
find

find ii

COLLABORATORS

TITLE :

find

ACTION NAME DATE SIGNATURE

WRITTEN BY December 7, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

find iii

Contents

1 find 1

1.1 find.guide . 1

1.2 find.guide/Introduction . 1

1.3 find.guide/Scope . 2

1.4 find.guide/Overview . 3

1.5 find.guide/find Expressions . 4

1.6 find.guide/Finding Files . 5

1.7 find.guide/Name . 5

1.8 find.guide/Base Name Patterns . 5

1.9 find.guide/Full Name Patterns . 6

1.10 find.guide/Fast Full Name Search . 6

1.11 find.guide/Shell Pattern Matching . 7

1.12 find.guide/Links . 8

1.13 find.guide/Symbolic Links . 8

1.14 find.guide/Hard Links . 9

1.15 find.guide/Time . 9

1.16 find.guide/Age Ranges . 10

1.17 find.guide/Comparing Timestamps . 10

1.18 find.guide/Size . 11

1.19 find.guide/Type . 12

1.20 find.guide/Owner . 12

1.21 find.guide/Permissions . 13

1.22 find.guide/Contents . 13

1.23 find.guide/Directories . 14

1.24 find.guide/Filesystems . 15

1.25 find.guide/Combining Primaries With Operators . 15

1.26 find.guide/Actions . 16

1.27 find.guide/Print File Name . 17

1.28 find.guide/Print File Information . 17

1.29 find.guide/Escapes . 18

find iv

1.30 find.guide/Format Directives . 19

1.31 find.guide/Name Directives . 19

1.32 find.guide/Ownership Directives . 20

1.33 find.guide/Size Directives . 20

1.34 find.guide/Location Directives . 20

1.35 find.guide/Time Directives . 21

1.36 find.guide/Time Formats . 21

1.37 find.guide/Time Components . 22

1.38 find.guide/Date Components . 22

1.39 find.guide/Combined Time Formats . 23

1.40 find.guide/Run Commands . 24

1.41 find.guide/Single File . 24

1.42 find.guide/Multiple Files . 25

1.43 find.guide/Unsafe File Name Handling . 25

1.44 find.guide/Safe File Name Handling . 26

1.45 find.guide/Limiting Command Size . 27

1.46 find.guide/Interspersing File Names . 27

1.47 find.guide/Querying . 28

1.48 find.guide/Adding Tests . 28

1.49 find.guide/Common Tasks . 29

1.50 find.guide/Viewing And Editing . 30

1.51 find.guide/Archiving . 30

1.52 find.guide/Cleaning Up . 31

1.53 find.guide/Strange File Names . 32

1.54 find.guide/Fixing Permissions . 32

1.55 find.guide/Classifying Files . 33

1.56 find.guide/Databases . 33

1.57 find.guide/Database Locations . 34

1.58 find.guide/Database Formats . 34

1.59 find.guide/New Database Format . 35

1.60 find.guide/Sample Database . 35

1.61 find.guide/Old Database Format . 36

1.62 find.guide/File Permissions . 36

1.63 find.guide/Mode Structure . 37

1.64 find.guide/Symbolic Modes . 38

1.65 find.guide/Setting Permissions . 38

1.66 find.guide/Copying Permissions . 40

1.67 find.guide/Changing Special Permissions . 40

1.68 find.guide/Conditional Executability . 41

find v

1.69 find.guide/Multiple Changes . 42

1.70 find.guide/Umask and Protection . 43

1.71 find.guide/Numeric Modes . 43

1.72 find.guide/Reference . 44

1.73 find.guide/Invoking find . 44

1.74 find.guide/Invoking locate . 45

1.75 find.guide/Invoking updatedb . 45

1.76 find.guide/Invoking xargs . 46

1.77 find.guide/Primary Index . 48

find 1 / 49

Chapter 1

find

1.1 find.guide

This file documents the GNU utilities for finding files that match
certain criteria and performing various actions on them. This is
edition 1.1, for find version 4.1.

Introduction Summary of the tasks this manual describes.
Finding Files Finding files that match certain criteria.
Actions Doing things to files you have found.
Common Tasks Solutions to common real-world problems.
Databases Maintaining file name databases.
File Permissions How to control access to files.
Reference Summary of how to invoke the programs.
Primary Index The components of find expressions.

1.2 find.guide/Introduction

Introduction

This manual shows how to find files that meet criteria you specify,
and how to perform various actions on the files that you find. The
principal programs that you use to perform these tasks are find,
locate, and xargs. Some of the examples in this manual use
capabilities specific to the GNU versions of those programs.

GNU find was originally written by Eric Decker, with enhancements by
David MacKenzie, Jay Plett, and Tim Wood. GNU xargs was originally
written by Mike Rendell, with enhancements by David MacKenzie. GNU
locate and its associated utilities were originally written by
James Woods, with enhancements by David MacKenzie. The idea for find
-print0 and xargs -0 came from Dan Bernstein. Many other people have
contributed bug fixes, small improvements, and helpful suggestions.
Thanks!

find 2 / 49

Mail suggestions and bug reports for these programs to
bug-gnu-utils@prep.ai.mit.edu. Please include the version number,
which you can get by running find --version.

Scope
Overview
find Expressions

1.3 find.guide/Scope

Scope
=====

For brevity, the word file in this manual means a regular file, a
directory, a symbolic link, or any other kind of node that has a
directory entry. A directory entry is also called a file name. A file
name may contain some, all, or none of the directories in a path that
leads to the file. These are all examples of what this manual calls
"file names":

parser.c
README
./budget/may-94.sc
fred/.cshrc
/usr/local/include/termcap.h

A directory tree is a directory and the files it contains, all of
its subdirectories and the files they contain, etc. It can also be a
single non-directory file.

These programs enable you to find the files in one or more directory
trees that:

* have names that contain certain text or match a certain pattern;

* are links to certain files;

* were last used during a certain period of time;

* are within a certain size range;

* are of a certain type (regular file, directory, symbolic link,
etc.);

* are owned by a certain user or group;

* have certain access permissions;

* contain text that matches a certain pattern;

* are within a certain depth in the directory tree;

* or some combination of the above.

find 3 / 49

Once you have found the files you’re looking for (or files that are
potentially the ones you’re looking for), you can do more to them than
simply list their names. You can get any combination of the files’
attributes, or process the files in many ways, either individually or in
groups of various sizes. Actions that you might want to perform on the
files you have found include, but are not limited to:

* view or edit

* store in an archive

* remove or rename

* change access permissions

* classify into groups

This manual describes how to perform each of those tasks, and more.

1.4 find.guide/Overview

Overview
========

The principal programs used for making lists of files that match
given criteria and running commands on them are find, locate, and
xargs. An additional command, updatedb, is used by system
administrators to create databases for locate to use.

find searches for files in a directory hierarchy and prints
information about the files it found. It is run like this:

find [FILE...] [EXPRESSION]

Here is a typical use of find. This example prints the names of all
files in the directory tree rooted in /usr/src whose name ends with .c
and that are larger than 100 Kilobytes.

find /usr/src -name ’*.c’ -size +100k -print

locate searches special file name databases for file names that
match patterns. The system administrator runs the updatedb program to
create the databases. locate is run like this:

locate [OPTION...] PATTERN...

This example prints the names of all files in the default file name
database whose name ends with Makefile or makefile. Which file names
are stored in the database depends on how the system administrator ran
updatedb.

locate ’*[Mm]akefile’

The name xargs, pronounced EX-args, means "combine arguments." xargs
builds and executes command lines by gathering together arguments it

find 4 / 49

reads on the standard input. Most often, these arguments are lists of
file names generated by find. xargs is run like this:

xargs [OPTION...] [COMMAND [INITIAL-ARGUMENTS]]

The following command searches the files listed in the file file-list
and prints all of the lines in them that contain the word typedef.

xargs grep typedef < file-list

1.5 find.guide/find Expressions

find Expressions
================

The expression that find uses to select files consists of one or
more primaries, each of which is a separate command line argument to
find. find evaluates the expression each time it processes a file.
An expression can contain any of the following types of primaries:

options
affect overall operation rather than the processing of a specific
file;

tests
return a true or false value, depending on the file’s attributes;

actions
have side effects and return a true or false value; and

operators
connect the other arguments and affect when and whether they are
evaluated.

You can omit the operator between two primaries; it defaults to
-and. See Combining Primaries With Operators, for ways to
connect primaries into more complex expressions. If the expression
contains no actions other than -prune, -print is performed on all files
for which the entire expression is true (see Print File Name).

Options take effect immediately, rather than being evaluated for each
file when their place in the expression is reached. Therefore, for
clarity, it is best to place them at the beginning of the expression.

Many of the primaries take arguments, which immediately follow them
in the next command line argument to find. Some arguments are file
names, patterns, or other strings; others are numbers. Numeric
arguments can be specified as

+N
for greater than N,

-N
for less than N,

find 5 / 49

N
for exactly N.

1.6 find.guide/Finding Files

Finding Files

By default, find prints to the standard output the names of the
files that match the given criteria. See Actions, for how to get more
information about the matching files.

Name
Links
Time
Size
Type
Owner
Permissions
Contents
Directories
Filesystems
Combining Primaries With Operators

1.7 find.guide/Name

Name
====

Here are ways to search for files whose name matches a certain
pattern. See Shell Pattern Matching, for a description of the PATTERN
arguments to these tests.

Each of these tests has a case-sensitive version and a
case-insensitive version, whose name begins with i. In a
case-insensitive comparison, the patterns fo* and F?? match the file
names Foo, FOO, foo, fOo, etc.

Base Name Patterns
Full Name Patterns
Fast Full Name Search
Shell Pattern Matching Wildcards used by these programs.

1.8 find.guide/Base Name Patterns

find 6 / 49

Base Name Patterns

- Test: -name PATTERN
- Test: -iname PATTERN

True if the base of the file name (the path with the leading
directories removed) matches shell pattern PATTERN. For -iname,
the match is case-insensitive. To ignore a whole directory tree,
use -prune (see Directories). As an example, to find Texinfo
source files in /usr/local/doc:

find /usr/local/doc -name ’*.texi’

1.9 find.guide/Full Name Patterns

Full Name Patterns

- Test: -path PATTERN
- Test: -ipath PATTERN

True if the entire file name, starting with the command line
argument under which the file was found, matches shell pattern
PATTERN. For -ipath, the match is case-insensitive. To ignore a
whole directory tree, use -prune rather than checking every file
in the tree (see Directories).

- Test: -regex EXPR
- Test: -iregex EXPR

True if the entire file name matches regular expression EXPR.
This is a match on the whole path, not a search. For example, to
match a file named ./fubar3, you can use the regular expression
.*bar. or .*b.*3, but not b.*r3. See
Syntax of Regular Expressions, for a description of the syntax of
regular expressions. For -iregex, the match is case-insensitive.

1.10 find.guide/Fast Full Name Search

Fast Full Name Search

To search for files by name without having to actually scan the
directories on the disk (which can be slow), you can use the locate
program. For each shell pattern you give it, locate searches one or
more databases of file names and displays the file names that contain
the pattern. See Shell Pattern Matching, for details about shell
patterns.

If a pattern is a plain string--it contains no
metacharacters--locate displays all file names in the database

find 7 / 49

that contain that string. If a pattern contains metacharacters, locate
only displays file names that match the pattern exactly. As a result,
patterns that contain metacharacters should usually begin with a *, and
will most often end with one as well. The exceptions are patterns that
are intended to explicitly match the beginning or end of a file name.

The command
locate PATTERN

is almost equivalent to
find DIRECTORIES -name PATTERN

where DIRECTORIES are the directories for which the file name
databases contain information. The differences are that the locate
information might be out of date, and that locate handles wildcards in
the pattern slightly differently than find (see Shell Pattern Matching).

The file name databases contain lists of files that were on the
system when the databases were last updated. The system administrator
can choose the file name of the default database, the frequency with
which the databases are updated, and the directories for which they
contain entries.

Here is how to select which file name databases locate searches.
The default is system-dependent.

--database=PATH
-d PATH

Instead of searching the default file name database, search the
file name databases in PATH, which is a colon-separated list of
database file names. You can also use the environment variable
LOCATE_PATH to set the list of database files to search. The
option overrides the environment variable if both are used.

1.11 find.guide/Shell Pattern Matching

Shell Pattern Matching

find and locate can compare file names, or parts of file names, to
shell patterns. A shell pattern is a string that may contain the
following special characters, which are known as wildcards or
metacharacters.

You must quote patterns that contain metacharacters to prevent the
shell from expanding them itself. Double and single quotes both work;
so does escaping with a backslash.

*
Matches any zero or more characters.

?
Matches any one character.

find 8 / 49

[STRING]
Matches exactly one character that is a member of the string
STRING. This is called a character class. As a shorthand, STRING
may contain ranges, which consist of two characters with a dash
between them. For example, the class [a-z0-9_] matches a
lowercase letter, a number, or an underscore. You can negate a
class by placing a ! or ^ immediately after the opening bracket.
Thus, [^A-Z@] matches any character except an uppercase letter or
an at sign.

\
Removes the special meaning of the character that follows it. This
works even in character classes.

In the find tests that do shell pattern matching (-name, -path,
etc.), wildcards in the pattern do not match a . at the beginning of a
file name. This is not the case for locate. Thus, find -name ’*macs’
does not match a file named .emacs, but locate ’*macs’ does.

Slash characters have no special significance in the shell pattern
matching that find and locate do, unlike in the shell, in which
wildcards do not match them. Therefore, a pattern foo*bar can match a
file name foo3/bar, and a pattern ./sr*sc can match a file name
./src/misc.

1.12 find.guide/Links

Links
=====

There are two ways that files can be linked together. Symbolic
links are a special type of file whose contents are a portion of
the name of another file. Hard links are multiple directory entries
for one file; the file names all have the same index node (inode)
number on the disk.

Symbolic Links
Hard Links

1.13 find.guide/Symbolic Links

Symbolic Links

- Test: -lname PATTERN
- Test: -ilname PATTERN

True if the file is a symbolic link whose contents match shell
pattern PATTERN. For -ilname, the match is case-insensitive. See
Shell Pattern Matching, for details about the PATTERN argument.

find 9 / 49

So, to list any symbolic links to sysdep.c in the current
directory and its subdirectories, you can do:

find . -lname ’*sysdep.c’

- Option: -follow
Dereference symbolic links. The following differences in behavior
occur when this option is given:

* find follows symbolic links to directories when searching
directory trees.

* -lname and -ilname always return false.

* -type reports the types of the files that symbolic links
point to.

* Implies -noleaf (see Directories).

1.14 find.guide/Hard Links

Hard Links

To find hard links, first get the inode number of the file whose
links you want to find. You can learn a file’s inode number and the
number of links to it by running ls -i or find -ls. If the file has
more than one link, you can search for the other links by passing that
inode number to -inum. Add the -xdev option if you are starting the
search at a directory that has other filesystems mounted on it, such as
/usr on many systems. Doing this saves needless searching, since
hard links to a file must be on the same filesystem. See Filesystems.

- Test: -inum N
File has inode number N.

You can also search for files that have a certain number of links,
with -links. Directories normally have at least two hard links; their
. entry is the second one. If they have subdirectories, each
of those also has a hard link called .. to its parent directory.

- Test: -links N
File has N hard links.

1.15 find.guide/Time

Time
====

Each file has three time stamps, which record the last time that

find 10 / 49

certain operations were performed on the file:

1. access (read the file’s contents)

2. change the status (modify the file or its attributes)

3. modify (change the file’s contents)

You can search for files whose time stamps are within a certain age
range, or compare them to other time stamps.

Age Ranges
Comparing Timestamps

1.16 find.guide/Age Ranges

Age Ranges

These tests are mainly useful with ranges (+N and -N).

- Test: -atime N
- Test: -ctime N
- Test: -mtime N

True if the file was last accessed (or its status changed, or it
was modified) N*24 hours ago.

- Test: -amin N
- Test: -cmin N
- Test: -mmin N

True if the file was last accessed (or its status changed, or it
was modified) N minutes ago. These tests provide finer
granularity of measurement than -atime et al. For example, to
list files in /u/bill that were last read from 2 to 6 hours ago:

find /u/bill -amin +2 -amin -6

- Option: -daystart
Measure times from the beginning of today rather than from 24
hours ago. So, to list the regular files in your home directory
that were modified yesterday, do

find ~ -daystart -type f -mtime 1

1.17 find.guide/Comparing Timestamps

Comparing Timestamps

find 11 / 49

As an alternative to comparing timestamps to the current time, you
can compare them to another file’s timestamp. That file’s timestamp
could be updated by another program when some event occurs. Or you
could set it to a particular fixed date using the touch command. For
example, to list files in /usr modified after February 1 of the current
year:

touch -t 02010000 /tmp/stamp$$
find /usr -newer /tmp/stamp$$
rm -f /tmp/stamp$$

- Test: -anewer FILE
- Test: -cnewer FILE
- Test: -newer FILE

True if the file was last accessed (or its status changed, or it
was modified) more recently than FILE was modified. These tests
are affected by -follow only if -follow comes before them on the
command line. See Symbolic Links, for more information on
-follow. As an example, to list any files modified since
/bin/sh was last modified:

find . -newer /bin/sh

- Test: -used N
True if the file was last accessed N days after its status was
last changed. Useful for finding files that are not being used,
and could perhaps be archived or removed to save disk space.

1.18 find.guide/Size

Size
====

- Test: -size N[BCKW]
True if the file uses N units of space, rounding up. The units
are 512-byte blocks by default, but they can be changed by adding a
one-character suffix to N:

b
512-byte blocks

c
bytes

k
kilobytes (1024 bytes)

w
2-byte words

The size does not count indirect blocks, but it does count blocks
in sparse files that are not actually allocated.

- Test: -empty

find 12 / 49

True if the file is empty and is either a regular file or a
directory. This might make it a good candidate for deletion.
This test is useful with -depth (see Directories) and -exec rm -rf
’{}’ ’;’ (see Single File).

1.19 find.guide/Type

Type
====

- Test: -type C
True if the file is of type C:

b
block (buffered) special

c
character (unbuffered) special

d
directory

p
named pipe (FIFO)

f
regular file

l
symbolic link

s
socket

- Test: -xtype C
The same as -type unless the file is a symbolic link. For
symbolic links: if -follow has not been given, true if the file is
a link to a file of type C; if -follow has been given, true if C
is l. In other words, for symbolic links, -xtype checks the type
of the file that -type does not check. See Symbolic Links, for
more information on -follow.

1.20 find.guide/Owner

Owner
=====

- Test: -user UNAME
- Test: -group GNAME

True if the file is owned by user UNAME (belongs to group GNAME).

find 13 / 49

A numeric ID is allowed.

- Test: -uid N
- Test: -gid N

True if the file’s numeric user ID (group ID) is N. These tests
support ranges (+N and -N), unlike -user and -group.

- Test: -nouser
- Test: -nogroup

True if no user corresponds to the file’s numeric user ID (no group
corresponds to the numeric group ID). These cases usually mean
that the files belonged to users who have since been removed from
the system. You probably should change the ownership of such
files to an existing user or group, using the chown or chgrp
program.

1.21 find.guide/Permissions

Permissions
===========

See File Permissions, for information on how file permissions are
structured and how to specify them.

- Test: -perm MODE
True if the file’s permissions are exactly MODE (which can be
numeric or symbolic). Symbolic modes use mode 0 as a point of
departure. If MODE starts with -, true if all of the permissions
set in MODE are set for the file; permissions not set in MODE are
ignored. If MODE starts with +, true if any of the permissions
set in MODE are set for the file; permissions not set in MODE are
ignored.

1.22 find.guide/Contents

Contents
========

To search for files based on their contents, you can use the grep
program. For example, to find out which C source files in the current
directory contain the string thing, you can do:

grep -l thing *.[ch]

If you also want to search for the string in files in subdirectories,
you can combine grep with find and xargs, like this:

find . -name ’*.[ch]’ | xargs grep -l thing

The -l option causes grep to print only the names of files that

find 14 / 49

contain the string, rather than the lines that contain it. The string
argument (thing) is actually a regular expression, so it can contain
metacharacters. This method can be refined a little by using the -r
option to make xargs not run grep if find produces no output, and using
the find action -print0 and the xargs option -0 to avoid
misinterpreting files whose names contain spaces:

find . -name ’*.[ch]’ -print0 | xargs -r -0 grep -l thing

For a fuller treatment of finding files whose contents match a
pattern, see the manual page for grep.

1.23 find.guide/Directories

Directories
===========

Here is how to control which directories find searches, and how it
searches them. These two options allow you to process a horizontal
slice of a directory tree.

- Option: -maxdepth LEVELS
Descend at most LEVELS (a non-negative integer) levels of
directories below the command line arguments. -maxdepth 0 means
only apply the tests and actions to the command line arguments.

- Option: -mindepth LEVELS
Do not apply any tests or actions at levels less than LEVELS (a
non-negative integer). -mindepth 1 means process all files except
the command line arguments.

- Option: -depth
Process each directory’s contents before the directory itself.
Doing this is a good idea when producing lists of files to archive
with cpio or tar. If a directory does not have write permission
for its owner, its contents can still be restored from the archive
since the directory’s permissions are restored after its contents.

- Action: -prune
If -depth is not given, true; do not descend the current
directory. If -depth is given, false; no effect. -prune only
affects tests and actions that come after it in the expression, not
those that come before.

For example, to skip the directory src/emacs and all files and
directories under it, and print the names of the other files found:

find . -path ’./src/emacs’ -prune -o -print

- Option: -noleaf
Do not optimize by assuming that directories contain 2 fewer
subdirectories than their hard link count. This option is needed
when searching filesystems that do not follow the Unix
directory-link convention, such as CD-ROM or MS-DOS filesystems or

find 15 / 49

AFS volume mount points. Each directory on a normal Unix
filesystem has at least 2 hard links: its name and its . entry.
Additionally, its subdirectories (if any) each have a .. entry
linked to that directory. When find is examining a directory,
after it has statted 2 fewer subdirectories than the directory’s
link count, it knows that the rest of the entries in the directory
are non-directories (leaf files in the directory tree). If only
the files’ names need to be examined, there is no need to stat
them; this gives a significant increase in search speed.

1.24 find.guide/Filesystems

Filesystems
===========

A filesystem is a section of a disk, either on the local host or
mounted from a remote host over a network. Searching network
filesystems can be slow, so it is common to make find avoid them.

There are two ways to avoid searching certain filesystems. One way
is to tell find to only search one filesystem:

- Option: -xdev
- Option: -mount

Don’t descend directories on other filesystems. These options are
synonyms.

The other way is to check the type of filesystem each file is on, and
not descend directories that are on undesirable filesystem types:

- Test: -fstype TYPE
True if the file is on a filesystem of type TYPE. The valid
filesystem types vary among different versions of Unix; an
incomplete list of filesystem types that are accepted on some
version of Unix or another is:

ufs 4.2 4.3 nfs tmp mfs S51K S52K
You can use -printf with the %F directive to see the types of your
filesystems. See Print File Information. -fstype is usually used
with -prune to avoid searching remote filesystems (see
Directories).

1.25 find.guide/Combining Primaries With Operators

Combining Primaries With Operators
==================================

Operators build a complex expression from tests and actions. The
operators are, in order of decreasing precedence:

(EXPR)

find 16 / 49

Force precedence. True if EXPR is true.

! EXPR
-not EXPR

True if EXPR is false.

EXPR1 EXPR2
EXPR1 -a EXPR2
EXPR1 -and EXPR2

And; EXPR2 is not evaluated if EXPR1 is false.

EXPR1 -o EXPR2
EXPR1 -or EXPR2

Or; EXPR2 is not evaluated if EXPR1 is true.

EXPR1 , EXPR2
List; both EXPR1 and EXPR2 are always evaluated. True if EXPR2 is
true. The value of EXPR1 is discarded. This operator lets you do
multiple independent operations on one traversal, without
depending on whether other operations succeeded.

find searches the directory tree rooted at each file name by
evaluating the expression from left to right, according to the rules of
precedence, until the outcome is known (the left hand side is false for
-and, true for -or), at which point find moves on to the next file
name.

There are two other tests that can be useful in complex expressions:

- Test: -true
Always true.

- Test: -false
Always false.

1.26 find.guide/Actions

Actions

There are several ways you can print information about the files that
match the criteria you gave in the find expression. You can print the
information either to the standard output or to a file that you name.
You can also execute commands that have the file names as arguments.
You can use those commands as further filters to select files.

Print File Name
Print File Information
Run Commands
Adding Tests

find 17 / 49

1.27 find.guide/Print File Name

Print File Name
===============

- Action: -print
True; print the full file name on the standard output, followed by
a newline.

- Action: -fprint FILE
True; print the full file name into file FILE, followed by a
newline. If FILE does not exist when find is run, it is created;
if it does exist, it is truncated to 0 bytes. The file names
/dev/stdout and /dev/stderr are handled specially; they refer
to the standard output and standard error output, respectively.

1.28 find.guide/Print File Information

Print File Information
======================

- Action: -ls
True; list the current file in ls -dils format on the standard
output. The output looks like this:

204744 17 -rw-r--r-- 1 djm staff 17337 Nov 2 1992 ./ ←↩
lwall-quotes

The fields are:

1. The inode number of the file. See Hard Links, for how to
find files based on their inode number.

2. the number of blocks in the file. The block counts are of 1K
blocks, unless the environment variable POSIXLY_CORRECT is
set, in which case 512-byte blocks are used. See Size, for
how to find files based on their size.

3. The file’s type and permissions. The type is shown as a dash
for a regular file; for other file types, a letter like for
-type is used (see Type). The permissions are read,
write, and execute for the file’s owner, its group, and other
users, respectively; a dash means the permission is not
granted. See File Permissions, for more details about file
permissions. See Permissions, for how to find files based on
their permissions.

4. The number of hard links to the file.

5. The user who owns the file.

6. The file’s group.

find 18 / 49

7. The file’s size in bytes.

8. The date the file was last modified.

9. The file’s name. -ls quotes non-printable characters in the
file names using C-like backslash escapes.

- Action: -fls FILE
True; like -ls but write to FILE like -fprint (see
Print File Name).

- Action: -printf FORMAT
True; print FORMAT on the standard output, interpreting \ escapes
and % directives. Field widths and precisions can be specified as
with the printf C function. Unlike -print, -printf does not add a
newline at the end of the string.

- Action: -fprintf FILE FORMAT
True; like -printf but write to FILE like -fprint (see
Print File Name).

Escapes
Format Directives
Time Formats

1.29 find.guide/Escapes

Escapes

The escapes that -printf and -fprintf recognize are:

\a
Alarm bell.

\b
Backspace.

\c
Stop printing from this format immediately and flush the output.

\f
Form feed.

\n
Newline.

\r
Carriage return.

\t
Horizontal tab.

find 19 / 49

\v
Vertical tab.

\
A literal backslash (\).

A \ character followed by any other character is treated as an
ordinary character, so they both are printed, and a warning message is
printed to the standard error output (because it was probably a typo).

1.30 find.guide/Format Directives

Format Directives

-printf and -fprintf support the following format directives to
print information about the file being processed. Unlike the C printf
function, they do not support field width specifiers.

%% is a literal percent sign. A % character followed by any other
character is discarded (but the other character is printed), and a
warning message is printed to the standard error output (because it was
probably a typo).

Name Directives
Ownership Directives
Size Directives
Location Directives
Time Directives

1.31 find.guide/Name Directives

Name Directives
...............

%p
File’s name.

%f
File’s name with any leading directories removed (only the last
element).

%h
Leading directories of file’s name (all but the last element and
the slash before it).

%P
File’s name with the name of the command line argument under which
it was found removed from the beginning.

find 20 / 49

%H
Command line argument under which file was found.

1.32 find.guide/Ownership Directives

Ownership Directives
....................

%g
File’s group name, or numeric group ID if the group has no name.

%G
File’s numeric group ID.

%u
File’s user name, or numeric user ID if the user has no name.

%U
File’s numeric user ID.

%m
File’s permissions (in octal).

1.33 find.guide/Size Directives

Size Directives
...............

%k
File’s size in 1K blocks (rounded up).

%b
File’s size in 512-byte blocks (rounded up).

%s
File’s size in bytes.

1.34 find.guide/Location Directives

Location Directives
...................

%d
File’s depth in the directory tree; files named on the command line
have a depth of 0.

find 21 / 49

%F
Type of the filesystem the file is on; this value can be used for
-fstype (see Directories).

%l
Object of symbolic link (empty string if file is not a symbolic
link).

%i
File’s inode number (in decimal).

%n
Number of hard links to file.

1.35 find.guide/Time Directives

Time Directives
...............

Some of these directives use the C ctime function. Its output
depends on the current locale, but it typically looks like

Wed Nov 2 00:42:36 1994

%a
File’s last access time in the format returned by the C ctime
function.

%AK
File’s last access time in the format specified by K (see
Time Formats).

%c
File’s last status change time in the format returned by the C
ctime function.

%CK
File’s last status change time in the format specified by K (see
Time Formats).

%t
File’s last modification time in the format returned by the C ctime
function.

%TK
File’s last modification time in the format specified by K (see
Time Formats).

1.36 find.guide/Time Formats

find 22 / 49

Time Formats

Below are the formats for the directives %A, %C, and %T, which print
the file’s timestamps. Some of these formats might not be available on
all systems, due to differences in the C strftime function between
systems.

Time Components
Date Components
Combined Time Formats

1.37 find.guide/Time Components

Time Components
...............

The following format directives print single components of the time.

H
hour (00..23)

I
hour (01..12)

k
hour (0..23)

l
hour (1..12)

p
locale’s AM or PM

Z
time zone (e.g., EDT), or nothing if no time zone is determinable

M
minute (00..59)

S
second (00..61)

@
seconds since Jan. 1, 1970, 00:00 GMT.

1.38 find.guide/Date Components

find 23 / 49

Date Components
...............

The following format directives print single components of the date.

a
locale’s abbreviated weekday name (Sun..Sat)

A
locale’s full weekday name, variable length (Sunday..Saturday)

b
h

locale’s abbreviated month name (Jan..Dec)

B
locale’s full month name, variable length (January..December)

m
month (01..12)

d
day of month (01..31)

w
day of week (0..6)

j
day of year (001..366)

U
week number of year with Sunday as first day of week (00..53)

W
week number of year with Monday as first day of week (00..53)

Y
year (1970...)

y
last two digits of year (00..99)

1.39 find.guide/Combined Time Formats

Combined Time Formats
.....................

The following format directives print combinations of time and date
components.

r
time, 12-hour (hh:mm:ss [AP]M)

find 24 / 49

T
time, 24-hour (hh:mm:ss)

X
locale’s time representation (H:M:S)

c
locale’s date and time (Sat Nov 04 12:02:33 EST 1989)

D
date (mm/dd/yy)

x
locale’s date representation (mm/dd/yy)

1.40 find.guide/Run Commands

Run Commands
============

You can use the list of file names created by find or locate as
arguments to other commands. In this way you can perform arbitrary
actions on the files.

Single File
Multiple Files
Querying

1.41 find.guide/Single File

Single File

Here is how to run a command on one file at a time.

- Action: -exec COMMAND ;
Execute COMMAND; true if 0 status is returned. find takes all
arguments after -exec to be part of the command until an argument
consisting of ; is reached. It replaces the string {} by the
current file name being processed everywhere it occurs in the
command. Both of these constructions need to be escaped (with a \
) or quoted to protect them from expansion by the shell. The
command is executed in the directory in which find was run.

For example, to compare each C header file in the current
directory with the file /tmp/master:

find . -name ’*.h’ -exec diff -u ’{}’ /tmp/master ’;’

find 25 / 49

1.42 find.guide/Multiple Files

Multiple Files

Sometimes you need to process files alone. But when you don’t, it
is faster to run a command on as many files as possible at a time,
rather than once per file. Doing this saves on the time it takes to
start up the command each time.

To run a command on more than one file at once, use the xargs
command, which is invoked like this:

xargs [OPTION...] [COMMAND [INITIAL-ARGUMENTS]]

xargs reads arguments from the standard input, delimited by blanks
(which can be protected with double or single quotes or a backslash) or
newlines. It executes the COMMAND (default is /bin/echo) one or more
times with any INITIAL-ARGUMENTS followed by arguments read from
standard input. Blank lines on the standard input are ignored.

Instead of blank-delimited names, it is safer to use find -print0 or
find -fprint0 and process the output by giving the -0 or --null
option to GNU xargs, GNU tar, GNU cpio, or perl.

You can use shell command substitution (backquotes) to process a
list of arguments, like this:

grep -l sprintf ‘find $HOME -name ’*.c’ -print‘

However, that method produces an error if the length of the .c file
names exceeds the operating system’s command-line length limit. xargs
avoids that problem by running the command as many times as necessary
without exceeding the limit:

find $HOME -name ’*.c’ -print | grep -l sprintf

However, if the command needs to have its standard input be a
terminal (less, for example), you have to use the shell command
substitution method.

Unsafe File Name Handling
Safe File Name Handling
Limiting Command Size
Interspersing File Names

1.43 find.guide/Unsafe File Name Handling

Unsafe File Name Handling
.........................

Because file names can contain quotes, backslashes, blank characters,

find 26 / 49

and even newlines, it is not safe to process them using xargs in its
default mode of operation. But since most files’ names do not contain
blanks, this problem occurs only infrequently. If you are only
searching through files that you know have safe names, then you need not
be concerned about it.

In many applications, if xargs botches processing a file because its
name contains special characters, some data might be lost. The
importance of this problem depends on the importance of the data and
whether anyone notices the loss soon enough to correct it. However,
here is an extreme example of the problems that using blank-delimited
names can cause. If the following command is run daily from cron, then
any user can remove any file on the system:

find / -name ’#*’ -atime +7 -print | xargs rm

For example, you could do something like this:

eg$ echo > ’#
vmunix’

and then cron would delete /vmunix, if it ran xargs with / as its
current directory.

To delete other files, for example /u/joeuser/.plan, you could do
this:

eg$ mkdir ’#
’
eg$ cd ’#
’
eg$ mkdir u u/joeuser u/joeuser/.plan’
’
eg$ echo > u/joeuser/.plan’
/#foo’
eg$ cd ..
eg$ find . -name ’#*’ -print | xargs echo
./# ./# /u/joeuser/.plan /#foo

1.44 find.guide/Safe File Name Handling

Safe File Name Handling
.......................

Here is how to make find output file names so that they can be used
by other programs without being mangled or misinterpreted. You can
process file names generated this way by giving the -0 or --null option
to GNU xargs, GNU tar, GNU cpio, or perl.

- Action: -print0
True; print the full file name on the standard output, followed by
a null character.

- Action: -fprint0 FILE

find 27 / 49

True; like -print0 but write to FILE like -fprint (see
Print File Name).

1.45 find.guide/Limiting Command Size

Limiting Command Size
.....................

xargs gives you control over how many arguments it passes to the
command each time it executes it. By default, it uses up to ARG_MAX -
2k, or 20k, whichever is smaller, characters per command. It uses as
many lines and arguments as fit within that limit. The following
options modify those values.

--no-run-if-empty
-r

If the standard input does not contain any nonblanks, do not run
the command. By default, the command is run once even if there is
no input.

--max-lines[=MAX-LINES]
-l[MAX-LINES]

Use at most MAX-LINES nonblank input lines per command line;
MAX-LINES defaults to 1 if omitted. Trailing blanks cause an
input line to be logically continued on the next input line, for
the purpose of counting the lines. Implies -x.

--max-args=MAX-ARGS
-n MAX-ARGS

Use at most MAX-ARGS arguments per command line. Fewer than
MAX-ARGS arguments will be used if the size (see the -s option) is
exceeded, unless the -x option is given, in which case xargs will
exit.

--max-chars=MAX-CHARS
-s MAX-CHARS

Use at most MAX-CHARS characters per command line, including the
command and initial arguments and the terminating nulls at the
ends of the argument strings.

--max-procs=MAX-PROCS
-P MAX-PROCS

Run up to MAX-PROCS processes at a time; the default is 1. If
MAX-PROCS is 0, xargs will run as many processes as possible at a
time. Use the -n, -s, or -l option with -P; otherwise chances are
that the command will be run only once.

1.46 find.guide/Interspersing File Names

find 28 / 49

Interspersing File Names
........................

xargs can insert the name of the file it is processing between
arguments you give for the command. Unless you also give options to
limit the command size (see Limiting Command Size), this mode of
operation is equivalent to find -exec (see Single File).

--replace[=REPLACE-STR]
-i[REPLACE-STR]

Replace occurences of REPLACE-STR in the initial arguments with
names read from standard input. Also, unquoted blanks do not
terminate arguments. If REPLACE-STR is omitted, it defaults to {}
(like for find -exec). Implies -x and -l 1. As an example, to
sort each file the bills directory, leaving the output in that
file name with .sorted appended, you could do:

find bills -type f | xargs -iXX sort -o XX.sorted XX

The equivalent command using find -exec is:

find bills -type f -exec sort -o ’{}.sorted’ ’{}’ ’;’

1.47 find.guide/Querying

Querying

To ask the user whether to execute a command on a single file, you
can use the find primary -ok instead of -exec:

- Action: -ok COMMAND ;
Like -exec (see Single File), but ask the user first (on the
standard input); if the response does not start with y or Y, do
not run the command, and return false.

When processing multiple files with a single command, to query the
user you give xargs the following option. When using this option, you
might find it useful to control the number of files processed per
invocation of the command (see Limiting Command Size).

--interactive
-p

Prompt the user about whether to run each command line and read a
line from the terminal. Only run the command line if the response
starts with y or Y. Implies -t.

1.48 find.guide/Adding Tests

find 29 / 49

Adding Tests
============

You can test for file attributes that none of the find builtin tests
check. To do this, use xargs to run a program that filters a list of
files printed by find. If possible, use find builtin tests to pare
down the list, so the program run by xargs has less work to do. The
tests builtin to find will likely run faster than tests that other
programs perform.

For example, here is a way to print the names of all of the
unstripped binaries in the /usr/local directory tree. Builtin tests
avoid running file on files that are not regular files or are not
executable.

find /usr/local -type f -perm +a=x | xargs file |
grep ’not stripped’ | cut -d: -f1

The cut program removes everything after the file name from the output
of file.

If you want to place a special test somewhere in the middle of a
find expression, you can use -exec to run a program that
performs the test. Because -exec evaluates to the exit status of the
executed program, you can write a program (which can be a shell script)
that tests for a special attribute and make it exit with a true (zero)
or false (non-zero) status. It is a good idea to place such a special
test after the builtin tests, because it starts a new process which
could be avoided if a builtin test evaluates to false. Use this method
only when xargs is not flexible enough, because starting one or more
new processes to test each file is slower than using xargs to start one
process that tests many files.

Here is a shell script called unstripped that checks whether its
argument is an unstripped binary file:

#!/bin/sh
file $1 | grep ’not stripped’ > /dev/null

This script relies on the fact that the shell exits with the status
of the last program it executed, in this case grep. grep exits with a
true status if it found any matches, false if not. Here is an example
of using the script (assuming it is in your search path). It lists the
stripped executables in the file sbins and the unstripped ones in ubins.

find /usr/local -type f -perm +a=x \
\(-exec unstripped ’{}’ \; -fprint ubins -o -fprint sbins \)

1.49 find.guide/Common Tasks

Common Tasks

find 30 / 49

The sections that follow contain some extended examples that both
give a good idea of the power of these programs, and show you how to
solve common real-world problems.

Viewing And Editing
Archiving
Cleaning Up
Strange File Names
Fixing Permissions
Classifying Files

1.50 find.guide/Viewing And Editing

Viewing And Editing
===================

To view a list of files that meet certain criteria, simply run your
file viewing program with the file names as arguments. Shells
substitute a command enclosed in backquotes with its output, so the
whole command looks like this:

less ‘find /usr/include -name ’*.h’ | xargs grep -l mode_t‘

You can edit those files by giving an editor name instead of a file
viewing program.

1.51 find.guide/Archiving

Archiving
=========

You can pass a list of files produced by find to a file archiving
program. GNU tar and cpio can both read lists of file names from the
standard input--either delimited by nulls (the safe way) or by blanks
(the lazy, risky default way). To use null-delimited names, give them
the --null option. You can store a file archive in a file, write it on
a tape, or send it over a network to extract on another machine.

One common use of find to archive files is to send a list of the
files in a directory tree to cpio. Use -depth so if a directory does
not have write permission for its owner, its contents can still be
restored from the archive since the directory’s permissions are
restored after its contents. Here is an example of doing this using
cpio; you could use a more complex find expression to archive only
certain files.

find . -depth -print0 |
cpio --create --null --format=crc --file=/dev/nrst0

find 31 / 49

You could restore that archive using this command:

cpio --extract --null --make-dir --unconditional \
--preserve --file=/dev/nrst0

Here are the commands to do the same things using tar:

find . -depth -print0 |
tar --create --null --files-from=- --file=/dev/nrst0

tar --extract --null --preserve-perm --same-owner \
--file=/dev/nrst0

Here is an example of copying a directory from one machine to
another:

find . -depth -print0 | cpio -0o -Hnewc |
rsh OTHER-MACHINE "cd ‘pwd‘ && cpio -i0dum"

1.52 find.guide/Cleaning Up

Cleaning Up
===========

This section gives examples of removing unwanted files in various
situations. Here is a command to remove the CVS backup files created
when an update requires a merge:

find . -name ’.#*’ -print0 | xargs -0r rm -f

You can run this command to clean out your clutter in /tmp. You
might place it in the file your shell runs when you log out
(.bash_logout, .logout, or .zlogout, depending on which shell you
use).

find /tmp -user $LOGNAME -type f -print0 | xargs -0 -r rm -f

To remove old Emacs backup and auto-save files, you can use a command
like the following. It is especially important in this case to use
null-terminated file names because Emacs packages like the VM mailer
often create temporary file names with spaces in them, like #reply to
David J. MacKenzie<1>#.

find ~ \(-name ’*~’ -o -name ’#*#’ \) -print0 |
xargs --no-run-if-empty --null rm -vf

Removing old files from /tmp is commonly done from cron:

find /tmp /var/tmp -not -type d -mtime +3 -print0 |
xargs --null --no-run-if-empty rm -f

find /tmp /var/tmp -depth -mindepth 1 -type d -empty -print0 |
xargs --null --no-run-if-empty rmdir

find 32 / 49

The second find command above uses -depth so it cleans out empty
directories depth-first, hoping that the parents become empty and can
be removed too. It uses -mindepth to avoid removing /tmp itself if it
becomes totally empty.

1.53 find.guide/Strange File Names

Strange File Names
==================

find can help you remove or rename a file with strange characters in
its name. People are sometimes stymied by files whose names contain
characters such as spaces, tabs, control characters, or characters with
the high bit set. The simplest way to remove such files is:

rm -i SOME*PATTERN*THAT*MATCHES*THE*PROBLEM*FILE

rm asks you whether to remove each file matching the given pattern.
If you are using an old shell, this approach might not work if the file
name contains a character with the high bit set; the shell may strip it
off. A more reliable way is:

find . -maxdepth 1 TESTS -ok rm ’{}’ \;

where TESTS uniquely identify the file. The -maxdepth 1 option
prevents find from wasting time searching for the file in any
subdirectories; if there are no subdirectories, you may omit it. A
good way to uniquely identify the problem file is to figure out its
inode number; use

ls -i

Suppose you have a file whose name contains control characters, and
you have found that its inode number is 12345. This command prompts
you for whether to remove it:

find . -maxdepth 1 -inum 12345 -ok rm -f ’{}’ \;

If you don’t want to be asked, perhaps because the file name may
contain a strange character sequence that will mess up your screen when
printed, then use -exec instead of -ok.

If you want to rename the file instead, you can use mv instead of rm:

find . -maxdepth 1 -inum 12345 -ok mv ’{}’ NEW-FILE-NAME \;

1.54 find.guide/Fixing Permissions

Fixing Permissions
==================

find 33 / 49

Suppose you want to make sure that everyone can write to the
directories in a certain directory tree. Here is a way to find
directories lacking either user or group write permission (or both),
and fix their permissions:

find . -type d -not -perm -ug=w | xargs chmod ug+w

You could also reverse the operations, if you want to make sure that
directories do not have world write permission.

1.55 find.guide/Classifying Files

Classifying Files
=================

If you want to classify a set of files into several groups based on
different criteria, you can use the comma operator to perform multiple
independent tests on the files. Here is an example:

find / -type d \(-perm -o=w -fprint allwrite , \
-perm -o=x -fprint allexec \)

echo "Directories that can be written to by everyone:"
cat allwrite
echo ""
echo "Directories with search permissions for everyone:"
cat allexec

find has only to make one scan through the directory tree (which is
one of the most time consuming parts of its work).

1.56 find.guide/Databases

File Name Databases

The file name databases used by locate contain lists of files that
were in particular directory trees when the databases were last
updated. The file name of the default database is determined when
locate and updatedb are configured and installed. The frequency
with which the databases are updated and the directories for which they
contain entries depend on how often updatedb is run, and with which
arguments.

Database Locations
Database Formats

find 34 / 49

1.57 find.guide/Database Locations

Database Locations
==================

There can be multiple file name databases. Users can select which
databases locate searches using an environment variable or a command
line option. The system administrator can choose the file name of the
default database, the frequency with which the databases are updated,
and the directories for which they contain entries. File name
databases are updated by running the updatedb program, typically
nightly.

In networked environments, it often makes sense to build a database
at the root of each filesystem, containing the entries for that
filesystem. updatedb is then run for each filesystem on the fileserver
where that filesystem is on a local disk, to prevent thrashing the
network. Here are the options to updatedb to select which directories
each database contains entries for:

--localpaths=’PATH...’
Non-network directories to put in the database. Default is /.

--netpaths=’PATH...’
Network (NFS, AFS, RFS, etc.) directories to put in the database.
Default is none.

--prunepaths=’PATH...’
Directories to not put in the database, which would otherwise be.
Default is /tmp /usr/tmp /var/tmp /afs.

--output=DBFILE
The database file to build. Default is system-dependent, but
typically /usr/local/var/locatedb.

--netuser=USER
The user to search network directories as, using su. Default is
daemon.

1.58 find.guide/Database Formats

Database Formats
================

The file name databases contain lists of files that were in
particular directory trees when the databases were last updated. The
file name database format changed starting with GNU locate version 4.0
to allow machines with diffent byte orderings to share the databases.
The new GNU locate can read both the old and new database formats.
However, old versions of locate and find produce incorrect results if
given a new-format database.

find 35 / 49

New Database Format
Sample Database
Old Database Format

1.59 find.guide/New Database Format

New Database Format

updatedb runs a program called frcode to front-compress the list of
file names, which reduces the database size by a factor of 4 to 5.
Front-compression (also known as incremental encoding) works as follows.

The database entries are a sorted list (case-insensitively, for
users’ convenience). Since the list is sorted, each entry is likely to
share a prefix (initial string) with the previous entry. Each database
entry begins with an offset-differential count byte, which is the
additional number of characters of prefix of the preceding entry to use
beyond the number that the preceding entry is using of its predecessor.
(The counts can be negative.) Following the count is a
null-terminated ASCII remainder--the part of the name that follows the
shared prefix.

If the offset-differential count is larger than can be stored in a
byte (+/-127), the byte has the value 0x80 and the count follows in a
2-byte word, with the high byte first (network byte order).

Every database begins with a dummy entry for a file called LOCATE02,
which locate checks for to ensure that the database file has the
correct format; it ignores the entry in doing the search.

Databases can not be concatenated together, even if the first (dummy)
entry is trimmed from all but the first database. This is because the
offset-differential count in the first entry of the second and following
databases will be wrong.

1.60 find.guide/Sample Database

Sample Database

Sample input to frcode:

/usr/src
/usr/src/cmd/aardvark.c
/usr/src/cmd/armadillo.c
/usr/tmp/zoo

Length of the longest prefix of the preceding entry to share:

find 36 / 49

0 /usr/src
8 /cmd/aardvark.c
14 rmadillo.c
5 tmp/zoo

Output from frcode, with trailing nulls changed to newlines and
count bytes made printable:

0 LOCATE02
0 /usr/src
8 /cmd/aardvark.c
6 rmadillo.c
-9 tmp/zoo

(6 = 14 - 8, and -9 = 5 - 14)

1.61 find.guide/Old Database Format

Old Database Format

The old database format is used by Unix locate and find programs and
earlier releases of the GNU ones. updatedb produces this format if
given the --old-format option.

updatedb runs programs called bigram and code to produce old-format
databases. The old format differs from the new one in the following
ways. Instead of each entry starting with an offset-differential count
byte and ending with a null, byte values from 0 through 28 indicate
offset-differential counts from -14 through 14. The byte value
indicating that a long offset-differential count follows is 0x1e (30),
not 0x80. The long counts are stored in host byte order, which is not
necessarily network byte order, and host integer word size, which is
usually 4 bytes. They also represent a count 14 less than their value.
The database lines have no termination byte; the start of the next
line is indicated by its first byte having a value <= 30.

In addition, instead of starting with a dummy entry, the old database
format starts with a 256 byte table containing the 128 most common
bigrams in the file list. A bigram is a pair of adjacent bytes. Bytes
in the database that have the high bit set are indexes (with the high
bit cleared) into the bigram table. The bigram and offset-differential
count coding makes these databases 20-25% smaller than the new format,
but makes them not 8-bit clean. Any byte in a file name that is in the
ranges used for the special codes is replaced in the database by a
question mark, which not coincidentally is the shell wildcard to match a
single character.

1.62 find.guide/File Permissions

find 37 / 49

File Permissions

Each file has a set of permissions that control the kinds of access
that users have to that file. The permissions for a file are also
called its access mode. They can be represented either in symbolic
form or as an octal number.

Mode Structure Structure of file permissions.
Symbolic Modes Mnemonic permissions representation.
Numeric Modes Permissions as octal numbers.

1.63 find.guide/Mode Structure

Structure of File Permissions
=============================

There are three kinds of permissions that a user can have for a file:

1. permission to read the file. For directories, this means
permission to list the contents of the directory.

2. permission to write to (change) the file. For directories, this
means permission to create and remove files in the directory.

3. permission to execute the file (run it as a program). For
directories, this means permission to access files in the
directory.

There are three categories of users who may have different
permissions to perform any of the above operations on a file:

1. the file’s owner;

2. other users who are in the file’s group;

3. everyone else.

Files are given an owner and group when they are created. Usually
the owner is the current user and the group is the group of the
directory the file is in, but this varies with the operating system, the
filesystem the file is created on, and the way the file is created. You
can change the owner and group of a file by using the chown and chgrp
commands.

In addition to the three sets of three permissions listed above, a
file’s permissions have three special components, which affect only
executable files (programs) and, on some systems, directories:

1. set the process’s effective user ID to that of the file upon
execution (called the setuid bit). No effect on directories.

find 38 / 49

2. set the process’s effective group ID to that of the file upon
execution (called the setgid bit). For directories on some
systems, put files created in the directory into the same group as
the directory, no matter what group the user who creates them is
in.

3. save the program’s text image on the swap device so it will load
more quickly when run (called the sticky bit). For directories on
some systems, prevent users from removing files that they do not
own in the directory; this is called making the directory
append-only.

1.64 find.guide/Symbolic Modes

Symbolic Modes
==============

Symbolic modes represent changes to files’ permissions as operations
on single-character symbols. They allow you to modify either all or
selected parts of files’ permissions, optionally based on their
previous values, and perhaps on the current umask as well (see
Umask and Protection).

The format of symbolic modes is:

[ugoa...][[+-=][rwxXstugo...]...][,...]

The following sections describe the operators and other details of
symbolic modes.

Setting Permissions Basic operations on permissions.
Copying Permissions Copying existing permissions.
Changing Special Permissions Special permissions.
Conditional Executability Conditionally affecting executability.
Multiple Changes Making multiple changes.
Umask and Protection The effect of the umask.

1.65 find.guide/Setting Permissions

Setting Permissions

The basic symbolic operations on a file’s permissions are adding,
removing, and setting the permission that certain users have to read,
write, and execute the file. These operations have the following
format:

USERS OPERATION PERMISSIONS

find 39 / 49

The spaces between the three parts above are shown for readability only;
symbolic modes can not contain spaces.

The USERS part tells which users’ access to the file is changed. It
consists of one or more of the following letters (or it can be empty;
see Umask and Protection, for a description of what happens then). When
more than one of these letters is given, the order that they are in does
not matter.

u
the user who owns the file;

g
other users who are in the file’s group;

o
all other users;

a
all users; the same as ugo.

The OPERATION part tells how to change the affected users’ access to
the file, and is one of the following symbols:

+
to add the PERMISSIONS to whatever permissions the USERS already
have for the file;

-
to remove the PERMISSIONS from whatever permissions the USERS
already have for the file;

=
to make the PERMISSIONS the only permissions that the USERS have
for the file.

The PERMISSIONS part tells what kind of access to the file should be
changed; it is zero or more of the following letters. As with the
USERS part, the order does not matter when more than one letter is
given. Omitting the PERMISSIONS part is useful only with the =
operation, where it gives the specified USERS no access at all to the
file.

r
the permission the USERS have to read the file;

w
the permission the USERS have to write to the file;

x
the permission the USERS have to execute the file.

For example, to give everyone permission to read and write a file,
but not to execute it, use:

a=rw

find 40 / 49

To remove write permission for from all users other than the file’s
owner, use:

go-w

The above command does not affect the access that the owner of the file
has to it, nor does it affect whether other users can read or execute
the file.

To give everyone except a file’s owner no permission to do anything
with that file, use the mode below. Other users could still remove the
file, if they have write permission on the directory it is in.

go=

Another way to specify the same thing is:

og-rxw

1.66 find.guide/Copying Permissions

Copying Existing Permissions

You can base part of a file’s permissions on part of its existing
permissions. To do this, instead of using r, w, or x after the
operator, you use the letter u, g, or o. For example, the mode

o+g

adds the permissions for users who are in a file’s group to the
permissions that other users have for the file. Thus, if the file
started out as mode 664 (rw-rw-r--), the above mode would change it to
mode 666 (rw-rw-rw-). If the file had started out as mode 741
(rwxr----x), the above mode would change it to mode 745
(rwxr--r-x). The - and = operations work analogously.

1.67 find.guide/Changing Special Permissions

Changing Special Permissions

In addition to changing a file’s read, write, and execute
permissions, you can change its special permissions. See
Mode Structure, for a summary of these permissions.

To change a file’s permission to set the user ID on execution, use u
in the USERS part of the symbolic mode and s in the PERMISSIONS part.

To change a file’s permission to set the group ID on execution, use

find 41 / 49

g in the USERS part of the symbolic mode and s in the
PERMISSIONS part.

To change a file’s permission to stay permanently on the swap device,
use o in the USERS part of the symbolic mode and t in the PERMISSIONS
part.

For example, to add set user ID permission to a program, you can use
the mode:

u+s

To remove both set user ID and set group ID permission from it, you
can use the mode:

ug-s

To cause a program to be saved on the swap device, you can use the
mode:

o+t

Remember that the special permissions only affect files that are
executable, plus, on some systems, directories (on which they have
different meanings; see Mode Structure). Using a in the USERS part of
a symbolic mode does not cause the special permissions to be affected;
thus,

a+s

has no effect. You must use u, g, and o explicitly to affect the
special permissions. Also, the combinations u+t, g+t, and o+s have no
effect.

The = operator is not very useful with special permissions; for
example, the mode:

o=t

does cause the file to be saved on the swap device, but it also removes
all read, write, and execute permissions that users not in the file’s
group might have had for it.

1.68 find.guide/Conditional Executability

Conditional Executability

There is one more special type of symbolic permission: if you use X
instead of x, execute permission is affected only if the file already
had execute permission or is a directory. It affects directories’
execute permission even if they did not initially have any execute
permissions set.

find 42 / 49

For example, this mode:

a+X

gives all users permission to execute files (or search directories) if
anyone could before.

1.69 find.guide/Multiple Changes

Making Multiple Changes

The format of symbolic modes is actually more complex than described
above (see Setting Permissions). It provides two ways to make multiple
changes to files’ permissions.

The first way is to specify multiple OPERATION and PERMISSIONS parts
after a USERS part in the symbolic mode.

For example, the mode:

og+rX-w

gives users other than the owner of the file read permission and, if it
is a directory or if someone already had execute permission to it,
gives them execute permission; and it also denies them write permission
to it file. It does not affect the permission that the owner of the
file has for it. The above mode is equivalent to the two modes:

og+rX
og-w

The second way to make multiple changes is to specify more than one
simple symbolic mode, separated by commas. For example, the mode:

a+r,go-w

gives everyone permission to read the file and removes write permission
on it for all users except its owner. Another example:

u=rwx,g=rx,o=

sets all of the non-special permissions for the file explicitly. (It
gives users who are not in the file’s group no permission at all for
it.)

The two methods can be combined. The mode:

a+r,g+x-w

gives all users permission to read the file, and gives users who are in
the file’s group permission to execute it, as well, but not permission
to write to it. The above mode could be written in several different
ways; another is:

find 43 / 49

u+r,g+rx,o+r,g-w

1.70 find.guide/Umask and Protection

The Umask and Protection

If the USERS part of a symbolic mode is omitted, it defaults to a
(affect all users), except that any permissions that are set in the
system variable umask are not affected. The value of umask can be set
using the umask command. Its default value varies from system to
system.

Omitting the USERS part of a symbolic mode is generally not useful
with operations other than +. It is useful with + because it allows
you to use umask as an easily customizable protection against giving
away more permission to files than you intended to.

As an example, if umask has the value 2, which removes write
permission for users who are not in the file’s group, then the mode:

+w

adds permission to write to the file to its owner and to other users who
are in the file’s group, but not to other users. In contrast, the mode:

a+w

ignores umask, and does give write permission for the file to all users.

1.71 find.guide/Numeric Modes

Numeric Modes
=============

File permissions are stored internally as 16 bit integers. As an
alternative to giving a symbolic mode, you can give an octal (base 8)
number that corresponds to the internal representation of the new mode.
This number is always interpreted in octal; you do not have to add a
leading 0, as you do in C. Mode 0055 is the same as mode 55.

A numeric mode is usually shorter than the corresponding symbolic
mode, but it is limited in that it can not take into account a file’s
previous permissions; it can only set them absolutely.

The permissions granted to the user, to other users in the file’s
group, and to other users not in the file’s group are each stored as
three bits, which are represented as one octal digit. The three special
permissions are also each stored as one bit, and they are as a group

find 44 / 49

represented as another octal digit. Here is how the bits are arranged
in the 16 bit integer, starting with the lowest valued bit:

Value in Corresponding
Mode Permission

Other users not in the file’s group:
1 Execute
2 Write
4 Read

Other users in the file’s group:
10 Execute
20 Write
40 Read

The file’s owner:
100 Execute
200 Write
400 Read

Special permissions:
1000 Save text image on swap device
2000 Set group ID on execution
4000 Set user ID on execution

For example, numeric mode 4755 corresponds to symbolic mode
u=rwxs,go=rx, and numeric mode 664 corresponds to symbolic mode
ug=rw,o=r. Numeric mode 0 corresponds to symbolic mode ugo=.

1.72 find.guide/Reference

Reference

Below are summaries of the command line syntax for the programs
discussed in this manual.

Invoking find
Invoking locate
Invoking updatedb
Invoking xargs

1.73 find.guide/Invoking find

Invoking find
=============

find [FILE...] [EXPRESSION]

find 45 / 49

find searches the directory tree rooted at each file name FILE by
evaluating the EXPRESSION on each file it finds in the tree.

find considers the first argument that begins with -, (,), ,, or !
to be the beginning of the expression; any arguments before it are
paths to search, and any arguments after it are the rest of the
expression. If no paths are given, the current directory is used. If
no expression is given, the expression -print is used.

find exits with status 0 if all files are processed successfully,
greater than 0 if errors occur.

See Primary Index, for a summary of all of the tests, actions, and
options that the expression can contain.

find also recognizes two options for administrative use:

--help
Print a summary of the command-line argument format and exit.

--version
Print the version number of find and exit.

1.74 find.guide/Invoking locate

Invoking locate
===============

locate [OPTION...] PATTERN...

--database=PATH
-d PATH

Instead of searching the default file name database, search the
file name databases in PATH, which is a colon-separated list of
database file names. You can also use the environment variable
LOCATE_PATH to set the list of database files to search. The
option overrides the environment variable if both are used.

--help
Print a summary of the options to locate and exit.

--version
Print the version number of locate and exit.

1.75 find.guide/Invoking updatedb

Invoking updatedb
=================

find 46 / 49

updatedb [OPTION...]

--localpaths=’PATH...’
Non-network directories to put in the database. Default is /.

--netpaths=’PATH...’
Network (NFS, AFS, RFS, etc.) directories to put in the database.
Default is none.

--prunepaths=’PATH...’
Directories to not put in the database, which would otherwise be.
Default is /tmp /usr/tmp /var/tmp /afs.

--output=DBFILE
The database file to build. Default is system-dependent, but
typically /usr/local/var/locatedb.

--netuser=USER
The user to search network directories as, using su(1). Default
is daemon.

1.76 find.guide/Invoking xargs

Invoking xargs
==============

xargs [OPTION...] [COMMAND [INITIAL-ARGUMENTS]]

xargs exits with the following status:

0
if it succeeds

123
if any invocation of the command exited with status 1-125

124
if the command exited with status 255

125
if the command is killed by a signal

126
if the command cannot be run

127
if the command is not found

1
if some other error occurred.

--null
-0

Input filenames are terminated by a null character instead of by

find 47 / 49

whitespace, and the quotes and backslash are not special (every
character is taken literally). Disables the end of file string,
which is treated like any other argument.

--eof[=EOF-STR]
-e[EOF-STR]

Set the end of file string to EOF-STR. If the end of file string
occurs as a line of input, the rest of the input is ignored. If
EOF-STR is omitted, there is no end of file string. If this
option is not given, the end of file string defaults to _.

--help
Print a summary of the options to xargs and exit.

--replace[=REPLACE-STR]
-i[REPLACE-STR]

Replace occurences of REPLACE-STR in the initial arguments with
names read from standard input. Also, unquoted blanks do not
terminate arguments. If REPLACE-STR is omitted, it defaults to {}
(like for find -exec). Implies -x and -l 1.

--max-lines[=MAX-LINES]
-l[MAX-LINES]

Use at most MAX-LINES nonblank input lines per command line;
MAX-LINES defaults to 1 if omitted. Trailing blanks cause an
input line to be logically continued on the next input line, for
the purpose of counting the lines. Implies -x.

--max-args=MAX-ARGS
-n MAX-ARGS

Use at most MAX-ARGS arguments per command line. Fewer than
MAX-ARGS arguments will be used if the size (see the -s option) is
exceeded, unless the -x option is given, in which case xargs will
exit.

--interactive
-p

Prompt the user about whether to run each command line and read a
line from the terminal. Only run the command line if the response
starts with y or Y. Implies -t.

--no-run-if-empty
-r

If the standard input does not contain any nonblanks, do not run
the command. By default, the command is run once even if there is
no input.

--max-chars=MAX-CHARS
-s MAX-CHARS

Use at most MAX-CHARS characters per command line, including the
command and initial arguments and the terminating nulls at the
ends of the argument strings.

--verbose
-t

Print the command line on the standard error output before
executing it.

find 48 / 49

--version
Print the version number of xargs and exit.

--exit
-x

Exit if the size (see the -S option) is exceeded.

--max-procs=MAX-PROCS
-P MAX-PROCS

Run up to MAX-PROCS processes at a time; the default is 1. If
MAX-PROCS is 0, xargs will run as many processes as possible at a
time.

1.77 find.guide/Primary Index

find Primary Index

This is a list of all of the primaries (tests, actions, and options)
that make up find expressions for selecting files. See
find Expressions, for more information on expressions.

-amin Age Ranges
-anewer Comparing Timestamps
-atime Age Ranges
-cmin Age Ranges
-cnewer Comparing Timestamps
-ctime Age Ranges
-daystart Age Ranges
-depth Directories
-empty Size
-exec Single File
-false Combining Primaries With Operators
-fls Print File Information
-follow Symbolic Links
-fprint Print File Name
-fprint0 Safe File Name Handling
-fprintf Print File Information
-fstype Filesystems
-gid Owner
-group Owner
-ilname Symbolic Links
-iname Base Name Patterns
-inum Hard Links
-ipath Full Name Patterns
-iregex Full Name Patterns
-links Hard Links
-lname Symbolic Links
-ls Print File Information
-maxdepth Directories
-mindepth Directories

find 49 / 49

-mmin Age Ranges
-mount Filesystems
-mtime Age Ranges
-name Base Name Patterns
-newer Comparing Timestamps
-nogroup Owner
-noleaf Directories
-nouser Owner
-ok Querying
-path Full Name Patterns
-perm Permissions
-print Print File Name
-print0 Safe File Name Handling
-printf Print File Information
-prune Directories
-regex Full Name Patterns
-size Size
-true Combining Primaries With Operators
-type Type
-uid Owner
-used Comparing Timestamps
-user Owner
-xdev Filesystems
-xtype Type

	find
	find.guide
	find.guide/Introduction
	find.guide/Scope
	find.guide/Overview
	find.guide/find Expressions
	find.guide/Finding Files
	find.guide/Name
	find.guide/Base Name Patterns
	find.guide/Full Name Patterns
	find.guide/Fast Full Name Search
	find.guide/Shell Pattern Matching
	find.guide/Links
	find.guide/Symbolic Links
	find.guide/Hard Links
	find.guide/Time
	find.guide/Age Ranges
	find.guide/Comparing Timestamps
	find.guide/Size
	find.guide/Type
	find.guide/Owner
	find.guide/Permissions
	find.guide/Contents
	find.guide/Directories
	find.guide/Filesystems
	find.guide/Combining Primaries With Operators
	find.guide/Actions
	find.guide/Print File Name
	find.guide/Print File Information
	find.guide/Escapes
	find.guide/Format Directives
	find.guide/Name Directives
	find.guide/Ownership Directives
	find.guide/Size Directives
	find.guide/Location Directives
	find.guide/Time Directives
	find.guide/Time Formats
	find.guide/Time Components
	find.guide/Date Components
	find.guide/Combined Time Formats
	find.guide/Run Commands
	find.guide/Single File
	find.guide/Multiple Files
	find.guide/Unsafe File Name Handling
	find.guide/Safe File Name Handling
	find.guide/Limiting Command Size
	find.guide/Interspersing File Names
	find.guide/Querying
	find.guide/Adding Tests
	find.guide/Common Tasks
	find.guide/Viewing And Editing
	find.guide/Archiving
	find.guide/Cleaning Up
	find.guide/Strange File Names
	find.guide/Fixing Permissions
	find.guide/Classifying Files
	find.guide/Databases
	find.guide/Database Locations
	find.guide/Database Formats
	find.guide/New Database Format
	find.guide/Sample Database
	find.guide/Old Database Format
	find.guide/File Permissions
	find.guide/Mode Structure
	find.guide/Symbolic Modes
	find.guide/Setting Permissions
	find.guide/Copying Permissions
	find.guide/Changing Special Permissions
	find.guide/Conditional Executability
	find.guide/Multiple Changes
	find.guide/Umask and Protection
	find.guide/Numeric Modes
	find.guide/Reference
	find.guide/Invoking find
	find.guide/Invoking locate
	find.guide/Invoking updatedb
	find.guide/Invoking xargs
	find.guide/Primary Index

