
gmp

gmp ii

COLLABORATORS

TITLE :

gmp

ACTION NAME DATE SIGNATURE

WRITTEN BY December 7, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

gmp iii

Contents

1 gmp 1

1.1 gmp.guide . 1

1.2 gmp.guide/Copying . 1

1.3 gmp.guide/Introduction to MP . 2

1.4 gmp.guide/Installing MP . 3

1.5 gmp.guide/MP Basics . 5

1.6 gmp.guide/Reporting Bugs . 8

1.7 gmp.guide/Integer Functions . 9

1.8 gmp.guide/Initializing Integers . 9

1.9 gmp.guide/Assigning Integers . 10

1.10 gmp.guide/Simultaneous Integer Init & Assign . 11

1.11 gmp.guide/Converting Integers . 12

1.12 gmp.guide/Integer Arithmetic . 12

1.13 gmp.guide/Comparison Functions . 17

1.14 gmp.guide/Integer Logic and Bit Fiddling . 17

1.15 gmp.guide/I-O of Integers . 18

1.16 gmp.guide/Miscellaneous Integer Functions . 19

1.17 gmp.guide/Rational Number Functions . 20

1.18 gmp.guide/Initializing Rationals . 21

1.19 gmp.guide/Assigning Rationals . 21

1.20 gmp.guide/Comparing Rationals . 22

1.21 gmp.guide/Applying Integer Functions . 22

1.22 gmp.guide/Miscellaneous Rational Functions . 23

1.23 gmp.guide/Floating-point Functions . 24

1.24 gmp.guide/Initializing Floats . 25

1.25 gmp.guide/Assigning Floats . 26

1.26 gmp.guide/Simultaneous Float Init & Assign . 26

1.27 gmp.guide/Converting Floats . 27

1.28 gmp.guide/Float Arithmetic . 28

1.29 gmp.guide/Float Comparison . 29

gmp iv

1.30 gmp.guide/I-O of Floats . 29

1.31 gmp.guide/Miscellaneous Float Functions . 30

1.32 gmp.guide/Low-level Functions . 30

1.33 gmp.guide/BSD Compatible Functions . 37

1.34 gmp.guide/Custom Allocation . 39

1.35 gmp.guide/Contributors . 40

1.36 gmp.guide/References . 40

1.37 gmp.guide/Concept Index . 41

1.38 gmp.guide/Function Index . 42

gmp 1 / 46

Chapter 1

gmp

1.1 gmp.guide

GNU MP

This manual documents how to install and use the GNU multiple
precision arithmetic library, version 2.0.2.

Copying GMP Copying Conditions (LGPL).
Introduction to MP Brief introduction to GNU MP.
Installing MP How to configure and compile the MP library.
MP Basics What every MP user should now.
Reporting Bugs How to usefully report bugs.
Integer Functions Functions for arithmetic on signed integers.
Rational Number Functions Functions for arithmetic on rational numbers.
Floating-point Functions Functions for arithmetic on floats.
Low-level Functions Fast functions for natural numbers.
BSD Compatible Functions All functions found in BSD MP.
Custom Allocation How to customize the internal allocation.

Contributors
References
Concept Index
Function Index

1.2 gmp.guide/Copying

GNU MP Copying Conditions

This library is "free"; this means that everyone is free to use it
and free to redistribute it on a free basis. The library is not in the
public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything
that a good cooperating citizen would want to do. What is not allowed

gmp 2 / 46

is to try to prevent others from further sharing any version of this
library that they might get from you.

Specifically, we want to make sure that you have the right to give
away copies of the library, that you receive source code or else can
get it if you want it, that you can change this library or use pieces
of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to
deprive anyone else of these rights. For example, if you distribute
copies of the GNU MP library, you must give the recipients all the
rights that you have. You must make sure that they, too, receive or
can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone
finds out that there is no warranty for the GNU MP library. If it is
modified by someone else and passed on, we want their recipients to
know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

The precise conditions of the license for the GNU MP library are
found in the Library General Public License that accompany the source
code.

1.3 gmp.guide/Introduction to MP

Introduction to GNU MP

GNU MP is a portable library written in C for arbitrary precision
arithmetic on integers, rational numbers, and floating-point numbers.
It aims to provide the fastest possible arithmetic for all applications
that need higher precision than is directly supported by the basic C
types.

Many applications use just a few hundred bits of precision; but some
applications may need thousands or even millions of bits. MP is
designed to give good performance for both, by choosing algorithms
based on the sizes of the operands, and by carefully keeping the
overhead at a minimum.

The speed of MP is achieved by using fullwords as the basic
arithmetic type, by using sophisticated algorithms, by including
carefully optimized assembly code for the most common inner loops for
many different CPUs, and by a general emphasis on speed (as opposed to
simplicity or elegance).

There is carefully optimized assembly code for these CPUs: DEC
Alpha, Amd 29000, HPPA 1.0 and 1.1, Intel Pentium and generic x86,
Intel i960, Motorola MC68000, MC68020, MC88100, and MC88110,
Motorola/IBM PowerPC, National NS32000, IBM POWER, MIPS R3000, R4000,
SPARCv7, SuperSPARC, generic SPARCv8, and DEC VAX. Some optimizations
also for ARM, Clipper, IBM ROMP (RT), and Pyramid AP/XP.

gmp 3 / 46

This version of MP is released under a more liberal license than
previous versions. It is now permitted to link MP to non-free
programs, as long as MP source code is provided when distributing the
non-free program.

How to use this Manual
======================

Everyone should read See MP Basics. If you need to install the
library yourself, you need to read See Installing MP, too.

The rest of the manual can be used for later reference, although it
is probably a good idea to glance through it.

1.4 gmp.guide/Installing MP

Installing MP

To build MP, you first have to configure it for your CPU and
operating system. You need a C compiler, preferably GCC, but any
reasonable compiler should work. And you need a standard Unix ‘make’
program, plus some other standard Unix utility programs.

(If you’re on an MS-DOS machine, your can build MP using ‘make.bat’.
It requires that djgpp is installed. It does not require
configuration, nor is ‘make’ needed; ‘make.bat’ both configures and
builds the library.)

Here are the steps needed to install the library on Unix systems:

1. In most cases, ‘./configure --target=cpu-vendor-os’, should work
both for native and cross-compilation. If you get error messages,
your machine might not be supported.

If you want to compile in a separate object directory, cd to that
directory, and prefix the configure command with the path to the
MP source directory. Not all ‘make’ programs have the necessary
features to support this. In particular, SunOS and Slowaris
‘make’ have bugs that makes them unable to build from a separate
object directory. Use GNU ‘make’ instead.

In addition to the standard cpu-vendor-os tuples, MP recognizes
sparc8 and supersparc as valid CPU names. Specifying these CPU
names for relevant systems will improve performance significantly.

In general, if you want a library that runs as fast as possible,
you should make sure you configure MP for the exact CPU type your
system uses.

If you have ‘gcc’ in your ‘PATH’, it will be used by default. To
override this, pass ‘-with-gcc=no’ to ‘configure’.

2. ‘make’

gmp 4 / 46

This will compile MP, and create a library archive file ‘libgmp.a’
in the working directory.

3. ‘make check’

This will make sure MP was built correctly. If you get error
messages, please report this to ‘bug-gmp@prep.ai.mit.edu’. (See
Reporting Bugs, for information on what to include in useful bug
reports.)

4. ‘make install’

This will copy the file ‘gmp.h’ and ‘libgmp.a’, as well as the info
files, to ‘/usr/local’ (or if you passed the ‘--prefix’ option to
‘configure’, to the directory given as argument to ‘--prefix’).

If you wish to build and install the BSD MP compatible functions, use
‘make libmp.a’ and ‘make install-bsdmp’.

There are some other useful make targets:

* ‘doc’

Create a DVI version of the manual, in ‘gmp.dvi’ and a set of info
files, in ‘gmp.info’, ‘gmp.info-1’, ‘gmp.info-2’, etc.

* ‘ps’

Create a Postscript version of the manual, in ‘gmp.ps’.

* ‘html’

Create a HTML version of the manual, in ‘gmp.html’.

* ‘clean’

Delete all object files and archive files, but not the
configuration files.

* ‘distclean’

Delete all files not included in the distribution.

* ‘uninstall’

Delete all files copied by ‘make install’.

Known Build Problems
====================

GCC 2.7.2 (as well as 2.6.3) for the RS/6000 and PowerPC can not be
used to compile MP, due to a bug in GCC. If you want to use GCC for
these machines, you need to apply the patch below to GCC, or use a
later version of the compiler.

If you are on a Sequent Symmetry, use the GNU assembler instead of

gmp 5 / 46

the system’s assembler, since the latter has serious bugs.

The system compiler on NeXT is a massacred and old gcc, even if the
compiler calls itself ‘cc’. This compiler cannot be used to build MP.
You need to get a real gcc, and install that before you compile MP.
(NeXT might have fixed this in newer releases of their system.)

The system C compiler under SunOS 4 has a bug that makes it
miscompile mpq/get_d.c. This will make ‘make check’ fail.

Please report other problems to ‘bug-gmp@prep.ai.mit.edu’. See
Reporting Bugs.

Patch to apply to GCC 2.6.3 and 2.7.2:

*** config/rs6000/rs6000.md Sun Feb 11 08:22:11 1996
--- config/rs6000/rs6000.md.new Sun Feb 18 03:33:37 1996

*** 920,926 ****

(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(not:SI (match_dup 1)))]
""

! "nor. %0,%2,%1"
[(set_attr "type" "compare")])

(define_insn ""
--- 920,926 ----

(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(not:SI (match_dup 1)))]
""

! "nor. %0,%1,%1"
[(set_attr "type" "compare")])

(define_insn ""

1.5 gmp.guide/MP Basics

MP Basics

All declarations needed to use MP are collected in the include file
‘gmp.h’. It is designed to work with both C and C++ compilers.

Nomenclature and Types
======================

In this manual, "integer" usually means a multiple precision integer, as
defined by the MP library. The C data type for such integers is
‘mpz_t’. Here are some examples of how to declare such integers:

mpz_t sum;

struct foo { mpz_t x, y; };

gmp 6 / 46

mpz_t vec[20];

"Rational number" means a multiple precision fraction. The C data type
for these fractions is ‘mpq_t’. For example:

mpq_t quotient;

"Floating point number" or "Float" for short, is an arbitrary precision
mantissa with an limited precision exponent. The C data type for such
objects is ‘mpf_t’.

A "limb" means the part of a multi-precision number that fits in a
single word. (We chose this word because a limb of the human body is
analogous to a digit, only larger, and containing several digits.)
Normally a limb contains 32 or 64 bits. The C data type for a limb is
‘mp_limb_t’.

Function Classes
================

There are six classes of functions in the MP library:

1. Functions for signed integer arithmetic, with names beginning with
‘mpz_’. The associated type is ‘mpz_t’. There are about 100
functions in this class.

2. Functions for rational number arithmetic, with names beginning with
‘mpq_’. The associated type is ‘mpq_t’. There are about 20
functions in this class, but the functions in the previous class
can be used for performing arithmetic on the numerator and
denominator separately.

3. Functions for floating-point arithmetic, with names beginning with
‘mpf_’. The associated type is ‘mpf_t’. There are about 50
functions is this class.

4. Functions compatible with Berkeley MP, such as ‘itom’, ‘madd’, and
‘mult’. The associated type is ‘MINT’.

5. Fast low-level functions that operate on natural numbers. These
are used by the functions in the preceding groups, and you can
also call them directly from very time-critical user programs.
These functions’ names begin with ‘mpn_’. There are about 30
(hard-to-use) functions in this class.

The associated type is array of ‘mp_limb_t’.

6. Miscellaneous functions. Functions for setting up custom
allocation.

MP Variable Conventions
=======================

As a general rule, all MP functions expect output arguments before
input arguments. This notation is based on an analogy with the
assignment operator. (The BSD MP compatibility functions disobey this
rule, having the output argument(s) last.)

gmp 7 / 46

MP allows you to use the same variable for both input and output in
the same expression. For example, the main function for integer
multiplication, ‘mpz_mul’, can be used like this: ‘mpz_mul (x, x, x)’.
This computes the square of X and puts the result back in X.

Before you can assign to an MP variable, you need to initialize it
by calling one of the special initialization functions. When you’re
done with a variable, you need to clear it out, using one of the
functions for that purpose. Which function to use depends on the type
of variable. See the chapters on integer functions, rational number
functions, and floating-point functions for details.

A variable should only be initialized once, or at least cleared out
between each initialization. After a variable has been initialized, it
may be assigned to any number of times.

For efficiency reasons, avoid to initialize and clear out a variable
in loops. Instead, initialize it before entering the loop, and clear
it out after the loop has exited.

You don’t need to be concerned about allocating additional space for
MP variables. All functions in MP automatically allocate additional
space when a variable does not already have enough space. They do not,
however, reduce the space when a smaller number is stored in the
object. Most of the time, this policy is best, since it avoids
frequent re-allocation.

Useful Macros and Constants
===========================

- Global Constant: const int mp_bits_per_limb
The number of bits per limb.

- Macro: __GNU_MP_VERSION
- Macro: __GNU_MP_VERSION_MINOR

The major and minor MP version, respectively, as integers.

Compatibility with Version 1.x
==============================

This version of MP is upward compatible with previous versions of
MP, with a few exceptions.

1. Integer division functions round the result differently. The old
functions (‘mpz_div’, ‘mpz_divmod’, ‘mpz_mdiv’, ‘mpz_mdivmod’,
etc) now all use floor rounding (i.e., they round the quotient to
-infinity). There are a lot of new functions for integer
division, giving the user better control over the rounding.

2. The function ‘mpz_mod’ now compute the true *mod* function.

3. The functions ‘mpz_powm’ and ‘mpz_powm_ui’ now use *mod* for
reduction.

4. The assignment functions for rational numbers do no longer
canonicalize their results. In the case a non-canonical result

gmp 8 / 46

could arise from an assignment, the user need to insert an
explicit call to ‘mpq_canonicalize’. This change was made for
efficiency.

5. Output generated by ‘mpz_out_raw’ in this release cannot be read
by ‘mpz_inp_raw’ in previous releases. This change was made for
making the file format truly portable between machines with
different word sizes.

6. Several ‘mpn’ functions have changed. But they were intentionally
undocumented in previous releases.

7. The functions ‘mpz_cmp_ui’, ‘mpz_cmp_si’, and ‘mpq_cmp_ui’ are now
implementated as macros, and thereby sometimes evaluate their
arguments multiple times.

8. The functions ‘mpz_pow_ui’ and ‘mpz_ui_pow_ui’ now yield 1 for
0^0. (In version 1, they yielded 0.)

Getting the Latest Version of MP
================================

The latest version of the MP library is available by anonymous ftp
from from ‘prep.ai.mit.edu’. The file name is
‘/pub/gnu/gmp-M.N.tar.gz’. Many sites around the world mirror ‘prep’;
please use a mirror site near you.

1.6 gmp.guide/Reporting Bugs

Reporting Bugs

If you think you have found a bug in the MP library, please
investigate it and report it. We have made this library available to
you, and it is not to ask too much from you, to ask you to report the
bugs that you find.

There are a few things you should think about when you put your bug
report together.

You have to send us a test case that makes it possible for us to
reproduce the bug. Include instructions on how to run the test case.

You also have to explain what is wrong; if you get a crash, or if
the results printed are incorrect and in that case, in what way.

It is not uncommon that an observed problem is actually due to a bug
in the compiler used when building MP; the MP code tends to explore
interesting corners in compilers. Therefore, please include compiler
version information in your bug report. This can be extracted using
‘what ‘which cc‘’, or, if you’re using gcc, ‘gcc -v’. Also, include
the output from ‘uname -a’.

gmp 9 / 46

If your bug report is good, we will do our best to help you to get a
corrected version of the library; if the bug report is poor, we won’t
do anything about it (aside of chiding you to send better bug reports).

Send your bug report to: ‘bug-gmp@prep.ai.mit.edu’.

If you think something in this manual is unclear, or downright
incorrect, or if the language needs to be improved, please send a note
to the same address.

1.7 gmp.guide/Integer Functions

Integer Functions

This chapter describes the MP functions for performing integer
arithmetic. These functions start with the prefix ‘mpz_’.

Arbitrary precision integers are stored in objects of type ‘mpz_t’.

Initializing Integers
Assigning Integers
Simultaneous Integer Init & Assign
Converting Integers
Integer Arithmetic
Comparison Functions
Integer Logic and Bit Fiddling
I-O of Integers
Miscellaneous Integer Functions

1.8 gmp.guide/Initializing Integers

Initialization and Assignment Functions
=======================================

The functions for integer arithmetic assume that all integer objects
are initialized. You do that by calling the function ‘mpz_init’.

- Function: void mpz_init (mpz_t INTEGER)
Initialize INTEGER with limb space and set the initial numeric
value to 0. Each variable should normally only be initialized
once, or at least cleared out (using ‘mpz_clear’) between each
initialization.

Here is an example of using ‘mpz_init’:

{
mpz_t integ;
mpz_init (integ);

gmp 10 / 46

...
mpz_add (integ, ...);
...
mpz_sub (integ, ...);

/* Unless the program is about to exit, do ... */
mpz_clear (integ);

}

As you can see, you can store new values any number of times, once an
object is initialized.

- Function: void mpz_clear (mpz_t INTEGER)
Free the limb space occupied by INTEGER. Make sure to call this
function for all ‘mpz_t’ variables when you are done with them.

- Function: void * _mpz_realloc (mpz_t INTEGER, mp_size_t NEW_ALLOC)
Change the limb space allocation to NEW_ALLOC limbs. This
function is not normally called from user code, but it can be used
to give memory back to the heap, or to increase the space of a
variable to avoid repeated automatic re-allocation.

- Function: void mpz_array_init (mpz_t INTEGER_ARRAY[], size_t
ARRAY_SIZE, mp_size_t FIXED_NUM_BITS)

Allocate *fixed* limb space for all ARRAY_SIZE integers in
INTEGER_ARRAY. The fixed allocation for each integer in the array
is enough to store FIXED_NUM_BITS. If the fixed space will be
insufficient for storing the result of a subsequent calculation,
the result is unpredictable.

This function is useful for decreasing the working set for some
algorithms that use large integer arrays.

There is no way to de-allocate the storage allocated by this
function. Don’t call ‘mpz_clear’!

1.9 gmp.guide/Assigning Integers

Assignment Functions

These functions assign new values to already initialized integers
(see Initializing Integers).

- Function: void mpz_set (mpz_t ROP, mpz_t OP)
- Function: void mpz_set_ui (mpz_t ROP, unsigned long int OP)
- Function: void mpz_set_si (mpz_t ROP, signed long int OP)
- Function: void mpz_set_d (mpz_t ROP, double OP)
- Function: void mpz_set_q (mpz_t ROP, mpq_t OP)
- Function: void mpz_set_f (mpz_t ROP, mpf_t OP)

Set the value of ROP from OP.

- Function: int mpz_set_str (mpz_t ROP, char *STR, int BASE)
Set the value of ROP from STR, a ’\0’-terminated C string in base

gmp 11 / 46

BASE. White space is allowed in the string, and is simply
ignored. The base may vary from 2 to 36. If BASE is 0, the
actual base is determined from the leading characters: if the
first two characters are ‘0x’ or ‘0X’, hexadecimal is assumed,
otherwise if the first character is ‘0’, octal is assumed,
otherwise decimal is assumed.

This function returns 0 if the entire string up to the ’\0’ is a
valid number in base BASE. Otherwise it returns -1.

1.10 gmp.guide/Simultaneous Integer Init & Assign

Combined Initialization and Assignment Functions
--

For convenience, MP provides a parallel series of initialize-and-set
functions which initialize the output and then store the value there.
These functions’ names have the form ‘mpz_init_set...’

Here is an example of using one:

{
mpz_t pie;
mpz_init_set_str (pie, "3141592653589793238462643383279502884", 10);
...
mpz_sub (pie, ...);
...
mpz_clear (pie);

}

Once the integer has been initialized by any of the ‘mpz_init_set...’
functions, it can be used as the source or destination operand for the
ordinary integer functions. Don’t use an initialize-and-set function
on a variable already initialized!

- Function: void mpz_init_set (mpz_t ROP, mpz_t OP)
- Function: void mpz_init_set_ui (mpz_t ROP, unsigned long int OP)
- Function: void mpz_init_set_si (mpz_t ROP, signed long int OP)
- Function: void mpz_init_set_d (mpz_t ROP, double OP)

Initialize ROP with limb space and set the initial numeric value
from OP.

- Function: int mpz_init_set_str (mpz_t ROP, char *STR, int BASE)
Initialize ROP and set its value like ‘mpz_set_str’ (see its
documentation above for details).

If the string is a correct base BASE number, the function returns
0; if an error occurs it returns -1. ROP is initialized even if
an error occurs. (I.e., you have to call ‘mpz_clear’ for it.)

gmp 12 / 46

1.11 gmp.guide/Converting Integers

Conversion Functions
====================

This section describes functions for converting arbitrary precision
integers to standard C types. Functions for converting *to* arbitrary
precision integers are described in See Assigning Integers and See
I-O of Integers.

- Function: unsigned long int mpz_get_ui (mpz_t OP)
Return the least significant part from OP. This function combined
with
‘mpz_tdiv_q_2exp(..., OP, CHAR_BIT*sizeof(unsigned long int))’ can
be used to extract the limbs of an integer.

- Function: signed long int mpz_get_si (mpz_t OP)
If OP fits into a ‘signed long int’ return the value of OP.
Otherwise return the least significant part of OP, with the same
sign as OP.

If OP is too large to fit in a ‘signed long int’, the returned
result is probably not very useful.

- Function: double mpz_get_d (mpz_t OP)
Convert OP to a double.

- Function: char * mpz_get_str (char *STR, int BASE, mpz_t OP)
Convert OP to a string of digits in base BASE. The base may vary
from 2 to 36.

If STR is NULL, space for the result string is allocated using the
default allocation function, and a pointer to the string is
returned.

If STR is not NULL, it should point to a block of storage enough
large for the result. To find out the right amount of space to
provide for STR, use ‘mpz_sizeinbase (OP, BASE) + 2’. The two
extra bytes are for a possible minus sign, and for the terminating
null character.

1.12 gmp.guide/Integer Arithmetic

Arithmetic Functions
====================

- Function: void mpz_add (mpz_t ROP, mpz_t OP1, mpz_t OP2)
- Function: void mpz_add_ui (mpz_t ROP, mpz_t OP1, unsigned long int

OP2)
Set ROP to OP1 + OP2.

- Function: void mpz_sub (mpz_t ROP, mpz_t OP1, mpz_t OP2)
- Function: void mpz_sub_ui (mpz_t ROP, mpz_t OP1, unsigned long int

gmp 13 / 46

OP2)
Set ROP to OP1 - OP2.

- Function: void mpz_mul (mpz_t ROP, mpz_t OP1, mpz_t OP2)
- Function: void mpz_mul_ui (mpz_t ROP, mpz_t OP1, unsigned long int

OP2)
Set ROP to OP1 times OP2.

- Function: void mpz_mul_2exp (mpz_t ROP, mpz_t OP1, unsigned long int
OP2)

Set ROP to OP1 times 2 raised to OP2. This operation can also be
defined as a left shift, OP2 steps.

- Function: void mpz_neg (mpz_t ROP, mpz_t OP)
Set ROP to -OP.

- Function: void mpz_abs (mpz_t ROP, mpz_t OP)
Set ROP to the absolute value of OP.

- Function: void mpz_fac_ui (mpz_t ROP, unsigned long int OP)
Set ROP to OP!, the factorial of OP.

Division functions

Division is undefined if the divisor is zero, and passing a zero
divisor to the divide or modulo functions, as well passing a zero mod
argument to the ‘mpz_powm’ and ‘mpz_powm_ui’ functions, will make these
functions intentionally divide by zero. This gives the user the
possibility to handle arithmetic exceptions in these functions in the
same manner as other arithmetic exceptions.

There are three main groups of division functions:

* Functions that truncate the quotient towards 0. The names of these
functions start with ‘mpz_tdiv’. The ‘t’ in the name is short for
‘truncate’.

* Functions that round the quotient towards -infinity. The names of
these routines start with ‘mpz_fdiv’. The ‘f’ in the name is
short for ‘floor’.

* Functions that round the quotient towards +infinity. The names of
these routines start with ‘mpz_cdiv’. The ‘c’ in the name is
short for ‘ceil’.

For each rounding mode, there are a couple of variants. Here ‘q’
means that the quotient is computed, while ‘r’ means that the remainder
is computed. Functions that compute both the quotient and remainder
have ‘qr’ in the name.

- Function: void mpz_tdiv_q (mpz_t ROP, mpz_t OP1, mpz_t OP2)
- Function: void mpz_tdiv_q_ui (mpz_t ROP, mpz_t OP1, unsigned long

int OP2)
Set ROP to [OP1/OP2]. The quotient is truncated towards 0.

- Function: void mpz_tdiv_r (mpz_t ROP, mpz_t OP1, mpz_t OP2)
- Function: void mpz_tdiv_r_ui (mpz_t ROP, mpz_t OP1, unsigned long

gmp 14 / 46

int OP2)
Set ROP to (OP1 - [OP1/OP2] * OP2). Unless the remainder is zero,
it has the same sign as the dividend.

- Function: void mpz_tdiv_qr (mpz_t ROP1, mpz_t ROP2, mpz_t OP1, mpz_t
OP2)

- Function: void mpz_tdiv_qr_ui (mpz_t ROP1, mpz_t ROP2, mpz_t OP1,
unsigned long int OP2)

Divide OP1 by OP2 and put the quotient in ROP1 and the remainder
in ROP2. The quotient is rounded towards 0. Unless the remainder
is zero, it has the same sign as the dividend.

If ROP1 and ROP2 are the same variable, the results are undefined.

- Function: void mpz_fdiv_q (mpz_t ROP1, mpz_t OP1, mpz_t OP2)
- Function: void mpz_fdiv_q_ui (mpz_t ROP, mpz_t OP1, unsigned long

int OP2)
Set ROP to OP1/OP2. The quotient is rounded towards -infinity.

- Function: void mpz_fdiv_r (mpz_t ROP, mpz_t OP1, mpz_t OP2)
- Function: unsigned long int mpz_fdiv_r_ui (mpz_t ROP, mpz_t OP1,

unsigned long int OP2)
Divide OP1 by OP2 and put the remainder in ROP. Unless the
remainder is zero, it has the same sign as the divisor.

For ‘mpz_fdiv_r_ui’ the remainder is small enough to fit in an
‘unsigned long int’, and is therefore returned.

- Function: void mpz_fdiv_qr (mpz_t ROP1, mpz_t ROP2, mpz_t OP1, mpz_t
OP2)

- Function: unsigned long int mpz_fdiv_qr_ui (mpz_t ROP1, mpz_t ROP2,
mpz_t OP1, unsigned long int OP2)

Divide OP1 by OP2 and put the quotient in ROP1 and the remainder
in ROP2. The quotient is rounded towards -infinity. Unless the
remainder is zero, it has the same sign as the divisor.

For ‘mpz_fdiv_qr_ui’ the remainder is small enough to fit in an
‘unsigned long int’, and is therefore returned.

If ROP1 and ROP2 are the same variable, the results are undefined.

- Function: unsigned long int mpz_fdiv_ui (mpz_t OP1, unsigned long
int OP2)

This function is similar to ‘mpz_fdiv_r_ui’, but the remainder is
only returned; it is not stored anywhere.

- Function: void mpz_cdiv_q (mpz_t ROP1, mpz_t OP1, mpz_t OP2)
- Function: void mpz_cdiv_q_ui (mpz_t ROP, mpz_t OP1, unsigned long

int OP2)
Set ROP to OP1/OP2. The quotient is rounded towards +infinity.

- Function: void mpz_cdiv_r (mpz_t ROP, mpz_t OP1, mpz_t OP2)
- Function: unsigned long int mpz_cdiv_r_ui (mpz_t ROP, mpz_t OP1,

unsigned long int OP2)
Divide OP1 by OP2 and put the remainder in ROP. Unless the
remainder is zero, it has the opposite sign as the divisor.

gmp 15 / 46

For ‘mpz_cdiv_r_ui’ the negated remainder is small enough to fit
in an ‘unsigned long int’, and it is therefore returned.

- Function: void mpz_cdiv_qr (mpz_t ROP1, mpz_t ROP2, mpz_t OP1, mpz_t
OP2)

- Function: unsigned long int mpz_cdiv_qr_ui (mpz_t ROP1, mpz_t ROP2,
mpz_t OP1, unsigned long int OP2)

Divide OP1 by OP2 and put the quotient in ROP1 and the remainder
in ROP2. The quotient is rounded towards +infinity. Unless the
remainder is zero, it has the opposite sign as the divisor.

For ‘mpz_cdiv_qr_ui’ the negated remainder is small enough to fit
in an ‘unsigned long int’, and it is therefore returned.

If ROP1 and ROP2 are the same variable, the results are undefined.

- Function: unsigned long int mpz_cdiv_ui (mpz_t OP1, unsigned long
int OP2)

Return the negated remainder, similar to ‘mpz_cdiv_r_ui’. (The
difference is that this function doesn’t store the remainder
anywhere.)

- Function: void mpz_mod (mpz_t ROP, mpz_t OP1, mpz_t OP2)
- Function: unsigned long int mpz_mod_ui (mpz_t ROP, mpz_t OP1,

unsigned long int OP2)
Set ROP to OP1 ‘mod’ OP2. The sign of the divisor is ignored, and
the result is always non-negative.

For ‘mpz_mod_ui’ the remainder is small enough to fit in an
‘unsigned long int’, and is therefore returned.

- Function: void mpz_divexact (mpz_t ROP, mpz_t OP1, mpz_t OP2)
Set ROP to OP1/OP2. This function produces correct results only
when it is known in advance that OP2 divides OP1.

Since mpz_divexact is much faster than any of the other routines
that produce the quotient (see References Jebelean), it is the
best choice for instances in which exact division is known to
occur, such as reducing a rational to lowest terms.

- Function: void mpz_tdiv_q_2exp (mpz_t ROP, mpz_t OP1, unsigned long
int OP2)

Set ROP to OP1 divided by 2 raised to OP2. The quotient is
rounded towards 0.

- Function: void mpz_tdiv_r_2exp (mpz_t ROP, mpz_t OP1, unsigned long
int OP2)

Divide OP1 by (2 raised to OP2) and put the remainder in ROP.
Unless it is zero, ROP will have the same sign as OP1.

- Function: void mpz_fdiv_q_2exp (mpz_t ROP, mpz_t OP1, unsigned long
int OP2)

Set ROP to OP1 divided by 2 raised to OP2. The quotient is
rounded towards -infinity.

- Function: void mpz_fdiv_r_2exp (mpz_t ROP, mpz_t OP1, unsigned long
int OP2)

gmp 16 / 46

Divide OP1 by (2 raised to OP2) and put the remainder in ROP. The
sign of ROP will always be positive.

This operation can also be defined as masking of the OP2 least
significant bits.

Exponentialization Functions

- Function: void mpz_powm (mpz_t ROP, mpz_t BASE, mpz_t EXP, mpz_t MOD)
- Function: void mpz_powm_ui (mpz_t ROP, mpz_t BASE, unsigned long int

EXP, mpz_t MOD)
Set ROP to (BASE raised to EXP) ‘mod’ MOD. If EXP is negative,
the result is undefined.

- Function: void mpz_pow_ui (mpz_t ROP, mpz_t BASE, unsigned long int
EXP)

- Function: void mpz_ui_pow_ui (mpz_t ROP, unsigned long int BASE,
unsigned long int EXP)

Set ROP to BASE raised to EXP. The case of 0^0 yields 1.

Square Root Functions

- Function: void mpz_sqrt (mpz_t ROP, mpz_t OP)
Set ROP to the truncated integer part of the square root of OP.

- Function: void mpz_sqrtrem (mpz_t ROP1, mpz_t ROP2, mpz_t OP)
Set ROP1 to the truncated integer part of the square root of OP,
like ‘mpz_sqrt’. Set ROP2 to OP-ROP1*ROP1, (i.e., zero if OP is a
perfect square).

If ROP1 and ROP2 are the same variable, the results are undefined.

- Function: int mpz_perfect_square_p (mpz_t OP)
Return non-zero if OP is a perfect square, i.e., if the square
root of OP is an integer. Return zero otherwise.

Number Theoretic Functions

- Function: int mpz_probab_prime_p (mpz_t OP, int REPS)
If this function returns 0, OP is definitely not prime. If it
returns 1, then OP is ‘probably’ prime. The probability of a
false positive is (1/4)**REPS. A reasonable value of reps is 25.

An implementation of the probabilistic primality test found in
Seminumerical Algorithms (see References Knuth).

- Function: void mpz_gcd (mpz_t ROP, mpz_t OP1, mpz_t OP2)
Set ROP to the greatest common divisor of OP1 and OP2.

- Function: unsigned long int mpz_gcd_ui (mpz_t ROP, mpz_t OP1,
unsigned long int OP2)

Compute the greatest common divisor of OP1 and OP2. If ROP is not
NULL, store the result there.

gmp 17 / 46

If the result is small enough to fit in an ‘unsigned long int’, it
is returned. If the result does not fit, 0 is returned, and the
result is equal to the argument OP1. Note that the result will
always fit if OP2 is non-zero.

- Function: void mpz_gcdext (mpz_t G, mpz_t S, mpz_t T, mpz_t A, mpz_t
B)

Compute G, S, and T, such that AS + BT = G = ‘gcd’ (A, B). If T is
NULL, that argument is not computed.

- Function: int mpz_invert (mpz_t ROP, mpz_t OP1, mpz_t OP2)
Compute the inverse of OP1 modulo OP2 and put the result in ROP.
Return non-zero if an inverse exist, zero otherwise. When the
function returns zero, do not assume anything about the value in
ROP.

- Function: int mpz_jacobi (mpz_t OP1, mpz_t OP2)
- Function: int mpz_legendre (mpz_t OP1, mpz_t OP2)

Compute the Jacobi and Legendre symbols, respectively.

1.13 gmp.guide/Comparison Functions

Comparison Functions
====================

- Function: int mpz_cmp (mpz_t OP1, mpz_t OP2)
Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero
if OP1 = OP2, and a negative value if OP1 < OP2.

- Macro: int mpz_cmp_ui (mpz_t OP1, unsigned long int OP2)
- Macro: int mpz_cmp_si (mpz_t OP1, signed long int OP2)

Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero
if OP1 = OP2, and a negative value if OP1 < OP2.

These functions are actually implemented as macros. They evaluate
their arguments multiple times.

- Macro: int mpz_sgn (mpz_t OP)
Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0.

This function is actually implemented as a macro. It evaluates its
arguments multiple times.

1.14 gmp.guide/Integer Logic and Bit Fiddling

Logical and Bit Manipulation Functions
======================================

These functions behave as if two’s complement arithmetic were used
(although sign-magnitude is used by the actual implementation).

gmp 18 / 46

- Function: void mpz_and (mpz_t ROP, mpz_t OP1, mpz_t OP2)
Set ROP to OP1 logical-and OP2.

- Function: void mpz_ior (mpz_t ROP, mpz_t OP1, mpz_t OP2)
Set ROP to OP1 inclusive-or OP2.

- Function: void mpz_com (mpz_t ROP, mpz_t OP)
Set ROP to the one’s complement of OP.

- Function: unsigned long int mpz_popcount (mpz_t OP)
For non-negative numbers, return the population count of OP. For
negative numbers, return the largest possible value (MAX_ULONG).

- Function: unsigned long int mpz_hamdist (mpz_t OP1, mpz_t OP2)
If OP1 and OP2 are both non-negative, return the hamming distance
between the two operands. Otherwise, return the largest possible
value (MAX_ULONG).

It is possible to extend this function to return a useful value
when the operands are both negative, but the current
implementation returns MAX_ULONG in this case. *Do not depend on
this behavior, since it will change in future versions of the
library.*

- Function: unsigned long int mpz_scan0 (mpz_t OP, unsigned long int
STARTING_BIT)

Scan OP, starting with bit STARTING_BIT, towards more significant
bits, until the first clear bit is found. Return the index of the
found bit.

- Function: unsigned long int mpz_scan1 (mpz_t OP, unsigned long int
STARTING_BIT)

Scan OP, starting with bit STARTING_BIT, towards more significant
bits, until the first set bit is found. Return the index of the
found bit.

- Function: void mpz_setbit (mpz_t ROP, unsigned long int BIT_INDEX)
Set bit BIT_INDEX in OP1.

- Function: void mpz_clrbit (mpz_t ROP, unsigned long int BIT_INDEX)
Clear bit BIT_INDEX in OP1.

1.15 gmp.guide/I-O of Integers

Input and Output Functions
==========================

Functions that perform input from a stdio stream, and functions that
output to a stdio stream. Passing a NULL pointer for a STREAM argument
to any of these functions will make them read from ‘stdin’ and write to
‘stdout’, respectively.

When using any of these functions, it is a good idea to include

gmp 19 / 46

‘stdio.h’ before ‘gmp.h’, since that will allow ‘gmp.h’ to define
prototypes for these functions.

- Function: size_t mpz_out_str (FILE *STREAM, int BASE, mpz_t OP)
Output OP on stdio stream STREAM, as a string of digits in base
BASE. The base may vary from 2 to 36.

Return the number of bytes written, or if an error occurred,
return 0.

- Function: size_t mpz_inp_str (mpz_t ROP, FILE *STREAM, int BASE)
Input a possibly white-space preceded string in base BASE from
stdio stream STREAM, and put the read integer in ROP. The base
may vary from 2 to 36. If BASE is 0, the actual base is
determined from the leading characters: if the first two
characters are ‘0x’ or ‘0X’, hexadecimal is assumed, otherwise if
the first character is ‘0’, octal is assumed, otherwise decimal is
assumed.

Return the number of bytes read, or if an error occurred, return 0.

- Function: size_t mpz_out_raw (FILE *STREAM, mpz_t OP)
Output OP on stdio stream STREAM, in raw binary format. The
integer is written in a portable format, with 4 bytes of size
information, and that many bytes of limbs. Both the size and the
limbs are written in decreasing significance order (i.e., in
big-endian).

The output can be read with ‘mpz_inp_raw’.

Return the number of bytes written, or if an error occurred,
return 0.

The output of this can not be read by ‘mpz_inp_raw’ from GMP 1,
because of changes necessary for compatibility between 32-bit and
64-bit machines.

- Function: size_t mpz_inp_raw (mpz_t ROP, FILE *STREAM)
Input from stdio stream STREAM in the format written by
‘mpz_out_raw’, and put the result in ROP. Return the number of
bytes read, or if an error occurred, return 0.

This routine can read the output from ‘mpz_out_raw’ also from GMP
1, in spite of changes necessary for compatibility between 32-bit
and 64-bit machines.

1.16 gmp.guide/Miscellaneous Integer Functions

Miscellaneous Functions
=======================

- Function: void mpz_random (mpz_t ROP, mp_size_t MAX_SIZE)
Generate a random integer of at most MAX_SIZE limbs. The generated
random number doesn’t satisfy any particular requirements of

gmp 20 / 46

randomness. Negative random numbers are generated when MAX_SIZE
is negative.

- Function: void mpz_random2 (mpz_t ROP, mp_size_t MAX_SIZE)
Generate a random integer of at most MAX_SIZE limbs, with long
strings of zeros and ones in the binary representation. Useful
for testing functions and algorithms, since this kind of random
numbers have proven to be more likely to trigger corner-case bugs.
Negative random numbers are generated when MAX_SIZE is negative.

- Function: size_t mpz_size (mpz_t OP)
Return the size of OP measured in number of limbs. If OP is zero,
the returned value will be zero.

*This function is obsolete. It will disappear from future MP
releases.*

- Function: size_t mpz_sizeinbase (mpz_t OP, int BASE)
Return the size of OP measured in number of digits in base BASE.
The base may vary from 2 to 36. The returned value will be exact
or 1 too big. If BASE is a power of 2, the returned value will
always be exact.

This function is useful in order to allocate the right amount of
space before converting OP to a string. The right amount of
allocation is normally two more than the value returned by
‘mpz_sizeinbase’ (one extra for a minus sign and one for the
terminating ’\0’).

1.17 gmp.guide/Rational Number Functions

Rational Number Functions

This chapter describes the MP functions for performing arithmetic on
rational numbers. These functions start with the prefix ‘mpq_’.

Rational numbers are stored in objects of type ‘mpq_t’.

All rational arithmetic functions assume operands have a canonical
form, and canonicalize their result. The canonical from means that the
denominator and the numerator have no common factors, and that the
denominator is positive. Zero has the unique representation 0/1.

Pure assignment functions do not canonicalize the assigned variable.
It is the responsibility of the user to canonicalize the assigned
variable before any arithmetic operations are performed on that
variable. *Note that this is an incompatible change from version 1 of
the library.*

- Function: void mpq_canonicalize (mpq_t OP)
Remove any factors that are common to the numerator and
denominator of OP, and make the denominator positive.

gmp 21 / 46

Initializing Rationals
Assigning Rationals
Simultaneous Integer Init & Assign
Comparing Rationals
Applying Integer Functions
Miscellaneous Rational Functions

1.18 gmp.guide/Initializing Rationals

Initialization and Assignment Functions
=======================================

- Function: void mpq_init (mpq_t DEST_RATIONAL)
Initialize DEST_RATIONAL and set it to 0/1. Each variable should
normally only be initialized once, or at least cleared out (using
the function ‘mpq_clear’) between each initialization.

- Function: void mpq_clear (mpq_t RATIONAL_NUMBER)
Free the space occupied by RATIONAL_NUMBER. Make sure to call this
function for all ‘mpq_t’ variables when you are done with them.

- Function: void mpq_set (mpq_t ROP, mpq_t OP)
- Function: void mpq_set_z (mpq_t ROP, mpz_t OP)

Assign ROP from OP.

- Function: void mpq_set_ui (mpq_t ROP, unsigned long int OP1,
unsigned long int OP2)

- Function: void mpq_set_si (mpq_t ROP, signed long int OP1, unsigned
long int OP2)

Set the value of ROP to OP1/OP2. Note that if OP1 and OP2 have
common factors, ROP has to be passed to ‘mpq_canonicalize’ before
any operations are performed on ROP.

1.19 gmp.guide/Assigning Rationals

Arithmetic Functions
====================

- Function: void mpq_add (mpq_t SUM, mpq_t ADDEND1, mpq_t ADDEND2)
Set SUM to ADDEND1 + ADDEND2.

- Function: void mpq_sub (mpq_t DIFFERENCE, mpq_t MINUEND, mpq_t
SUBTRAHEND)

Set DIFFERENCE to MINUEND - SUBTRAHEND.

- Function: void mpq_mul (mpq_t PRODUCT, mpq_t MULTIPLIER, mpq_t
MULTIPLICAND)

Set PRODUCT to MULTIPLIER times MULTIPLICAND.

gmp 22 / 46

- Function: void mpq_div (mpq_t QUOTIENT, mpq_t DIVIDEND, mpq_t
DIVISOR)

Set QUOTIENT to DIVIDEND/DIVISOR.

- Function: void mpq_neg (mpq_t NEGATED_OPERAND, mpq_t OPERAND)
Set NEGATED_OPERAND to -OPERAND.

- Function: void mpq_inv (mpq_t INVERTED_NUMBER, mpq_t NUMBER)
Set INVERTED_NUMBER to 1/NUMBER. If the new denominator is zero,
this routine will divide by zero.

1.20 gmp.guide/Comparing Rationals

Comparison Functions
====================

- Function: int mpq_cmp (mpq_t OP1, mpq_t OP2)
Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero
if OP1 = OP2, and a negative value if OP1 < OP2.

To determine if two rationals are equal, ‘mpq_equal’ is faster than
‘mpq_cmp’.

- Macro: int mpq_cmp_ui (mpq_t OP1, unsigned long int NUM2, unsigned
long int DEN2)

Compare OP1 and NUM2/DEN2. Return a positive value if OP1 >
NUM2/DEN2, zero if OP1 = NUM2/DEN2, and a negative value if OP1 <
NUM2/DEN2.

This routine allows that NUM2 and DEN2 have common factors.

This function is actually implemented as a macro. It evaluates its
arguments multiple times.

- Macro: int mpq_sgn (mpq_t OP)
Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0.

This function is actually implemented as a macro. It evaluates its
arguments multiple times.

- Function: int mpq_equal (mpq_t OP1, mpq_t OP2)
Return non-zero if OP1 and OP2 are equal, zero if they are
non-equal. Although ‘mpq_cmp’ can be used for the same purpose,
this function is much faster.

1.21 gmp.guide/Applying Integer Functions

Applying Integer Functions to Rationals
=======================================

gmp 23 / 46

The set of ‘mpq’ functions is quite small. In particular, there are
no functions for either input or output. But there are two macros that
allow us to apply any ‘mpz’ function on the numerator or denominator of
a rational number. If these macros are used to assign to the rational
number, ‘mpq_canonicalize’ normally need to be called afterwards.

- Macro: mpz_t mpq_numref (mpq_t OP)
- Macro: mpz_t mpq_denref (mpq_t OP)

Return a reference to the numerator and denominator of OP,
respectively. The ‘mpz’ functions can be used on the result of
these macros.

1.22 gmp.guide/Miscellaneous Rational Functions

Miscellaneous Functions
=======================

- Function: double mpq_get_d (mpq_t OP)
Convert OP to a double.

These functions assign between either the numerator or denominator
of a rational, and an integer. Instead of using these functions, it is
preferable to use the more general mechanisms ‘mpq_numref’ and
‘mpq_denref’, together with ‘mpz_set’.

- Function: void mpq_set_num (mpq_t RATIONAL, mpz_t NUMERATOR)
Copy NUMERATOR to the numerator of RATIONAL. When this risks to
make the numerator and denominator of RATIONAL have common
factors, you have to pass RATIONAL to ‘mpq_canonicalize’ before
any operations are performed on RATIONAL.

This function is equivalent to ‘mpz_set (mpq_numref (RATIONAL),
NUMERATOR)’.

- Function: void mpq_set_den (mpq_t RATIONAL, mpz_t DENOMINATOR)
Copy DENOMINATOR to the denominator of RATIONAL. When this risks
to make the numerator and denominator of RATIONAL have common
factors, or if the denominator might be negative, you have to pass
RATIONAL to ‘mpq_canonicalize’ before any operations are performed
on RATIONAL.

*In version 1 of the library, negative denominators were handled by
copying the sign to the numerator. That is no longer done.*

This function is equivalent to ‘mpz_set (mpq_denref (RATIONAL),
DENOMINATORS)’.

- Function: void mpq_get_num (mpz_t NUMERATOR, mpq_t RATIONAL)
Copy the numerator of RATIONAL to the integer NUMERATOR, to
prepare for integer operations on the numerator.

This function is equivalent to ‘mpz_set (NUMERATOR, mpq_numref
(RATIONAL))’.

gmp 24 / 46

- Function: void mpq_get_den (mpz_t DENOMINATOR, mpq_t RATIONAL)
Copy the denominator of RATIONAL to the integer DENOMINATOR, to
prepare for integer operations on the denominator.

This function is equivalent to ‘mpz_set (DENOMINATOR, mpq_denref
(RATIONAL))’.

1.23 gmp.guide/Floating-point Functions

Floating-point Functions

This is a description of the *preliminary* interface for
floating-point arithmetic in GNU MP 2.

The floating-point functions expect arguments of type ‘mpf_t’.

The MP floating-point functions have an interface that is similar to
the MP integer functions. The function prefix for floating-point
operations is ‘mpf_’.

There is one significant characteristic of floating-point numbers
that has motivated a difference between this function class and other
MP function classes: the inherent inexactness of floating point
arithmetic. The user has to specify the precision of each variable. A
computation that assigns a variable will take place with the precision
of the assigned variable; the precision of variables used as input is
ignored.

The precision of a calculation is defined as follows: Compute the
requested operation exactly (with "infinite precision"), and truncate
the result to the destination variable precision. Even if the user has
asked for a very high precision, MP will not calculate with superfluous
digits. For example, if two low-precision numbers of nearly equal
magnitude are added, the precision of the result will be limited to
what is required to represent the result accurately.

The MP floating-point functions are *not* intended as a smooth
extension to the IEEE P754 arithmetic. Specifically, the results
obtained on one computer often differs from the results obtained on a
computer with a different word size.

Initializing Floats
Assigning Floats
Simultaneous Float Init & Assign
Converting Floats
Float Arithmetic
Float Comparison
I-O of Floats
Miscellaneous Float Functions

gmp 25 / 46

1.24 gmp.guide/Initializing Floats

Initialization and Assignment Functions
=======================================

- Function: void mpf_set_default_prec (unsigned long int PREC)
Set the default precision to be *at least* PREC bits. All
subsequent calls to ‘mpf_init’ will use this precision, but
previously initialized variables are unaffected.

An ‘mpf_t’ object must be initialized before storing the first value
in it. The functions ‘mpf_init’ and ‘mpf_init2’ are used for that
purpose.

- Function: void mpf_init (mpf_t X)
Initialize X to 0. Normally, a variable should be initialized
once only or at least be cleared, using ‘mpf_clear’, between
initializations. The precision of X is undefined unless a default
precision has already been established by a call to
‘mpf_set_default_prec’.

- Function: void mpf_init2 (mpf_t X, unsigned long int PREC)
Initialize X to 0 and set its precision to be *at least* PREC
bits. Normally, a variable should be initialized once only or at
least be cleared, using ‘mpf_clear’, between initializations.

- Function: void mpf_clear (mpf_t X)
Free the space occupied by X. Make sure to call this function for
all ‘mpf_t’ variables when you are done with them.

Here is an example on how to initialize floating-point variables:
{

mpf_t x, y;
mpf_init (x); /* use default precision */
mpf_init2 (y, 256); /* precision *at least* 256 bits */
...
/* Unless the program is about to exit, do ... */
mpf_clear (x);
mpf_clear (y);

}

The following three functions are useful for changing the precision
during a calculation. A typical use would be for adjusting the
precision gradually in iterative algorithms like Newton-Raphson, making
the computation precision closely match the actual accurate part of the
numbers.

- Function: void mpf_set_prec (mpf_t ROP, unsigned long int PREC)
Set the precision of ROP to be *at least* PREC bits. Since
changing the precision involves calls to ‘realloc’, this routine
should not be called in a tight loop.

- Function: unsigned long int mpf_get_prec (mpf_t OP)
Return the precision actually used for assignments of OP.

- Function: void mpf_set_prec_raw (mpf_t ROP, unsigned long int PREC)

gmp 26 / 46

Set the precision of ROP to be *at least* PREC bits. This is a
low-level function that does not change the allocation. The PREC
argument must not be larger that the precision previously returned
by ‘mpf_get_prec’. It is crucial that the precision of ROP is
ultimately reset to exactly the value returned by ‘mpf_get_prec’.

1.25 gmp.guide/Assigning Floats

Assignment Functions

These functions assign new values to already initialized floats (see
Initializing Floats).

- Function: void mpf_set (mpf_t ROP, mpf_t OP)
- Function: void mpf_set_ui (mpf_t ROP, unsigned long int OP)
- Function: void mpf_set_si (mpf_t ROP, signed long int OP)
- Function: void mpf_set_d (mpf_t ROP, double OP)
- Function: void mpf_set_z (mpf_t ROP, mpz_t OP)
- Function: void mpf_set_q (mpf_t ROP, mpq_t OP)

Set the value of ROP from OP.

- Function: int mpf_set_str (mpf_t ROP, char *STR, int BASE)
Set the value of ROP from the string in STR. The string is of the
form ‘M@N’ or, if the base is 10 or less, alternatively ‘MeN’.
‘M’ is the mantissa and ‘N’ is the exponent. The mantissa is
always in the specified base. The exponent is either in the
specified base or, if BASE is negative, in decimal.

The argument BASE may be in the ranges 2 to 36, or -36 to -2.
Negative values are used to specify that the exponent is in
decimal.

Unlike the corresponding ‘mpz’ function, the base will not be
determined from the leading characters of the string if BASE is 0.
This is so that numbers like ‘0.23’ are not interpreted as octal.

White space is allowed in the string, and is simply ignored.

This function returns 0 if the entire string up to the ’\0’ is a
valid number in base BASE. Otherwise it returns -1.

1.26 gmp.guide/Simultaneous Float Init & Assign

Combined Initialization and Assignment Functions
--

For convenience, MP provides a parallel series of initialize-and-set
functions which initialize the output and then store the value there.
These functions’ names have the form ‘mpf_init_set...’

gmp 27 / 46

Once the float has been initialized by any of the ‘mpf_init_set...’
functions, it can be used as the source or destination operand for the
ordinary float functions. Don’t use an initialize-and-set function on
a variable already initialized!

- Function: void mpf_init_set (mpf_t ROP, mpf_t OP)
- Function: void mpf_init_set_ui (mpf_t ROP, unsigned long int OP)
- Function: void mpf_init_set_si (mpf_t ROP, signed long int OP)
- Function: void mpf_init_set_d (mpf_t ROP, double OP)

Initialize ROP and set its value from OP.

The precision of ROP will be taken from the active default
precision, as set by ‘mpf_set_default_prec’.

- Function: int mpf_init_set_str (mpf_t ROP, char *STR, int BASE)
Initialize ROP and set its value from the string in STR. See
‘mpf_set_str’ above for details on the assignment operation.

Note that ROP is initialized even if an error occurs. (I.e., you
have to call ‘mpf_clear’ for it.)

The precision of ROP will be taken from the active default
precision, as set by ‘mpf_set_default_prec’.

1.27 gmp.guide/Converting Floats

Conversion Functions
====================

- Function: double mpf_get_d (mpf_t OP)
Convert OP to a double.

- Function: char * mpf_get_str (char *STR, mp_exp_t *EXPPTR, int BASE,
size_t N_DIGITS, mpf_t OP)

Convert OP to a string of digits in base BASE. The base may vary
from 2 to 36. Generate at most N_DIGITS significant digits, or if
N_DIGITS is 0, the maximum number of digits accurately
representable by OP.

If STR is NULL, space for the mantissa is allocated using the
default allocation function, and a pointer to the string is
returned.

If STR is not NULL, it should point to a block of storage enough
large for the mantissa, i.e., N_DIGITS + 2. The two extra bytes
are for a possible minus sign, and for the terminating null
character.

The exponent is written through the pointer EXPPTR.

If N_DIGITS is 0, the maximum number of digits meaningfully
achievable from the precision of OP will be generated. Note that
the space requirements for STR in this case will be impossible for

gmp 28 / 46

the user to predetermine. Therefore, you need to pass NULL for
the string argument whenever N_DIGITS is 0.

The generated string is a fraction, with an implicit radix point
immediately to the left of the first digit. For example, the
number 3.1416 would be returned as "31416" in the string and 1
written at EXPPTR.

1.28 gmp.guide/Float Arithmetic

Arithmetic Functions
====================

- Function: void mpf_add (mpf_t ROP, mpf_t OP1, mpf_t OP2)
- Function: void mpf_add_ui (mpf_t ROP, mpf_t OP1, unsigned long int

OP2)
Set ROP to OP1 + OP2.

- Function: void mpf_sub (mpf_t ROP, mpf_t OP1, mpf_t OP2)
- Function: void mpf_ui_sub (mpf_t ROP, unsigned long int OP1, mpf_t

OP2)
- Function: void mpf_sub_ui (mpf_t ROP, mpf_t OP1, unsigned long int

OP2)
Set ROP to OP1 - OP2.

- Function: void mpf_mul (mpf_t ROP, mpf_t OP1, mpf_t OP2)
- Function: void mpf_mul_ui (mpf_t ROP, mpf_t OP1, unsigned long int

OP2)
Set ROP to OP1 times OP2.

Division is undefined if the divisor is zero, and passing a zero
divisor to the divide functions will make these functions intentionally
divide by zero. This gives the user the possibility to handle
arithmetic exceptions in these functions in the same manner as other
arithmetic exceptions.

- Function: void mpf_div (mpf_t ROP, mpf_t OP1, mpf_t OP2)
- Function: void mpf_ui_div (mpf_t ROP, unsigned long int OP1, mpf_t

OP2)
- Function: void mpf_div_ui (mpf_t ROP, mpf_t OP1, unsigned long int

OP2)
Set ROP to OP1/OP2.

- Function: void mpf_sqrt (mpf_t ROP, mpf_t OP)
- Function: void mpf_sqrt_ui (mpf_t ROP, unsigned long int OP)

Set ROP to the square root of OP.

- Function: void mpf_neg (mpf_t ROP, mpf_t OP)
Set ROP to -OP.

- Function: void mpf_abs (mpf_t ROP, mpf_t OP)
Set ROP to the absolute value of OP.

- Function: void mpf_mul_2exp (mpf_t ROP, mpf_t OP1, unsigned long int

gmp 29 / 46

OP2)
Set ROP to OP1 times 2 raised to OP2.

- Function: void mpf_div_2exp (mpf_t ROP, mpf_t OP1, unsigned long int
OP2)

Set ROP to OP1 divided by 2 raised to OP2.

1.29 gmp.guide/Float Comparison

Comparison Functions
====================

- Function: int mpf_cmp (mpf_t OP1, mpf_t OP2)
- Function: int mpf_cmp_ui (mpf_t OP1, unsigned long int OP2)
- Function: int mpf_cmp_si (mpf_t OP1, signed long int OP2)

Compare OP1 and OP2. Return a positive value if OP1 > OP2, zero
if OP1 = OP2, and a negative value if OP1 < OP2.

- Function: int mpf_eq (mpf_t OP1, mpf_t OP2, unsigned long int op3)
Return non-zero if the first OP3 bits of OP1 and OP2 are equal,
zero otherwise. I.e., test of OP1 and OP2 are approximately equal.

- Function: void mpf_reldiff (mpf_t ROP, mpf_t OP1, mpf_t OP2)
Compute the relative difference between OP1 and OP2 and store the
result in ROP.

- Macro: int mpf_sgn (mpf_t OP)
Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0.

This function is actually implemented as a macro. It evaluates its
arguments multiple times.

1.30 gmp.guide/I-O of Floats

Input and Output Functions
==========================

Functions that perform input from a stdio stream, and functions that
output to a stdio stream. Passing a NULL pointer for a STREAM argument
to any of these functions will make them read from ‘stdin’ and write to
‘stdout’, respectively.

When using any of these functions, it is a good idea to include
‘stdio.h’ before ‘gmp.h’, since that will allow ‘gmp.h’ to define
prototypes for these functions.

- Function: size_t mpf_out_str (FILE *STREAM, int BASE, size_t
N_DIGITS, mpf_t OP)

Output OP on stdio stream STREAM, as a string of digits in base
BASE. The base may vary from 2 to 36. Print at most N_DIGITS

gmp 30 / 46

significant digits, or if N_DIGITS is 0, the maximum number of
digits accurately representable by OP.

In addition to the significant digits, a leading ‘0.’ and a
trailing exponent, in the form ‘eNNN’, are printed. If BASE is
greater than 10, ‘@’ will be used instead of ‘e’ as exponent
delimiter.

Return the number of bytes written, or if an error occurred,
return 0.

- Function: size_t mpf_inp_str (mpf_t ROP, FILE *STREAM, int BASE)
Input a string in base BASE from stdio stream STREAM, and put the
read float in ROP. The string is of the form ‘M@N’ or, if the
base is 10 or less, alternatively ‘MeN’. ‘M’ is the mantissa and
‘N’ is the exponent. The mantissa is always in the specified
base. The exponent is either in the specified base or, if BASE is
negative, in decimal.

The argument BASE may be in the ranges 2 to 36, or -36 to -2.
Negative values are used to specify that the exponent is in
decimal.

Unlike the corresponding ‘mpz’ function, the base will not be
determined from the leading characters of the string if BASE is 0.
This is so that numbers like ‘0.23’ are not interpreted as octal.

Return the number of bytes read, or if an error occurred, return 0.

1.31 gmp.guide/Miscellaneous Float Functions

Miscellaneous Functions
=======================

- Function: void mpf_random2 (mpf_t ROP, mp_size_t MAX_SIZE, mp_exp_t
MAX_EXP)

Generate a random float of at most MAX_SIZE limbs, with long
strings of zeros and ones in the binary representation. The
exponent of the number is in the interval -EXP to EXP. This
function is useful for testing functions and algorithms, since
this kind of random numbers have proven to be more likely to
trigger corner-case bugs. Negative random numbers are generated
when MAX_SIZE is negative.

1.32 gmp.guide/Low-level Functions

Low-level Functions

This chapter describes low-level MP functions, used to implement the

gmp 31 / 46

high-level MP functions, but also intended for time-critical user code.

These functions start with the prefix ‘mpn_’.

The ‘mpn’ functions are designed to be as fast as possible, *not* to
provide a coherent calling interface. The different functions have
somewhat similar interfaces, but there are variations that make them
hard to use. These functions do as little as possible apart from the
real multiple precision computation, so that no time is spent on things
that not all callers need.

A source operand is specified by a pointer to the least significant
limb and a limb count. A destination operand is specified by just a
pointer. It is the responsibility of the caller to ensure that the
destination has enough space for storing the result.

With this way of specifying operands, it is possible to perform
computations on subranges of an argument, and store the result into a
subrange of a destination.

A common requirement for all functions is that each source area
needs at least one limb. No size argument may be zero.

The ‘mpn’ functions is the base for the implementation of the ‘mpz_’,
‘mpf_’, and ‘mpq_’ functions.

This example adds the number beginning at SRC1_PTR and the number
beginning at SRC2_PTR and writes the sum at DEST_PTR. All areas have
SIZE limbs.

cy = mpn_add_n (dest_ptr, src1_ptr, src2_ptr, size)

In the notation used here, a source operand is identified by the
pointer to the least significant limb, and the limb count in braces.
For example, {s1_ptr, s1_size}.

- Function: mp_limb_t mpn_add_n (mp_limb_t * DEST_PTR, const mp_limb_t

* SRC1_PTR, const mp_limb_t * SRC2_PTR, mp_size_t SIZE)
Add {SRC1_PTR, SIZE} and {SRC2_PTR, SIZE}, and write the SIZE
least significant limbs of the result to DEST_PTR. Return carry,
either 0 or 1.

This is the lowest-level function for addition. It is the
preferred function for addition, since it is written in assembly
for most targets. For addition of a variable to itself (i.e.,
SRC1_PTR equals SRC2_PTR, use ‘mpn_lshift’ with a count of 1 for
optimal speed.

- Function: mp_limb_t mpn_add_1 (mp_limb_t * DEST_PTR, const mp_limb_t

* SRC1_PTR, mp_size_t SIZE, mp_limb_t SRC2_LIMB)
Add {SRC1_PTR, SIZE} and SRC2_LIMB, and write the SIZE least
significant limbs of the result to DEST_PTR. Return carry, either
0 or 1.

- Function: mp_limb_t mpn_add (mp_limb_t * DEST_PTR, const mp_limb_t *
SRC1_PTR, mp_size_t SRC1_SIZE, const mp_limb_t * SRC2_PTR,
mp_size_t SRC2_SIZE)

gmp 32 / 46

Add {SRC1_PTR, SRC1_SIZE} and {SRC2_PTR, SRC2_SIZE}, and write the
SRC1_SIZE least significant limbs of the result to DEST_PTR.
Return carry, either 0 or 1.

This function requires that SRC1_SIZE is greater than or equal to
SRC2_SIZE.

- Function: mp_limb_t mpn_sub_n (mp_limb_t * DEST_PTR, const mp_limb_t

* SRC1_PTR, const mp_limb_t * SRC2_PTR, mp_size_t SIZE)
Subtract {SRC2_PTR, SRC2_SIZE} from {SRC1_PTR, SIZE}, and write
the SIZE least significant limbs of the result to DEST_PTR.
Return borrow, either 0 or 1.

This is the lowest-level function for subtraction. It is the
preferred function for subtraction, since it is written in
assembly for most targets.

- Function: mp_limb_t mpn_sub_1 (mp_limb_t * DEST_PTR, const mp_limb_t

* SRC1_PTR, mp_size_t SIZE, mp_limb_t SRC2_LIMB)
Subtract SRC2_LIMB from {SRC1_PTR, SIZE}, and write the SIZE least
significant limbs of the result to DEST_PTR. Return borrow,
either 0 or 1.

- Function: mp_limb_t mpn_sub (mp_limb_t * DEST_PTR, const mp_limb_t *
SRC1_PTR, mp_size_t SRC1_SIZE, const mp_limb_t * SRC2_PTR,
mp_size_t SRC2_SIZE)

Subtract {SRC2_PTR, SRC2_SIZE} from {SRC1_PTR, SRC1_SIZE}, and
write the SRC1_SIZE least significant limbs of the result to
DEST_PTR. Return borrow, either 0 or 1.

This function requires that SRC1_SIZE is greater than or equal to
SRC2_SIZE.

- Function: void mpn_mul_n (mp_limb_t * DEST_PTR, const mp_limb_t *
SRC1_PTR, const mp_limb_t * SRC2_PTR, mp_size_t SIZE)

Multiply {SRC1_PTR, SIZE} and {SRC2_PTR, SIZE}, and write the

entire result to DEST_PTR.

The destination has to have space for 2SIZE limbs, even if the
significant result might be one limb smaller.

- Function: mp_limb_t mpn_mul_1 (mp_limb_t * DEST_PTR, const mp_limb_t

* SRC1_PTR, mp_size_t SIZE, mp_limb_t SRC2_LIMB)
Multiply {SRC1_PTR, SIZE} and SRC2_LIMB, and write the SIZE least
significant limbs of the product to DEST_PTR. Return the most
significant limb of the product.

This is a low-level function that is a building block for general
multiplication as well as other operations in MP. It is written
in assembly for most targets.

Don’t call this function if SRC2_LIMB is a power of 2; use
‘mpn_lshift’ with a count equal to the logarithm of SRC2_LIMB
instead, for optimal speed.

- Function: mp_limb_t mpn_addmul_1 (mp_limb_t * DEST_PTR, const
mp_limb_t * SRC1_PTR, mp_size_t SIZE, mp_limb_t SRC2_LIMB)

gmp 33 / 46

Multiply {SRC1_PTR, SIZE} and SRC2_LIMB, and add the SIZE least
significant limbs of the product to {DEST_PTR, SIZE} and write the
result to DEST_PTR DEST_PTR. Return the most significant limb of
the product, plus carry-out from the addition.

This is a low-level function that is a building block for general
multiplication as well as other operations in MP. It is written
in assembly for most targets.

- Function: mp_limb_t mpn_submul_1 (mp_limb_t * DEST_PTR, const
mp_limb_t * SRC1_PTR, mp_size_t SIZE, mp_limb_t SRC2_LIMB)

Multiply {SRC1_PTR, SIZE} and SRC2_LIMB, and subtract the SIZE
least significant limbs of the product from {DEST_PTR, SIZE} and
write the result to DEST_PTR. Return the most significant limb of
the product, minus borrow-out from the subtraction.

This is a low-level function that is a building block for general
multiplication and division as well as other operations in MP. It
is written in assembly for most targets.

- Function: mp_limb_t mpn_mul (mp_limb_t * DEST_PTR, const mp_limb_t *
SRC1_PTR, mp_size_t SRC1_SIZE, const mp_limb_t * SRC2_PTR,
mp_size_t SRC2_SIZE)

Multiply {SRC1_PTR, SRC1_SIZE} and {SRC2_PTR, SRC2_SIZE}, and
write the result to DEST_PTR. Return the most significant limb of
the result.

The destination has to have space for SRC1_SIZE + SRC1_SIZE limbs,
even if the result might be one limb smaller.

This function requires that SRC1_SIZE is greater than or equal to
SRC2_SIZE. The destination must be distinct from either input
operands.

- Function: mp_size_t mpn_divrem (mp_limb_t * R1P, mp_size_t XSIZE,
mp_limb_t * RS2P, mp_size_t RS2SIZE, const mp_limb_t * S3P,
mp_size_t S3SIZE)

Divide {RS2P, RS2SIZE} by {S3P, S3SIZE}, and write the quotient at
R1P, with the exception of the most significant limb, which is
returned. The remainder replaces the dividend at RS2P.

In addition to an integer quotient, XSIZE fraction limbs are
developed, and stored after the integral limbs. For most usages,
XSIZE will be zero.

It is required that RS2SIZE is greater than or equal to S3SIZE.
It is required that the most significant bit of the divisor is set.

If the quotient is not needed, pass RS2P + S3SIZE as R1P. Aside
from that special case, no overlap between arguments is permitted.

Return the most significant limb of the quotient, either 0 or 1.

The area at R1P needs to be RS2SIZE - S3SIZE + XSIZE limbs large.

- Function: mp_limb_t mpn_divrem_1 (mp_limb_t * R1P, mp_size_t XSIZE,
mp_limb_t * S2P, mp_size_t S2SIZE, mp_limb_t S3LIMB)

gmp 34 / 46

Divide {S2P, S2SIZE} by S3LIMB, and write the quotient at R1P.
Return the remainder.

In addition to an integer quotient, XSIZE fraction limbs are
developed, and stored after the integral limbs. For most usages,
XSIZE will be zero.

The areas at R1P and S2P have to be identical or completely
separate, not partially overlapping.

- Function: mp_size_t mpn_divmod (mp_limb_t * R1P, mp_limb_t * RS2P,
mp_size_t RS2SIZE, const mp_limb_t * S3P, mp_size_t S3SIZE)

*This interface is obsolete. It will disappear from future
releases. Use ‘mpn_divrem’ in its stead.*

- Function: mp_limb_t mpn_divmod_1 (mp_limb_t * R1P, mp_limb_t * S2P,
mp_size_t S2SIZE, mp_limb_t S3LIMB)

*This interface is obsolete. It will disappear from future
releases. Use ‘mpn_divrem_1’ in its stead.*

- Function: mp_limb_t mpn_mod_1 (mp_limb_t * S1P, mp_size_t S1SIZE,
mp_limb_t S2LIMB)

Divide {S1P, S1SIZE} by S2LIMB, and return the remainder.

- Function: mp_limb_t mpn_preinv_mod_1 (mp_limb_t * S1P, mp_size_t
S1SIZE, mp_limb_t S2LIMB, mp_limb_t S3LIMB)

*This interface is obsolete. It will disappear from future
releases. Use ‘mpn_mod_1’ in its stead.*

- Function: mp_limb_t mpn_bdivmod (mp_limb_t * DEST_PTR, mp_limb_t *
S1P, mp_size_t S1SIZE, const mp_limb_t * S2P, mp_size_t
S2SIZE, unsigned long int D)

The function puts the low [D/BITS_PER_MP_LIMB] limbs of Q = {S1P,
S1SIZE}/{S2P, S2SIZE} mod 2^D at DEST_PTR, and returns the high D
mod BITS_PER_MP_LIMB bits of Q.

{S1P, S1SIZE} - Q * {S2P, S2SIZE} mod 2^(S1SIZE*BITS_PER_MP_LIMB)
is placed at S1P. Since the low [D/BITS_PER_MP_LIMB] limbs of
this difference are zero, it is possible to overwrite the low
limbs at S1P with this difference, provided DEST_PTR <= S1P.

This function requires that S1SIZE * BITS_PER_MP_LIMB >= D, and
that {S2P, S2SIZE} is odd.

*This interface is preliminary. It might change incompatibly in
future revisions.*

- Function: mp_limb_t mpn_lshift (mp_limb_t * DEST_PTR, const
mp_limb_t * SRC_PTR, mp_size_t SRC_SIZE, unsigned long int
COUNT)

Shift {SRC_PTR, SRC_SIZE} COUNT bits to the left, and write the
SRC_SIZE least significant limbs of the result to DEST_PTR. COUNT
might be in the range 1 to n - 1, on an n-bit machine. The bits
shifted out to the left are returned.

Overlapping of the destination space and the source space is
allowed in this function, provided DEST_PTR >= SRC_PTR.

gmp 35 / 46

This function is written in assembly for most targets.

- Function: mp_limp_t mpn_rshift (mp_limb_t * DEST_PTR, const
mp_limb_t * SRC_PTR, mp_size_t SRC_SIZE, unsigned long int
COUNT)

Shift {SRC_PTR, SRC_SIZE} COUNT bits to the right, and write the
SRC_SIZE most significant limbs of the result to DEST_PTR. COUNT
might be in the range 1 to n - 1, on an n-bit machine. The bits
shifted out to the right are returned.

Overlapping of the destination space and the source space is
allowed in this function, provided DEST_PTR <= SRC_PTR.

This function is written in assembly for most targets.

- Function: int mpn_cmp (const mp_limb_t * SRC1_PTR, const mp_limb_t *
SRC2_PTR, mp_size_t SIZE)

Compare {SRC1_PTR, SIZE} and {SRC2_PTR, SIZE} and return a
positive value if src1 > src2, 0 of they are equal, and a negative
value if src1 < src2.

- Function: mp_size_t mpn_gcd (mp_limb_t * DEST_PTR, mp_limb_t *
SRC1_PTR, mp_size_t SRC1_SIZE, mp_limb_t * SRC2_PTR,
mp_size_t SRC2_SIZE)

Puts at DEST_PTR the greatest common divisor of {SRC1_PTR,
SRC1_SIZE} and {SRC2_PTR, SRC2_SIZE}; both source operands are
destroyed by the operation. The size in limbs of the greatest
common divisor is returned.

{SRC1_PTR, SRC1_SIZE} must be odd, and {SRC2_PTR, SRC2_SIZE} must
have at least as many bits as {SRC1_PTR, SRC1_SIZE}.

*This interface is preliminary. It might change incompatibly in
future revisions.*

- Function: mp_limb_t mpn_gcd_1 (const mp_limb_t * SRC1_PTR, mp_size_t
SRC1_SIZE, mp_limb_t SRC2_LIMB)

Return the greatest common divisor of {SRC1_PTR, SRC1_SIZE} and
SRC2_LIMB, where SRC2_LIMB (as well as SRC1_SIZE) must be
different from 0.

- Function: mp_size_t mpn_gcdext (mp_limb_t * R1P, mp_limb_t * R2P,
mp_limb_t * S1P, mp_size_t S1SIZE, mp_limb_t * S2P, mp_size_t
S2SIZE)

Puts at R1P the greatest common divisor of {S1P, S1SIZE} and {S2P,
S2SIZE}. The first cofactor is written at R2P. Both source
operands are destroyed by the operation. The size in limbs of the
greatest common divisor is returned.

*This interface is preliminary. It might change incompatibly in
future revisions.*

- Function: mp_size_t mpn_sqrtrem (mp_limb_t * R1P, mp_limb_t * R2P,
const mp_limb_t * SP, mp_size_t SIZE)

Compute the square root of {SP, SIZE} and put the result at R1P.
Write the remainder at R2P, unless R2P is NULL.

gmp 36 / 46

Return the size of the remainder, whether R2P was NULL or non-NULL.
Iff the operand was a perfect square, the return value will be 0.

The areas at R1P and SP have to be distinct. The areas at R2P and
SP have to be identical or completely separate, not partially
overlapping.

The area at R1P needs to have space for ceil(SIZE/2) limbs. The
area at R2P needs to be SIZE limbs large.

*This interface is preliminary. It might change incompatibly in
future revisions.*

- Function: mp_size_t mpn_get_str (unsigned char *STR, int BASE,
mp_limb_t * S1P, mp_size_t S1SIZE)

Convert {S1P, S1SIZE} to a raw unsigned char array in base BASE.
The string is not in ASCII; to convert it to printable format, add
the ASCII codes for ‘0’ or ‘A’, depending on the base and range.
There may be leading zeros in the string.

The area at S1P is clobbered.

Return the number of characters in STR.

The area at STR has to have space for the largest possible number
represented by a S1SIZE long limb array, plus one extra character.

- Function: mp_size_t mpn_set_str (mp_limb_t * R1P, const char *STR,
size_t strsize, int BASE)

Convert the raw unsigned char array at STR of length STRSIZE to a
limb array {S1P, S1SIZE}. The base of STR is BASE.

Return the number of limbs stored in R1P.

- Function: unsigned long int mpn_scan0 (const mp_limb_t * S1P,
unsigned long int BIT)

Scan S1P from bit position BIT for the next clear bit.

It is required that there be a clear bit within the area at S1P at
or beyond bit position BIT, so that the function has something to
return.

*This interface is preliminary. It might change incompatibly in
future revisions.*

- Function: unsigned long int mpn_scan1 (const mp_limb_t * S1P,
unsigned long int BIT)

Scan S1P from bit position BIT for the next set bit.

It is required that there be a set bit within the area at S1P at or
beyond bit position BIT, so that the function has something to
return.

*This interface is preliminary. It might change incompatibly in
future revisions.*

gmp 37 / 46

- Function: void mpn_random2 (mp_limb_t * R1P, mp_size_t R1SIZE)
Generate a random number of length R1SIZE with long strings of
zeros and ones in the binary representation, and store it at R1P.

The generated random numbers are intended for testing the
correctness of the implementation of the ‘mpn’ routines.

- Function: unsigned long int mpn_popcount (const mp_limb_t * S1P,
unsigned long int SIZE)

Count the number of set bits in {S1P, SIZE}.

- Function: unsigned long int mpn_hamdist (const mp_limb_t * S1P,
const mp_limb_t * S2P, unsigned long int SIZE)

Compute the hamming distance between {S1P, SIZE} and {S2P, SIZE}.

- Function: int mpn_perfect_square_p (const mp_limb_t * S1P, mp_size_t
SIZE)

Return non-zero iff {S1P, SIZE} is a perfect square.

1.33 gmp.guide/BSD Compatible Functions

Berkeley MP Compatible Functions

These functions are intended to be fully compatible with the
Berkeley MP library which is available on many BSD derived U*ix systems.

The original Berkeley MP library has a usage restriction: you cannot
use the same variable as both source and destination in a single
function call. The compatible functions in GNU MP do not share this
restriction--inputs and outputs may overlap.

It is not recommended that new programs are written using these
functions. Apart from the incomplete set of functions, the interface
for initializing ‘MINT’ objects is more error prone, and the ‘pow’
function collides with ‘pow’ in ‘libm.a’.

Include the header ‘mp.h’ to get the definition of the necessary
types and functions. If you are on a BSD derived system, make sure to
include GNU ‘mp.h’ if you are going to link the GNU ‘libmp.a’ to you
program. This means that you probably need to give the -I<dir> option
to the compiler, where <dir> is the directory where you have GNU ‘mp.h’.

- Function: MINT * itom (signed short int INITIAL_VALUE)
Allocate an integer consisting of a ‘MINT’ object and dynamic limb
space. Initialize the integer to INITIAL_VALUE. Return a pointer
to the ‘MINT’ object.

- Function: MINT * xtom (char *INITIAL_VALUE)
Allocate an integer consisting of a ‘MINT’ object and dynamic limb
space. Initialize the integer from INITIAL_VALUE, a hexadecimal,
’\0’-terminate C string. Return a pointer to the ‘MINT’ object.

- Function: void move (MINT *SRC, MINT *DEST)

gmp 38 / 46

Set DEST to SRC by copying. Both variables must be previously
initialized.

- Function: void madd (MINT *SRC_1, MINT *SRC_2, MINT *DESTINATION)
Add SRC_1 and SRC_2 and put the sum in DESTINATION.

- Function: void msub (MINT *SRC_1, MINT *SRC_2, MINT *DESTINATION)
Subtract SRC_2 from SRC_1 and put the difference in DESTINATION.

- Function: void mult (MINT *SRC_1, MINT *SRC_2, MINT *DESTINATION)
Multiply SRC_1 and SRC_2 and put the product in DESTINATION.

- Function: void mdiv (MINT *DIVIDEND, MINT *DIVISOR, MINT *QUOTIENT,
MINT *REMAINDER)

- Function: void sdiv (MINT *DIVIDEND, signed short int DIVISOR, MINT

*QUOTIENT, signed short int *REMAINDER)
Set QUOTIENT to DIVIDEND/DIVISOR, and REMAINDER to DIVIDEND mod
DIVISOR. The quotient is rounded towards zero; the remainder has
the same sign as the dividend unless it is zero.

Some implementations of these functions work differently--or not
at all--for negative arguments.

- Function: void msqrt (MINT *OPERAND, MINT *ROOT, MINT *REMAINDER)
Set ROOT to the truncated integer part of the square root of
OPERAND. Set REMAINDER to OPERAND-ROOT*ROOT, (i.e., zero if
OPERAND is a perfect square).

If ROOT and REMAINDER are the same variable, the results are
undefined.

- Function: void pow (MINT *BASE, MINT *EXP, MINT *MOD, MINT *DEST)
Set DEST to (BASE raised to EXP) modulo MOD.

- Function: void rpow (MINT *BASE, signed short int EXP, MINT *DEST)
Set DEST to BASE raised to EXP.

- Function: void gcd (MINT *OPERAND1, MINT *OPERAND2, MINT *RES)
Set RES to the greatest common divisor of OPERAND1 and OPERAND2.

- Function: int mcmp (MINT *OPERAND1, MINT *OPERAND2)
Compare OPERAND1 and OPERAND2. Return a positive value if
OPERAND1 > OPERAND2, zero if OPERAND1 = OPERAND2, and a negative
value if OPERAND1 < OPERAND2.

- Function: void min (MINT *DEST)
Input a decimal string from ‘stdin’, and put the read integer in
DEST. SPC and TAB are allowed in the number string, and are
ignored.

- Function: void mout (MINT *SRC)
Output SRC to ‘stdout’, as a decimal string. Also output a
newline.

- Function: char * mtox (MINT *OPERAND)
Convert OPERAND to a hexadecimal string, and return a pointer to
the string. The returned string is allocated using the default

gmp 39 / 46

memory allocation function, ‘malloc’ by default.

- Function: void mfree (MINT *OPERAND)
De-allocate, the space used by OPERAND. *This function should
only be passed a value returned by ‘itom’ or ‘xtom’.*

1.34 gmp.guide/Custom Allocation

Custom Allocation

By default, the MP functions use ‘malloc’, ‘realloc’, and ‘free’ for
memory allocation. If ‘malloc’ or ‘realloc’ fails, the MP library
terminates execution after printing a fatal error message to standard
error.

For some applications, you may wish to allocate memory in other
ways, or you may not want to have a fatal error when there is no more
memory available. To accomplish this, you can specify alternative
memory allocation functions.

- Function: void mp_set_memory_functions (
void *(*ALLOC_FUNC_PTR) (size_t),
void *(*REALLOC_FUNC_PTR) (void *, size_t, size_t),
void (*FREE_FUNC_PTR) (void *, size_t))

Replace the current allocation functions from the arguments. If
an argument is NULL, the corresponding default function is
retained.

*Make sure to call this function in such a way that there are no
active MP objects that were allocated using the previously active
allocation function! Usually, that means that you have to call
this function before any other MP function.*

The functions you supply should fit the following declarations:

- Function: void * allocate_function (size_t ALLOC_SIZE)
This function should return a pointer to newly allocated space
with at least ALLOC_SIZE storage units.

- Function: void * reallocate_function (void *PTR, size_t OLD_SIZE,
size_t NEW_SIZE)

This function should return a pointer to newly allocated space of
at least NEW_SIZE storage units, after copying at least the first
OLD_SIZE storage units from PTR. It should also de-allocate the
space at PTR.

You can assume that the space at PTR was formerly returned from
‘allocate_function’ or ‘reallocate_function’, for a request for
OLD_SIZE storage units.

- Function: void deallocate_function (void *PTR, size_t SIZE)
De-allocate the space pointed to by PTR.

gmp 40 / 46

You can assume that the space at PTR was formerly returned from
‘allocate_function’ or ‘reallocate_function’, for a request for
SIZE storage units.

(A "storage unit" is the unit in which the ‘sizeof’ operator returns
the size of an object, normally an 8 bit byte.)

1.35 gmp.guide/Contributors

Contributors

I would like to thank Gunnar Sjoedin and Hans Riesel for their help
with mathematical problems, Richard Stallman for his help with design
issues and for revising the first version of this manual, Brian Beuning
and Doug Lea for their testing of early versions of the library.

John Amanatides of York University in Canada contributed the function
‘mpz_probab_prime_p’.

Paul Zimmermann of Inria sparked the development of GMP 2, with his
comparisons between bignum packages.

Ken Weber (Kent State University, Universidade Federal do Rio Grande
do Sul) contributed ‘mpz_gcd’, ‘mpz_divexact’, ‘mpn_gcd’, and
‘mpn_bdivmod’, partially supported by CNPq (Brazil) grant 301314194-2.

Per Bothner of Cygnus Support helped to set up MP to use Cygnus’
configure. He has also made valuable suggestions and tested numerous
intermediary releases.

Joachim Hollman was involved in the design of the ‘mpf’ interface,
and in the ‘mpz’ design revisions for version 2.

Bennet Yee contributed the functions ‘mpz_jacobi’ and ‘mpz_legendre’.

Andreas Schwab contributed the files ‘mpn/m68k/lshift.S’ and
‘mpn/m68k/rshift.S’.

The development of floating point functions of GNU MP 2, were
supported in part by the ESPRIT-BRA (Basic Research Activities) 6846
project POSSO (POlynomial System SOlving).

GNU MP 2 was finished and released by TMG Datakonsult,
Sodermannagatan 5, 116 23 STOCKHOLM, SWEDEN, in cooperation with the
IDA Center for Computing Sciences, USA.

1.36 gmp.guide/References

gmp 41 / 46

References

* Donald E. Knuth, "The Art of Computer Programming", vol 2,
"Seminumerical Algorithms", 2nd edition, Addison-Wesley, 1981.

* John D. Lipson, "Elements of Algebra and Algebraic Computing", The
Benjamin Cummings Publishing Company Inc, 1981.

* Richard M. Stallman, "Using and Porting GCC", Free Software
Foundation, 1995.

* Peter L. Montgomery, "Modular Multiplication Without Trial
Division", in Mathematics of Computation, volume 44, number 170,
April 1985.

* Torbjorn Granlund and Peter L. Montgomery, "Division by Invariant
Integers using Multiplication", in Proceedings of the SIGPLAN
PLDI’94 Conference, June 1994.

* Tudor Jebelean, "An algorithm for exact division", Journal of
Symbolic Computation, v. 15, 1993, pp. 169-180.

* Kenneth Weber, "The accelerated integer GCD algorithm", ACM
Transactions on Mathematical Software, v. 21 (March), 1995, pp.
111-122.

1.37 gmp.guide/Concept Index

Concept Index

gmp.h MP Basics
mp.h BSD Compatible Functions
Arithmetic functions <1> Integer Arithmetic
Arithmetic functions Float Arithmetic
Bit manipulation functions Integer Logic and Bit Fiddling
BSD MP compatible functions BSD Compatible Functions
Comparison functions Float Comparison
Conditions for copying GNU MP Copying
Conversion functions <1> Converting Integers
Conversion functions Converting Floats
Copying conditions Copying
Float arithmetic functions Float Arithmetic
Float assignment functions Assigning Floats
Float comparisons functions Float Comparison
Float functions Floating-point Functions
Float input and output functions I-O of Floats
Floating-point functions Floating-point Functions
Floating-point number MP Basics
I/O functions <1> I-O of Floats
I/O functions I-O of Integers
Initialization and assignment functions <1> Simultaneous Float Init & Assign

gmp 42 / 46

Initialization and assignment functions Simultaneous Integer Init & Assign
Input functions <1> I-O of Integers
Input functions I-O of Floats
Installation Installing MP
Integer MP Basics
Integer arithmetic functions Integer Arithmetic
Integer assignment functions Assigning Integers
Integer conversion functions Converting Integers
Integer functions Integer Functions
Integer input and output functions I-O of Integers
Limb MP Basics
Logical functions Integer Logic and Bit Fiddling
Low-level functions Low-level Functions
Miscellaneous float functions Miscellaneous Float Functions
Miscellaneous integer functions Miscellaneous Integer Functions
Output functions <1> I-O of Floats
Output functions I-O of Integers
Rational number MP Basics
Rational number functions Rational Number Functions
Reporting bugs Reporting Bugs
User-defined precision Floating-point Functions

1.38 gmp.guide/Function Index

Function and Type Index

mp_limb_t MP Basics
mpf_t MP Basics
mpq_t MP Basics
mpz_t MP Basics
__GNU_MP_VERSION MP Basics
__GNU_MP_VERSION_MINOR MP Basics
_mpz_realloc Initializing Integers
allocate_function Custom Allocation
deallocate_function Custom Allocation
gcd BSD Compatible Functions
itom BSD Compatible Functions
madd BSD Compatible Functions
mcmp BSD Compatible Functions
mdiv BSD Compatible Functions
mfree BSD Compatible Functions
min BSD Compatible Functions
mout BSD Compatible Functions
move BSD Compatible Functions
mp_set_memory_functions Custom Allocation
mpf_abs Float Arithmetic
mpf_add Float Arithmetic
mpf_add_ui Float Arithmetic
mpf_clear Initializing Floats
mpf_cmp Float Comparison
mpf_cmp_si Float Comparison

gmp 43 / 46

mpf_cmp_ui Float Comparison
mpf_div Float Arithmetic
mpf_div_2exp Float Arithmetic
mpf_div_ui Float Arithmetic
mpf_eq Float Comparison
mpf_get_d Converting Floats
mpf_get_prec Initializing Floats
mpf_get_str Converting Floats
mpf_init Initializing Floats
mpf_init2 Initializing Floats
mpf_init_set Simultaneous Float Init & Assign
mpf_init_set_d Simultaneous Float Init & Assign
mpf_init_set_si Simultaneous Float Init & Assign
mpf_init_set_str Simultaneous Float Init & Assign
mpf_init_set_ui Simultaneous Float Init & Assign
mpf_inp_str I-O of Floats
mpf_mul Float Arithmetic
mpf_mul_2exp Float Arithmetic
mpf_mul_ui Float Arithmetic
mpf_neg Float Arithmetic
mpf_out_str I-O of Floats
mpf_random2 Miscellaneous Float Functions
mpf_reldiff Float Comparison
mpf_set Assigning Floats
mpf_set_d Assigning Floats
mpf_set_default_prec Initializing Floats
mpf_set_prec Initializing Floats
mpf_set_prec_raw Initializing Floats
mpf_set_q Assigning Floats
mpf_set_si Assigning Floats
mpf_set_str Assigning Floats
mpf_set_ui Assigning Floats
mpf_set_z Assigning Floats
mpf_sgn Float Comparison
mpf_sqrt Float Arithmetic
mpf_sqrt_ui Float Arithmetic
mpf_sub Float Arithmetic
mpf_sub_ui Float Arithmetic
mpf_ui_div Float Arithmetic
mpf_ui_sub Float Arithmetic
mpn_add Low-level Functions
mpn_add_1 Low-level Functions
mpn_add_n Low-level Functions
mpn_addmul_1 Low-level Functions
mpn_bdivmod Low-level Functions
mpn_cmp Low-level Functions
mpn_divmod Low-level Functions
mpn_divmod_1 Low-level Functions
mpn_divrem Low-level Functions
mpn_divrem_1 Low-level Functions
mpn_gcd Low-level Functions
mpn_gcd_1 Low-level Functions
mpn_gcdext Low-level Functions
mpn_get_str Low-level Functions
mpn_hamdist Low-level Functions
mpn_lshift Low-level Functions
mpn_mod_1 Low-level Functions

gmp 44 / 46

mpn_mul Low-level Functions
mpn_mul_1 Low-level Functions
mpn_mul_n Low-level Functions
mpn_perfect_square_p Low-level Functions
mpn_popcount Low-level Functions
mpn_preinv_mod_1 Low-level Functions
mpn_random2 Low-level Functions
mpn_rshift Low-level Functions
mpn_scan0 Low-level Functions
mpn_scan1 Low-level Functions
mpn_set_str Low-level Functions
mpn_sqrtrem Low-level Functions
mpn_sub Low-level Functions
mpn_sub_1 Low-level Functions
mpn_sub_n Low-level Functions
mpn_submul_1 Low-level Functions
mpq_add Assigning Rationals
mpq_canonicalize Rational Number Functions
mpq_clear Initializing Rationals
mpq_cmp Comparing Rationals
mpq_cmp_ui Comparing Rationals
mpq_denref Applying Integer Functions
mpq_div Assigning Rationals
mpq_equal Comparing Rationals
mpq_get_d Miscellaneous Rational Functions
mpq_get_den Miscellaneous Rational Functions
mpq_get_num Miscellaneous Rational Functions
mpq_init Initializing Rationals
mpq_inv Assigning Rationals
mpq_mul Assigning Rationals
mpq_neg Assigning Rationals
mpq_numref Applying Integer Functions
mpq_set Initializing Rationals
mpq_set_den Miscellaneous Rational Functions
mpq_set_num Miscellaneous Rational Functions
mpq_set_si Initializing Rationals
mpq_set_ui Initializing Rationals
mpq_set_z Initializing Rationals
mpq_sgn Comparing Rationals
mpq_sub Assigning Rationals
mpz_abs Integer Arithmetic
mpz_add Integer Arithmetic
mpz_add_ui Integer Arithmetic
mpz_and Integer Logic and Bit Fiddling
mpz_array_init Initializing Integers
mpz_cdiv_q Integer Arithmetic
mpz_cdiv_q_ui Integer Arithmetic
mpz_cdiv_qr Integer Arithmetic
mpz_cdiv_qr_ui Integer Arithmetic
mpz_cdiv_r Integer Arithmetic
mpz_cdiv_r_ui Integer Arithmetic
mpz_cdiv_ui Integer Arithmetic
mpz_clear Initializing Integers
mpz_clrbit Integer Logic and Bit Fiddling
mpz_cmp Comparison Functions
mpz_cmp_si Comparison Functions
mpz_cmp_ui Comparison Functions

gmp 45 / 46

mpz_com Integer Logic and Bit Fiddling
mpz_divexact Integer Arithmetic
mpz_fac_ui Integer Arithmetic
mpz_fdiv_q Integer Arithmetic
mpz_fdiv_q_2exp Integer Arithmetic
mpz_fdiv_q_ui Integer Arithmetic
mpz_fdiv_qr Integer Arithmetic
mpz_fdiv_qr_ui Integer Arithmetic
mpz_fdiv_r Integer Arithmetic
mpz_fdiv_r_2exp Integer Arithmetic
mpz_fdiv_r_ui Integer Arithmetic
mpz_fdiv_ui Integer Arithmetic
mpz_gcd Integer Arithmetic
mpz_gcd_ui Integer Arithmetic
mpz_gcdext Integer Arithmetic
mpz_get_d Converting Integers
mpz_get_si Converting Integers
mpz_get_str Converting Integers
mpz_get_ui Converting Integers
mpz_hamdist Integer Logic and Bit Fiddling
mpz_init Initializing Integers
mpz_init_set Simultaneous Integer Init & Assign
mpz_init_set_d Simultaneous Integer Init & Assign
mpz_init_set_si Simultaneous Integer Init & Assign
mpz_init_set_str Simultaneous Integer Init & Assign
mpz_init_set_ui Simultaneous Integer Init & Assign
mpz_inp_raw I-O of Integers
mpz_inp_str I-O of Integers
mpz_invert Integer Arithmetic
mpz_ior Integer Logic and Bit Fiddling
mpz_jacobi Integer Arithmetic
mpz_legendre Integer Arithmetic
mpz_mod Integer Arithmetic
mpz_mod_ui Integer Arithmetic
mpz_mul Integer Arithmetic
mpz_mul_2exp Integer Arithmetic
mpz_mul_ui Integer Arithmetic
mpz_neg Integer Arithmetic
mpz_out_raw I-O of Integers
mpz_out_str I-O of Integers
mpz_perfect_square_p Integer Arithmetic
mpz_popcount Integer Logic and Bit Fiddling
mpz_pow_ui Integer Arithmetic
mpz_powm Integer Arithmetic
mpz_powm_ui Integer Arithmetic
mpz_probab_prime_p Integer Arithmetic
mpz_random Miscellaneous Integer Functions
mpz_random2 Miscellaneous Integer Functions
mpz_scan0 Integer Logic and Bit Fiddling
mpz_scan1 Integer Logic and Bit Fiddling
mpz_set Assigning Integers
mpz_set_d Assigning Integers
mpz_set_f Assigning Integers
mpz_set_q Assigning Integers
mpz_set_si Assigning Integers
mpz_set_str Assigning Integers
mpz_set_ui Assigning Integers

gmp 46 / 46

mpz_setbit Integer Logic and Bit Fiddling
mpz_sgn Comparison Functions
mpz_size Miscellaneous Integer Functions
mpz_sizeinbase Miscellaneous Integer Functions
mpz_sqrt Integer Arithmetic
mpz_sqrtrem Integer Arithmetic
mpz_sub Integer Arithmetic
mpz_sub_ui Integer Arithmetic
mpz_tdiv_q Integer Arithmetic
mpz_tdiv_q_2exp Integer Arithmetic
mpz_tdiv_q_ui Integer Arithmetic
mpz_tdiv_qr Integer Arithmetic
mpz_tdiv_qr_ui Integer Arithmetic
mpz_tdiv_r Integer Arithmetic
mpz_tdiv_r_2exp Integer Arithmetic
mpz_tdiv_r_ui Integer Arithmetic
mpz_ui_pow_ui Integer Arithmetic
msqrt BSD Compatible Functions
msub BSD Compatible Functions
mtox BSD Compatible Functions
mult BSD Compatible Functions
pow BSD Compatible Functions
reallocate_function Custom Allocation
rpow BSD Compatible Functions
sdiv BSD Compatible Functions
xtom BSD Compatible Functions

	gmp
	gmp.guide
	gmp.guide/Copying
	gmp.guide/Introduction to MP
	gmp.guide/Installing MP
	gmp.guide/MP Basics
	gmp.guide/Reporting Bugs
	gmp.guide/Integer Functions
	gmp.guide/Initializing Integers
	gmp.guide/Assigning Integers
	gmp.guide/Simultaneous Integer Init & Assign
	gmp.guide/Converting Integers
	gmp.guide/Integer Arithmetic
	gmp.guide/Comparison Functions
	gmp.guide/Integer Logic and Bit Fiddling
	gmp.guide/I-O of Integers
	gmp.guide/Miscellaneous Integer Functions
	gmp.guide/Rational Number Functions
	gmp.guide/Initializing Rationals
	gmp.guide/Assigning Rationals
	gmp.guide/Comparing Rationals
	gmp.guide/Applying Integer Functions
	gmp.guide/Miscellaneous Rational Functions
	gmp.guide/Floating-point Functions
	gmp.guide/Initializing Floats
	gmp.guide/Assigning Floats
	gmp.guide/Simultaneous Float Init & Assign
	gmp.guide/Converting Floats
	gmp.guide/Float Arithmetic
	gmp.guide/Float Comparison
	gmp.guide/I-O of Floats
	gmp.guide/Miscellaneous Float Functions
	gmp.guide/Low-level Functions
	gmp.guide/BSD Compatible Functions
	gmp.guide/Custom Allocation
	gmp.guide/Contributors
	gmp.guide/References
	gmp.guide/Concept Index
	gmp.guide/Function Index

