objects, a mapping between the object model and the relational model is
needed. Schema Mapping means defining the mapping between an object
schema and a relational schema; in other words, classes, objects, and attributes
are mapped to tables, rows, and columns.

Chapter 7. San Francisco Utilities 77

Figure 31. Schema Mapping

San Francisco provides the following varieties of Schema Mapper:

Default Schema Mapper (DSM)
The DSM is intended primarily for use in prototyping. It
automatically maps a class to a table without input from the
programmer. The table is defined at run time using a general set
of rules. The class layout is obtained by parsing the class definition
at run time. The DSM is supported only by the ODBC container.
The advantage of using the DSM is that no schema mapping has to
be configured.

Extended Default Schema Mapper (Extended DSM)
The Extended DSM obtains its information from a Schema Mapper
Language (SML) file. The SML file is created using the Schema
Mapping Tool (SMT), a graphical user interface (GUI) that allows
the programmer and the administrator to name the table, columns,
and specify column data types. The Extended DSM is only
supported by the ODBC container. Using the Extended DSM,
existing objects can be mapped to existing tables. The advantages
of the Extended DSM are:

Existing data stores, naming conventions, and conversions can
be specified.

78 San Francisco Concepts & Facilities

The disk capacity for storing objects may be smaller since the
size of data columns may be customized.

A variety that will be available in the near future is the:

Custom Schema Mapper (CSM)
The CSM provides no run time code. Instead, code that
implements the mapping between classes and tables has to be
written by the programmer. The CSM is supported by the ODBC
container for which C code has to be implemented. This code has
to be compiled and published with the application after each
change to the mapping configuration. The advantages of the CSM
are:

It is as flexible as the Extended DSM

It is faster since no SML file parsing has to be done at run time

Figure 32. The Schema Mapping Tool

Chapter 7. San Francisco Utilities 79

80 San Francisco Concepts & Facilities

Chapter 8. San Francisco Application Development Methodology

This chapter provides insight into developing an application using San Francisco.
Included is a description of how San Francisco has chosen to represent and
structure the business processes provided for a domain. By reading this
chapter, you will understand the general approach to be followed by developers
using a San Francisco framework to implement their application.

The chapter covers the following topics:

Section 8.1, “Representing Business Domains in San Francisco” explains
how business domains are represented in San Francisco.

Section 8.2, “San Francisco Development Approach” on page 82 explains the
main approach used to define the capabilities provided by a San Francisco
framework.

Section 8.3, “The San Francisco Roadmap” on page 84 introduces the San
Francisco Roadmap document, which guides you through the process of
building solutions based on San Francisco.

Section 8.4, “Building the San Francisco Framework Based Application” on
page 87 refers to the San Francisco Extension Guide, which introduces the
basic set of approaches for extending the frameworks.

Section 8.5, “Integration with Legacy Applications” on page 90 covers the
crucial point of integration with existing systems. It has been demonstrated
that the success of a new technology is related to its ability to integrate
preceding technologies. This point has not been lost on San Francisco, and
more than one alternative is available.

Section 8.6, “Plans of Transition to San Francisco” on page 92 suggests a
plan for moving an organization to San Francisco.

8.1 Representing Business Domains in San Francisco
A San Francisco framework captures the core capabilities required to support a
particular domain. San Francisco represents these core capabilities as business
processes, embodying the core activities to support a particular domain. A San
Francisco Business Process can be defined as a main business event occurring
within a particular business domain. San Francisco Business Processes are
composed of a set of related business tasks, each having the objective of
producing an intended outcome. A business task is an elementary business
activity having a clear triggering event and result.

An example business process within the San Francisco General Ledger
Framework is Posting to the General Ledger. The Posting to the General Ledger
process provides support for making various types of journal entries (composed
of dissections) into the General Ledger. It also supports the updating of General
Ledger balances as specified. The Posting to General Ledger Process is
composed of various tasks. Two of those tasks are Suspend GL Journal (which
supports suspending GL Journals if necessary) and Post GL Journal (which
supports the validation of the journal and the updating of the GL balances if
appropriate).

Chapter 8. San Francisco Application Development Methodology 81

San Francisco decomposes these business processes and their tasks into
application scenarios which are a set of specific uses or executions of a
particular business task. The scenarios are refined through the development
process to represent the implementation required to complete a specific
execution of its related task.

Once the domain information (in the form of processes and tasks with scenarios)
is collected, formalized, and reviewed, an object model is created. First, an
analysis object model is created which evolves iteratively during the course of
development to a design object model. The object model is composed of class
categories. Some categories are generalized capabilities which span various
processes, however most of the categories represent a specific business
process.

The San Francisco analysis model category usually reflects the business objects
involved in a particular business process. The design model category reflects the
business objects central to a process as well as the objects necessary to
support the specific process.

8.2 San Francisco Development Approach
San Francisco supports an iterative development cycle, as is customary with
object-oriented technology development. There are a variety of entries into the
San Francisco development process. These entries depend on what level of
investigation has been done by the ISV in defining the application from an OO
perspective. The entries are discussed later in this chapter. To reap maximum
benefits with San Francisco, it is important to use as much as possible of the
San Francisco methodology. It is important to stress that San Francisco did not
invent a completely new OO development methodology, but rather San Francisco
extends the standard OO approach where necessary.

San Francisco documents its development approach via the San Francisco
Roadmap. This document comes with San Francisco and guides an ISV through
the development cycle. It provides a set of standard templates used by San
Francisco to document a domains' business processes, tasks and scenarios. By
using these templates an ISV can readily adhere to the San Francisco approach
for documenting their application design. The San Francisco Roadmap also has
links to specific examples of creating portions of a GL application, documented
according to the San Francisco Roadmap.

It is important to note that there are various ways of developing applications with
San Francisco. These ways are:

Build applications with the San Francisco Foundation

Build applications with the San Francisco Foundation and the Common
Business Objects (CBOs).

Build applications using a San Francisco framework for a specific domain

Build an additional San Francisco framework

The San Francisco Roadmap focuses on building an application using a San
Francisco framework. There is work being done to document the other ways and
there are courses/education available which facilitate the other types of
development.

82 San Francisco Concepts & Facilities

8.2.1 San Francisco Application Development Team
The application development team requires a mixture of skills and capabilities.
The main team roles are:

Domain Experts with knowledge of the specific domain

OO Designer(s) with sound OO modeling and design skills

Programmers with OO knowledge and skills in Java

With some effort on the various team members part, they can become a single
working unit. They can use the activity of understanding a San Francisco
framework as a base point for allowing the various members to bring their own
particular knowledge to the team.

8.2.2 San Francisco Development Cycle
The San Francisco development cycle consists of four standard activities, which
are:

Collect and Document the Requirements

Perform Analysis

Perform Design

Generate Code and Test

These activities are standard to any OO methodology. However, as we stated
earlier San Francisco has documented their requirements as processes and
tasks. If the ISV documents their requirements as processes, the incorporation of
San Francisco function will be easier.

For ISVs developing applications using either the CBOs or a framework, an
additional activity is necessary. This activity, known as mapping, provides the
development team a means to relate their application requirements to the
function provided by San Francisco. The mapping process should occur as part
of the first three activities listed above.

The results of the mapping activity performed subsequent to a requirements
definition will be rather high level. As development continues and the application
becomes more completely defined, in the analysis and design stages, the
mapping to San Francisco will reflect a more detailed utilization of San Francisco
function. It is recommended that at the end of both analysis and design the
mapping activity is performed.

Mapping is defined as the act of reviewing your application requirements
(processes and tasks), scenarios and model with San Francisco. Mapping to the
San Francisco application scenarios, which detail the activities performed for a
particular task within a process, is the suggested approach. The results of the
mapping process should be recorded. San Francisco provides a Mapping
template, which allows the ISV to capture the results of the mapping exercise.
The ISV can use this information aid in defining the amount of coverage San
Francisco will provide as part of their application and can use this information to
help in the project management activity for the project.

Chapter 8. San Francisco Application Development Methodology 83

8.3 The San Francisco Roadmap
The San Francisco application development Roadmap is a guide for developers
who intend to use a San Francisco framework as the basis for application
development. The Roadmap guides you through the development cycle as
shown in Figure 33. It guides you through a structured set of activities and
provides templates for collecting your application information. The templates
assume you are using the process, task, scenario approach which was
discussed earlier. The Roadmap provides links to sample applications
implemented using the Roadmap templates.

Figure 33. Development Cycle of San Francisco

Each activity in the development cycle has its own set of recommended
deliverables. The development cycle steps are:

Collect and Document the Requirements

Perform Analysis

Perform Design

Generate Code and Test

You should add an additional mapping activity as part of the first three major
cycle steps.

8.3.1 Collect and Document Requirements
The San Francisco Roadmap has identifies three general types of requirements
to collect.

1. Application Requirements

Application requirements state the portions of the business domain which
are encapsulated in the application. The application requirements can be
collected various ways. The Roadmap suggests using either:

Process Modeling
Defining your business processes.

84 San Francisco Concepts & Facilities

Use-Case Modeling
Defining the key actors in the domain and how they do their
work. For more details, refer to reference 4 on page 117 in B.3,
“Other Publications” on page 117.

Once the initial requirements collection activity is completed, the Roadmap
suggests the requirements be formalized as processes with tasks. The
use-cases can be grouped and restructured into processes with tasks, while
the process modeling approach needs to be formalized as processes with
tasks.

2. Technical and Tooling Requirements

The technical and tooling requirements include both the development tools
and the deployment technology required. This information aids in the
planning, budgeting and education plans for the development team. This
information is also used as part of the application design considerations.

3. Implementation Requirements

The implementation requirements view the development of the application
from the customer/end user perspective. Things included here range from
deployment considerations to end user education/documentation and
application roll out.

These various requirements, if rolled together and used appropriately throughout
the development process, will increase the likelihood of the project's ultimate
success.

The exit criteria stated in the Roadmap for this cycle step is an agreed upon set
of requirements (preferably written as processes with tasks) and a list of
application scenarios for each task within a process. An application scenario
states the specific executions of a task. The application scenarios list all the
executions or usages for each process task within the application.

8.3.1.1 Mapping Requirements
The mapping activity allows the application development team the opportunity to
map their requirements to San Francisco. This is a first pass at the mapping
process, which should occur again as part of analysis and design. The Roadmap
suggests using the application scenarios as the primary vehicle for the mapping
process. This initial mapping exercise will yield a high level match which can be
used to indicate the amount of coverage San Francisco provides for your
application. As development continues and more detail is provided about the
application, the mapping will be able to explicitly state the detail function within
San Francisco that applies to the application.

The Roadmap provides a Mapping template which allows the development team
a means in which to record the results of the mapping process. As development
continues, this document should be revisited and refined to reflect the details of
the application and the function provided by San Francisco.

8.3.2 Perform Analysis
The analysis step refines the information about the application by supplying
more details about the users activity and the business logic required to support
the domain. An analysis object model is created which identifies the Domain
objects and their static relationships.

Chapter 8. San Francisco Application Development Methodology 85

The major emphasis of this step is to provide the details of the application
scenarios. The Roadmap provides a scenario template which allows the
developers to record each step required to complete the execution of a scenario.
Where the application is using San Francisco function, the application scenario
will reference the San Francisco application scenario that provides the needed
capability.

The business application is responsible to provide all the user interaction with
the application. This user interaction takes various forms, which includes User
Interfaces, Reports, and addition processes not provided by the San Francisco
framework. The user interactions are defined during this step. User Interface
prototypes and report layouts are considered part of this step, even though all
the details may not be completed.

The analysis object model and the analysis level application scenarios are the
primary exit criteria for this step. Analysis level object interaction diagrams
would be of benefit, even though they are not required.

8.3.2.1 Mapping Analysis
While detailing the application scenarios, the development team may want to
look at the function provided by the San Francisco framework. The suggested
approach is to map the scenarios to the San Francisco framework after the
scenarios have completed. The key point is to perform the mapping process and
continually review the San Francisco framework to determine how it can aid in
the development process.

8.3.3 Perform Design
The goal of the design process is to add the implementation specifics to the
analysis results. The implementation specifics include:

Extending the Analysis Model with design details

Refining the Application Scenarios with all necessary implementation details

Refining the User Interactions (UI and Reports)

A design model, based upon the analysis model, is extended to include various
design specific classes, relationships and methods. San Francisco specific
classes are incorporated which facilitate both the utilization of San Francisco
capabilities and the subsequent code generation process. This activity can
require the restructuring of the model to meet the technical architectural needs.

Each analysis level application scenario is enhanced to handle various aspects
of the actual implementation. These aspects include details on validation,
exception handling, and method calls on various objects. Along with application
scenario detailing activity, object interaction diagrams should be created for
every significant scenario. This ensures the completeness and verifies the
design.

The design step defines both how the San Francisco framework will be extended
to meet the application needs and how the new application will interact with the
legacy application, if one exists. These two topics are discussed later in this
chapter. It is important to recognize these activities as part of the design
process.

The exit criteria for this step is a detailed description of each application
scenario, well defined user interfaces and reports, and a complete design model

86 San Francisco Concepts & Facilities

including object IDs as needed. This information must be mapped to the San
Francisco framework to ensure the framework has been used to its fullest extent.

8.3.4 Coding and Testing
The last step documented in the Roadmap is code and test. In this step, the
design model is used as input to the code generator, which generates San
Francisco Java code. The code generator uses the static model as input to
create the various San Francisco objects. The developer must add the business
logic behavior to the generated code. The developer is also responsible for
creating the user interface code. During this step, you must develop a test plan
and carry out the plan against the completed code.

You must understand the San Francisco execution environment to complete the
testing process. This is covered in Chapter 7, “San Francisco Utilities” on
page 65.

8.4 Building the San Francisco Framework Based Application
A San Francisco framework provides the core processes for a particular domain.
To provide a complete and robust business application, the ISV must both extend
the function with the framework and add new function. Each application builder
must extend the San Francisco framework with the application specific needs (for
example, country, company or industry specific needs). San Francisco has
defined an approach to accomplishing this activity in the San Francisco
Extensions Guide. There are two major types of extensions to a San Francisco
framework:

Including New Function

Extending San Francisco Framework Classes

8.4.1 Including New Function
San Francisco uses class categories as a means to subdivide a framework into
smaller, manageable units. Because a San Francisco framework provides only
the core processes within a particular application domain, it is expected that the
ISV will create new class categories. The Java code generator for these class
categories is shipped as Java packages along with the San Francisco packages.
In the San Francisco Extension Guide, guidelines and rules are defined which
detail the steps to identifying and integrating new class categories and packages
with a framework to create the complete business application.

8.4.2 Extending San Francisco Framework Classes
San Francisco has provided various mechanisms to extend the function provided
by a framework. These mechanisms (called extension points) are usually
represented as implementations of San Francisco patterns (covered in
Chapter 6, “San Francisco Patterns” on page 55). These extension points
isolate the areas within the framework that need to be customized. Extension
points are specific classes or groups of classes where the behavior of the
framework can be easily modified through well-defined approaches. By taking
advantage of these extension points, you will ensure:

Consistency within your applications and with other San Francisco
applications.

Interoperability with other San Francisco applications

Chapter 8. San Francisco Application Development Methodology 87

Isolation of framework changes made by ISVs to a limited number of classes
to make maintenance easier and allow upward compatibility.

Each extension point is identified in the San Francisco design model with a prefix
to the class names which identifies the particular type of extension point.

The San Francisco Extension Guide supports extending framework classes using
these basic approaches:

Subclassing to Add a New Class

Subclassing to Replace an Existing Framework Class

Extending a Framework Class through Aggregation

Extending a Framework Class through the Use of Properties

8.4.2.1 Subclassing to Add a New Business Object Class
When the application developer is unable to find an existing framework class to
suit the application needs, subclassing to add a new business object is one way
to satisfy that need. This entails either deriving a new class from a Foundation
layer base class or from a domain class defined within the framework. These
application defined subclasses fall into two primary categories:

Classes introducing new function (methods and attributes) not related to
classes provided by the framework.

Classes adding function (methods or attributes) to or modifying methods
provided by the framework.

Classes introducing new function not provided by a framework class must be
derived from one of the Foundation layer base classes. The characteristics of
the new class must be mapped to the appropriate Foundation layer base class
and the specific implementation details applied.

Classes adding function to or modifying methods provided by the framework
require the developer to determine the origin of the class (to be subclassed).
The class could be either a framework class or a coexisting application class. In
either case, the developer must evaluate the situation and follow the approach
defined in the San Francisco Extension Guide.

8.4.2.2 Subclassing to Replace an Existing Business Object Class
When building an application using a San Francisco framework, it is natural to
have situations where the developer wants to change the behavior of a
framework provided class. This is accomplished by using the Abstract Factory
pattern, which is implemented as part of the Foundation's Base Factory. The
Abstract Factory pattern is discussed in Chapter 6, “San Francisco Patterns” on
page 55. It is important to note that San Francisco restricts class replacement
on the CBOs. This is because the CBOs can be used by multiple application
providers a given customer might use. This would cause problems because of
different implementations of the same business object.

Class Replacement: Allows the framework code and the application code to
make calls specifying a class known at compile time, while allowing a derived
subclass to be substituted at run time. This is based on the configuration
information set through the Base Factory. It is important to keep the interface of
the replacement class the same as the original class. Remember that the
framework and possibly other applications (unless the developer implements it)
have no knowledge of any additional methods that have been added. The

88 San Francisco Concepts & Facilities

developer must not subclass those classes San Francisco specifies as not
available for subclassing.

Figure 34. Framework Extension using Class Replacement

8.4.2.3 Extending Framework Classes through Aggregation
A well accepted way to extend the framework is through aggregation, which is
containment of one or more framework class instances as attributes of an
application class. A common reason for extending the framework through
aggregation is to ensure type safety in your application, which applies:

When using or passing the class

When working with a framework class with generic interfaces

By using aggregation, the developer introduces a new class into the application.
There are various decisions that the developer must make to ensure both the
new class and the framework class are implemented correctly for the situation.
The decisions are detailed in the San Francisco Extension Guide.

8.4.2.4 Extending Framework Classes by Using Properties
Business objects often need to be extended with information that is needed by
the application, but which is not included in the pre-built San Francisco class for
that business object. Another case is when particular instances of a business
object need to have an additional specific piece of information. This information
may be an attribute or a relationship in the object model. In San Francisco,
either a normal attribute or a property can be used to extend a business object
with new information. Attributes are added by creating a subclass of the
business object's class. Properties are added to an object at run time and
normally do not require modification to the San Francisco domain framework
classes. Properties support loose coupling between classes or categories and
also multiple application providers extending the same objects.

Chapter 8. San Francisco Application Development Methodology 89

Figure 35. Extending Frameworks through Properties

Any class (that supports the Property Container interface) can have properties
added to instances of that class at run time. Using properties can be done
without any modification to the interface or class code of the business object.
Most business objects in San Francisco domain frameworks support the Property
Container interface.

8.5 Integration with Legacy Applications
Most ISVs have a suite of legacy applications that need to cooperate with the
new San Francisco based application. It is impossible to replace all of this code
at once, so a plan for migration needs to be put in place. The big advantage of
the legacy code is that it is robust and tested. There are various options for
integrating legacy systems with San Francisco technology. One of the first steps
to take is to ensure your existing application is modularized to make the
replacement of portions of the existing application doable. Mapping Java objects
for interfacing between the "new" application code and the existing modules is
an important activity.

90 San Francisco Concepts & Facilities

Figure 36. Techniques to Integrate Legacy Applications

It's most important to decide what components must be retained and integrated
and what components must be replaced. Make a clear analysis of which
modules can be retained and what needs to be replaced. This can help you
understand how much time it will take to deploy new applications on top of San
Francisco.

Another approach to integrating a San Francisco based application with a legacy
application is through the use of a common database. This can achieved by
using the Schema Mapping tool to map San Francisco business objects to
existing database tables.

8.5.1 Schema Mapping
Schema mapping is the process of mapping business objects to relational
database tables. The objectives of schema mapping include transparency and
flexibility. Programmers need not be involved in determining how the objects
will be made persistent in a relational table. The mapping is primarily an
administrative activity and can be accomplished with a manageable amount of
programming. In order to coexist with different legacy environments, the
application must be able to persist business objects to different database
layouts.

These objectives are fulfilled by the schema mapping support provided by San
Francisco. At present, there are two ways to make San Francisco business
objects persistent in a relational database:

1. Using the default schema mapper

2. Using the extended schema mapper

Using the default schema mapper only requires you to configure your business
object classes to be persisted to a relational database. The San Francisco
Foundation will do the rest: it will create the relational tables to contain business
objects and will automatically map objects' attributes to relational columns. This

Chapter 8. San Francisco Application Development Methodology 91

option is only suitable for new application environments, because the default
schema mapper cannot adapt its choices to a pre-existing relational database
layout.

The extended schema mapper allows a much more sophisticated type of
mapping. Using the Schema Mapping tool, the developers are able to map each
attribute of the business objects to an appropriate database column.

There are advantages in using the extended schema mapper including, being
able to map to the legacy table and improving performance considerations.

For more information on the Schema Mapper Tool, see 7.5, “Schema Mapping
Tool” on page 77.

8.6 Plans of Transition to San Francisco
When the decision is made to start a new development project using a San
Francisco framework, the team must prepare themselves for the task at hand.
After acquiring the necessary skills, a first step should be to build a prototype
application. Building a prototype is the perfect preparation for building larger
applications. The pilot project should have the following characteristics:

Have a limited scope (about one or two core business processes)

Incorporate user interfaces

Implement some application specific business logic

When developing the pilot project, use the Roadmap guidelines and the San
Francisco Extension Guide, as needed. Using these documents means your
team profits from the experience which the San Francisco team acquired during
the San Francisco framework development process. Also, your team becomes
familiar with the architecture, the naming standards and the San Francisco
documentation templates, and much more.

Developing a transition plan to San Francisco involves determining the overall
strategy to ensure a smooth migration. The San Francisco Roadmap provides
suggestions and guidelines for putting a project plan together.

After a prototype has been completed, the development team has obtained the
necessary skills to tackle a complete application. Note that typically the
prototype is used for learning and exploration but in most cases it is not used
beyond that experience.

92 San Francisco Concepts & Facilities

Chapter 9. San Francisco Open Tools Strategy

The San Francisco tools strategy is one which is founded on the slogan of
“Optimized Openness.” The thrust behind the optimization element is to focus
our efforts on providing the best development technology specifically in support
of the San Francisco project. The drive behind the Openness aspect is to make
the statement that all tool providers are viable candidates for inclusion in the
San Francisco project.

This chapter contains the following sections:

Section 9.1, “Foundation” communicates the fundamental working
assumptions, or principles, that collectively form the basis of the San
Francisco Tools Strategy.

Section 9.2, “Vision of San Francisco Tools End Game” on page 94
establishes long term plan directions for San Francisco Tools.

Section 9.3, “San Francisco V1R1 Available Tools” on page 96 highlights
some of the tools already available today to reduce the complexity of
developing applications with San Francisco.

9.1 Foundation
The purpose of this section is to communicate the fundamental working
assumptions, or principles, that collectively form the basis of the San Francisco
Tools Strategy.

Those principles include:

1. Tools are an important part of San Francisco . Building complex applications
requires industrial strength tools. Tools help simplify the process of building
applications and allow you to use San Francisco more efficiently.

2. The entire application life cycle should be supported. The process of
developing an application goes through requirements gathering, analysis,
construction, testing and deployment. Our aim is to maximize the
seamlessness, traceability and completeness of tools required for the entire
life cycle.

3. Multiple entry points into the life cycle should be supported. While we intend
to support the entire life cycle, it is acknowledged that you may want to use
tools only in certain portions of the life cycle. This means that San Francisco
tools need to provide multiple entry points into the life cycle by providing
wizards or smart guides to assist you.

4. An evolutionary approach to cross tool and tool provider integration will be
taken . As is the case with any major project, levels of sophistication and
synergy between the various components of the San Francisco tools delivery
will improve over time. This improvement will come in the future through
two different channels. One is through the results of ongoing cross tool
vendor integration efforts, and the other is through the addition of some
number of more “full life cycle coverage” single tool offerings. Key elements
of this integration activity include the architecture definition and
instrumentation of a meta model, tool-to-tool control flow, debug and wizard
services.

Chapter 9. San Francisco Open Tools Strategy 93

5. Multiple deployment platforms must be enabled . Support must be provided
for the suite of target San Francisco fat/thin client and server combinations.

6. Multiple tool suppliers will be leveraged . The approach to providing tooling
for San Francisco is one based on openness. Any tool provider that is
interested in providing some element of support for the project should
contact the IBM San Francisco Development Organization.

7. Multiple tools per life cycle step will be offered . The above statement on tool
provider openness logically cascades to this principle. Direct feedback has
been received from the application development community (San Francisco
Independent Software Vendors) that they desire a set of tools to pick from for
each of the major tools categories comprising the overall application life
cycle.

8. Multiple development audiences must be supported . There are many
different user audiences that need to be enabled for San Francisco. The
user audience includes domain experts, business analysts, Java
programmers, and application administrators.

9. Multiple OO methodologies need to be enabled . The San Francisco product
is comprised of a distributed object-oriented infrastructure, a class library of
reusable business objects, and a series of industry domain specific
frameworks. Our intent is not to dictate the use of any specific OO
methodology to understand and extend the San Francisco frameworks into
application solutions.

9.2 Vision of San Francisco Tools End Game
One of the major purposes of this section is to establish long term plan
directions for San Francisco tools. Figure 37 on page 95 shows the “San
Francisco Tools Vision.”

94 San Francisco Concepts & Facilities

Figure 37. San Francisco Tools Vision

In order for the San Francisco product content to be usable to the masses of
application developers, and to a smaller degree the emerging set of framework
developers, a synergistic tools suite must be delivered. Simplification, leading to
enhanced overall ease of use is paramount to a successful tools offering.

Based on direct Independent Software Vendor input, it is very important that the
multiple ways of viewing a framework's content, semantic and syntax be
supported. This includes the provision of a business process view, an
object-oriented analysis and design view, and an implementation class hierarchy
view. Also required is the view of how objects collaborate, which is many times
orthogonal to the class hierarchy. Cutting across all of these views is the need
for the identification of the framework extension points. For each extension
point, it needs to be clear whether it is optional, meaning that some level of
default behavior is provided as part of the framework product offering, or
required, and what the required, or preferred approach is to completing the
extension. Examples of completing an extension include subclassing or class
replacement. The level of cross view synchronization desired is akin to what is
provided today between a source level debugger and its supporting source code
editor.

Due to the complexity of the frameworks, a special application solution
requirements analysis and planning facility should be provided.

There are a number of different alternatives for how the specification and
execution of business processes can be supported within San Francisco. In the
San Francisco V1R1 time frame the business processes are implemented as an
integral part of the industry domain frameworks. Extension points are used as a

Chapter 9. San Francisco Open Tools Strategy 95

way to specify where required, or specialize where optional, the business
process flow of control and related data. The notion of a business role is not
currently formalized in the San Francisco framework implementations. The
potential use of an external workflow service, or better yet, the provision of a
San Francisco embedded workflow service is under investigation for a future
release.

Providing support for object-oriented analysis and design tools is a very
important part of the San Francisco tooling effort. Examples in this arena include
the likes of the Rational Rose category, class description and object interaction
diagrams that are being delivered as part of San Francisco V1R1. It is
anticipated that a number of different OOA/OOD tools will be enabled over time.

Partial code generation, when driven from either an OOA/OOD, IDE, or a stand
alone tool is an excellent example of what is being pursued to simplify the
development of San Francisco applications. Due to the criticality of code
generation, the delivery of code generation services will begin in San Francisco
V1R1 and grow, both in breadth and level of sophistication with each subsequent
release.

There are a number of additional application development capabilities which are
fundamental to the overall San Francisco tools package. They include the
following:

Java Integrated Development Environment

Distributed Client/Server Application Development

Schema Mapping Services (Relational and file system based - > OODBMS)

National Language Support Tools

Fix Development and Maintenance Services

Testing Support (Unit, Component, System, Extended Framework, Enterprise,
Performance, Usability).

Deployment Support

9.3 San Francisco V1R1 Available Tools
The primary objective of the San Francisco tools is to reduce the complexity of
developing applications using the framework. Another aspect that needs to be
addressed is how to navigate through San Francisco. If you look at the sheer
size of San Francisco, there are hundreds of business processes that involve
thousands of different classes. It is literally impossible to look at San Francisco
without a tool or a combination of tools and documentation that guides the
business designer through the processes from a high-level perspective down to
the individual task details, and that allows programmers to pick up the
requirements and map them to the right extension points. Finally, once you
become familiar with the San Francisco programming model, you realize that
several programming tasks are rather repetitive and can be greatly automated.
The tools that are being selected to help you with developing applications based
on San Francisco address all of these aspects, from providing assistance in
browsing through the numerous processes, object diagrams, classes, and
extension points to generating class skeletons that pertain to the programming
model.

96 San Francisco Concepts & Facilities

The following sections in this chapter highlights the tools that have been already
integrated with San Francisco V1R1. Additionally, the San Francisco team is
looking at a set of more traditional tools to assist with the day-to-day activities of
developing applications such as using an integrated development environment,
team programming, versioning, and so on.

9.3.1 Rational Rose
Rose diagrams provide support for object-oriented analysis and design. They
give a vivid picture of how the system will look during analysis and design
phases. During these phases, you can depict the system in terms of relations,
classes, categories, and so on. The appropriate diagrams can be drawn to show
how the system is portrayed and the necessary enhancements and changes can
be made. The latest version of Rational Rose supports several design notations
such as Booch, UML, and OMT. Until now, the San Francisco development team
has always used Booch notation, and the various diagrams in the documentation
are provided in Booch. In the future, a conversion to UML might happen
because this seems to be becoming the de facto standard notation.

Rose provides two main categories of diagrams: static and dynamic diagrams.
Static diagrams are class diagrams, category diagrams, and use-case diagrams.
Dynamic diagrams are object interaction diagrams and state diagrams. The San
Francisco development process mainly uses the class diagrams and object
interaction diagrams. In some cases, for complex classes, state diagrams are
also used.

Rational Rose is a good choice for also doing your own application development
because the code generator provided with San Francisco depends on Rose
“mdl ” and “cat” files. After the design phase of the development cycle, you end
up with a set of class and object interaction diagrams. To prepare these for the
code generator, you have to add some additional non-standard notations into the
diagrams. By looking at an example, you can easily understand that certain
aspects in the Rose notation do not map uniquely to a code implementation in
Java using San Francisco components. If we have a 1-to-n relation between two
classes, this might be implemented in several ways. San Francisco provides
different types of collection classes depending on the type of elements in the
collection and the size. This information needs to be passed into the code
generator so that it can generate the appropriate code. This is done through a
set of keywords (called #directives) that direct the code generator. These
keywords need to be added into the documentation of the Rose diagrams.

To help you enter these #directives in the diagrams, San Francisco provides a
wizard that can be installed into the Rational Rose tool menu bar. This wizard
helps you enter the directives so that you do not have to memorize them. Once
the model has been enhanced with these directives, it can be saved and used by
the San Francisco Code Generator. In the future, San Francisco may support
other object-oriented analysis and design tools.

9.3.2 San Francisco Code Generator
The San Francisco Code Generator produces Java code starting from your Rose
design diagrams. Its main purpose is to eliminate a set of repetitive tasks and
hide complexity that you must implement for every business object so that it
complies with the San Francisco programming model. The Code Generator
starts from your static class diagrams and generates the necessary code to
implement the different business objects that you have defined together with

Chapter 9. San Francisco Open Tools Strategy 97

their attributes and relationships. At this moment, there are no provisions for
generating business logic out of the object interaction diagrams or for generating
client code using the various business objects.

As already discussed in the section 9.3.1, “Rational Rose” on page 97, you need
to add the necessary #directives to your diagrams before loading them into the
Code Generator. The Code Generator converts the diagram files to an internal
database. From that database, you can select certain business classes and
generate the necessary Java files for them.

Currently, there is no support for round-trip engineering. This means that
changes you manually make to the Java files are not imported into the models,
so if you regenerate a certain business object, you have to reimport any manual
changes that were made. In future versions, this support might be provided so
that managing code becomes easier.

The Code Generator also helps with the implementation of certain design
patterns. Special #directives are defined to indicate that you want to implement
a design pattern. The Code Generator then generates some or all of the classes
needed for implementing this pattern.

9.3.3 IDE and Version Control in San Francisco
IDE Tools Strategy

Based on San Francisco's “Open Tools Strategy,” a number of different IDEs
will be enabled over time. The rate at which a particular IDE is proven to
work well with San Francisco is primarily up to the provider of the IDE. The
extent to which an individual IDE is enhanced to provide San Francisco
“Optimized Wizards or Intelligent Assists” is also heavily influenced by the
company developing the IDE.

After the code generation step, you need to add additional code to the Java files.
You also find out that it becomes difficult to keep track of different versions of
your classes and the accompanying documentation. Therefore, you probably
need a version control environment, which also gives you the capability to work
with a team on the same set of source files. San Francisco does not recommend
anything in particular to be used in this area, none of the IDEs have integrated
support for team development and version control.

Besides the version control at development time, you also need to keep track of
the versions of classes at the deployment of your application. One of the
advantages of Java is that it is easy to replace one or more classes by a new
version without having to recompile other parts of the application. This has
great benefits. For example, you can start to profit from a new version of San
Francisco without having to recompile any parts of your application. The
drawback of this is that it becomes easy to create many different versions of
classes and you can lose control of which level of code exists in a certain
implementation of the application. It is necessary to develop a structured way of
releasing applications and fixes to avoid this kind of problem.

98 San Francisco Concepts & Facilities

Chapter 10. Developing Applications on Top of San Francisco

According to the rules defined by the San Francisco programming model, a
client role (see 3.4, “The San Francisco Programming Model” on page 37)
applies when the programmer can use business related classes and frameworks
without changes or extensions. Client, therefore, refers to any code that uses
existing object operations. Client code can be running in a batch-style process,
in a user-interface program, or even in other business objects.

Figure 38. The Client Role Defined by the Programming Model

San Francisco provides base classes to develop a user interface (UI). These
classes enable Independent Software Vendors (ISVs) to quickly build solutions.
The UI classes are structured so that they provide easy extensibility and reuse
as the business objects are extended. They extend the UI controls in Java's
Abstract Window Toolkit (AWT) package to provide features such as an entry
field with keystroke validation and frame with status message.

San Francisco can also be used with UI tools that support communication with
Java Virtual Machines (JVMs). This currently includes Java based products.
However, this is changing as non-Java based products such as Visual Basic
include features that allow communication with JVMs.

This chapter contains the following sections:

Section 10.1, “Applications and Applets” on page 100 explains the two
models in which Java client programs may be executed.

Section 10.2, “Client Programming with San Francisco” on page 102 explains
the basic application architecture proposed and supported by San Francisco.

Section 10.3, “The San Francisco User Interface Style Guide” on page 106
introduces the San Francisco User Interface Style Guide which defines an
application-independent way of viewing and presenting business in a GUI.

Section 10.4, “The San Francisco User Interface Framework” on page 108
introduces the San Francisco User Interface Framework which has been
developed to make it easier to develop an UI to work with San Francisco
business objects.

Chapter 10. Developing Applications on Top of San Francisco 99

10.1 Applications and Applets
There are two modes in which a Java client program may be executed:

Application
Applet

An application is started the same as any other program from the client's disk,
no matter if the disk is physically in the client machine or attached as a remote
disk. As long as you have access to the executable file (and the program was
written to be run stand-alone), it is called an application.

An applet is embedded in an HTML page and loaded with that page, usually over
the network. You have no access to the executable file, since it is embedded in
the page. If the applet shows a user interface, it is shown in the window of the
HTML browser. For security reasons, applets loaded over the network have
several restrictions:

An applet cannot access files on the computer where it is executing

An applet cannot make network connections except to the host from where it
was loaded.

The following statement describes the way to access San Francisco business
objects from a client computer.

The client computer runs a Java applet that does not use San Francisco
classes. This applet is connected to a Java server that, on the other hand, is
a client to a San Francisco server. Using this configuration, no San
Francisco classes need to be transferred over the network, thus reducing the
amount of network traffic.

100 San Francisco Concepts & Facilities

Figure 39. San Francisco Client using Middle Tier

Chapter 10. Developing Applications on Top of San Francisco 101

10.2 Client Programming with San Francisco
The basic application architecture proposed and supported by San Francisco is
shown in the following picture:

Figure 40. Application Architecture

The client issues its requests to a local copy of a business object. It uses a
Command object to update the object. Object management actions are routed to
the local Factory that, in turn, communicates with its corresponding server
Factory.

10.2.1 Transaction Model
The Java implementation itself does not provide a transaction service. San
Francisco's Java Object Transaction Service (JOTS) defines the architecture that
allows multiple, distributed objects to cooperate to provide atomicity. The
architecture enables the objects to either commit all changes together or to roll
back all changes in the presence of failure, regardless of their actual location in
the LSFN. This architecture is implemented in the Transaction Framework.

Every operation using persistent objects needs to be included in a transaction.
The only exception to this rule is represented by NO_LOCK copies of objects.
These transactions have support for commit and rollback behavior. The
management of these transactions is done through the Base Factory. Changes
to an object are made persistent by committing the transaction.

The scope of the transaction is determined by the client program. This can be
done in one of the following two ways:

The actions to be executed in the transaction are implemented in a
Command. The Command can be executed as a transaction on the client
side or the server side.

The transactional actions are enclosed between the calls to begin and
commit a transaction directly in the client code.

102 San Francisco Concepts & Facilities

The Transaction Framework supports two kinds of transactions:

Two-phase This transaction type is used when all data stores used for San
Francisco objects offer a two-phase commit interface such as
DB2. Under two-phase commit protocol, the changes made in
one unit of work are either all committed or all rolled back. It
guarantees the data integrity and provides recovery in case of
system/server failure.

Mixed-phase This transaction type is used when objects are stored on a data
store that does not offer two-phase commit such as Posix files.
It allows recoverable resources and non-recoverable resources
to participate in the same transaction. In case the system fails,
there is no recovery for the non-recoverable resources.

The choice of the appropriate transaction type is made by the administrator of a
San Francisco installation. The application programmer does not deal with
different types of transactions.

Note: Nested transactions are not supported.

10.2.2 Processes and Threads
San Francisco implements a distributed process (DP). It is based on the concept
of a normal process in that it is an anchor point for one or more threads that are
actively working under it. The threads of a distributed process can be spread
across one or more Java Virtual Machines (JVMs). Like a normal process, the
DP has a context, or shared information space, that each thread in the
distributed process can access and modify. This context is called the distributed
process context (DPC). Changes made to the DPC by one thread are
immediately available to the other threads in the distributed process.

A work area is a thread-scoped data area that contains both transactional and
non-transactional data. A thread can be working in only one work area at a
time, but is allowed to switch work areas if required. The initial client thread has
a default work area. You can transfer a work area to another client thread by
suspending the work area in the first thread and resuming the work area in the
second thread.

A thread must be associated with a work area to access the distributed process
context. If the client creates a new Java thread, this thread can either create a
new work area or resume work on a work area that was suspended in a different
thread. San Francisco provides a subclass of the Java Thread class that, on
creation, automatically creates a work area.

Note: User interface event handlers run in a separate Java thread. Before any
calls to San Francisco are made, this thread has to be associated to a work
area. After execution of the client code, the thread should release the work area
again.

Server threads are associated with the work area of the client thread requesting
the service.

There may be multiple independent transactions concurrently running in different
threads, but there always is only one thread associated with the same
transaction.

Chapter 10. Developing Applications on Top of San Francisco 103

10.2.3 Creating and Deleting Entities
All Entities are created through a Factory class. Client programs are not allowed
to use standard Java methods to create instances of objects; they need to pass
through the provided Factories. These methods allow the creation of transient
and persistent objects by specifying the appropriate parameters.

When creating persistent Entities, the client does not care about where new
objects are stored. Defining the storage location is done by the application
administrator at the installation site (see Section 7.1.3, “Container Configuration”
on page 69).

To delete Entities from the persistent store, the delete() methods on the Base
Factory have to be used. Transient objects do not need to be explicitly deleted
because they are removed by the garbage collection.

10.2.4 User Aliases
Giving user aliases to persistent objects is an easy way to retrieve objects
during the development of client programs. Generally, this is not a good way of
using user aliases. In a production application, only a few top-level objects
should get a user alias. Using containing business objects is the recommended
way to retrieve Entities contained in them.

For manipulating user aliases, the Base Factory again provides the appropriate
methods.

10.2.5 Accessing Entities
To update an existing Entity, the client program first needs to get a valid
reference to it. This can be done through the Base Factory using the Entity's
user alias, or the containing object, which may be a Collection or any other
object having the target Entity as an attribute value.

To control concurrent access to objects, there are three locking strategies used
with San Francisco:

No Locking No restriction on other processes to read or change the object.

Optimistic Locking
No restriction on other processes to read or change the object, but
the commit fails if the object was changed by other processes while
it was locked.

Pessimistic Locking
Other processes have restricted access to the object.

The latter two can be specified for read or write access.

An interesting strategy is optimistic read access (OPTIMISTIC_CLEAN). It means
that the state of the object is checked at commit time even if it is only used for
read access. Take, for example, a stock exchange transaction. You can read
the current value of a company's stock and let a customer know. Depending on
the value, the customer might tell you to go ahead and sell. You must make
sure, though, that during your conversation with the customer, the share did not
change, or otherwise your transaction must be rejected (the commit operation
will fail).

104 San Francisco Concepts & Facilities

The location where the accessed Entity should run is specified by one of two
access locations:

Local

The Entity is copied to the client process
All method calls are performed on the copy
The copy is written back home at commit time

Home

All methods are executed in the Entity's server process
Method calls are performed through a local proxy
The Entity must be locked using a pessimistic strategy

The access mode (which includes lock mode and access location) is specified
explicitly when requesting an object through the Base Factory using user
aliases. When requesting an object as a component from a containing Entity
through its get...() method, the obtained object inherits the access mode of its
containing Entity. (There is no access mode parameter on a get...() method).

References to an object are valid only within a transaction. After commit, a new
reference to the Entity must be obtained. The only exception is when using
NO_LOCK copies. These are valid across transaction borders.

10.2.6 Collection Element Access
When accessing a Collection, two lock modes are specified. One applies to the
Collection and the other to the elements of that Collection. The lock mode and
location specified for the elements are automatically applied as elements are
subsequently accessed using either iterator or non-iterator operations on the
Collections. Nevertheless, the lock type of an element may be upgraded at any
time.

10.2.7 Updating Entities
Changes to the Entity's attributes are made by using the get...() and set...()
methods. These changes are written to the data store when committing the
transaction. Changes made outside of a transaction or to a NO_LOCK copy of
an object are not stored.

10.2.8 Notification Service
To be aware of changes to the currently accessed objects done by other
processes, client programmers may want to make use of San Francisco's built-in
notification services.

San Francisco defines two notification mechanisms:

Synchronous This mechanism is a direct one; at commit time of the changes
on the source object, the observer, which can be an Entity or a
Java class that implements Java observer, is notified of these
changes. It can react to the changes properly as soon as the
source object is committed.

Asynchronous In this mechanism the changes are stored in a notification
mailbox; it is up to the observer to pick up outstanding
notification messages. This mechanism is used when the
observer wants to decide when to react to changes committed
in the observed object.

Chapter 10. Developing Applications on Top of San Francisco 105

Notification is generated when changes are committed on a persistent Entity.

Figure 41 illustrates the two different notification mechanisms that are available
in the framework. Both mechanisms are based on the relationship between an
observable and an observer. The observable is the source of the notification and
needs to be a persistent Entity.

Figure 41. Notification Mechanisms

Using either of these two mechanisms, the action to be taken has to be
implemented in the observer. There is no default action provided by the
framework.

10.3 The San Francisco User Interface Style Guide
This guide defines an application-independent way of viewing and presenting
business in a graphical user interface. It defines the concept of frames and
controls.

Note: The User Interface Framework currently does not yet implement all
definitions in the style guide. Open items are listed in the style guide.

Business objects and their attributes are displayed in standard user interface
controls. These controls are arranged and used in standard frames. The
interaction among business objects, controls, and frames is defined by the
behavior concept.

10.3.1 The Standard Frame
The Standard frame describes the layout of controls common to all frames. It
consists of the controls as shown in Figure 42 on page 107.

106 San Francisco Concepts & Facilities

Figure 42. An Example of the Standard Frame and its Controls

Title bar icon Represents the type of information presented in the frame such
as object type, frame type, and application.

Frame title States details about the information being presented and
processed.

Frame buttons Are used to minimize, maximize, or close the window.

Menu bar Consists of menu items that represent actions available for the
object, the frame, and the application.

Toolbar Consists of push buttons that represent actions available for the
object, the frame, and the application.

Client area Holds the actual information.

Messages pending indicator
Consists of two parts indicating if there are messages or
warnings pending.

Chapter 10. Developing Applications on Top of San Francisco 107

Messages Holds the list of all messages.

Previous message button
Scrolls the message list to the message preceding the currently
displayed message.

Next message button
Scrolls the message list to the message following the currently
displayed message.

Locate control button
Sets the focus to the control that caused the currently displayed
message.

Busy indicator Is shown during a user-initiated processing cycle that is going to
last longer than one second (for example, accessing a database,
opening a frame, or filling a collection). When the frame is
busy, the indicator shows the busy icon; otherwise, the indicator
is empty.

Modified in frame indicator
Is shown if the frame has unsaved changes. When there are
unsaved changes, the indicator shows the modified icon;
otherwise, the indicator is empty.

Modified by net indicator
Shows the state of the frame's contents. If the contents reflect
the state on the database, the indicator is displayed empty.
Different icons are displayed for the following states:

Objects are currently loading

Loading has been interrupted

The frame is showing an old state because some objects
have changed on the database.

All other frames described in the style guide are based on the definition of the
Standard Frame. The most important frames are:

Main frame The starting point for an application.

Object frame The frame to maintain a business object.

Collection frame The frame to work with a collection of business objects.

10.4 The San Francisco User Interface Framework
The User Interface Framework has been developed to make it easier to develop
a user interface to work with San Francisco business objects. The framework
considers the standards and patterns used while developing San Francisco.
When using the San Francisco user interface framework, you can easily build
user interfaces that conform to the style guide.

San Francisco V1R1 and the UIF

This document was written based on San Francisco Version 1 Release 1
Modification 0 (V1R1M0). For that release, the User Interface Framework is
still in beta status. Therefore, in future releases of San Francisco, there may
be changes and additions.

108 San Francisco Concepts & Facilities

The San Francisco User Interface Framework is built in Java Development Kit
(JDK) 1.1. Most classes in Java's Abstract Windowing Toolkit (AWT) have been
extended to add functionality. The added functionality makes it easier to use the
components and to support the view-maintainer concept implemented in the
framework. Some extra components such as a notebook and a collection
container have also been added.

Like all other San Francisco components, the User Interface Framework currently
lacks the beans support.

10.4.1 Basic Concepts
The architecture of the UI Framework consists of two main parts:

Views They are the interface to the user. The maintainer is the
interface to the business object. The view is static. Once it is
created, it is just a tool to show information. All of the
controlling code is in the maintainer that is attached to the view.

Maintainers They perform the actions triggered by the user and the
interaction with the business objects. It also controls the
information flow between the view and business object.

Figure 43. The User Interface Architecture

10.4.2 Views
The framework supports two major types of views:

The collection view, which is used to display a collection of objects

The object view, which is used to display detailed information for an object
and its dependents.

To conform to the San Francisco User Interface Style Guide, the frame of each
view is extended by a menu bar and a message area.

A view consists of:

Chapter 10. Developing Applications on Top of San Francisco 109

A frame
Forms
Controls

10.4.3 Frames
A frame in the San Francisco User Interface Framework is a window that
conforms to the the style guide. This means it can display all frame components
as defined in Section 10.3.1, “The Standard Frame” on page 106.

According to the style guide, different classes of frames are defined in the
framework. These classes can be used as is without the need for subclassing.

10.4.4 Forms
A form is a reusable panel. Once a form is implemented, it can be used in
either of the following ways:

As the main form in the client area of a frame

Embedded in other forms displaying a compound attribute of the outer form's
object.

110 San Francisco Concepts & Facilities

Figure 44. Reusing a Form

Major forms are:

Chapter 10. Developing Applications on Top of San Francisco 111

Object Form
It creates and holds simple controls (such as text fields, or radio
buttons) as well as other forms. Usually it is subclassed to set up
the visual controls.

Collection Form
It creates and holds the collection control and may have pop-up
menus and a button list as defined in the style guide. Usually it is
not subclassed.

10.4.5 Maintainers
The maintainer is the active part in the UI. It holds the business object and
reacts to actions triggered by the user. It is responsible for the manipulation of
the view and the business object.

Major maintainers are:

Object Maintainer
It holds the business object displayed, maintains the view (the
frame title and whether the object is enabled), and listens to action
events. Object maintainers are always subclassed to support the
individual attributes displayed in the view.

Collection Maintainer
It defines static user interface data for the view (such as selection
type or column properties) fills the collection view, and listens to
action events. Collection maintainers are always subclassed. The
minimum to be overridden on a collection maintainer is how the
collection is to be retrieved. Depending on the displayed
information and the functions available to the user, other methods
also have to be implemented in the subclass. The collection
maintainer uses a collection item maintainer to handle each of the
collection's element.

Collection Item Maintainer
It creates the (visible) collection item, fills the collection item with
data, and, if the item is a node in a tree view, feeds its child items
into the collection view. Collection item maintainers are usually
subclassed only in case of a tree or multi-column collection view to
implement retrieval of children or column data.

Attribute Maintainer
It transfers values between the view and the business object's
attributes, routes warnings and messages to the message
dispatcher, and converts data between view type and business
type. Attribute maintainers are usually generic and need not be
subclassed.

10.4.6 Client Area Controls
The User Interface Framework provides a set of controls to be used in the client
area of a frame. These controls are designed to implement the style guide
definitions and to cooperate with San Francisco business objects.

112 San Francisco Concepts & Facilities

10.4.6.1 Data Validation Controls
Data validation controls can be linked to a simple attribute of a business object.
They are grouped as follows:

Text Controls
Boolean Controls
Enumeration Controls

Data Validation Controls are able to validate their content and to generate
appropriate error messages. They implement the following styles:

Mandatory
Read-only
Error

Data Validation Controls are associated with an attribute of the business object
displayed in their containing form. They update the associated attribute
according to user input. Text and enumeration controls are able to convert the
attribute value to a formatted string and vice-versa. They validate user input and
generate error messages. They support national languages.

10.4.6.2 Referenced Object
This is a powerful control to display an attribute that holds a reference to an
Entity. Its behavior is derived from a drop-down list. The object referenced in
the attribute is represented by its identifier and, optionally, by its description.

Besides the list drop-down button, the control holds an Edit button that allows
the user to edit the currently selected object or to create a new object if no
selection is currently active.

The client programmer, who uses this control, can specify:

Which objects are displayed in the drop-down list
Which attributes are used as identifier and as description
How the attributes are formatted
Which icon resource is to be used for the Edit button

10.4.6.3 Extended Controls
Extended controls consist of several children. They have a standardized layout
that conforms to the style guide. They can be used without subclassing. The
User Interface Framework currently supports:

Tabbed Control (Notebook)
A panel that holds several pages. Each page is identified by a tab
and only one page is visible at a time. The pages are object forms.

Collection Control
A control to display collections of objects. Together with its
container, it implements the different views and user actions
defined in the style guide.

Status Area Implements the bottom part of a frame as defined in the style guide.
In the current version of the framework, only the message area is
displayed.

Button List Displays a list of predefined buttons, such as OK, CANCEL, and so
on.

Chapter 10. Developing Applications on Top of San Francisco 113

10.4.6.4 Message Handling
The User Interface Framework provides a message dispatcher that is the target
for sending messages generated by a client program. The message dispatcher
routes the messages to the corresponding frame, where they are displayed in
the message list.

The client program that generates the message has to define which control a
message belongs to. By pressing the Locate button, the user can set the input
focus to the control that is specified in the message.

The framework takes care of removing messages when they are not needed
anymore.

114 San Francisco Concepts & Facilities

Appendix A. Special Notices

This publication is intended to help those people who are responsible for the
task of recommending and implementing an object-oriented application
development environment based on Java and Framework technologies. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by the IBM San Francisco Business
Process Components product. See the PUBLICATIONS section of the IBM
Programming Announcement for for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

Appendix A. Special Notices 115

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

Advanced Function Printing AFP
AIX AS/400
DB2 IBM
OS/400 RS/6000
System/36 System/390
VisualAge 400

116 San Francisco Concepts & Facilities

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 119.

Accessing the AS/400 System with JAVA, SG24-2152-00

B.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

B.3 Other Publications
These publications are also relevant as further information sources:

1. Object-Oriented Technology: A Manager's Guide; David A. Taylor;
Addison-Wesley Publishing Company, 1990 (ISBN 0-201-56358-4).

2. Business Engineering with Object Technology; David A. Taylor; John Wiley &
Sons, Inc, 1995 (ISBN 0-471-04521-7).

3. Design Patterns, Elements of Reusable Object-Oriented Software; Erich
Gamma, et al.; Addison-Wesley Publishing Company, 1994 (ISBN
0-201-63361-2).

4. Object-Oriented Software Engineering: A Use-Case Driven Approach; Ivar
Jacobson; Addison-Wesley Publishing Company, 1992 (ISBN 0-201-40347-1).

5. The Essential Distributed Objects; Orfali, Harkey, and Edwards; John Wiley &
Sons, Inc, 1996 (ISBN 0-471-12993-3).

6. Rational Rose Essentials: Using the Booch Method; Iseult White; The
Benjamin/Cummings Publishing Company, 1994 (ISBN 0-8053-0616-1).

7. Advanced Java -- Idioms, Pitfalls, Styles, and Programming Tips; Chris Laffra;
Prentice Hall, 1997 (ISBN 0-13-534348-8).

8. Object-Oriented System Development; Dennis de Champeaux, Douglas Lea,
and Penelope Faure; Addison-Wesley Publishing Company, 1993 (ISBN
0-201-56355-X).

Appendix B. Related Publications 117

9. The following San Francisco documentation are available on-line at:

http://www.ibm.com/java/Sanfrancisco

San Francisco Roadmap

San Francisco Programmer's Guide

San Francisco Extension Guide

San Francisco User Interface Programmers's Guide

118 San Francisco Concepts & Facilities

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com .

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

PUBORDER — to order hardcopies in United States

GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG242157 PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG242157 PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

REDBOOKS category on INEWS

Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

How to Get ITSO Redbooks 119

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

Online Orders — send orders to:

Telephone orders

Mail Orders — send orders to:

Fax — send orders to:

1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

Direct Services - send note to softwareshop@vnet.ibm.com

On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

Redpieces

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

120 San Francisco Concepts & Facilities

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

Z Invoice to customer number

Z Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 121

122 San Francisco Concepts & Facilities

Index

Special Characters
&CBO.s (CBOs)

layer highlights 12

A
Abstract Windowing Toolkit (AWT) 109
access location

home 105
local 105

access mode 105
accessing collection 105
accessing Entity 104
Address general business object 42
administration

conflict control 75
security 72

aggregation 89
applet 100
application 100
application development methodology

coding and testing 87
collect and document requirements 84
development cycle 83
integrating legacy applications 90
mapping requirements 85
performing

analysis 85
design 86

San Francisco approach 82
San Francisco Roadmap 84
schema mapping 91
team roles 83
transition plans 92

attribute maintainer 112
automatic garbage collection 18

B
balances 53
bank accounts 54
Bank Accounts financial business object 46
banks 54
Base Factory 31
behavior concept 106
bibliography 117
BMS 1
book organization 1
Boolean control 113
budgets 54
Building San Francisco framework based applications

extending framework classes 87
extending framework classes through

aggregation 89
properties 89

Building San Francisco framework based applications
(continued)

including new function 87
overview. 87
subclassing to

add new class 88
replace existing class 88

business domain 15
business management systems 1
business partner application 15
Business Partner general business object 42
busy indicator 108
button list control 113

C
C/S architecture

client 2
data concurrency 2
data integrity 2
server 2

Cached Balances generalized mechanism 47
category

Address 42
balances 53
Bank Accounts 46, 54
banks 54
budgets 54
Business Partner 42
Classification 43
closing 54
Company 43
Currency 43
Currency Gain/Loss Accounts 46
Financial Batches 46
Financial Business Objects 46
Financial Integration 46
Fiscal Calendar 44
GL fiscal calendar 54
Initials 44
Interfaces to General Ledger 47
journal 53
Natural Calendar 44
Number Series 45
Periodized Calendar 45
posting combinations 53
Project 45
revaluation 54
Unit of Measure 45

CBOs 12
chart of accounts 51
class library 4
class, definition of 3
classes

Collections 31

Index 123

classes (continued)
Command 31
DDecimal 35
Dependent 30
DTime 35
Entity 24
Locale 35

Classification general business object 43
client 99, 102
client area 107
client area control 112
closing 54
coding and testing 87
collect and document requirements 84
collection

accessing 105
collection control 113
collection form 112
collection frame 108
collection item maintainer 112
collection maintainer 112
collection view 109
Collections 31
Command 31, 102
commercial application 15
commercial framework, definition of 3
commit

mixed-phase 103
two-phase 103

common business object
categorization 12
example of 13
financial business objects 13
general business object 12
generalized mechanisms 13

Common Business Objects (CBOs)
categories 41
example of using 40
general business objects 42
group types 39
introduction 39
using 40

Company class 13
Company general business object 43
concurrent access 104
Configuration utility 65
Conflict Control utility 75
container 20
Container Configuration utility 69
control

Boolean 113
button list 113
collection 113
data validation 113
enumeration 113
extended 113
notebook 113
status area 113

control (continued)
tabbed 113
text 113

Core Business Processes
definition 49
General Ledger 50
highlights 14
introduction 49
using 50

creating entity 104
Currency Gain/Loss Accounts financial business

object 46
Currency general business object 43

D
data integrity 103
data store

independence 20
ODBC 20
Posix 20
single-level store 20

data validation control 113
default schema mapper tool 91
deleting entity 104
development approach

activities 83
coding and testing 87
collect and document requirements 84
development cycle 83
mapping requirements 85
overview 82
performing

analysis 85
design 86

San Francisco Roadmap 84
team roles 83

dissection 52
distributed process

context 103
distributed process (DP) 103
DP (distributed process) 103

E
entity

accessing 104
creating 104
deleting 104
updating 105

enumeration control 113
event 112
event handler 103
extended control 113
extended schema mapper tool 92
Extending

aggregation 89
properties 89

124 San Francisco Concepts & Facilities

Extensible Item generalized mechanism 47
extension points 15

F
factory

local 102
server 102

factory class 104
Financial Batches financial business object 46
financial business objects

Bank Accounts 46
Currency Gain/Loss Accounts 46
Financial Batches 46
Financial Integration 46
Interfaces to General Ledger 47

Financial Integration financial business object 46
Fiscal Calendar general business object 44
form 110

collection 112
object 112

formatted string 113
Foundation

classes
Collections 31
Command 31
DDecimal 35
Dependent 30
DTime 35
Entity 24
Locale 35

control tower 11
handle 26
highlights 10
locking and commitment control 29
ownership 28
persistence 26
purpose 23
services

Base Factory 31
Naming 34
Notification 33
Query 32
Security 34

frame 110
collection 108
main 108
object 108
standard 106

frame button 107
frame title 107
framework repository 4

G
gather and document requirements 84
general business objects

Address 42
Business Partner 42

general business objects (continued)
Classification 43
Company 43
Currency 43
Fiscal Calendar 44
Initials 44
Natural Calendar 44
Number Series 45
Periodized Calendar 45
Project 45
Unit of Measure 45

General Ledger Core Business Process
day-to-day activities 52
overview 51
periodic activities 52
setting up structure 51

General Ledger framework
balances 53
bank accounts 54
banks 54
budgets 54
closing 54
GL fiscal calendar 54
journal 53
posting combinations 53
revaluation 54

generalized mechanisms
Cached Balances 47
Extensible Item 47
Keys 47
Validation Results 47

GL fiscal calendar 54

H
handle 26
HTML browser 100

I
inheritance, definition 3
Initials general business object 44
integrating legacy applications 90
Interfaces to General Ledger financial business

object 47
introduction 81

J
Java

definition 17
platform and communications independence 17
pointer 17
remote method invocation 17
robustness 17
virtual machine 17
white paper 17

Java Development Kit (JDK) 109

Index 125

Java virtual machine
automatic garbage collection 18
broad market acceptance 18
ease of use 18
JDK1.0 18
JDK1.1 18
JDK1.2 18
memory leak 18
remote method invocation 18
robustness 18

journal 53

K
Keys generalized mechanism 47

L
legacy application integration considerations 90
local factory 102
locate control button 108
locking and commitment control 29
locking strategy

no locking 104
optimistic locking 104
pessimistic locking 104

logical San Francisco network 65
loose coupling 58

M
main frame 108
maintainer

attribute 112
collection 112
collection item 112
object 112
overview 109

mapping requirements 85
menu bar 107
message 107, 112, 113
message dispatcher 114
message handling 114
messages pending indicator 107
methodology, application development 81
mixed-phase commit 103
model-view-controller paradigm 109
modified by frame indicator 108
modified by net indicator 108

N
Naming 34
national language 113
Natural Calendar general business object 44
nested transaction 103
next message button 108
no locking 104

Notification 33
notification mechanism 105
notification service 105
Number Series general business object 45

O
object

location 104
persistent 102
reference 105
transient 104

object form 112
object frame 108
object maintainer 112
object view 109
object-oriented programming

approach 2
behavior 2
business entity 2
class definition 3
inheritance definition 3
processes 2

observable 105
observer 105
operating system

independence 16
support 16

optimistic locking 104
organization

book 1
ownership 28

P
Pattern

definition 55
uses 56

performing
analysis 85
design 86

Periodized Calendar general business object 45
persistence 26
persistent business object 20
persistent object 102
pessimistic locking 104
platform independence 16
Posix file 103
posting combination 51
posting combinations 53
previous message button 107
Print utility 75

schema mapping tool 77
printing utility 19
process 103
programming model

definition 37
Project general business object 45

126 San Francisco Concepts & Facilities

Q
Query 32

R
re-using form 111
referenced object

to control 113
remote method invocation 18
revaluation 54

S
San Francisco

clients 9
definition 9
future 6
high-level service 19
layers 9
layers and levels of abstraction 9
overview architecture 9
printing utility 19
security 19
servers 9
value proposition 5

San Francisco approach
integrating legacy applications 90
schema mapping 91
transition plans 92

San Francisco Patterns
Cached Balances 62
Commands 57
Controller 60
Extensible Item 63
Factory Class Replacement 56
Keys and Keyables 61
Policy 59
Property Container 58

San Francisco Roadmap
coding and testing 87
collect and document requirements 84
mapping requirements 85
overview 84
performing

analysis 85
design 86

Schema Mapper Tool
default 91
extended 92

schema mapping
definition 91

security 19, 34
Security Configuration utility 72
server factory 102
server management configuration console 68
Server Management Configuration utility 65
server thread 103

services
Base Factory 31
Naming 34
Notification 33
Query 32
Security 34

standard frame 106
status area control 113
style guide 110, 112

user interface 106, 109
Subclassing

add new class 88
replace existing class 88

T
tabbed control (notebook) 113
text control 113
thread 103
title bar icon 107
toolbar 107
Tools

assumptions 93
IDE support 98
Rational Rose 97
San Francisco Code Generator 97
strategy 94
version control 98

transaction
model 102
multiple 103
nested 103
scope 102
service 102

two-phase commit 103

U
uilities

schema mapping tool 77
Unit of Measure general business object 45
updating Entity 105
user alias 104
user interface

framework 106
style guide 106, 109

user interface framework 108
user interface 108

utilities
Configuration 65
Conflict Control 75
Container Configuration 69
introduction 65
Print 75
Security Configuration 72
Server Management Configuration 65

Index 127

V
validate user input 113
Validation Results generalized mechanism 47
view

collection 109
object 109
overview 109

view-maintainer concept 109

W
work area

resume 103
suspend 103
switch 103
transfer 103

128 San Francisco Concepts & Facilities

ITSO Redbook Evaluation

San Francisco Concepts & Facilities
SG24-2157-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

Use the online evaluation form found at http://www.redbooks.com
Fax this form to: USA International Access Code + 1 914 432 8264
Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

ITSO Redbook Evaluation 129



Printed in U.S.A.

SG24-2157-00

