
cvs

cvs ii

COLLABORATORS

TITLE :

cvs

ACTION NAME DATE SIGNATURE

WRITTEN BY December 7, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

cvs iii

Contents

1 cvs 1

1.1 cvs.guide . 1

1.2 cvs.guide/Preface . 1

1.3 cvs.guide/Checklist . 2

1.4 cvs.guide/Credits . 3

1.5 cvs.guide/BUGS . 3

1.6 cvs.guide/What is CVS? . 4

1.7 cvs.guide/Basic concepts . 7

1.8 cvs.guide/Revision numbers . 7

1.9 cvs.guide/Versions revisions releases . 9

1.10 cvs.guide/A sample session . 9

1.11 cvs.guide/Getting the source . 9

1.12 cvs.guide/Committing your changes . 10

1.13 cvs.guide/Cleaning up . 10

1.14 cvs.guide/Viewing differences . 11

1.15 cvs.guide/Repository . 12

1.16 cvs.guide/User modules . 13

1.17 cvs.guide/File permissions . 14

1.18 cvs.guide/Intro administrative files . 14

1.19 cvs.guide/Multiple repositories . 15

1.20 cvs.guide/Creating a repository . 16

1.21 cvs.guide/Remote repositories . 16

1.22 cvs.guide/Connecting via rsh . 17

1.23 cvs.guide/Password authenticated . 17

1.24 cvs.guide/Password authentication server . 18

1.25 cvs.guide/Password authentication client . 19

1.26 cvs.guide/Password authentication security . 20

1.27 cvs.guide/Kerberos authenticated . 20

1.28 cvs.guide/Starting a new project . 21

1.29 cvs.guide/Setting up the files . 21

cvs iv

1.30 cvs.guide/From files . 21

1.31 cvs.guide/From other version control systems . 22

1.32 cvs.guide/From scratch . 23

1.33 cvs.guide/Defining the module . 24

1.34 cvs.guide/Multiple developers . 24

1.35 cvs.guide/File status . 25

1.36 cvs.guide/Updating a file . 25

1.37 cvs.guide/Conflicts example . 26

1.38 cvs.guide/Informing others . 28

1.39 cvs.guide/Concurrency . 29

1.40 cvs.guide/Watches . 29

1.41 cvs.guide/Setting a watch . 30

1.42 cvs.guide/Getting Notified . 31

1.43 cvs.guide/Editing files . 32

1.44 cvs.guide/Watch information . 33

1.45 cvs.guide/Watches Compatibility . 33

1.46 cvs.guide/Branches . 34

1.47 cvs.guide/Tags . 34

1.48 cvs.guide/Branches motivation . 36

1.49 cvs.guide/Creating a branch . 36

1.50 cvs.guide/Sticky tags . 38

1.51 cvs.guide/Merging . 39

1.52 cvs.guide/Merging a branch . 39

1.53 cvs.guide/Merging more than once . 40

1.54 cvs.guide/Merging two revisions . 41

1.55 cvs.guide/Recursive behavior . 42

1.56 cvs.guide/Adding files . 43

1.57 cvs.guide/Removing files . 43

1.58 cvs.guide/Tracking sources . 45

1.59 cvs.guide/First import . 45

1.60 cvs.guide/Update imports . 46

1.61 cvs.guide/Binary files in imports . 46

1.62 cvs.guide/Moving files . 47

1.63 cvs.guide/Outside . 47

1.64 cvs.guide/Inside . 47

1.65 cvs.guide/Rename by copying . 48

1.66 cvs.guide/Moving directories . 49

1.67 cvs.guide/History browsing . 49

1.68 cvs.guide/log messages . 50

cvs v

1.69 cvs.guide/history database . 50

1.70 cvs.guide/user-defined logging . 50

1.71 cvs.guide/annotate . 51

1.72 cvs.guide/Keyword substitution . 52

1.73 cvs.guide/Keyword list . 52

1.74 cvs.guide/Using keywords . 53

1.75 cvs.guide/Avoiding substitution . 54

1.76 cvs.guide/Substitution modes . 54

1.77 cvs.guide/Log keyword . 55

1.78 cvs.guide/Binary files . 56

1.79 cvs.guide/Revision management . 57

1.80 cvs.guide/When to commit . 57

1.81 cvs.guide/Invoking CVS . 58

1.82 cvs.guide/Structure . 58

1.83 cvs.guide/~-.cvsrc . 59

1.84 cvs.guide/Global options . 60

1.85 cvs.guide/Common options . 62

1.86 cvs.guide/add . 65

1.87 cvs.guide/add options . 66

1.88 cvs.guide/add examples . 66

1.89 cvs.guide/admin . 66

1.90 cvs.guide/admin options . 67

1.91 cvs.guide/admin examples . 70

1.92 cvs.guide/checkout . 71

1.93 cvs.guide/checkout options . 72

1.94 cvs.guide/checkout examples . 73

1.95 cvs.guide/commit . 74

1.96 cvs.guide/commit options . 75

1.97 cvs.guide/commit examples . 76

1.98 cvs.guide/diff . 77

1.99 cvs.guide/diff options . 78

1.100cvs.guide/diff examples . 78

1.101cvs.guide/export . 79

1.102cvs.guide/export options . 80

1.103cvs.guide/history . 81

1.104cvs.guide/history options . 81

1.105cvs.guide/import . 83

1.106cvs.guide/import options . 84

1.107cvs.guide/import examples . 85

cvs vi

1.108cvs.guide/log . 85

1.109cvs.guide/log options . 85

1.110cvs.guide/log examples . 87

1.111cvs.guide/rdiff . 88

1.112cvs.guide/rdiff options . 88

1.113cvs.guide/rdiff examples . 89

1.114cvs.guide/release . 90

1.115cvs.guide/release options . 90

1.116cvs.guide/release output . 91

1.117cvs.guide/release examples . 91

1.118cvs.guide/rtag . 92

1.119cvs.guide/rtag options . 92

1.120cvs.guide/status . 93

1.121cvs.guide/status options . 94

1.122cvs.guide/tag . 94

1.123cvs.guide/tag options . 95

1.124cvs.guide/update . 96

1.125cvs.guide/update options . 96

1.126cvs.guide/update output . 98

1.127cvs.guide/update examples . 99

1.128cvs.guide/Administrative files . 99

1.129cvs.guide/modules . 100

1.130cvs.guide/Wrappers . 101

1.131cvs.guide/commit files . 103

1.132cvs.guide/syntax . 103

1.133cvs.guide/commitinfo . 104

1.134cvs.guide/editinfo . 105

1.135cvs.guide/editinfo example . 105

1.136cvs.guide/loginfo . 106

1.137cvs.guide/loginfo example . 107

1.138cvs.guide/rcsinfo . 107

1.139cvs.guide/cvsignore . 108

1.140cvs.guide/history file . 109

1.141cvs.guide/Variables . 109

1.142cvs.guide/Environment variables . 110

1.143cvs.guide/Troubleshooting . 113

1.144cvs.guide/Magic branch numbers . 113

1.145cvs.guide/Copying . 114

1.146cvs.guide/Index . 114

cvs 1 / 121

Chapter 1

cvs

1.1 cvs.guide

This info manual describes how to use and administer CVS version
1.8.7.

Preface About this manual
What is CVS? What is CVS?
Basic concepts Basic concepts of revision management
A sample session A tour of basic CVS usage
Repository Where all your sources are stored
Starting a new project Starting a project with CVS
Multiple developers How CVS helps a group of developers
Branches Parallel development explained
Merging How to move changes between branches
Recursive behavior CVS descends directories
Adding files Adding files
Removing files Removing files
Tracking sources Tracking third-party sources
Moving files Moving and renaming files
Moving directories Moving and renaming directories
History browsing Viewing the history of files in various ways
Keyword substitution CVS can include the revision inside the file
Binary files CVS can handle binary files
Revision management Policy questions for revision management
Invoking CVS Reference manual for CVS commands
Administrative files Reference manual for the Administrative files
Environment variables All environment variables which affect CVS
Troubleshooting Some tips when nothing works
Copying GNU GENERAL PUBLIC LICENSE
Index Index

1.2 cvs.guide/Preface

About this manual

cvs 2 / 121

Up to this point, one of the weakest parts of CVS has been the
documentation. CVS is a complex program. Previous versions of the
manual were written in the manual page format, which is not really well
suited for such a complex program.

When writing this manual, I had several goals in mind:

* No knowledge of RCS should be necessary.

* No previous knowledge of revision control software should be
necessary. All terms, such as "revision numbers", "revision
trees" and "merging" are explained as they are introduced.

* The manual should concentrate on the things CVS users want to do,
instead of what the CVS commands can do. The first part of this
manual leads you through things you might want to do while doing
development, and introduces the relevant CVS commands as they are
needed.

* Information should be easy to find. In the reference manual in
the appendices almost all information about every CVS command is
gathered together. There is also an extensive index, and a lot of
cross references.

This manual was contributed by Signum Support AB in Sweden. Signum
is yet another in the growing list of companies that support free
software. You are free to copy both this manual and the CVS program.
See Copying, for the details. Signum Support offers support contracts
and binary distribution for many programs, such as CVS, GNU Emacs, the
GNU C compiler and others. Write to us for more information.

Signum Support AB
Box 2044
S-580 02 Linkoping
Sweden

Email: info@signum.se
Phone: +46 (0)13 - 21 46 00
Fax: +46 (0)13 - 21 47 00

Another company selling support for CVS is Cyclic Software, web:
‘http://www.cyclic.com/’, email: ‘info@cyclic.com’.

Checklist
Credits
BUGS

1.3 cvs.guide/Checklist

Checklist for the impatient reader
==================================

cvs 3 / 121

CVS is a complex system. You will need to read the manual to be
able to use all of its capabilities. There are dangers that can easily
be avoided if you know about them, and this manual tries to warn you
about them. This checklist is intended to help you avoid the dangers
without reading the entire manual. If you intend to read the entire
manual you can skip this table.

Binary files
CVS can handle binary files, but you must have RCS release 5.5 or
later and a release of GNU diff that supports the ‘-a’ flag
(release 1.15 and later are OK). You must also configure both RCS
and CVS to handle binary files when you install them.

Keword substitution can be a source of trouble with binary files.
See Keyword substitution, for solutions.

The ‘admin’ command
Careless use of the ‘admin’ command can cause CVS to cease
working. See admin, before trying to use it.

1.4 cvs.guide/Credits

Credits
=======

Roland Pesch, Cygnus Support <pesch@cygnus.com> wrote the manual
pages which were distributed with CVS 1.3. Appendix A and B contain
much text that was extracted from them. He also read an early draft of
this manual and contributed many ideas and corrections.

The mailing-list ‘info-cvs’ is sometimes informative. I have
included information from postings made by the following persons: David
G. Grubbs <dgg@think.com>.

Some text has been extracted from the man pages for RCS.

The CVS FAQ by David G. Grubbs has provided useful material. The
FAQ is no longer maintained, however, and this manual about the closest
thing there is to a successor (with respect to documenting how to use
CVS, at least).

In addition, the following persons have helped by telling me about
mistakes I’ve made: Roxanne Brunskill <rbrunski@datap.ca>, Kathy Dyer
<dyer@phoenix.ocf.llnl.gov>, Karl Pingle <pingle@acuson.com>, Thomas A
Peterson <tap@src.honeywell.com>, Inge Wallin <ingwa@signum.se>, Dirk
Koschuetzki <koschuet@fmi.uni-passau.de> and Michael Brown
<brown@wi.extrel.com>.

1.5 cvs.guide/BUGS

cvs 4 / 121

BUGS
====

This manual is known to have room for improvement. Here is a list
of known deficiencies:

* In the examples, the output from CVS is sometimes displayed,
sometimes not.

* The input that you are supposed to type in the examples should
have a different font than the output from the computer.

* This manual should be clearer about what file permissions you
should set up in the repository, and about setuid/setgid.

* Some of the chapters are not yet complete. They are noted by
comments in the ‘cvs.texinfo’ file.

* This list is not complete. If you notice any error, omission, or
something that is unclear, please send mail to
bug-cvs@prep.ai.mit.edu.

I hope that you will find this manual useful, despite the
above-mentioned shortcomings.

Linkoping, October 1993
Per Cederqvist

1.6 cvs.guide/What is CVS?

What is CVS?

CVS is a version control system. Using it, you can record the
history of your source files.

For example, bugs sometimes creep in when software is modified, and
you might not detect the bug until a long time after you make the
modification. With CVS, you can easily retrieve old versions to see
exactly which change caused the bug. This can sometimes be a big help.

You could of course save every version of every file you have ever
created. This would however waste an enormous amount of disk space.
CVS stores all the versions of a file in a single file in a clever way
that only stores the differences between versions.

CVS also helps you if you are part of a group of people working on
the same project. It is all too easy to overwrite each others’ changes
unless you are extremely careful. Some editors, like GNU Emacs, try to
make sure that the same file is never modified by two people at the
same time. Unfortunately, if someone is using another editor, that
safeguard will not work. CVS solves this problem by insulating the

cvs 5 / 121

different developers from each other. Every developer works in his own
directory, and CVS merges the work when each developer is done.

CVS started out as a bunch of shell scripts written by Dick Grune,
posted to ‘comp.sources.unix’ in the volume 6 release of December,
1986. While no actual code from these shell scripts is present in the
current version of CVS much of the CVS conflict resolution algorithms
come from them.

In April, 1989, Brian Berliner designed and coded CVS. Jeff Polk
later helped Brian with the design of the CVS module and vendor branch
support.

You can get CVS via anonymous ftp from a number of sites, for
instance prep.ai.mit.edu in ‘pub/gnu’.

There is a mailing list for CVS. To subscribe or unsubscribe, write
to <info-cvs-request@prep.ai.mit.edu>. Please be specific about your
email address. As of May 1996, subscription requests are handled by a
busy human being, so you cannot expect to be added or removed
immediately. The usenet group ‘comp.software.config-mgmt’ is also a
suitable place for CVS discussions (along with other configuration
management systems).

CVS is not...
=============

CVS can do a lot of things for you, but it does not try to be
everything for everyone.

CVS is not a build system.
Though the structure of your repository and modules file interact
with your build system (e.g. ‘Makefile’s), they are essentially
independent.

CVS does not dictate how you build anything. It merely stores
files for retrieval in a tree structure you devise.

CVS does not dictate how to use disk space in the checked out
working directories. If you write your ‘Makefile’s or scripts in
every directory so they have to know the relative positions of
everything else, you wind up requiring the entire repository to be
checked out.

If you modularize your work, and construct a build system that
will share files (via links, mounts, ‘VPATH’ in ‘Makefile’s,
etc.), you can arrange your disk usage however you like.

But you have to remember that *any* such system is a lot of work
to construct and maintain. CVS does not address the issues
involved.

Of course, you should place the tools created to support such a
build system (scripts, ‘Makefile’s, etc) under CVS.

Figuring out what files need to be rebuilt when something changes
is, again, something to be handled outside the scope of CVS. One

cvs 6 / 121

traditional approach is to use ‘make’ for building, and use some
automated tool for generating the depencies which ‘make’ uses.

CVS is not a substitute for management.
Your managers and project leaders are expected to talk to you
frequently enough to make certain you are aware of schedules,
merge points, branch names and release dates. If they don’t, CVS
can’t help.

CVS is an instrument for making sources dance to your tune. But
you are the piper and the composer. No instrument plays itself or
writes its own music.

CVS is not a substitute for developer communication.
When faced with conflicts within a single file, most developers
manage to resolve them without too much effort. But a more
general definition of "conflict" includes problems too difficult
to solve without communication between developers.

CVS cannot determine when simultaneous changes within a single
file, or across a whole collection of files, will logically
conflict with one another. Its concept of a "conflict" is purely
textual, arising when two changes to the same base file are near
enough to spook the merge (i.e. ‘diff3’) command.

CVS does not claim to help at all in figuring out non-textual or
distributed conflicts in program logic.

For example: Say you change the arguments to function ‘X’ defined
in file ‘A’. At the same time, someone edits file ‘B’, adding new
calls to function ‘X’ using the old arguments. You are outside
the realm of CVS’s competence.

Acquire the habit of reading specs and talking to your peers.

CVS does not have change control
Change control refers to a number of things. First of all it can
mean "bug-tracking", that is being able to keep a database of
reported bugs and the status of each one (is it fixed? in what
release? has the bug submitter agreed that it is fixed?). For
interfacing CVS to an external bug-tracking system, see the
‘rcsinfo’ and ‘editinfo’ files (see Administrative files).

Another aspect of change control is keeping track of the fact that
changes to several files were in fact changed together as one
logical change. If you check in several files in a single ‘cvs
commit’ operation, CVS then forgets that those files were checked
in together, and the fact that they have the same log message is
the only thing tying them together. Keeping a GNU style
‘ChangeLog’ can help somewhat.

Another aspect of change control, in some systems, is the ability
to keep track of the status of each change. Some changes have
been written by a developer, others have been reviewed by a second
developer, and so on. Generally, the way to do this with CVS is to
generate a diff (using ‘cvs diff’ or ‘diff’) and email it to
someone who can then apply it using the ‘patch’ utility. This is

cvs 7 / 121

very flexible, but depends on mechanisms outside CVS to make sure
nothing falls through the cracks.

CVS is not an automated testing program
It should be possible to enforce mandatory use of a testsuite
using the ‘commitinfo’ file. I haven’t heard a lot about projects
trying to do that or whether there are subtle gotchas, however.

CVS does not have a builtin process model
Some systems provide ways to ensure that changes or releases go
through various steps, with various approvals as needed.
Generally, one can accomplish this with CVS but it might be a
little more work. In some cases you’ll want to use the
‘commitinfo’, ‘loginfo’, ‘rcsinfo’, or ‘editinfo’ files, to
require that certain steps be performed before cvs will allow a
checkin. Also consider whether features such as branches and tags
can be used to perform tasks such as doing work in a development
tree and then merging certain changes over to a stable tree only
once they have been proven.

1.7 cvs.guide/Basic concepts

Basic concepts

CVS stores all files in a centralized "repository": a directory
(such as ‘/usr/local/cvsroot’ or ‘user@remotehost:/usr/local/cvsroot’)
which is populated with a hierarchy of files and directories. (see
Remote repositories for information about keeping the repository on a
remote machine.)

Normally, you never access any of the files in the repository
directly. Instead, you use CVS commands to get your own copy of the
files, and then work on that copy. When you’ve finished a set of
changes, you check (or "commit") them back into the repository.

The files in the repository are organized in "modules". Each module
is made up of one or more files, and can include files from several
directories. A typical usage is to define one module per project.

Revision numbers The meaning of a revision number
Versions revisions releases Terminology used in this manual

1.8 cvs.guide/Revision numbers

Revision numbers
================

Each version of a file has a unique "revision number". Revision

cvs 8 / 121

numbers look like ‘1.1’, ‘1.2’, ‘1.3.2.2’ or even ‘1.3.2.2.4.5’. A
revision number always has an even number of period-separated decimal
integers. By default revision 1.1 is the first revision of a file.
Each successive revision is given a new number by increasing the
rightmost number by one. The following figure displays a few
revisions, with newer revisions to the right.

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 !
+-----+ +-----+ +-----+ +-----+ +-----+

CVS is not limited to linear development. The "revision tree" can
be split into "branches", where each branch is a self-maintained line of
development. Changes made on one branch can easily be moved back to
the main trunk.

Each branch has a "branch number", consisting of an odd number of
period-separated decimal integers. The branch number is created by
appending an integer to the revision number where the corresponding
branch forked off. Having branch numbers allows more than one branch
to be forked off from a certain revision.

All revisions on a branch have revision numbers formed by appending
an ordinal number to the branch number. The following figure
illustrates branching with an example.

+-------------+
Branch 1.2.2.3.2 -> ! 1.2.2.3.2.1 !

/ +-------------+
/
/

+---------+ +---------+ +---------+ +---------+
Branch 1.2.2 -> _! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !----! 1.2.2.4 !

/ +---------+ +---------+ +---------+ +---------+
/
/

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk
+-----+ +-----+ +-----+ +-----+ +-----+

!
!
! +---------+ +---------+ +---------+

Branch 1.2.4 -> +---! 1.2.4.1 !----! 1.2.4.2 !----! 1.2.4.3 !
+---------+ +---------+ +---------+

The exact details of how the branch number is constructed is not
something you normally need to be concerned about, but here is how it
works: When CVS creates a branch number it picks the first unused even
integer, starting with 2. So when you want to create a branch from
revision 6.4 it will be numbered 6.4.2. All branch numbers ending in a
zero (such as 6.4.0) are used internally by CVS (see
Magic branch numbers). The branch 1.1.1 has a special meaning. See
Tracking sources.

cvs 9 / 121

1.9 cvs.guide/Versions revisions releases

Versions, revisions and releases
================================

A file can have several versions, as described above. Likewise, a
software product can have several versions. A software product is
often given a version number such as ‘4.1.1’.

Versions in the first sense are called "revisions" in this document,
and versions in the second sense are called "releases". To avoid
confusion, the word "version" is almost never used in this document.

1.10 cvs.guide/A sample session

A sample session

This section describes a typical work-session using CVS. It assumes
that a repository is set up (see Repository).

Suppose you are working on a simple compiler. The source consists
of a handful of C files and a ‘Makefile’. The compiler is called ‘tc’
(Trivial Compiler), and the repository is set up so that there is a
module called ‘tc’.

Getting the source Creating a workspace
Committing your changes Making your work available to others
Cleaning up Cleaning up
Viewing differences Viewing differences

1.11 cvs.guide/Getting the source

Getting the source
==================

The first thing you must do is to get your own working copy of the
source for ‘tc’. For this, you use the ‘checkout’ command:

$ cvs checkout tc

This will create a new directory called ‘tc’ and populate it with the
source files.

$ cd tc
$ ls
CVS Makefile backend.c driver.c frontend.c parser.c

The ‘CVS’ directory is used internally by CVS. Normally, you should

cvs 10 / 121

not modify or remove any of the files in it.

You start your favorite editor, hack away at ‘backend.c’, and a
couple of hours later you have added an optimization pass to the
compiler. A note to RCS and SCCS users: There is no need to lock the
files that you want to edit. See Multiple developers, for an
explanation.

1.12 cvs.guide/Committing your changes

Committing your changes
=======================

When you have checked that the compiler is still compilable you
decide to make a new version of ‘backend.c’.

$ cvs commit backend.c

CVS starts an editor, to allow you to enter a log message. You type in
"Added an optimization pass.", save the temporary file, and exit the
editor.

The environment variable ‘$CVSEDITOR’ determines which editor is
started. If ‘$CVSEDITOR’ is not set, then if the environment variable
‘$EDITOR’ is set, it will be used. If both ‘$CVSEDITOR’ and ‘$EDITOR’
are not set then the editor defaults to ‘vi’. If you want to avoid the
overhead of starting an editor you can specify the log message on the
command line using the ‘-m’ flag instead, like this:

$ cvs commit -m "Added an optimization pass" backend.c

1.13 cvs.guide/Cleaning up

Cleaning up
===========

Before you turn to other tasks you decide to remove your working
copy of tc. One acceptable way to do that is of course

$ cd ..
$ rm -r tc

but a better way is to use the ‘release’ command (see release):

$ cd ..
$ cvs release -d tc
M driver.c
? tc
You have [1] altered files in this repository.
Are you sure you want to release (and delete) module ‘tc’: n

cvs 11 / 121

** ‘release’ aborted by user choice.

The ‘release’ command checks that all your modifications have been
committed. If history logging is enabled it also makes a note in the
history file. See history file.

When you use the ‘-d’ flag with ‘release’, it also removes your
working copy.

In the example above, the ‘release’ command wrote a couple of lines
of output. ‘? tc’ means that the file ‘tc’ is unknown to CVS. That is
nothing to worry about: ‘tc’ is the executable compiler, and it should
not be stored in the repository. See cvsignore, for information about
how to make that warning go away. See release output, for a complete
explanation of all possible output from ‘release’.

‘M driver.c’ is more serious. It means that the file ‘driver.c’ has
been modified since it was checked out.

The ‘release’ command always finishes by telling you how many
modified files you have in your working copy of the sources, and then
asks you for confirmation before deleting any files or making any note
in the history file.

You decide to play it safe and answer ‘n RET’ when ‘release’ asks
for confirmation.

1.14 cvs.guide/Viewing differences

Viewing differences
===================

You do not remember modifying ‘driver.c’, so you want to see what
has happened to that file.

$ cd tc
$ cvs diff driver.c

This command runs ‘diff’ to compare the version of ‘driver.c’ that
you checked out with your working copy. When you see the output you
remember that you added a command line option that enabled the
optimization pass. You check it in, and release the module.

$ cvs commit -m "Added an optimization pass" driver.c
Checking in driver.c;
/usr/local/cvsroot/tc/driver.c,v <-- driver.c
new revision: 1.2; previous revision: 1.1
done
$ cd ..
$ cvs release -d tc
? tc
You have [0] altered files in this repository.
Are you sure you want to release (and delete) module ‘tc’: y

cvs 12 / 121

1.15 cvs.guide/Repository

The Repository

Figure 3 below shows a typical setup of a repository. Only
directories are shown below.

/usr
|
+--local
| |
| +--cvsroot
| | |
| | +--CVSROOT

| (administrative files)
|
+--gnu
| |
| +--diff
| | (source code to GNU diff)
| |
| +--rcs
| | (source code to RCS)
| |
| +--cvs
| (source code to CVS)
|
+--yoyodyne

|
+--tc
| |
| +--man
| |
| +--testing
|
+--(other Yoyodyne software)

There are a couple of different ways to tell CVS where to find the
repository. You can name the repository on the command line
explicitly, with the ‘-d’ (for "directory") option:

cvs -d /usr/local/cvsroot checkout yoyodyne/tc

Or you can set the ‘$CVSROOT’ environment variable to an absolute
path to the root of the repository, ‘/usr/local/cvsroot’ in this
example. To set ‘$CVSROOT’, all ‘csh’ and ‘tcsh’ users should have
this line in their ‘.cshrc’ or ‘.tcshrc’ files:

setenv CVSROOT /usr/local/cvsroot

‘sh’ and ‘bash’ users should instead have these lines in their
‘.profile’ or ‘.bashrc’:

cvs 13 / 121

CVSROOT=/usr/local/cvsroot
export CVSROOT

A repository specified with ‘-d’ will override the ‘$CVSROOT’
environment variable. Once you’ve checked a working copy out from the
repository, it will remember where its repository is (the information
is recorded in the ‘CVS/Root’ file in the working copy).

The ‘-d’ option and the ‘CVS/Root’ file both override the ‘$CVSROOT’
environment variable. If ‘-d’ option differs from ‘CVS/Root’, the
former is used (and specifying ‘-d’ will cause ‘CVS/Root’ to be
updated). Of course, for proper operation they should be two ways of
referring to the same repository.

There is nothing magical about the name ‘/usr/local/cvsroot’. You
can choose to place the repository anywhere you like. See
Remote repositories, to learn how the repository can be on a different
machine than your working copy of the sources.

Note: For compatibility with older versions, CVS will treat any
repository name that contains a colon as an indication of a remote
repository (See Remote repositories). If the name of your local
repository contains a colon, you should prepend the string ‘:local:’ to
the pathname to tell CVS that it is, indeed, a local repository. For
example, you might use this command line under Windows NT:

cvs -d :local:c:\src\cvsroot checkout yoyodyne/tc

The repository is split in two parts. ‘$CVSROOT/CVSROOT’ contains
administrative files for CVS. The other directories contain the actual
user-defined modules.

User modules The structure of the repository
Intro administrative files Defining modules
Multiple repositories Multiple repositories
Creating a repository Creating a repository
Remote repositories Accessing repositories on remote machines

1.16 cvs.guide/User modules

User modules
============

‘$CVSROOT’
|
+--yoyodyne
| |
| +--tc
| | |

+--Makefile,v
+--backend.c,v
+--driver.c,v

cvs 14 / 121

+--frontend.c,v
+--parser.c,v
+--man
| |
| +--tc.1,v
|
+--testing

|
+--testpgm.t,v
+--test2.t,v

The figure above shows the contents of the ‘tc’ module inside the
repository. As you can see all file names end in ‘,v’. The files are
"history files". They contain, among other things, enough information
to recreate any revision of the file, a log of all commit messages and
the user-name of the person who committed the revision. CVS uses the
facilities of RCS, a simpler version control system, to maintain these
files. For a full description of the file format, see the ‘man’ page
‘rcsfile(5)’.

File permissions File permissions

1.17 cvs.guide/File permissions

File permissions

All ‘,v’ files are created read-only, and you should not change the
permission of those files. The directories inside the repository
should be writable by the persons that have permission to modify the
files in each directory. This normally means that you must create a
UNIX group (see group(5)) consisting of the persons that are to edit
the files in a project, and set up the repository so that it is that
group that owns the directory.

This means that you can only control access to files on a
per-directory basis.

CVS tries to set up reasonable file permissions for new directories
that are added inside the tree, but you must fix the permissions
manually when a new directory should have different permissions than its
parent directory.

Since CVS was not written to be run setuid, it is unsafe to try to
run it setuid. You cannot use the setuid features of RCS together with
CVS.

1.18 cvs.guide/Intro administrative files

cvs 15 / 121

The administrative files
========================

The directory ‘$CVSROOT/CVSROOT’ contains some "administrative
files". See Administrative files, for a complete description. You can
use CVS without any of these files, but some commands work better when
at least the ‘modules’ file is properly set up.

The most important of these files is the ‘modules’ file. It defines
all modules in the repository. This is a sample ‘modules’ file.

CVSROOT CVSROOT
modules CVSROOT modules
cvs gnu/cvs
rcs gnu/rcs
diff gnu/diff
tc yoyodyne/tc

The ‘modules’ file is line oriented. In its simplest form each line
contains the name of the module, whitespace, and the directory where
the module resides. The directory is a path relative to ‘$CVSROOT’.
The last four lines in the example above are examples of such lines.

The line that defines the module called ‘modules’ uses features that
are not explained here. See modules, for a full explanation of all the
available features.

Editing administrative files

You edit the administrative files in the same way that you would edit
any other module. Use ‘cvs checkout CVSROOT’ to get a working copy,
edit it, and commit your changes in the normal way.

It is possible to commit an erroneous administrative file. You can
often fix the error and check in a new revision, but sometimes a
particularly bad error in the administrative file makes it impossible
to commit new revisions.

1.19 cvs.guide/Multiple repositories

Multiple repositories
=====================

In some situations it is a good idea to have more than one
repository, for instance if you have two development groups that work
on separate projects without sharing any code. All you have to do to
have several repositories is to specify the appropriate repository,
using the ‘CVSROOT’ environment variable, the ‘-d’ option to CVS, or
(once you have checked out a working directory) by simply allowing CVS
to use the repository that was used to check out the working directory
(see Repository).

cvs 16 / 121

Notwithstanding, it can be confusing to have two or more
repositories.

None of the examples in this manual show multiple repositories.

1.20 cvs.guide/Creating a repository

Creating a repository
=====================

To set up a CVS repository, choose a directory with ample disk space
available for the revision history of the source files. It should be
accessable (directly or via a networked file system) from all machines
which want to use CVS in server or local mode; the client machines need
not have any access to it other than via the CVS protocol. It is not
possible to use CVS to read from a repository which one only has read
access to; CVS needs to be able to create lock files (see Concurrency).

To create a repository, run the ‘cvs init’ command. It will set up
an empty repository in the CVS root specified in the usual way (see
Repository). For example,

cvs -d /usr/local/cvsroot init

‘cvs init’ is careful to never overwrite any existing files in the
repository, so no harm is done if you run ‘cvs init’ on an already
set-up repository.

‘cvs init’ will enable history logging; if you don’t want that,
remove the history file after running ‘cvs init’. See history file.

1.21 cvs.guide/Remote repositories

Remote repositories
===================

Your working copy of the sources can be on a different machine than
the repository. Generally, using a remote repository is just like
using a local one, except that the format of the repository name is:

:method:user@hostname:/path/to/repository

The details of exactly what needs to be set up depend on how you are
connecting to the server.

Connecting via rsh Using the ‘rsh’ program to connect
Password authenticated Direct connections using passwords
Kerberos authenticated Direct connections with kerberos

cvs 17 / 121

1.22 cvs.guide/Connecting via rsh

Connecting with rsh

CVS uses the ‘rsh’ protocol to perform these operations, so the
remote user host needs to have a ‘.rhosts’ file which grants access to
the local user.

For example, suppose you are the user ‘mozart’ on the local machine
‘anklet.grunge.com’, and the server machine is
‘chainsaw.brickyard.com’. On chainsaw, put the following line into the
file ‘.rhosts’ in ‘bach’’s home directory:

anklet.grunge.com mozart

Then test that ‘rsh’ is working with

rsh -l bach chainsaw.brickyard.com echo $PATH

Next you have to make sure that ‘rsh’ will be able to find the
server. Make sure that the path which ‘rsh’ printed in the above
example includes the directory containing a program named ‘cvs’ which
is the server. You need to set the path in ‘.bashrc’, ‘.cshrc’, etc.,
not ‘.login’ or ‘.profile’. Alternately, you can set the environment
variable ‘CVS_SERVER’ on the client machine to the filename of the
server you want to use, for example ‘/usr/local/bin/cvs-1.6’.

There is no need to edit ‘inetd.conf’ or start a CVS server daemon.

Continuing our example, supposing you want to access the module
‘foo’ in the repository ‘/usr/local/cvsroot/’, on machine
‘chainsaw.brickyard.com’, you are ready to go:

cvs -d :server:bach@chainsaw.brickyard.com:/usr/local/cvsroot checkout foo

(The ‘bach@’ can be omitted if the username is the same on both the
local and remote hosts.)

1.23 cvs.guide/Password authenticated

Direct connection with password authentication
--

The CVS client can also connect to the server using a password
protocol. This is particularly useful if using ‘rsh’ is not feasible
(for example, the server is behind a firewall), and Kerberos also is
not available.

To use this method, it is necessary to make some adjustments on both
the server and client sides.

cvs 18 / 121

Password authentication server Setting up the server
Password authentication client Using the client
Password authentication security What this method does and does not do

1.24 cvs.guide/Password authentication server

Setting up the server for password authentication
...

On the server side, the file ‘/etc/inetd.conf’ needs to be edited so
‘inetd’ knows to run the command ‘cvs pserver’ when it receives a
connection on the right port. By default, the port number is 2401; it
would be different if your client were compiled with ‘CVS_AUTH_PORT’
defined to something else, though.

If your ‘inetd’ allows raw port numbers in ‘/etc/inetd.conf’, then
the following (all on a single line in ‘inetd.conf’) should be
sufficient:

2401 stream tcp nowait root /usr/local/bin/cvs
cvs -b /usr/local/bin pserver

The ‘-b’ option specifies the directory which contains the RCS
binaries on the server.

If your ‘inetd’ wants a symbolic service name instead of a raw port
number, then put this in ‘/etc/services’:

cvspserver 2401/tcp

and put ‘cvspserver’ instead of ‘2401’ in ‘inetd.conf’.

Once the above is taken care of, restart your ‘inetd’, or do
whatever is necessary to force it to reread its initialization files.

Because the client stores and transmits passwords in cleartext
(almost--see See Password authentication security, for details), a
separate CVS password file may be used, so people don’t compromise their
regular passwords when they access the repository. This file is
‘$CVSROOT/CVSROOT/passwd’ (see Intro administrative files). Its format
is similar to ‘/etc/passwd’, except that it only has two fields,
username and password. For example:

bach:ULtgRLXo7NRxs
cwang:1sOp854gDF3DY

The password is encrypted according to the standard Unix ‘crypt()’
function, so it is possible to paste in passwords directly from regular
Unix ‘passwd’ files.

When authenticating a password, the server first checks for the user
in the CVS ‘passwd’ file. If it finds the user, it compares against
that password. If it does not find the user, or if the CVS ‘passwd’
file does not exist, then the server tries to match the password using

cvs 19 / 121

the system’s user-lookup routine. When using the CVS ‘passwd’ file,
the server runs under as the username specified in the the third
argument in the entry, or as the first argument if there is no third
argument (in this way CVS allows imaginary usernames provided the CVS
‘passwd’ file indicates corresponding valid system usernames). In any
case, CVS will have no privileges which the (valid) user would not have.

Right now, the only way to put a password in the CVS ‘passwd’ file
is to paste it there from somewhere else. Someday, there may be a ‘cvs
passwd’ command.

1.25 cvs.guide/Password authentication client

Using the client with password authentication
...

Before connecting to the server, the client must "log in" with the
command ‘cvs login’. Logging in verifies a password with the server,
and also records the password for later transactions with the server.
The ‘cvs login’ command needs to know the username, server hostname,
and full repository path, and it gets this information from the
repository argument or the ‘CVSROOT’ environment variable.

‘cvs login’ is interactive -- it prompts for a password:

cvs -d :pserver:bach@chainsaw.brickyard.com:/usr/local/cvsroot login
CVS password:

The password is checked with the server; if it is correct, the
‘login’ succeeds, else it fails, complaining that the password was
incorrect.

Once you have logged in, you can force CVS to connect directly to
the server and authenticate with the stored password:

cvs -d :pserver:bach@chainsaw.brickyard.com:/usr/local/cvsroot checkout foo

The ‘:pserver:’ is necessary because without it, CVS will assume it
should use ‘rsh’ to connect with the server (see Connecting via rsh).
(Once you have a working copy checked out and are running CVS commands
from within it, there is no longer any need to specify the repository
explicitly, because CVS records it in the working copy’s ‘CVS’
subdirectory.)

Passwords are stored by default in the file ‘$HOME/.cvspass’. Its
format is human-readable, but don’t edit it unless you know what you
are doing. The passwords are not stored in cleartext, but are
trivially encoded to protect them from "innocent" compromise (i.e.,
inadvertently being seen by a system administrator who happens to look
at that file).

The ‘CVS_PASSFILE’ environment variable overrides this default. If
you use this variable, make sure you set it *before* ‘cvs login’ is
run. If you were to set it after running ‘cvs login’, then later CVS

cvs 20 / 121

commands would be unable to look up the password for transmission to
the server.

The ‘CVS_PASSWORD’ environment variable overrides *all* stored
passwords. If it is set, CVS will use it for all password-authenticated
connections.

1.26 cvs.guide/Password authentication security

Security considerations with password authentication
..

The passwords are stored on the client side in a trivial encoding of
the cleartext, and transmitted in the same encoding. The encoding is
done only to prevent inadvertent password compromises (i.e., a system
administrator accidentally looking at the file), and will not prevent
even a naive attacker from gaining the password.

The separate CVS password file (see Password authentication server)
allows people to use a different password for repository access than
for login access. On the other hand, once a user has access to the
repository, she can execute programs on the server system through a
variety of means. Thus, repository access implies fairly broad system
access as well. It might be possible to modify CVS to prevent that,
but no one has done so as of this writing. Furthermore, there may be
other ways in which having access to CVS allows people to gain more
general access to the system; noone has done a careful audit.

In summary, anyone who gets the password gets repository access, and
some measure of general system access as well. The password is
available to anyone who can sniff network packets or read a protected
(i.e., user read-only) file. If you want real security, get Kerberos.

1.27 cvs.guide/Kerberos authenticated

Direct connection with kerberos

The main disadvantage of using rsh is that all the data needs to
pass through additional programs, so it may be slower. So if you have
kerberos installed you can connect via a direct TCP connection,
authenticating with kerberos (note that the data transmitted is *not*
encrypted by default; you must use the ‘-x’ global option to request
encryption).

To do this, CVS needs to be compiled with kerberos support; when
configuring CVS it tries to detect whether kerberos is present or you
can use the ‘--with-krb4’ flag to configure.

You need to edit ‘inetd.conf’ on the server machine to run ‘cvs

cvs 21 / 121

kserver’. The client uses port 1999 by default; if you want to use
another port specify it in the ‘CVS_CLIENT_PORT’ environment variable
on the client.

When you want to use CVS, get a ticket in the usual way (generally
‘kinit’); it must be a ticket which allows you to log into the server
machine. Then you are ready to go:

cvs -d :kserver:chainsaw.brickyard.com:/user/local/cvsroot checkout foo

Previous versions of CVS would fall back to a connection via rsh;
this version will not do so.

1.28 cvs.guide/Starting a new project

Starting a project with CVS

Since CVS 1.x is bad at renaming files and moving them between
directories, the first thing you do when you start a new project should
be to think through your file organization. It is not impossible--just
awkward--to rename or move files. See Moving files.

What to do next depends on the situation at hand.

Setting up the files Getting the files into the repository
Defining the module How to make a module of the files

1.29 cvs.guide/Setting up the files

Setting up the files
====================

The first step is to create the files inside the repository. This
can be done in a couple of different ways.

From files This method is useful with old projects
where files already exists.

From other version control systems Old projects where you want to
preserve history from another system.

From scratch Creating a directory tree from scratch.

1.30 cvs.guide/From files

cvs 22 / 121

Creating a directory tree from a number of files
--

When you begin using CVS, you will probably already have several
projects that can be put under CVS control. In these cases the easiest
way is to use the ‘import’ command. An example is probably the easiest
way to explain how to use it. If the files you want to install in CVS
reside in ‘WDIR’, and you want them to appear in the repository as
‘$CVSROOT/yoyodyne/RDIR’, you can do this:

$ cd WDIR
$ cvs import -m "Imported sources" yoyodyne/RDIR yoyo start

Unless you supply a log message with the ‘-m’ flag, CVS starts an
editor and prompts for a message. The string ‘yoyo’ is a "vendor tag",
and ‘start’ is a "release tag". They may fill no purpose in this
context, but since CVS requires them they must be present. See
Tracking sources, for more information about them.

You can now verify that it worked, and remove your original source
directory.

$ cd ..
$ mv DIR DIR.orig
$ cvs checkout yoyodyne/DIR # Explanation below
$ ls -R yoyodyne
$ rm -r DIR.orig

Erasing the original sources is a good idea, to make sure that you do
not accidentally edit them in DIR, bypassing CVS. Of course, it would
be wise to make sure that you have a backup of the sources before you
remove them.

The ‘checkout’ command can either take a module name as argument (as
it has done in all previous examples) or a path name relative to
‘$CVSROOT’, as it did in the example above.

It is a good idea to check that the permissions CVS sets on the
directories inside ‘$CVSROOT’ are reasonable, and that they belong to
the proper groups. See File permissions.

If some of the files you want to import are binary, you may want to
use the wrappers features to specify which files are binary and which
are not. See Wrappers.

1.31 cvs.guide/From other version control systems

Creating Files From Other Version Control Systems

If you have a project which you are maintaining with another version
control system, such as RCS, you may wish to put the files from that
project into CVS, and preserve the revision history of the files.

cvs 23 / 121

From RCS
If you have been using RCS, find the RCS files--usually a file
named ‘foo.c’ will have its RCS file in ‘RCS/foo.c,v’ (but it
could be other places; consult the RCS documentation for details).
Then create the appropriate directories in CVS if they do not
already exist. Then copy the files into the appropriate
directories in the CVS repository (the name in the repository must
be the name of the source file with ‘,v’ added; the files go
directly in the appopriate directory of the repository, not in an
‘RCS’ subdirectory). This is one of the few times when it is a
good idea to access the CVS repository directly, rather than using
CVS commands. Then you are ready to check out a new working
directory.

From another version control system
Many version control systems have the ability to export RCS files
in the standard format. If yours does, export the RCS files and
then follow the above instructions.

From SCCS
There is a script in the ‘contrib’ directory of the CVS source
distribution called ‘sccs2rcs’ which converts SCCS files to RCS
files. Note: you must run it on a machine which has both SCCS and
RCS installed, and like everything else in contrib it is
unsupported (your mileage may vary).

1.32 cvs.guide/From scratch

Creating a directory tree from scratch

For a new project, the easiest thing to do is probably to create an
empty directory structure, like this:

$ mkdir tc
$ mkdir tc/man
$ mkdir tc/testing

After that, you use the ‘import’ command to create the corresponding
(empty) directory structure inside the repository:

$ cd tc
$ cvs import -m "Created directory structure" yoyodyne/DIR yoyo start

Then, use ‘add’ to add files (and new directories) as they appear.

Check that the permissions CVS sets on the directories inside
‘$CVSROOT’ are reasonable.

cvs 24 / 121

1.33 cvs.guide/Defining the module

Defining the module
===================

The next step is to define the module in the ‘modules’ file. This
is not strictly necessary, but modules can be convenient in grouping
together related files and directories.

In simple cases these steps are sufficient to define a module.

1. Get a working copy of the modules file.

$ cvs checkout modules
$ cd modules

2. Edit the file and insert a line that defines the module. See
Intro administrative files, for an introduction. See modules, for
a full description of the modules file. You can use the following
line to define the module ‘tc’:

tc yoyodyne/tc

3. Commit your changes to the modules file.

$ cvs commit -m "Added the tc module." modules

4. Release the modules module.

$ cd ..
$ cvs release -d modules

1.34 cvs.guide/Multiple developers

Multiple developers

When more than one person works on a software project things often
get complicated. Often, two people try to edit the same file
simultaneously. Some other version control systems (including RCS and
SCCS) try to solve that particular problem by introducing "file
locking", so that only one person can edit each file at a time.
Unfortunately, file locking can be very counter-productive. If two
persons want to edit different parts of a file, there may be no reason
to prevent either of them from doing so.

CVS does not use file locking. Instead, it allows many people to
edit their own "working copy" of a file simultaneously. The first
person that commits his changes has no automatic way of knowing that
another has started to edit it. Others will get an error message when
they try to commit the file. They must then use CVS commands to bring
their working copy up to date with the repository revision. This
process is almost automatic, and explained in this chapter.

cvs 25 / 121

There are many ways to organize a team of developers. CVS does not
try to enforce a certain organization. It is a tool that can be used
in several ways. It is often useful to inform the group of commits you
have done. CVS has several ways of automating that process. See
Informing others. See Revision management, for more tips on how to use
CVS.

File status A file can be in several states
Updating a file Bringing a file up-to-date
Conflicts example An informative example
Informing others To cooperate you must inform
Concurrency Simultaneous repository access
Watches Mechanisms to track who is editing files

1.35 cvs.guide/File status

File status
===========

After you have checked out a file out from CVS, it is in one of
these four states:

Up-to-date
The file is identical with the latest revision in the repository.

Locally modified
You have edited the file, and not yet committed your changes.

Needing update
Someone else has committed a newer revision to the repository.

Needing merge
Someone else have committed a newer revision to the repository,
and you have also made modifications to the file.

You can use the ‘status’ command to find out the status of a given
file. See status.

1.36 cvs.guide/Updating a file

Bringing a file up to date
==========================

When you want to update or merge a file, use the ‘update’ command.
For files that are not up to date this is roughly equivalent to a
‘checkout’ command: the newest revision of the file is extracted from
the repository and put in your working copy of the module.

cvs 26 / 121

Your modifications to a file are never lost when you use ‘update’.
If no newer revision exists, running ‘update’ has no effect. If you
have edited the file, and a newer revision is available, CVS will merge
all changes into your working copy.

For instance, imagine that you checked out revision 1.4 and started
editing it. In the meantime someone else committed revision 1.5, and
shortly after that revision 1.6. If you run ‘update’ on the file now,
CVS will incorporate all changes between revision 1.4 and 1.6 into your
file.

If any of the changes between 1.4 and 1.6 were made too close to any
of the changes you have made, an "overlap" occurs. In such cases a
warning is printed, and the resulting file includes both versions of
the lines that overlap, delimited by special markers. See update, for
a complete description of the ‘update’ command.

1.37 cvs.guide/Conflicts example

Conflicts example
=================

Suppose revision 1.4 of ‘driver.c’ contains this:

#include <stdio.h>

void main()
{

parse();
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? 0 : 1);

}

Revision 1.6 of ‘driver.c’ contains this:

#include <stdio.h>

int main(int argc,
char **argv)

{
parse();
if (argc != 1)
{

fprintf(stderr, "tc: No args expected.\n");
exit(1);

}
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
exit(!!nerr);

cvs 27 / 121

}

Your working copy of ‘driver.c’, based on revision 1.4, contains this
before you run ‘cvs update’:

#include <stdlib.h>
#include <stdio.h>

void main()
{

init_scanner();
parse();
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You run ‘cvs update’:

$ cvs update driver.c
RCS file: /usr/local/cvsroot/yoyodyne/tc/driver.c,v
retrieving revision 1.4
retrieving revision 1.6
Merging differences between 1.4 and 1.6 into driver.c
rcsmerge warning: overlaps during merge
cvs update: conflicts found in driver.c
C driver.c

CVS tells you that there were some conflicts. Your original working
file is saved unmodified in ‘.#driver.c.1.4’. The new version of
‘driver.c’ contains this:

#include <stdlib.h>
#include <stdio.h>

int main(int argc,
char **argv)

{
init_scanner();
parse();
if (argc != 1)
{

fprintf(stderr, "tc: No args expected.\n");
exit(1);

}
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
<<<<<<< driver.c

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
=======

exit(!!nerr);
>>>>>>> 1.6

}

cvs 28 / 121

Note how all non-overlapping modifications are incorporated in your
working copy, and that the overlapping section is clearly marked with
‘<<<<<<<’, ‘=======’ and ‘>>>>>>>’.

You resolve the conflict by editing the file, removing the markers
and the erroneous line. Suppose you end up with this file:

#include <stdlib.h>
#include <stdio.h>

int main(int argc,
char **argv)

{
init_scanner();
parse();
if (argc != 1)
{

fprintf(stderr, "tc: No args expected.\n");
exit(1);

}
if (nerr == 0)

gencode();
else

fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You can now go ahead and commit this as revision 1.7.

$ cvs commit -m "Initialize scanner. Use symbolic exit values." driver.c
Checking in driver.c;
/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.c
new revision: 1.7; previous revision: 1.6
done

If you use release 1.04 or later of pcl-cvs (a GNU Emacs front-end
for CVS) you can use an Emacs package called emerge to help you resolve
conflicts. See the documentation for pcl-cvs.

1.38 cvs.guide/Informing others

Informing others about commits
==============================

It is often useful to inform others when you commit a new revision
of a file. The ‘-i’ option of the ‘modules’ file, or the ‘loginfo’
file, can be used to automate this process. See modules. See loginfo.
You can use these features of CVS to, for instance, instruct CVS to
mail a message to all developers, or post a message to a local
newsgroup.

cvs 29 / 121

1.39 cvs.guide/Concurrency

Several developers simultaneously attempting to run CVS
===

If several developers try to run CVS at the same time, one may get
the following message:

[11:43:23] waiting for bach’s lock in /usr/local/cvsroot/foo

CVS will try again every 30 seconds, and either continue with the
operation or print the message again, if it still needs to wait. If a
lock seems to stick around for an undue amount of time, find the person
holding the lock and ask them about the cvs command they are running.
If they aren’t running a cvs command, look for and remove files
starting with ‘#cvs.tfl’, ‘#cvs.rfl’, or ‘#cvs.wfl’ from the repository.

Note that these locks are to protect CVS’s internal data structures
and have no relationship to the word "lock" in the sense used by RCS-a
way to prevent other developers from working on a particular file.

Any number of people can be reading from a given repository at a
time; only when someone is writing do the locks prevent other people
from reading or writing.

One might hope for the following property

If someone commits some changes in one cvs command,
then an update by someone else will either get all the
changes, or none of them.

but CVS does *not* have this property. For example, given the files

a/one.c
a/two.c
b/three.c
b/four.c

if someone runs

cvs ci a/two.c b/three.c

and someone else runs ‘cvs update’ at the same time, the person
running ‘update’ might get only the change to ‘b/three.c’ and not the
change to ‘a/two.c’.

1.40 cvs.guide/Watches

Mechanisms to track who is editing files
==

For many groups, use of CVS in its default mode is perfectly
satisfactory. Users may sometimes go to check in a modification only

cvs 30 / 121

to find that another modification has intervened, but they deal with it
and proceed with their check in. Other groups prefer to be able to
know who is editing what files, so that if two people try to edit the
same file they can choose to talk about who is doing what when rather
than be surprised at check in time. The features in this section allow
such coordination, while retaining the ability of two developers to
edit the same file at the same time.

For maximum benefit developers should use ‘cvs edit’ (not ‘chmod’)
to make files read-write to edit them, and ‘cvs release’ (not ‘rm’) to
discard a working directory which is no longer in use, but CVS is not
able to enforce this behavior.

Setting a watch Telling CVS to watch certain files
Getting Notified Telling CVS to notify you
Editing files How to edit a file which is being watched
Watch information Information about who is watching and editing
Watches Compatibility Watches interact poorly with CVS 1.6 or earlier

1.41 cvs.guide/Setting a watch

Telling CVS to watch certain files

To enable the watch features, you first specify that certain files
are to be watched.

- Command: cvs watch on [‘-l’] FILES ...
Specify that developers should run ‘cvs edit’ before editing
FILES. CVS will create working copies of FILES read-only, to
remind developers to run the ‘cvs edit’ command before working on
them.

If FILES includes the name of a directory, CVS arranges to watch
all files added to the corresponding repository directory, and
sets a default for files added in the future; this allows the user
to set notification policies on a per-directory basis. The
contents of the directory are processed recursively, unless the
‘-l’ option is given.

If FILES is omitted, it defaults to the current directory.

- Command: cvs watch off [‘-l’] FILES ...
Do not provide notification about work on FILES. CVS will create
working copies of FILES read-write.

The FILES and ‘-l’ arguments are processed as for ‘cvs watch on’.

cvs 31 / 121

1.42 cvs.guide/Getting Notified

Telling CVS to notify you

You can tell CVS that you want to receive notifications about
various actions taken on a file. You can do this without using ‘cvs
watch on’ for the file, but generally you will want to use ‘cvs watch
on’, so that developers use the ‘cvs edit’ command.

- Command: cvs watch add [‘-a’ ACTION] [‘-l’] FILES ...
Add the current user to the list of people to receive notification
of work done on FILES.

The ‘-a’ option specifies what kinds of events CVS should notify
the user about. ACTION is one of the following:

‘edit’
Another user has applied the ‘cvs edit’ command (described
below) to a file.

‘unedit’
Another user has applied the ‘cvs unedit’ command (described
below) or the ‘cvs release’ command to a file, or has deleted
the file and allowed ‘cvs update’ to recreate it.

‘commit’
Another user has committed changes to a file.

‘all’
All of the above.

‘none’
None of the above. (This is useful with ‘cvs edit’,
described below.)

The ‘-a’ option may appear more than once, or not at all. If
omitted, the action defaults to ‘all’.

The FILES and ‘-l’ option are processed as for the ‘cvs watch’
commands.

- Command: cvs watch remove [‘-a’ ACTION] [‘-l’] FILES ...
Remove a notification request established using ‘cvs watch add’;
the arguments are the same. If the ‘-a’ option is present, only
watches for the specified actions are removed.

When the conditions exist for notification, CVS calls the ‘notify’
administrative file. Edit ‘notify’ as one edits the other
administrative files (see Intro administrative files). This file
follows the usual conventions for administrative files (see syntax),
where each line is a regular expression followed by a command to
execute. The command should contain a single ocurrence of ‘%s’ which
will be replaced by the user to notify; the rest of the information

cvs 32 / 121

regarding the notification will be supplied to the command on standard
input. The standard thing to put in the ‘notify’ file is the single
line:

ALL mail %s -s \"CVS notification\"

This causes users to be notified by electronic mail.

Note that if you set this up in the straightforward way, users
receive notifications on the server machine. One could of course write
a ‘notify’ script which directed notifications elsewhere, but to make
this easy, CVS allows you to associate a notification address for each
user. To do so create a file ‘users’ in ‘CVSROOT’ with a line for each
user in the format USER:VALUE. Then instead of passing the name of the
user to be notified to ‘notify’, CVS will pass the VALUE (normally an
email address on some other machine).

1.43 cvs.guide/Editing files

How to edit a file which is being watched

Since a file which is being watched is checked out read-only, you
cannot simply edit it. To make it read-write, and inform others that
you are planning to edit it, use the ‘cvs edit’ command.

- Command: cvs edit [OPTIONS] FILES ...
Prepare to edit the working files FILES. CVS makes the FILES
read-write, and notifies users who have requested ‘edit’
notification for any of FILES.

The ‘cvs edit’ command accepts the same OPTIONS as the ‘cvs watch
add’ command, and establishes a temporary watch for the user on
FILES; CVS will remove the watch when FILES are ‘unedit’ed or
‘commit’ted. If the user does not wish to receive notifications,
she should specify ‘-a none’.

The FILES and ‘-l’ option are processed as for the ‘cvs watch’
commands.

Normally when you are done with a set of changes, you use the ‘cvs
commit’ command, which checks in your changes and returns the watched
files to their usual read-only state. But if you instead decide to
abandon your changes, or not to make any changes, you can use the ‘cvs
unedit’ command.

- Command: cvs unedit [‘-l’] FILES ...
Abandon work on the working files FILES, and revert them to the
repository versions on which they are based. CVS makes those
FILES read-only for which users have requested notification using
‘cvs watch on’. CVS notifies users who have requested ‘unedit’
notification for any of FILES.

cvs 33 / 121

The FILES and ‘-l’ option are processed as for the ‘cvs watch’
commands.

When using client/server CVS, you can use the ‘cvs edit’ and ‘cvs
unedit’ commands even if CVS is unable to succesfully communicate with
the server; the notifications will be sent upon the next successful CVS
command.

1.44 cvs.guide/Watch information

Information about who is watching and editing

- Command: cvs watchers [‘-l’] FILES ...
List the users currently watching changes to FILES. The report
includes the files being watched, and the mail address of each
watcher.

The FILES and ‘-l’ arguments are processed as for the ‘cvs watch’
commands.

- Command: cvs editors [‘-l’] FILES ...
List the users currently working on FILES. The report includes
the mail address of each user, the time when the user began
working with the file, and the host and path of the working
directory containing the file.

The FILES and ‘-l’ arguments are processed as for the ‘cvs watch’
commands.

1.45 cvs.guide/Watches Compatibility

Using watches with old versions of CVS

If you use the watch features on a repository, it creates ‘CVS’
directories in the repository and stores the information about watches
in that directory. If you attempt to use CVS 1.6 or earlier with the
repository, you get an error message such as

cvs update: cannot open CVS/Entries for reading: No such file or directory

and your operation will likely be aborted. To use the watch
features, you must upgrade all copies of CVS which use that repository
in local or server mode. If you cannot upgrade, use the ‘watch off’ and
‘watch remove’ commands to remove all watches, and that will restore
the repository to a state which CVS 1.6 can cope with.

cvs 34 / 121

1.46 cvs.guide/Branches

Branches

So far, all revisions shown in this manual have been on the "main
trunk" of the revision tree, i.e., all revision numbers have been of
the form X.Y. One useful feature, especially when maintaining several
releases of a software product at once, is the ability to make branches
on the revision tree. "Tags", symbolic names for revisions, will also
be introduced in this chapter.

Tags Tags-Symbolic revisions
Branches motivation What branches are good for
Creating a branch Creating a branch
Sticky tags Sticky tags

1.47 cvs.guide/Tags

Tags-Symbolic revisions
=======================

The revision numbers live a life of their own. They need not have
anything at all to do with the release numbers of your software
product. Depending on how you use CVS the revision numbers might
change several times between two releases. As an example, some of the
source files that make up RCS 5.6 have the following revision numbers:

ci.c 5.21
co.c 5.9
ident.c 5.3
rcs.c 5.12
rcsbase.h 5.11
rcsdiff.c 5.10
rcsedit.c 5.11
rcsfcmp.c 5.9
rcsgen.c 5.10
rcslex.c 5.11
rcsmap.c 5.2
rcsutil.c 5.10

You can use the ‘tag’ command to give a symbolic name to a certain
revision of a file. You can use the ‘-v’ flag to the ‘status’ command
to see all tags that a file has, and which revision numbers they
represent. Tag names can contain uppercase and lowercase letters,
digits, ‘-’, and ‘_’. The two tag names ‘BASE’ and ‘HEAD’ are reserved
for use by CVS. It is expected that future names which are special to
CVS will contain characters such as ‘%’ or ‘=’, rather than being named

cvs 35 / 121

analogously to ‘BASE’ and ‘HEAD’, to avoid conflicts with actual tag
names.

The following example shows how you can add a tag to a file. The
commands must be issued inside your working copy of the module. That
is, you should issue the command in the directory where ‘backend.c’
resides.

$ cvs tag release-0-4 backend.c
T backend.c
$ cvs status -v backend.c
===
File: backend.c Status: Up-to-date

Version: 1.4 Tue Dec 1 14:39:01 1992
RCS Version: 1.4 /usr/local/cvsroot/yoyodyne/tc/backend.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:
release-0-4 (revision: 1.4)

There is seldom reason to tag a file in isolation. A more common
use is to tag all the files that constitute a module with the same tag
at strategic points in the development life-cycle, such as when a
release is made.

$ cvs tag release-1-0 .
cvs tag: Tagging .
T Makefile
T backend.c
T driver.c
T frontend.c
T parser.c

(When you give CVS a directory as argument, it generally applies the
operation to all the files in that directory, and (recursively), to any
subdirectories that it may contain. See Recursive behavior.)

The ‘checkout’ command has a flag, ‘-r’, that lets you check out a
certain revision of a module. This flag makes it easy to retrieve the
sources that make up release 1.0 of the module ‘tc’ at any time in the
future:

$ cvs checkout -r release-1-0 tc

This is useful, for instance, if someone claims that there is a bug in
that release, but you cannot find the bug in the current working copy.

You can also check out a module as it was at any given date. See
checkout options.

When you tag more than one file with the same tag you can think
about the tag as "a curve drawn through a matrix of filename vs.
revision number." Say we have 5 files with the following revisions:

cvs 36 / 121

file1 file2 file3 file4 file5

1.1 1.1 1.1 1.1 /--1.1* <-*- TAG
1.2*- 1.2 1.2 -1.2*-
1.3 \- 1.3*- 1.3 / 1.3
1.4 \ 1.4 / 1.4

\-1.5*- 1.5
1.6

At some time in the past, the ‘*’ versions were tagged. You can
think of the tag as a handle attached to the curve drawn through the
tagged revisions. When you pull on the handle, you get all the tagged
revisions. Another way to look at it is that you "sight" through a set
of revisions that is "flat" along the tagged revisions, like this:

file1 file2 file3 file4 file5

1.1
1.2

1.1 1.3 _
1.1 1.2 1.4 1.1 /
1.2*----1.3*----1.5*----1.2*----1.1 (--- <--- Look here
1.3 1.6 1.3 _
1.4 1.4

1.5

1.48 cvs.guide/Branches motivation

What branches are good for
==========================

Suppose that release 1.0 of tc has been made. You are continuing to
develop tc, planning to create release 1.1 in a couple of months.
After a while your customers start to complain about a fatal bug. You
check out release 1.0 (see Tags) and find the bug (which turns out to
have a trivial fix). However, the current revision of the sources are
in a state of flux and are not expected to be stable for at least
another month. There is no way to make a bugfix release based on the
newest sources.

The thing to do in a situation like this is to create a "branch" on
the revision trees for all the files that make up release 1.0 of tc.
You can then make modifications to the branch without disturbing the
main trunk. When the modifications are finished you can select to
either incorporate them on the main trunk, or leave them on the branch.

1.49 cvs.guide/Creating a branch

Creating a branch
=================

cvs 37 / 121

The ‘rtag’ command can be used to create a branch. The ‘rtag’
command is much like ‘tag’, but it does not require that you have a
working copy of the module. See rtag. (You can also use the ‘tag’
command; see tag).

$ cvs rtag -b -r release-1-0 release-1-0-patches tc

The ‘-b’ flag makes ‘rtag’ create a branch (rather than just a
symbolic revision name). ‘-r release-1-0’ says that this branch should
be rooted at the node (in the revision tree) that corresponds to the tag
‘release-1-0’. Note that the numeric revision number that matches
‘release-1-0’ will probably be different from file to file. The name
of the new branch is ‘release-1-0-patches’, and the module affected is
‘tc’.

To fix the problem in release 1.0, you need a working copy of the
branch you just created.

$ cvs checkout -r release-1-0-patches tc
$ cvs status -v driver.c backend.c
===
File: driver.c Status: Up-to-date

Version: 1.7 Sat Dec 5 18:25:54 1992
RCS Version: 1.7 /usr/local/cvsroot/yoyodyne/tc/driver.c,v
Sticky Tag: release-1-0-patches (branch: 1.7.2)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:
release-1-0-patches (branch: 1.7.2)
release-1-0 (revision: 1.7)

===
File: backend.c Status: Up-to-date

Version: 1.4 Tue Dec 1 14:39:01 1992
RCS Version: 1.4 /usr/local/cvsroot/yoyodyne/tc/backend.c,v
Sticky Tag: release-1-0-patches (branch: 1.4.2)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:
release-1-0-patches (branch: 1.4.2)
release-1-0 (revision: 1.4)
release-0-4 (revision: 1.4)

As the output from the ‘status’ command shows the branch number is
created by adding a digit at the tail of the revision number it is
based on. (If ‘release-1-0’ corresponds to revision 1.4, the branch’s
revision number will be 1.4.2. For obscure reasons CVS always gives
branches even numbers, starting at 2. See Revision numbers.).

cvs 38 / 121

1.50 cvs.guide/Sticky tags

Sticky tags
===========

The ‘-r release-1-0-patches’ flag that was given to ‘checkout’ in
the previous example is "sticky", that is, it will apply to subsequent
commands in this directory. If you commit any modifications, they are
committed on the branch. You can later merge the modifications into
the main trunk. See Merging.

You can use the ‘status’ command to see what sticky tags or dates
are set:

$ vi driver.c # Fix the bugs
$ cvs commit -m "Fixed initialization bug" driver.c
Checking in driver.c;
/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.c
new revision: 1.7.2.1; previous revision: 1.7
done
$ cvs status -v driver.c
===
File: driver.c Status: Up-to-date

Version: 1.7.2.1 Sat Dec 5 19:35:03 1992
RCS Version: 1.7.2.1 /usr/local/cvsroot/yoyodyne/tc/driver.c,v
Sticky Tag: release-1-0-patches (branch: 1.7.2)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:
release-1-0-patches (branch: 1.7.2)
release-1-0 (revision: 1.7)

The sticky tags will remain on your working files until you delete
them with ‘cvs update -A’. The ‘-A’ option retrieves the version of
the file from the head of the trunk, and forgets any sticky tags,
dates, or options.

Sticky tags are not just for branches. For example, suppose that
you want to avoid updating your working directory, to isolate yourself
from possibly destabilizing changes other people are making. You can,
of course, just refrain from running ‘cvs update’. But if you want to
avoid updating only a portion of a larger tree, then sticky tags can
help. If you check out a certain revision (such as 1.4) it will become
sticky. Subsequent ‘cvs update’ will not retrieve the latest revision
until you reset the tag with ‘cvs update -A’. Likewise, use of the
‘-D’ option to ‘update’ or ‘checkout’ sets a "sticky date", which,
similarly, causes that date to be used for future retrievals.

Many times you will want to retrieve an old version of a file
without setting a sticky tag. The way to do that is with the ‘-p’
option to ‘checkout’ or ‘update’, which sends the contents of the file
to standard output. For example, suppose you have a file named ‘file1’
which existed as revision 1.1, and you then removed it (thus adding a
dead revision 1.2). Now suppose you want to add it again, with the same

cvs 39 / 121

contents it had previously. Here is how to do it:

$ cvs update -p -r 1.1 file1 >file1
===
Checking out file1
RCS: /tmp/cvs-sanity/cvsroot/first-dir/Attic/file1,v
VERS: 1.1

$ cvs add file1
cvs add: re-adding file file1 (in place of dead revision 1.2)
cvs add: use ’cvs commit’ to add this file permanently
$ cvs commit -m test
Checking in file1;
/tmp/cvs-sanity/cvsroot/first-dir/file1,v <-- file1
new revision: 1.3; previous revision: 1.2
done
$

1.51 cvs.guide/Merging

Merging

You can include the changes made between any two revisions into your
working copy, by "merging". You can then commit that revision, and
thus effectively copy the changes onto another branch.

Merging a branch Merging an entire branch
Merging more than once Merging from a branch several times
Merging two revisions Merging differences between two revisions

1.52 cvs.guide/Merging a branch

Merging an entire branch
========================

You can merge changes made on a branch into your working copy by
giving the ‘-j BRANCH’ flag to the ‘update’ command. With one ‘-j
BRANCH’ option it merges the changes made between the point where the
branch forked and newest revision on that branch (into your working
copy).

The ‘-j’ stands for "join".

Consider this revision tree:

+-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 ! <- The main trunk
+-----+ +-----+ +-----+ +-----+

cvs 40 / 121

!
!
! +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !
+---------+ +---------+

The branch 1.2.2 has been given the tag (symbolic name) ‘R1fix’. The
following example assumes that the module ‘mod’ contains only one file,
‘m.c’.

$ cvs checkout mod # Retrieve the latest revision, 1.4

$ cvs update -j R1fix m.c # Merge all changes made on the branch,
i.e. the changes between revision 1.2
and 1.2.2.2, into your working copy
of the file.

$ cvs commit -m "Included R1fix" # Create revision 1.5.

A conflict can result from a merge operation. If that happens, you
should resolve it before committing the new revision. See
Conflicts example.

The ‘checkout’ command also supports the ‘-j BRANCH’ flag. The same
effect as above could be achieved with this:

$ cvs checkout -j R1fix mod
$ cvs commit -m "Included R1fix"

1.53 cvs.guide/Merging more than once

Merging from a branch several times
===================================

Continuing our example, the revision tree now looks like this:

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk
+-----+ +-----+ +-----+ +-----+ +-----+

! *
! *
! +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !
+---------+ +---------+

where the starred line represents the merge from the ‘R1fix’ branch
to the main trunk, as just discussed.

Now suppose that development continues on the ‘R1fix’ branch:

+-----+ +-----+ +-----+ +-----+ +-----+
! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk
+-----+ +-----+ +-----+ +-----+ +-----+

! *

cvs 41 / 121

! *
! +---------+ +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !
+---------+ +---------+ +---------+

and then you want to merge those new changes onto the main trunk.
If you just use the ‘cvs update -j R1fix m.c’ command again, CVS will
attempt to merge again the changes which you have already merged, which
can have undesirable side effects.

So instead you need to specify that you only want to merge the
changes on the branch which have not yet been merged into the trunk.
To do that you specify two ‘-j’ options, and CVS merges the changes from
the first revision to the second revision. For example, in this case
the simplest way would be

cvs update -j 1.2.2.2 -j R1fix m.c # Merge changes from 1.2.2.2 to the
head of the R1fix branch

The problem with this is that you need to specify the 1.2.2.2
revision manually. A slightly better approach might be to use the date
the last merge was done:

cvs update -j R1fix:yesterday -j R1fix m.c

Better yet, tag the R1fix branch after every merge into the trunk,
and then use that tag for subsequent merges:

cvs update -j merged_from_R1fix_to_trunk -j R1fix m.c

1.54 cvs.guide/Merging two revisions

Merging differences between any two revisions
===

With two ‘-j REVISION’ flags, the ‘update’ (and ‘checkout’) command
can merge the differences between any two revisions into your working
file.

$ cvs update -j 1.5 -j 1.3 backend.c

will *remove* all changes made between revision 1.3 and 1.5. Note the
order of the revisions!

If you try to use this option when operating on multiple files,
remember that the numeric revisions will probably be very different
between the various files that make up a module. You almost always use
symbolic tags rather than revision numbers when operating on multiple
files.

cvs 42 / 121

1.55 cvs.guide/Recursive behavior

Recursive behavior

Almost all of the subcommands of CVS work recursively when you
specify a directory as an argument. For instance, consider this
directory structure:

‘$HOME’
|
+--tc
| |

+--CVS
| (internal CVS files)
+--Makefile
+--backend.c
+--driver.c
+--frontend.c
+--parser.c
+--man
| |
| +--CVS
| | (internal CVS files)
| +--tc.1
|
+--testing

|
+--CVS
| (internal CVS files)
+--testpgm.t
+--test2.t

If ‘tc’ is the current working directory, the following is true:

* ‘cvs update testing’ is equivalent to ‘cvs update
testing/testpgm.t testing/test2.t’

* ‘cvs update testing man’ updates all files in the subdirectories

* ‘cvs update .’ or just ‘cvs update’ updates all files in the ‘tc’
module

If no arguments are given to ‘update’ it will update all files in
the current working directory and all its subdirectories. In other
words, ‘.’ is a default argument to ‘update’. This is also true for
most of the CVS subcommands, not only the ‘update’ command.

The recursive behavior of the CVS subcommands can be turned off with
the ‘-l’ option.

$ cvs update -l # Don’t update files in subdirectories

cvs 43 / 121

1.56 cvs.guide/Adding files

Adding files to a module

To add a new file to a module, follow these steps.

* You must have a working copy of the module. See
Getting the source.

* Create the new file inside your working copy of the module.

* Use ‘cvs add FILENAME’ to tell CVS that you want to version
control the file.

* Use ‘cvs commit FILENAME’ to actually check in the file into the
repository. Other developers cannot see the file until you
perform this step.

* If the file contains binary data it might be necessary to change
the default keyword substitution. See Keyword substitution. See
admin examples.

You can also use the ‘add’ command to add a new directory inside a
module.

Unlike most other commands, the ‘add’ command is not recursive. You
cannot even type ‘cvs add foo/bar’! Instead, you have to

$ cd foo
$ cvs add bar

See add, for a more complete description of the ‘add’ command.

1.57 cvs.guide/Removing files

Removing files from a module

Modules change. New files are added, and old files disappear.
Still, you want to be able to retrieve an exact copy of old releases of
the module.

Here is what you can do to remove a file from a module, but remain
able to retrieve old revisions:

* Make sure that you have not made any uncommitted modifications to
the file. See Viewing differences, for one way to do that. You
can also use the ‘status’ or ‘update’ command. If you remove the
file without committing your changes, you will of course not be
able to retrieve the file as it was immediately before you deleted
it.

cvs 44 / 121

* Remove the file from your working copy of the module. You can for
instance use ‘rm’.

* Use ‘cvs remove FILENAME’ to tell CVS that you really want to
delete the file.

* Use ‘cvs commit FILENAME’ to actually perform the removal of the
file from the repository.

When you commit the removal of the file, CVS records the fact that
the file no longer exists. It is possible for a file to exist on only
some branches and not on others, or to re-add another file with the same
name later. CVS will correctly create or not create the file, based on
the ‘-r’ and ‘-D’ options specified to ‘checkout’ or ‘update’.

- Command: cvs remove [‘-lR’] FILES ...
Schedule file(s) to be removed from the repository (files which
have not already been removed from the working directory are not
processed). This command does not actually remove the file from
the repository until you commit the removal. The ‘-R’ option (the
default) specifies that it will recurse into subdirectories; ‘-l’
specifies that it will not.

Here is an example of removing several files:

$ cd test
$ rm ?.c
$ cvs remove
cvs remove: Removing .
cvs remove: scheduling a.c for removal
cvs remove: scheduling b.c for removal
cvs remove: use ’cvs commit’ to remove these files permanently
$ cvs ci -m "Removed unneeded files"
cvs commit: Examining .
cvs commit: Committing .

If you change your mind you can easily resurrect the file before you
commit it, using the ‘add’ command.

$ ls
CVS ja.h oj.c
$ rm oj.c
$ cvs remove oj.c
cvs remove: scheduling oj.c for removal
cvs remove: use ’cvs commit’ to remove this file permanently
$ cvs add oj.c
U oj.c
cvs add: oj.c, version 1.1.1.1, resurrected

If you realize your mistake before you run the ‘remove’ command you
can use ‘update’ to resurrect the file:

$ rm oj.c
$ cvs update oj.c
cvs update: warning: oj.c was lost
U oj.c

cvs 45 / 121

1.58 cvs.guide/Tracking sources

Tracking third-party sources

If you modify a program to better fit your site, you probably want
to include your modifications when the next release of the program
arrives. CVS can help you with this task.

In the terminology used in CVS, the supplier of the program is
called a "vendor". The unmodified distribution from the vendor is
checked in on its own branch, the "vendor branch". CVS reserves branch
1.1.1 for this use.

When you modify the source and commit it, your revision will end up
on the main trunk. When a new release is made by the vendor, you
commit it on the vendor branch and copy the modifications onto the main
trunk.

Use the ‘import’ command to create and update the vendor branch.
After a successful ‘import’ the vendor branch is made the ‘head’
revision, so anyone that checks out a copy of the file gets that
revision. When a local modification is committed it is placed on the
main trunk, and made the ‘head’ revision.

First import Importing a module for the first time
Update imports Updating a module with the import command
Binary files in imports Binary files require special handling

1.59 cvs.guide/First import

Importing a module for the first time
=====================================

Use the ‘import’ command to check in the sources for the first time.
When you use the ‘import’ command to track third-party sources, the
"vendor tag" and "release tags" are useful. The "vendor tag" is a
symbolic name for the branch (which is always 1.1.1, unless you use the
‘-b BRANCH’ flag--See import options.). The "release tags" are
symbolic names for a particular release, such as ‘FSF_0_04’.

Suppose you use ‘wdiff’ (a variant of ‘diff’ that ignores changes
that only involve whitespace), and are going to make private
modifications that you want to be able to use even when new releases
are made in the future. You start by importing the source to your
repository:

$ tar xfz wdiff-0.04.tar.gz

cvs 46 / 121

$ cd wdiff-0.04
$ cvs import -m "Import of FSF v. 0.04" fsf/wdiff FSF_DIST WDIFF_0_04

The vendor tag is named ‘FSF_DIST’ in the above example, and the
only release tag assigned is ‘WDIFF_0_04’.

1.60 cvs.guide/Update imports

Updating a module with the import command
===

When a new release of the source arrives, you import it into the
repository with the same ‘import’ command that you used to set up the
repository in the first place. The only difference is that you specify
a different release tag this time.

$ tar xfz wdiff-0.05.tar.gz
$ cd wdiff-0.05
$ cvs import -m "Import of FSF v. 0.05" fsf/wdiff FSF_DIST WDIFF_0_05

For files that have not been modified locally, the newly created
revision becomes the head revision. If you have made local changes,
‘import’ will warn you that you must merge the changes into the main
trunk, and tell you to use ‘checkout -j’ to do so.

$ cvs checkout -jFSF_DIST:yesterday -jFSF_DIST wdiff

The above command will check out the latest revision of ‘wdiff’,
merging the changes made on the vendor branch ‘FSF_DIST’ since
yesterday into the working copy. If any conflicts arise during the
merge they should be resolved in the normal way (see
Conflicts example). Then, the modified files may be committed.

Using a date, as suggested above, assumes that you do not import
more than one release of a product per day. If you do, you can always
use something like this instead:

$ cvs checkout -jWDIFF_0_04 -jWDIFF_0_05 wdiff

In this case, the two above commands are equivalent.

1.61 cvs.guide/Binary files in imports

How to handle binary files with cvs import
==

Use the ‘-k’ wrapper option to tell import which files are binary.
See Wrappers.

cvs 47 / 121

1.62 cvs.guide/Moving files

Moving and renaming files

Moving files to a different directory or renaming them is not
difficult, but some of the ways in which this works may be non-obvious.
(Moving or renaming a directory is even harder. See
Moving directories.).

The examples below assume that the file OLD is renamed to NEW.

Outside The normal way to Rename
Inside A tricky, alternative way
Rename by copying Another tricky, alternative way

1.63 cvs.guide/Outside

The Normal way to Rename
========================

The normal way to move a file is to copy OLD to NEW, and then issue
the normal CVS commands to remove OLD from the repository, and add NEW
to it. (Both OLD and NEW could contain relative paths, for example
‘foo/bar.c’).

$ mv OLD NEW
$ cvs remove OLD
$ cvs add NEW
$ cvs commit -m "Renamed OLD to NEW" OLD NEW

This is the simplest way to move a file, it is not error-prone, and
it preserves the history of what was done. Note that to access the
history of the file you must specify the old or the new name, depending
on what portion of the history you are accessing. For example, ‘cvs
log OLD’ will give the log up until the time of the rename.

When NEW is committed its revision numbers will start at 1.0 again,
so if that bothers you, use the ‘-r rev’ option to commit (see
commit options)

1.64 cvs.guide/Inside

Moving the history file
=======================

This method is more dangerous, since it involves moving files inside
the repository. Read this entire section before trying it out!

cvs 48 / 121

$ cd $CVSROOT/MODULE
$ mv OLD,v NEW,v

Advantages:

* The log of changes is maintained intact.

* The revision numbers are not affected.

Disadvantages:

* Old releases of the module cannot easily be fetched from the
repository. (The file will show up as NEW even in revisions from
the time before it was renamed).

* There is no log information of when the file was renamed.

* Nasty things might happen if someone accesses the history file
while you are moving it. Make sure no one else runs any of the CVS
commands while you move it.

1.65 cvs.guide/Rename by copying

Copying the history file
========================

This way also involves direct modifications to the repository. It
is safe, but not without drawbacks.

Copy the RCS file inside the repository
$ cd $CVSROOT/MODULE
$ cp OLD,v NEW,v
Remove the old file
$ cd ~/MODULE
$ rm OLD
$ cvs remove OLD
$ cvs commit OLD
Remove all tags from NEW
$ cvs update NEW
$ cvs log NEW # Remember the tag names
$ cvs tag -d TAG1
$ cvs tag -d TAG2
...

By removing the tags you will be able to check out old revisions of
the module.

Advantages:

* Checking out old revisions works correctly, as long as you use
‘-rTAG’ and not ‘-DDATE’ to retrieve the revisions.

* The log of changes is maintained intact.

cvs 49 / 121

* The revision numbers are not affected.

Disadvantages:

* You cannot easily see the history of the file across the rename.

* Unless you use the ‘-r rev’ (see commit options) flag when NEW is
committed its revision numbers will start at 1.0 again.

1.66 cvs.guide/Moving directories

Moving and renaming directories

If you want to be able to retrieve old versions of the module, you
must move each file in the directory with the CVS commands. See
Outside. The old, empty directory will remain inside the repository,
but it will not appear in your workspace when you check out the module
in the future.

If you really want to rename or delete a directory, you can do it
like this:

1. Inform everyone who has a copy of the module that the directory
will be renamed. They should commit all their changes, and remove
their working copies of the module, before you take the steps
below.

2. Rename the directory inside the repository.

$ cd $CVSROOT/MODULE
$ mv OLD-DIR NEW-DIR

3. Fix the CVS administrative files, if necessary (for instance if
you renamed an entire module).

4. Tell everyone that they can check out the module and continue
working.

If someone had a working copy of the module the CVS commands will
cease to work for him, until he removes the directory that disappeared
inside the repository.

It is almost always better to move the files in the directory
instead of moving the directory. If you move the directory you are
unlikely to be able to retrieve old releases correctly, since they
probably depend on the name of the directories.

1.67 cvs.guide/History browsing

cvs 50 / 121

History browsing

Once you have used CVS to store a version control history--what
files have changed when, how, and by whom, there are a variety of
mechanisms for looking through the history.

log messages Log messages
history database The history database
user-defined logging User-defined logging
annotate What revision modified each line of a file?

1.68 cvs.guide/log messages

Log messages
============

Whenever you commit a file you specify a log message.

To look through the log messages which have been specified for every
revision which has been committed, use the ‘cvs log’ command (see log).

1.69 cvs.guide/history database

The history database
====================

You can use the history file (see history file) to log various CVS
actions. To retrieve the information from the history file, use the
‘cvs history’ command (see history).

1.70 cvs.guide/user-defined logging

User-defined logging
====================

You can customize CVS to log various kinds of actions, in whatever
manner you choose. These mechanisms operate by executing a script at
various times. The script might append a message to a file listing the
information and the programmer who created it, or send mail to a group
of developers, or, perhaps, post a message to a particular newsgroup.
To log commits, use the ‘loginfo’ file (see loginfo). To log commits,
checkouts, exports, and tags, respectively, you can also use the ‘-i’,
‘-o’, ‘-e’, and ‘-t’ options in the modules file. For a more flexible
way of giving notifications to various users, which requires less in

cvs 51 / 121

the way of keeping centralized scripts up to date, use the ‘cvs watch
add’ command (see Getting Notified); this command is useful even if you
are not using ‘cvs watch on’.

The ‘taginfo’ file defines programs to execute when someone executes
a ‘tag’ or ‘rtag’ command. The ‘taginfo’ file has the standard form
for administrative files (see Administrative files), where each line is
a regular expression followed by a command to execute. The arguments
passed to the command are, in order, the TAGNAME, OPERATION (‘add’ for
‘tag’, ‘mov’ for ‘tag -F’, and ‘del’ for ‘tag -d’), REPOSITORY, and any
remaining are pairs of FILENAME REVISION. A non-zero exit of the
filter program will cause the tag to be aborted.

1.71 cvs.guide/annotate

Annotate command
================

- Command: cvs annotate [‘-lf’] [‘-r rev’|‘-D date’] FILES ...
For each file in FILES, print the head revision of the trunk,
together with information on the last modification for each line.
For example:

$ cvs annotate ssfile
Annotations for ssfile

1.1 (mary 27-Mar-96): ssfile line 1
1.2 (joe 28-Mar-96): ssfile line 2

The file ‘ssfile’ currently contains two lines. The ‘ssfile line
1’ line was checked in by ‘mary’ on March 27. Then, on March 28,
‘joe’ added a line ‘ssfile line 2’, without modifying the ‘ssfile
line 1’ line. This report doesn’t tell you anything about lines
which have been deleted or replaced; you need to use ‘cvs diff’
for that (see diff).

These standard options are available with ‘annotate’ (see
Common options, for a complete description of them):

‘-D DATE’
Annotate the most recent revision no later than DATE.

‘-f’
Only useful with the ‘-D DATE’ or ‘-r TAG’ flags. If no matching
revision is found, annotate the most recent revision (instead of
ignoring the file).

‘-l’
Local; run only in current working directory. See
Recursive behavior.

‘-r TAG’
Annotate revision TAG.

cvs 52 / 121

1.72 cvs.guide/Keyword substitution

Keyword substitution

As long as you edit source files inside your working copy of a
module you can always find out the state of your files via ‘cvs status’
and ‘cvs log’. But as soon as you export the files from your
development environment it becomes harder to identify which revisions
they are.

RCS uses a mechanism known as "keyword substitution" (or "keyword
expansion") to help identifying the files. Embedded strings of the form
‘$KEYWORD$’ and ‘$KEYWORD:...$’ in a file are replaced with strings of
the form ‘$KEYWORD:VALUE$’ whenever you obtain a new revision of the
file.

Keyword list RCS Keywords
Using keywords Using keywords
Avoiding substitution Avoiding substitution
Substitution modes Substitution modes
Log keyword Problems with the Log keyword.

1.73 cvs.guide/Keyword list

RCS Keywords
============

This is a list of the keywords that RCS currently (in release
5.6.0.1) supports:

‘$Author$’
The login name of the user who checked in the revision.

‘$Date$’
The date and time (UTC) the revision was checked in.

‘$Header$’
A standard header containing the full pathname of the RCS file,
the revision number, the date (UTC), the author, the state, and
the locker (if locked). Files will normally never be locked when
you use CVS.

‘Id’
Same as ‘$Header$’, except that the RCS filename is without a path.

‘$Name$’
Tag name used to check out this file.

cvs 53 / 121

‘$Locker$’
The login name of the user who locked the revision (empty if not
locked, and thus almost always useless when you are using CVS).

‘Log’
The log message supplied during commit, preceded by a header
containing the RCS filename, the revision number, the author, and
the date (UTC). Existing log messages are *not* replaced.
Instead, the new log message is inserted after ‘$Log:...$’. Each
new line is prefixed with a "comment leader" which RCS guesses
from the file name extension. It can be changed with ‘cvs admin
-c’. See admin options. This keyword is useful for accumulating
a complete change log in a source file, but for several reasons it
can be problematic. See Log keyword.

‘$RCSfile$’
The name of the RCS file without a path.

‘$Revision$’
The revision number assigned to the revision.

‘$Source$’
The full pathname of the RCS file.

‘$State$’
The state assigned to the revision. States can be assigned with
‘cvs admin -s’--See admin options.

1.74 cvs.guide/Using keywords

Using keywords
==============

To include a keyword string you simply include the relevant text
string, such as ‘Id’, inside the file, and commit the file. CVS will
automatically expand the string as part of the commit operation.

It is common to embed ‘Id’ string in the C source code. This
example shows the first few lines of a typical file, after keyword
substitution has been performed:

static char *rcsid="$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";
/* The following lines will prevent ‘gcc’ version 2.X

from issuing an "unused variable" warning. */
#if __GNUC__ == 2
#define USE(var) static void * use_##var = (&use_##var, (void *) &var)
USE (rcsid);
#endif

Even though a clever optimizing compiler could remove the unused
variable ‘rcsid’, most compilers tend to include the string in the
binary. Some compilers have a ‘#pragma’ directive to include literal
text in the binary.

cvs 54 / 121

The ‘ident’ command (which is part of the RCS package) can be used
to extract keywords and their values from a file. This can be handy
for text files, but it is even more useful for extracting keywords from
binary files.

$ ident samp.c
samp.c:

$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $
$ gcc samp.c
$ ident a.out
a.out:

$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $

SCCS is another popular revision control system. It has a command,
‘what’, which is very similar to ‘ident’ and used for the same purpose.
Many sites without RCS have SCCS. Since ‘what’ looks for the
character sequence ‘@(#)’ it is easy to include keywords that are
detected by either command. Simply prefix the RCS keyword with the
magic SCCS phrase, like this:

static char *id="@(#) $Id: ab.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";

1.75 cvs.guide/Avoiding substitution

Avoiding substitution
=====================

Keyword substitution has its disadvantages. Sometimes you might
want the literal text string ‘$Author$’ to appear inside a file without
RCS interpreting it as a keyword and expanding it into something like
‘$Author: ceder $’.

There is unfortunately no way to selectively turn off keyword
substitution. You can use ‘-ko’ (see Substitution modes) to turn off
keyword substitution entirely.

In many cases you can avoid using RCS keywords in the source, even
though they appear in the final product. For example, the source for
this manual contains ‘$@asis{}Author$’ whenever the text ‘$Author$’
should appear. In ‘nroff’ and ‘troff’ you can embed the null-character
‘\&’ inside the keyword for a similar effect.

1.76 cvs.guide/Substitution modes

Substitution modes
==================

Each file has a stored default substitution mode, and each working
directory copy of a file also has a substitution mode. The former is

cvs 55 / 121

set by the ‘-k’ option to ‘cvs add’ and ‘cvs admin’; the latter is set
by the -k or -A options to ‘cvs checkout’ or ‘cvs update’. ‘cvs diff’
also has a ‘-k’ option. For some examples, See Binary files.

The modes available are:

‘-kkv’
Generate keyword strings using the default form, e.g. ‘$Revision:
5.7 $’ for the ‘Revision’ keyword.

‘-kkvl’
Like ‘-kkv’, except that a locker’s name is always inserted if the
given revision is currently locked. This option is normally not
useful when CVS is used.

‘-kk’
Generate only keyword names in keyword strings; omit their values.
For example, for the ‘Revision’ keyword, generate the string
‘$Revision$’ instead of ‘$Revision: 5.7 $’. This option is useful
to ignore differences due to keyword substitution when comparing
different revisions of a file.

‘-ko’
Generate the old keyword string, present in the working file just
before it was checked in. For example, for the ‘Revision’
keyword, generate the string ‘$Revision: 1.1 $’ instead of
‘$Revision: 5.7 $’ if that is how the string appeared when the
file was checked in.

‘-kb’
Like ‘-ko’, but also inhibit conversion of line endings between
the canonical form in which they are stored in the repository
(linefeed only), and the form appropriate to the operating system
in use on the client. For systems, like unix, which use linefeed
only to terminate lines, this is the same as ‘-ko’. For more
information on binary files, see See Binary files.

‘-kv’
Generate only keyword values for keyword strings. For example,
for the ‘Revision’ keyword, generate the string ‘5.7’ instead of
‘$Revision: 5.7 $’. This can help generate files in programming
languages where it is hard to strip keyword delimiters like
‘$Revision: $’ from a string. However, further keyword
substitution cannot be performed once the keyword names are
removed, so this option should be used with care.

One often would like to use ‘-kv’ with ‘cvs export’--see export.
But be aware that doesn’t handle an export containing binary files
correctly.

1.77 cvs.guide/Log keyword

Problems with the Log keyword.
================================

cvs 56 / 121

The ‘Log’ keyword is somewhat controversial. As long as you are
working on your development system the information is easily accessible
even if you do not use the ‘Log’ keyword--just do a ‘cvs log’. Once
you export the file the history information might be useless anyhow.

A more serious concern is that RCS is not good at handling ‘Log’
entries when a branch is merged onto the main trunk. Conflicts often
result from the merging operation.

People also tend to "fix" the log entries in the file (correcting
spelling mistakes and maybe even factual errors). If that is done the
information from ‘cvs log’ will not be consistent with the information
inside the file. This may or may not be a problem in real life.

It has been suggested that the ‘Log’ keyword should be inserted

last in the file, and not in the files header, if it is to be used at
all. That way the long list of change messages will not interfere with
everyday source file browsing.

1.78 cvs.guide/Binary files

Handling binary files

There are two issues with using CVS to store binary files. The
first is that CVS by default convert line endings between the canonical
form in which they are stored in the repository (linefeed only), and
the form appropriate to the operating system in use on the client (for
example, carriage return followed by line feed for Windows NT).

The second is that a binary file might happen to contain data which
looks like a keyword (see Keyword substitution), so keyword expansion
must be turned off.

The ‘-kb’ option available with some CVS commands insures that
neither line ending conversion nor keyword expansion will be done. If
you are using an old version of RCS without this option, and you are
using an operating system, such as unix, which terminates lines with
linefeeds only, you can use ‘-ko’ instead; if you are on another
operating system, upgrade to a version of RCS, such as 5.7 or later,
which supports ‘-kb’.

Here is an example of how you can create a new file using the ‘-kb’
flag:

$ echo ’Id’ > kotest
$ cvs add -kb -m"A test file" kotest
$ cvs ci -m"First checkin; contains a keyword" kotest

If a file accidentally gets added without ‘-kb’, one can use the
‘cvs admin’ command to recover. For example:

$ echo ’Id’ > kotest

cvs 57 / 121

$ cvs add -m"A test file" kotest
$ cvs ci -m"First checkin; contains a keyword" kotest
$ cvs admin -kb kotest
$ cvs update -A kotest
$ cvs commit -m "make it binary" kotest # For non-unix systems

When you check in the file ‘kotest’ the keywords are expanded. (Try
the above example, and do a ‘cat kotest’ after every command). The ‘cvs
admin -kb’ command sets the default keyword substitution method for
this file, but it does not alter the working copy of the file that you
have. The easiest way to get the unexpanded version of ‘kotest’ is
‘cvs update -A’. If you need to cope with line endings (that is, you
are using a CVS client on a non-unix system), then you need to check in
a new copy of the file, as shown by the ‘cvs commit’ command above.

However, in using ‘cvs admin -k’ to change the keyword expansion, be
aware that the keyword expansion mode is not version controlled. This
means that, for example, that if you have a text file in old releases,
and a binary file with the same name in new releases, CVS provides no
way to check out the file in text or binary mode depending on what
version you are checking out. There is no good workaround for this
problem.

You can also set a default for whether ‘cvs add’ and ‘cvs import’
treat a file as binary based on its name; for example you could say
that files who names end in ‘.exe’ are binary. See Wrappers.

1.79 cvs.guide/Revision management

Revision management

If you have read this far, you probably have a pretty good grasp on
what CVS can do for you. This chapter talks a little about things that
you still have to decide.

If you are doing development on your own using CVS you could
probably skip this chapter. The questions this chapter takes up become
more important when more than one person is working in a repository.

When to commit Some discussion on the subject

1.80 cvs.guide/When to commit

When to commit?
===============

Your group should decide which policy to use regarding commits.
Several policies are possible, and as your experience with CVS grows

cvs 58 / 121

you will probably find out what works for you.

If you commit files too quickly you might commit files that do not
even compile. If your partner updates his working sources to include
your buggy file, he will be unable to compile the code. On the other
hand, other persons will not be able to benefit from the improvements
you make to the code if you commit very seldom, and conflicts will
probably be more common.

It is common to only commit files after making sure that they can be
compiled. Some sites require that the files pass a test suite.
Policies like this can be enforced using the commitinfo file (see
commitinfo), but you should think twice before you enforce such a
convention. By making the development environment too controlled it
might become too regimented and thus counter-productive to the real
goal, which is to get software written.

1.81 cvs.guide/Invoking CVS

Reference manual for CVS commands

This appendix describes how to invoke CVS, and describes in detail
those subcommands of CVS which are not fully described elsewhere. To
look up a particular subcommand, see See Index.

Structure Overall structure of CVS commands
~-.cvsrc Default options with the ~/.csvrc file
Global options Options you give to the left of cvs_command
Common options Options you give to the right of cvs_command
add Add a new file/directory to the repository
admin Administration front end for rcs
checkout Checkout sources for editing
commit Check files into the repository
diff Run diffs between revisions
export Export sources from CVS, similar to checkout
history Show status of files and users
import Import sources into CVS, using vendor branches
log Print out ’rlog’ information for files
rdiff ’patch’ format diffs between releases
release Indicate that a Module is no longer in use
rtag Add a tag to a module
status Status info on the revisions
tag Add a tag to checked out version
update Bring work tree in sync with repository

1.82 cvs.guide/Structure

cvs 59 / 121

Overall structure of CVS commands
=================================

The overall format of all CVS commands is:

cvs [cvs_options] cvs_command [command_options] [command_args]

‘cvs’
The name of the CVS program.

‘cvs_options’
Some options that affect all sub-commands of CVS. These are
described below.

‘cvs_command’
One of several different sub-commands. Some of the commands have
aliases that can be used instead; those aliases are noted in the
reference manual for that command. There are only two situations
where you may omit ‘cvs_command’: ‘cvs -H’ elicits a list of
available commands, and ‘cvs -v’ displays version information on
CVS itself.

‘command_options’
Options that are specific for the command.

‘command_args’
Arguments to the commands.

There is unfortunately some confusion between ‘cvs_options’ and
‘command_options’. ‘-l’, when given as a ‘cvs_option’, only affects
some of the commands. When it is given as a ‘command_option’ is has a
different meaning, and is accepted by more commands. In other words,
do not take the above categorization too seriously. Look at the
documentation instead.

1.83 cvs.guide/~-.cvsrc

Default options and the ~/.cvsrc file
=====================================

There are some ‘command_options’ that are used so often that you
might have set up an alias or some other means to make sure you always
specify that option. One example (the one that drove the
implementation of the .cvsrc support, actually) is that many people
find the default output of the ‘diff’ command to be very hard to read,
and that either context diffs or unidiffs are much easier to understand.

The ‘~/.cvsrc’ file is a way that you can add default options to
‘cvs_commands’ within cvs, instead of relying on aliases or other shell
scripts.

The format of the ‘~/.cvsrc’ file is simple. The file is searched
for a line that begins with the same name as the ‘cvs_command’ being

cvs 60 / 121

executed. If a match is found, then the remainder of the line is split
up (at whitespace characters) into separate options and added to the
command arguments *before* any options from the command line.

If a command has two names (e.g., ‘checkout’ and ‘co’), the official
name, not necessarily the one used on the command line, will be used to
match against the file. So if this is the contents of the user’s
‘~/.cvsrc’ file:

log -N
diff -u
update -P
co -P

the command ‘cvs checkout foo’ would have the ‘-P’ option added to the
arguments, as well as ‘cvs co foo’.

With the example file above, the output from ‘cvs diff foobar’ will
be in unidiff format. ‘cvs diff -c foobar’ will provide context diffs,
as usual. Getting "old" format diffs would be slightly more
complicated, because ‘diff’ doesn’t have an option to specify use of
the "old" format, so you would need ‘cvs -f diff foobar’.

In place of the command name you can use ‘cvs’ to specify global
options (see Global options). For example the following line in
‘.cvsrc’

cvs -z6

causes CVS to use compression level 6

1.84 cvs.guide/Global options

Global options
==============

The available ‘cvs_options’ (that are given to the left of
‘cvs_command’) are:

‘-b BINDIR’
Use BINDIR as the directory where RCS programs are located.
Overrides the setting of the ‘$RCSBIN’ environment variable and
any precompiled directory. This parameter should be specified as
an absolute pathname.

‘-d CVS_ROOT_DIRECTORY’
Use CVS_ROOT_DIRECTORY as the root directory pathname of the
repository. Overrides the setting of the ‘$CVSROOT’ environment
variable. See Repository.

‘-e EDITOR’
Use EDITOR to enter revision log information. Overrides the
setting of the ‘$CVSEDITOR’ and ‘$EDITOR’ environment variables.

cvs 61 / 121

‘-f’
Do not read the ‘~/.cvsrc’ file. This option is most often used
because of the non-orthogonality of the CVS option set. For
example, the ‘cvs log’ option ‘-N’ (turn off display of tag names)
does not have a corresponding option to turn the display on. So
if you have ‘-N’ in the ‘~/.cvsrc’ entry for ‘log’, you may need
to use ‘-f’ to show the tag names.

‘-H’
Display usage information about the specified ‘cvs_command’ (but
do not actually execute the command). If you don’t specify a
command name, ‘cvs -H’ displays a summary of all the commands
available.

‘-l’
Do not log the cvs_command in the command history (but execute it
anyway). See history, for information on command history.

‘-n’
Do not change any files. Attempt to execute the ‘cvs_command’,
but only to issue reports; do not remove, update, or merge any
existing files, or create any new files.

‘-Q’
Cause the command to be really quiet; the command will only
generate output for serious problems.

‘-q’
Cause the command to be somewhat quiet; informational messages,
such as reports of recursion through subdirectories, are
suppressed.

‘-r’
Make new working files files read-only. Same effect as if the
‘$CVSREAD’ environment variable is set (see
Environment variables). The default is to make working files
writable, unless watches are on (see Watches).

‘-s VARIABLE=VALUE’
Set a user variable (see Variables).

‘-t’
Trace program execution; display messages showing the steps of CVS
activity. Particularly useful with ‘-n’ to explore the potential
impact of an unfamiliar command.

‘-v’
Display version and copyright information for CVS.

‘-w’
Make new working files read-write. Overrides the setting of the
‘$CVSREAD’ environment variable. Files are created read-write by
default, unless ‘$CVSREAD’ is set or ‘-r’ is given.

‘-x’
Encrypt all communication between the client and the server. Only
has an effect on the CVS client. As of this writing, this is only

cvs 62 / 121

implemented when using a Kerberos connection (see
Kerberos authenticated).

‘-z GZIP-LEVEL’
Set the compression level. Only has an effect on the CVS client.

1.85 cvs.guide/Common options

Common command options
======================

This section describes the ‘command_options’ that are available
across several CVS commands. These options are always given to the
right of ‘cvs_command’. Not all commands support all of these options;
each option is only supported for commands where it makes sense.
However, when a command has one of these options you can almost always
count on the same behavior of the option as in other commands. (Other
command options, which are listed with the individual commands, may have
different behavior from one CVS command to the other).

Warning: the ‘history’ command is an exception; it supports many
options that conflict even with these standard options.

‘-D DATE_SPEC’
Use the most recent revision no later than DATE_SPEC. DATE_SPEC
is a single argument, a date description specifying a date in the
past.

The specification is "sticky" when you use it to make a private
copy of a source file; that is, when you get a working file using
‘-D’, CVS records the date you specified, so that further updates
in the same directory will use the same date (for more information
on sticky tags/dates, see Sticky tags).

A wide variety of date formats are supported by the underlying RCS
facilities, similar to those described in co(1), but not exactly
the same. The DATE_SPEC is interpreted as being in the local
timezone, unless a specific timezone is specified. Examples of
valid date specifications include:

1 month ago
2 hours ago
400000 seconds ago
last year
last Monday
yesterday
a fortnight ago
3/31/92 10:00:07 PST
January 23, 1987 10:05pm
22:00 GMT

‘-D’ is available with the ‘checkout’, ‘diff’, ‘export’, ‘history’,
‘rdiff’, ‘rtag’, and ‘update’ commands. (The ‘history’ command
uses this option in a slightly different way; see history options).

cvs 63 / 121

Remember to quote the argument to the ‘-D’ flag so that your shell
doesn’t interpret spaces as argument separators. A command using
the ‘-D’ flag can look like this:

$ cvs diff -D "1 hour ago" cvs.texinfo

‘-f’
When you specify a particular date or tag to CVS commands, they
normally ignore files that do not contain the tag (or did not
exist prior to the date) that you specified. Use the ‘-f’ option
if you want files retrieved even when there is no match for the
tag or date. (The most recent revision of the file will be used).

‘-f’ is available with these commands: ‘checkout’, ‘export’,
‘rdiff’, ‘rtag’, and ‘update’.

Warning: The ‘commit’ command also has a ‘-f’ option, but it
has a different behavior for that command. See commit options.

‘-H’
Help; describe the options available for this command. This is
the only option supported for all CVS commands.

‘-k KFLAG’
Alter the default RCS processing of keywords. See
Keyword substitution, for the meaning of KFLAG. Your KFLAG
specification is "sticky" when you use it to create a private copy
of a source file; that is, when you use this option with the
‘checkout’ or ‘update’ commands, CVS associates your selected
KFLAG with the file, and continues to use it with future update
commands on the same file until you specify otherwise.

The ‘-k’ option is available with the ‘add’, ‘checkout’, ‘diff’ and
‘update’ commands.

‘-l’
Local; run only in current working directory, rather than
recursing through subdirectories.

Warning: this is not the same as the overall ‘cvs -l’ option,
which you can specify to the left of a cvs command!

Available with the following commands: ‘checkout’, ‘commit’,
‘diff’, ‘export’, ‘log’, ‘remove’, ‘rdiff’, ‘rtag’, ‘status’,
‘tag’, and ‘update’.

‘-m MESSAGE’
Use MESSAGE as log information, instead of invoking an editor.

Available with the following commands: ‘add’, ‘commit’ and
‘import’.

‘-n’
Do not run any checkout/commit/tag program. (A program can be
specified to run on each of these activities, in the modules
database (see modules); this option bypasses it).

cvs 64 / 121

Warning: this is not the same as the overall ‘cvs -n’ option,
which you can specify to the left of a cvs command!

Available with the ‘checkout’, ‘commit’, ‘export’, and ‘rtag’
commands.

‘-P’
Prune (remove) directories that are empty after being updated, on
‘checkout’, or ‘update’. Normally, an empty directory (one that
is void of revision-controlled files) is left alone. Specifying
‘-P’ will cause these directories to be silently removed from your
checked-out sources. This does not remove the directory from the
repository, only from your checked out copy. Note that this
option is implied by the ‘-r’ or ‘-D’ options of ‘checkout’ and
‘export’.

‘-p’
Pipe the files retrieved from the repository to standard output,
rather than writing them in the current directory. Available with
the ‘checkout’ and ‘update’ commands.

‘-W’
Specify file names that should be filtered. You can use this
option repeatedly. The spec can be a file name pattern of the
same type that you can specify in the ‘.cvswrappers’ file.
Avaliable with the following commands: ‘import’, and ‘update’.

‘-r TAG’
Use the revision specified by the TAG argument instead of the
default "head" revision. As well as arbitrary tags defined with
the ‘tag’ or ‘rtag’ command, two special tags are always
available: ‘HEAD’ refers to the most recent version available in
the repository, and ‘BASE’ refers to the revision you last checked
out into the current working directory.

The tag specification is sticky when you use this option with
‘checkout’ or ‘update’ to make your own copy of a file: CVS
remembers the tag and continues to use it on future update
commands, until you specify otherwise (for more information on
sticky tags/dates, see Sticky tags). The tag can be either a
symbolic or numeric tag. See Tags.

Specifying the ‘-q’ global option along with the ‘-r’ command
option is often useful, to suppress the warning messages when the
RCS history file does not contain the specified tag.

Warning: this is not the same as the overall ‘cvs -r’ option,
which you can specify to the left of a cvs command!

‘-r’ is available with the ‘checkout’, ‘commit’, ‘diff’,
‘history’, ‘export’, ‘rdiff’, ‘rtag’, and ‘update’ commands.

cvs 65 / 121

1.86 cvs.guide/add

add--Add a new file/directory to the repository
===

* Synopsis: add [-k kflag] [-m ’message’] files...

* Requires: repository, working directory.

* Changes: working directory.

* Synonym: new

Use the ‘add’ command to create a new file or directory in the
source repository. The files or directories specified with ‘add’ must
already exist in the current directory (which must have been created
with the ‘checkout’ command). To add a whole new directory hierarchy
to the source repository (for example, files received from a
third-party vendor), use the ‘import’ command instead. See import.

If the argument to ‘add’ refers to an immediate sub-directory, the
directory is created at the correct place in the source repository, and
the necessary CVS administration files are created in your working
directory. If the directory already exists in the source repository,
‘add’ still creates the administration files in your version of the
directory. This allows you to use ‘add’ to add a particular directory
to your private sources even if someone else created that directory
after your checkout of the sources. You can do the following:

$ mkdir new_directory
$ cvs add new_directory
$ cvs update new_directory

An alternate approach using ‘update’ might be:

$ cvs update -d new_directory

(To add any available new directories to your working directory,
it’s probably simpler to use ‘checkout’ (see checkout) or ‘update -d’
(see update)).

The added files are not placed in the source repository until you
use ‘commit’ to make the change permanent. Doing an ‘add’ on a file
that was removed with the ‘remove’ command will resurrect the file,
unless a ‘commit’ command intervened. See Removing files, for an
example.

Unlike most other commands ‘add’ never recurses down directories.
It cannot yet handle relative paths. Instead of

$ cvs add foo/bar.c

you have to do

$ cd foo
$ cvs add bar.c

cvs 66 / 121

add options add options
add examples add examples

1.87 cvs.guide/add options

add options

There are only two options you can give to ‘add’:

‘-k KFLAG’
This option specifies the default way that this file will be
checked out. The KFLAG argument (see Substitution modes) is
stored in the RCS file and can be changed with ‘admin -k’ (see
admin options). See See Binary files, for information on using
this option for binary files.

‘-m DESCRIPTION’
Using this option, you can give a description for the file. This
description appears in the history log (if it is enabled, see
history file). It will also be saved in the RCS history file
inside the repository when the file is committed. The ‘log’
command displays this description.

The description can be changed using ‘admin -t’. See admin.

If you omit the ‘-m DESCRIPTION’ flag, an empty string will be
used. You will not be prompted for a description.

1.88 cvs.guide/add examples

add examples

To add the file ‘backend.c’ to the repository, with a description,
the following can be used.

$ cvs add -m "Optimizer and code generation passes." backend.c
$ cvs commit -m "Early version. Not yet compilable." backend.c

1.89 cvs.guide/admin

admin--Administration front end for rcs
=======================================

cvs 67 / 121

* Requires: repository, working directory.

* Changes: repository.

* Synonym: rcs

This is the CVS interface to assorted administrative RCS facilities,
documented in rcs(1). ‘admin’ simply passes all its options and
arguments to the ‘rcs’ command; it does no filtering or other
processing. This command *does* work recursively, however, so extreme
care should be used.

If there is a group whose name matches a compiled in value which
defaults to ‘cvsadmin’, only members of that group can use ‘cvs admin’.
To disallow ‘cvs admin’ for all users, create a group with no users in
it.

admin options admin options
admin examples admin examples

1.90 cvs.guide/admin options

admin options

Not all valid ‘rcs’ options are useful together with CVS. Some even
makes it impossible to use CVS until you undo the effect!

This description of the available options is based on the ‘rcs(1)’
man page, but modified to suit readers that are more interrested in CVS
than RCS.

‘-AOLDFILE’
Might not work together with CVS. Append the access list of
OLDFILE to the access list of the RCS file.

‘-aLOGINS’
Might not work together with CVS. Append the login names
appearing in the comma-separated list LOGINS to the access list of
the RCS file.

‘-b[REV]’
When used with bare RCS, this option sets the default branch to
REV; in CVS sticky tags (see Sticky tags) are a better way to
decide which branch you want to work on. With CVS, this option
can be used to control behavior with respect to the vendor branch.

‘-cSTRING’
Useful with CVS. Sets the comment leader to STRING. The comment
leader is printed before every log message line generated by the
keyword ‘Log’ (see Keyword substitution). This is useful for
programming languages without multi-line comments. RCS initially
guesses the value of the comment leader from the file name

cvs 68 / 121

extension when the file is first committed.

‘-e[LOGINS]’
Might not work together with CVS. Erase the login names appearing
in the comma-separated list LOGINS from the access list of the RCS
file. If LOGINS is omitted, erase the entire access list.

‘-I’
Run interactively, even if the standard input is not a terminal.

‘-i’
Useless with CVS. When using bare RCS, this is used to create and
initialize a new RCS file, without depositing a revision.

‘-kSUBST’
Useful with CVS. Set the default keyword substitution to SUBST.
See Keyword substitution. Giving an explicit ‘-k’ option to ‘cvs
update’, ‘cvs export’, or ‘cvs checkout’ overrides this default.

‘-l[REV]’
Lock the revision with number REV. If a branch is given, lock the
latest revision on that branch. If REV is omitted, lock the
latest revision on the default branch.

This can be used in conjunction with the ‘rcslock.pl’ script in
the ‘contrib’ directory of the CVS source distribution to provide
reserved checkouts (where only one user can be editing a given
file at a time). See the comments in that file for details (and
see the ‘README’ file in that directory for disclaimers about the
unsupported nature of contrib). According to comments in that
file, locking must set to strict (which is the default).

‘-L’
Set locking to strict. Strict locking means that the owner of an
RCS file is not exempt from locking for checkin. For use with
CVS, strict locking must be set; see the discussion under the ‘-l’
option above.

‘-mREV:MSG’
Replace the log message of revision REV with MSG.

‘-NNAME[:[REV]]’
Act like ‘-n’, except override any previous assignment of NAME.

‘-nNAME[:[REV]]’
Associate the symbolic name NAME with the branch or revision REV.
It is normally better to use ‘cvs tag’ or ‘cvs rtag’ instead.
Delete the symbolic name if both ‘:’ and REV are omitted;
otherwise, print an error message if NAME is already associated
with another number. If REV is symbolic, it is expanded before
association. A REV consisting of a branch number followed by a
‘.’ stands for the current latest revision in the branch. A ‘:’
with an empty REV stands for the current latest revision on the
default branch, normally the trunk. For example, ‘rcs -nNAME:
RCS/*’ associates NAME with the current latest revision of all the
named RCS files; this contrasts with ‘rcs -nNAME:$ RCS/*’ which
associates NAME with the revision numbers extracted from keyword

cvs 69 / 121

strings in the corresponding working files.

‘-oRANGE’
Potentially useful, but dangerous, with CVS (see below). Deletes
("outdates") the revisions given by RANGE. A range consisting of
a single revision number means that revision. A range consisting
of a branch number means the latest revision on that branch. A
range of the form ‘REV1:REV2’ means revisions REV1 to REV2 on the
same branch, ‘:REV’ means from the beginning of the branch
containing REV up to and including REV, and ‘REV:’ means from
revision REV to the end of the branch containing REV. None of the
outdated revisions may have branches or locks.

Due to the way CVS handles branches REV cannot be specified
symbolically if it is a branch. See Magic branch numbers, for an
explanation.

Make sure that no-one has checked out a copy of the revision you
outdate. Strange things will happen if he starts to edit it and
tries to check it back in. For this reason, this option is not a
good way to take back a bogus commit; commit a new revision
undoing the bogus change instead (see Merging two revisions).

‘-q’
Run quietly; do not print diagnostics.

‘-sSTATE[:REV]’
Useful with CVS. Set the state attribute of the revision REV to
STATE. If REV is a branch number, assume the latest revision on
that branch. If REV is omitted, assume the latest revision on the
default branch. Any identifier is acceptable for STATE. A useful
set of states is ‘Exp’ (for experimental), ‘Stab’ (for stable),
and ‘Rel’ (for released). By default, the state of a new revision
is set to ‘Exp’ when it is created. The state is visible in the
output from CVS LOG (see log), and in the ‘Log’ and ‘$State$’
keywords (see Keyword substitution). Note that CVS uses the
‘dead’ state for its own purposes; to take a file to or from the
‘dead’ state use commands like ‘cvs remove’ and ‘cvs add’, not
‘cvs admin -s’.

‘-t[FILE]’
Useful with CVS. Write descriptive text from the contents of the
named FILE into the RCS file, deleting the existing text. The
FILE pathname may not begin with ‘-’. If FILE is omitted, obtain
the text from standard input, terminated by end-of-file or by a
line containing ‘.’ by itself. Prompt for the text if interaction
is possible; see ‘-I’. The descriptive text can be seen in the
output from ‘cvs log’ (see log).

‘-t-STRING’
Similar to ‘-tFILE’. Write descriptive text from the STRING into
the RCS file, deleting the existing text.

‘-U’
Set locking to non-strict. Non-strict locking means that the
owner of a file need not lock a revision for checkin. For use
with CVS, strict locking must be set; see the discussion under the

cvs 70 / 121

‘-l’ option above.

‘-u[REV]’
See the option ‘-l’ above, for a discussion of using this option
with CVS. Unlock the revision with number REV. If a branch is
given, unlock the latest revision on that branch. If REV is
omitted, remove the latest lock held by the caller. Normally,
only the locker of a revision may unlock it. Somebody else
unlocking a revision breaks the lock. This causes a mail message
to be sent to the original locker. The message contains a
commentary solicited from the breaker. The commentary is
terminated by end-of-file or by a line containing ‘.’ by itself.

‘-VN’
Emulate RCS version N. Use -VN to make an RCS file acceptable to
RCS version N by discarding information that would confuse version
N.

‘-xSUFFIXES’
Useless with CVS. Use SUFFIXES to characterize RCS files.

1.91 cvs.guide/admin examples

admin examples

Outdating is dangerous
......................

First, an example of how *not* to use the ‘admin’ command. It is
included to stress the fact that this command can be quite dangerous
unless you know *exactly* what you are doing.

The ‘-o’ option can be used to "outdate" old revisions from the
history file. If you are short on disc this option might help you.
But think twice before using it--there is no way short of restoring the
latest backup to undo this command!

The next line is an example of a command that you would *not* like
to execute.

$ cvs admin -o:R_1_02 .

The above command will delete all revisions up to, and including,
the revision that corresponds to the tag R_1_02. But beware! If there
are files that have not changed between R_1_02 and R_1_03 the file will
have *the same* numerical revision number assigned to the tags R_1_02
and R_1_03. So not only will it be impossible to retrieve R_1_02;
R_1_03 will also have to be restored from the tapes!

Comment leaders
...............

If you use the ‘Log’ keyword and you do not agree with the guess

cvs 71 / 121

for comment leader that CVS has done, you can enforce your will with
‘cvs admin -c’. This might be suitable for ‘nroff’ source:

$ cvs admin -c’.\" ’ *.man
$ rm *.man
$ cvs update

The two last steps are to make sure that you get the versions with
correct comment leaders in your working files.

1.92 cvs.guide/checkout

checkout--Check out sources for editing
=======================================

* Synopsis: checkout [options] modules...

* Requires: repository.

* Changes: working directory.

* Synonyms: co, get

Make a working directory containing copies of the source files
specified by MODULES. You must execute ‘checkout’ before using most of
the other CVS commands, since most of them operate on your working
directory.

The MODULES part of the command are either symbolic names for some
collection of source directories and files, or paths to directories or
files in the repository. The symbolic names are defined in the
‘modules’ file. See modules.

Depending on the modules you specify, ‘checkout’ may recursively
create directories and populate them with the appropriate source files.
You can then edit these source files at any time (regardless of
whether other software developers are editing their own copies of the
sources); update them to include new changes applied by others to the
source repository; or commit your work as a permanent change to the
source repository.

Note that ‘checkout’ is used to create directories. The top-level
directory created is always added to the directory where ‘checkout’ is
invoked, and usually has the same name as the specified module. In the
case of a module alias, the created sub-directory may have a different
name, but you can be sure that it will be a sub-directory, and that
‘checkout’ will show the relative path leading to each file as it is
extracted into your private work area (unless you specify the ‘-Q’
global option).

The files created by ‘checkout’ are created read-write, unless the
‘-r’ option to CVS (see Global options) is specified, the ‘CVSREAD’
environment variable is specified (see Environment variables), or a
watch is in effect for that file (see Watches).

cvs 72 / 121

Running ‘checkout’ on a directory that was already built by a prior
‘checkout’ is also permitted, and has the same effect as specifying the
‘-d’ option to the ‘update’ command, that is, any new directories that
have been created in the repository will appear in your work area. See
update.

checkout options checkout options
checkout examples checkout examples

1.93 cvs.guide/checkout options

checkout options

These standard options are supported by ‘checkout’ (see
Common options, for a complete description of them):

‘-D DATE’
Use the most recent revision no later than DATE. This option is
sticky, and implies ‘-P’. See See Sticky tags, for more
information on sticky tags/dates.

‘-f’
Only useful with the ‘-D DATE’ or ‘-r TAG’ flags. If no matching
revision is found, retrieve the most recent revision (instead of
ignoring the file).

‘-k KFLAG’
Process RCS keywords according to KFLAG. See co(1). This option
is sticky; future updates of this file in this working directory
will use the same KFLAG. The ‘status’ command can be viewed to
see the sticky options. See status.

‘-l’
Local; run only in current working directory.

‘-n’
Do not run any checkout program (as specified with the ‘-o’ option
in the modules file; see modules).

‘-P’
Prune empty directories.

‘-p’
Pipe files to the standard output.

‘-r TAG’
Use revision TAG. This option is sticky, and implies ‘-P’. See
See Sticky tags, for more information on sticky tags/dates.

In addition to those, you can use these special command options with
‘checkout’:

cvs 73 / 121

‘-A’
Reset any sticky tags, dates, or ‘-k’ options. See See
Sticky tags, for more information on sticky tags/dates.

‘-c’
Copy the module file, sorted, to the standard output, instead of
creating or modifying any files or directories in your working
directory.

‘-d DIR’
Create a directory called DIR for the working files, instead of
using the module name. Unless you also use ‘-N’, the paths
created under DIR will be as short as possible.

‘-j TAG’
With two ‘-j’ options, merge changes from the revision specified
with the first ‘-j’ option to the revision specified with the
second ‘j’ option, into the working directory.

With one ‘-j’ option, merge changes from the ancestor revision to
the revision specified with the ‘-j’ option, into the working
directory. The ancestor revision is the common ancestor of the
revision which the working directory is based on, and the revision
specified in the ‘-j’ option.

In addition, each -j option can contain an optional date
specification which, when used with branches, can limit the chosen
revision to one within a specific date. An optional date is
specified by adding a colon (:) to the tag:
‘-jSYMBOLIC_TAG:DATE_SPECIFIER’.

See Merging.

‘-N’
Only useful together with ‘-d DIR’. With this option, CVS will
not shorten module paths in your working directory. (Normally,
CVS shortens paths as much as possible when you specify an
explicit target directory).

‘-s’
Like ‘-c’, but include the status of all modules, and sort it by
the status string. See modules, for info about the ‘-s’ option
that is used inside the modules file to set the module status.

1.94 cvs.guide/checkout examples

checkout examples

Get a copy of the module ‘tc’:

$ cvs checkout tc

cvs 74 / 121

Get a copy of the module ‘tc’ as it looked one day ago:

$ cvs checkout -D yesterday tc

1.95 cvs.guide/commit

commit--Check files into the repository
=======================================

* Version 1.3 Synopsis: commit [-lnR] [-m ’log_message’ | -f file]
[-r revision] [files...]

* Version 1.3.1 Synopsis: commit [-lnRf] [-m ’log_message’ | -F
file] [-r revision] [files...]

* Requires: working directory, repository.

* Changes: repository.

* Synonym: ci

Warning: The ‘-f FILE’ option will probably be renamed to ‘-F
FILE’, and ‘-f’ will be given a new behavior in future releases of CVS.

Use ‘commit’ when you want to incorporate changes from your working
source files into the source repository.

If you don’t specify particular files to commit, all of the files in
your working current directory are examined. ‘commit’ is careful to
change in the repository only those files that you have really changed.
By default (or if you explicitly specify the ‘-R’ option), files in
subdirectories are also examined and committed if they have changed;
you can use the ‘-l’ option to limit ‘commit’ to the current directory
only.

‘commit’ verifies that the selected files are up to date with the
current revisions in the source repository; it will notify you, and
exit without committing, if any of the specified files must be made
current first with ‘update’ (see update). ‘commit’ does not call the
‘update’ command for you, but rather leaves that for you to do when the
time is right.

When all is well, an editor is invoked to allow you to enter a log
message that will be written to one or more logging programs (see
modules, and see loginfo) and placed in the RCS history file inside the
repository. This log message can be retrieved with the ‘log’ command;
See log. You can specify the log message on the command line with the
‘-m MESSAGE’ option, and thus avoid the editor invocation, or use the
‘-f FILE’ option to specify that the argument file contains the log
message.

commit options commit options
commit examples commit examples

cvs 75 / 121

1.96 cvs.guide/commit options

commit options

These standard options are supported by ‘commit’ (see
Common options, for a complete description of them):

‘-l’
Local; run only in current working directory.

‘-n’
Do not run any module program.

‘-R’
Commit directories recursively. This is on by default.

‘-r REVISION’
Commit to REVISION. REVISION must be either a branch, or a
revision on the main trunk that is higher than any existing
revision number. You cannot commit to a specific revision on a
branch.

‘commit’ also supports these options:

‘-F FILE’
This option is present in CVS releases 1.3-s3 and later. Read the
log message from FILE, instead of invoking an editor.

‘-f’
This option is present in CVS 1.3-s3 and later releases of CVS.
Note that this is not the standard behavior of the ‘-f’ option as
defined in See Common options.

Force CVS to commit a new revision even if you haven’t made any
changes to the file. If the current revision of FILE is 1.7, then
the following two commands are equivalent:

$ cvs commit -f FILE
$ cvs commit -r 1.8 FILE

‘-f FILE’
This option is present in CVS releases 1.3, 1.3-s1 and 1.3-s2.
Note that this is not the standard behavior of the ‘-f’ option as
defined in See Common options.

Read the log message from FILE, instead of invoking an editor.

‘-m MESSAGE’
Use MESSAGE as the log message, instead of invoking an editor.

cvs 76 / 121

1.97 cvs.guide/commit examples

commit examples

New major release number
........................

When you make a major release of your product, you might want the
revision numbers to track your major release number. You should
normally not care about the revision numbers, but this is a thing that
many people want to do, and it can be done without doing any harm.

To bring all your files up to the RCS revision 3.0 (including those
that haven’t changed), you might do:

$ cvs commit -r 3.0

Note that it is generally a bad idea to try to make the RCS revision
number equal to the current release number of your product. You should
think of the revision number as an internal number that the CVS package
maintains, and that you generally never need to care much about. Using
the ‘tag’ and ‘rtag’ commands you can give symbolic names to the
releases instead. See tag, and See rtag.

Note that the number you specify with ‘-r’ must be larger than any
existing revision number. That is, if revision 3.0 exists, you cannot
‘cvs commit -r 1.3’.

Committing to a branch
......................

You can commit to a branch revision (one that has an even number of
dots) with the ‘-r’ option. To create a branch revision, use the ‘-b’
option of the ‘rtag’ or ‘tag’ commands (see tag or see rtag). Then,
either ‘checkout’ or ‘update’ can be used to base your sources on the
newly created branch. From that point on, all ‘commit’ changes made
within these working sources will be automatically added to a branch
revision, thereby not disturbing main-line development in any way. For
example, if you had to create a patch to the 1.2 version of the
product, even though the 2.0 version is already under development, you
might do:

$ cvs rtag -b -r FCS1_2 FCS1_2_Patch product_module
$ cvs checkout -r FCS1_2_Patch product_module
$ cd product_module
[[hack away]]
$ cvs commit

This works automatically since the ‘-r’ option is sticky.

Creating the branch after editing
.................................

Say you have been working on some extremely experimental software,
based on whatever revision you happened to checkout last week. If

cvs 77 / 121

others in your group would like to work on this software with you, but
without disturbing main-line development, you could commit your change
to a new branch. Others can then checkout your experimental stuff and
utilize the full benefit of CVS conflict resolution. The scenario might
look like:

[[hacked sources are present]]
$ cvs tag -b EXPR1
$ cvs update -r EXPR1
$ cvs commit

The ‘update’ command will make the ‘-r EXPR1’ option sticky on all
files. Note that your changes to the files will never be removed by the
‘update’ command. The ‘commit’ will automatically commit to the
correct branch, because the ‘-r’ is sticky. You could also do like
this:

[[hacked sources are present]]
$ cvs tag -b EXPR1
$ cvs commit -r EXPR1

but then, only those files that were changed by you will have the ‘-r
EXPR1’ sticky flag. If you hack away, and commit without specifying
the ‘-r EXPR1’ flag, some files may accidentally end up on the main
trunk.

To work with you on the experimental change, others would simply do

$ cvs checkout -r EXPR1 whatever_module

1.98 cvs.guide/diff

diff--Run diffs between revisions
=================================

* Synopsis: diff [-l] [rcsdiff_options] [[-r rev1 | -D date1] [-r
rev2 | -D date2]] [files...]

* Requires: working directory, repository.

* Changes: nothing.

The ‘diff’ command is used to compare different revisions of files.
The default action is to compare your working files with the revisions
they were based on, and report any differences that are found.

If any file names are given, only those files are compared. If any
directories are given, all files under them will be compared.

The exit status will be 0 if no differences were found, 1 if some
differences were found, and 2 if any error occurred.

diff options diff options

cvs 78 / 121

diff examples diff examples

1.99 cvs.guide/diff options

diff options

These standard options are supported by ‘diff’ (see Common options,
for a complete description of them):

‘-D DATE’
Use the most recent revision no later than DATE. See ‘-r’ for how
this affects the comparison.

CVS can be configured to pass the ‘-D’ option through to ‘rcsdiff’
(which in turn passes it on to ‘diff’. GNU diff uses ‘-D’ as a
way to put ‘cpp’-style ‘#define’ statements around the output
differences. There is no way short of testing to figure out how
CVS was configured. In the default configuration CVS will use the
‘-D DATE’ option.

‘-k KFLAG’
Process RCS keywords according to KFLAG. See co(1).

‘-l’
Local; run only in current working directory.

‘-R’
Examine directories recursively. This option is on by default.

‘-r TAG’
Compare with revision TAG. Zero, one or two ‘-r’ options can be
present. With no ‘-r’ option, the working file will be compared
with the revision it was based on. With one ‘-r’, that revision
will be compared to your current working file. With two ‘-r’
options those two revisions will be compared (and your working
file will not affect the outcome in any way).

One or both ‘-r’ options can be replaced by a ‘-D DATE’ option,
described above.

Any other options that are found are passed through to ‘rcsdiff’,
which in turn passes them to ‘diff’. The exact meaning of the options
depends on which ‘diff’ you are using. The long options introduced in
GNU diff 2.0 are not yet supported in CVS. See the documentation for
your ‘diff’ to see which options are supported.

1.100 cvs.guide/diff examples

cvs 79 / 121

diff examples

The following line produces a Unidiff (‘-u’ flag) between revision
1.14 and 1.19 of ‘backend.c’. Due to the ‘-kk’ flag no keywords are
substituted, so differences that only depend on keyword substitution
are ignored.

$ cvs diff -kk -u -r 1.14 -r 1.19 backend.c

Suppose the experimental branch EXPR1 was based on a set of files
tagged RELEASE_1_0. To see what has happened on that branch, the
following can be used:

$ cvs diff -r RELEASE_1_0 -r EXPR1

A command like this can be used to produce a context diff between
two releases:

$ cvs diff -c -r RELEASE_1_0 -r RELEASE_1_1 > diffs

If you are maintaining ChangeLogs, a command like the following just
before you commit your changes may help you write the ChangeLog entry.
All local modifications that have not yet been committed will be
printed.

$ cvs diff -u | less

1.101 cvs.guide/export

export--Export sources from CVS, similar to checkout
==

* Synopsis: export [-flNn] [-r rev|-D date] [-k subst] [-d dir]
module...

* Requires: repository.

* Changes: current directory.

This command is a variant of ‘checkout’; use it when you want a copy
of the source for module without the CVS administrative directories.
For example, you might use ‘export’ to prepare source for shipment
off-site. This command requires that you specify a date or tag (with
‘-D’ or ‘-r’), so that you can count on reproducing the source you ship
to others.

One often would like to use ‘-kv’ with ‘cvs export’. This causes
any RCS keywords to be expanded such that an import done at some other
site will not lose the keyword revision information. But be aware that
doesn’t handle an export containing binary files correctly. Also be
aware that after having used ‘-kv’, one can no longer use the ‘ident’
command (which is part of the RCS suite--see ident(1)) which looks for

cvs 80 / 121

RCS keyword strings. If you want to be able to use ‘ident’ you must not
use ‘-kv’.

export options export options

1.102 cvs.guide/export options

export options

These standard options are supported by ‘export’ (see
Common options, for a complete description of them):

‘-D DATE’
Use the most recent revision no later than DATE.

‘-f’
If no matching revision is found, retrieve the most recent
revision (instead of ignoring the file).

‘-l’
Local; run only in current working directory.

‘-n’
Do not run any checkout program.

‘-R’
Export directories recursively. This is on by default.

‘-r TAG’
Use revision TAG.

In addition, these options (that are common to ‘checkout’ and
‘export’) are also supported:

‘-d DIR’
Create a directory called DIR for the working files, instead of
using the module name. Unless you also use ‘-N’, the paths
created under DIR will be as short as possible.

‘-k SUBST’
Set keyword expansion mode (see Substitution modes).

‘-N’
Only useful together with ‘-d DIR’. With this option, CVS will
not shorten module paths in your working directory. (Normally,
CVS shortens paths as much as possible when you specify an
explicit target directory.)

cvs 81 / 121

1.103 cvs.guide/history

history--Show status of files and users
=======================================

* Synopsis: history [-report] [-flags] [-options args] [files...]

* Requires: the file ‘$CVSROOT/CVSROOT/history’

* Changes: nothing.

CVS can keep a history file that tracks each use of the ‘checkout’,
‘commit’, ‘rtag’, ‘update’, and ‘release’ commands. You can use
‘history’ to display this information in various formats.

Logging must be enabled by creating the file
‘$CVSROOT/CVSROOT/history’.

Warning: ‘history’ uses ‘-f’, ‘-l’, ‘-n’, and ‘-p’ in ways that
conflict with the normal use inside CVS (see Common options).

history options history options

1.104 cvs.guide/history options

history options

Several options (shown above as ‘-report’) control what kind of
report is generated:

‘-c’
Report on each time commit was used (i.e., each time the
repository was modified).

‘-e’
Everything (all record types); equivalent to specifying
‘-xMACFROGWUT’.

‘-m MODULE’
Report on a particular module. (You can meaningfully use ‘-m’
more than once on the command line.)

‘-o’
Report on checked-out modules.

‘-T’
Report on all tags.

‘-x TYPE’
Extract a particular set of record types TYPE from the CVS
history. The types are indicated by single letters, which you may

cvs 82 / 121

specify in combination.

Certain commands have a single record type:

‘F’
release

‘O’
checkout

‘T’
rtag

One of four record types may result from an update:

‘C’
A merge was necessary but collisions were detected (requiring
manual merging).

‘G’
A merge was necessary and it succeeded.

‘U’
A working file was copied from the repository.

‘W’
The working copy of a file was deleted during update (because
it was gone from the repository).

One of three record types results from commit:

‘A’
A file was added for the first time.

‘M’
A file was modified.

‘R’
A file was removed.

The options shown as ‘-flags’ constrain or expand the report without
requiring option arguments:

‘-a’
Show data for all users (the default is to show data only for the
user executing ‘history’).

‘-l’
Show last modification only.

‘-w’
Show only the records for modifications done from the same working
directory where ‘history’ is executing.

The options shown as ‘-options ARGS’ constrain the report based on
an argument:

cvs 83 / 121

‘-b STR’
Show data back to a record containing the string STR in either
the module name, the file name, or the repository path.

‘-D DATE’
Show data since DATE. This is slightly different from the normal
use of ‘-D DATE’, which selects the newest revision older than
DATE.

‘-p REPOSITORY’
Show data for a particular source repository (you can specify
several ‘-p’ options on the same command line).

‘-r REV’
Show records referring to revisions since the revision or tag
named REV appears in individual RCS files. Each RCS file is
searched for the revision or tag.

‘-t TAG’
Show records since tag TAG was last added to the the history file.
This differs from the ‘-r’ flag above in that it reads only the
history file, not the RCS files, and is much faster.

‘-u NAME’
Show records for user NAME.

1.105 cvs.guide/import

import--Import sources into CVS, using vendor branches
==

* Synopsis: import [-options] repository vendortag releasetag...

* Requires: Repository, source distribution directory.

* Changes: repository.

Use ‘import’ to incorporate an entire source distribution from an
outside source (e.g., a source vendor) into your source repository
directory. You can use this command both for initial creation of a
repository, and for wholesale updates to the module from the outside
source. See Tracking sources, for a discussion on this subject.

The REPOSITORY argument gives a directory name (or a path to a
directory) under the CVS root directory for repositories; if the
directory did not exist, import creates it.

When you use import for updates to source that has been modified in
your source repository (since a prior import), it will notify you of
any files that conflict in the two branches of development; use
‘checkout -j’ to reconcile the differences, as import instructs you to
do.

If CVS decides a file should be ignored (see cvsignore), it does not

cvs 84 / 121

import it and prints ‘I ’ followed by the filename

If the file ‘$CVSROOT/CVSROOT/cvswrappers’ exists, any file whose
names match the specifications in that file will be treated as packages
and the appropriate filtering will be performed on the file/directory
before being imported, See Wrappers.

The outside source is saved in a first-level RCS branch, by default
1.1.1. Updates are leaves of this branch; for example, files from the
first imported collection of source will be revision 1.1.1.1, then
files from the first imported update will be revision 1.1.1.2, and so
on.

At least three arguments are required. REPOSITORY is needed to
identify the collection of source. VENDORTAG is a tag for the entire
branch (e.g., for 1.1.1). You must also specify at least one
RELEASETAG to identify the files at the leaves created each time you
execute ‘import’.

import options import options
import examples import examples

1.106 cvs.guide/import options

import options

This standard option is supported by ‘import’ (see Common options,
for a complete description):

‘-m MESSAGE’
Use MESSAGE as log information, instead of invoking an editor.

There are three additional special options.

‘-b BRANCH’
Specify a first-level branch other than 1.1.1. Unless the ‘-b
BRANCH’ flag is given, revisions will *always* be made to the
branch 1.1.1--even if a VENDORTAG that matches another branch is
given! What happens in that case, is that the tag will be reset
to 1.1.1. Warning: This behavior might change in the future.

‘-k SUBST’
Indicate the RCS keyword expansion mode desired. This setting
will apply to all files created during the import, but not to any
files that previously existed in the repository. See See
Substitution modes, for a list of valid ‘-k’ settings.

‘-I NAME’
Specify file names that should be ignored during import. You can
use this option repeatedly. To avoid ignoring any files at all
(even those ignored by default), specify ‘-I !’.

cvs 85 / 121

NAME can be a file name pattern of the same type that you can
specify in the ‘.cvsignore’ file. See cvsignore.

‘-W SPEC’
Specify file names that should be filtered during import. You can
use this option repeatedly.

SPEC can be a file name pattern of the same type that you can
specify in the ‘.cvswrappers’ file. See Wrappers.

1.107 cvs.guide/import examples

import examples

See Tracking sources, and See From files.

1.108 cvs.guide/log

log--Print out log information for files
==

* Synopsis: log [options] [files...]

* Requires: repository, working directory.

* Changes: nothing.

Display log information for files. ‘log’ used to call the RCS
utility ‘rlog’. Although this is no longer true in the current
sources, this history determines the format of the output and the
options, which are not quite in the style of the other CVS commands.

The output includes the location of the RCS file, the "head"
revision (the latest revision on the trunk), all symbolic names (tags)
and some other things. For each revision, the revision number, the
author, the number of lines added/deleted and the log message are
printed. All times are displayed in Coordinated Universal Time (UTC).
(Other parts of CVS print times in the local timezone).

log options log options
log examples log examples

1.109 cvs.guide/log options

cvs 86 / 121

log options

By default, ‘log’ prints all information that is available. All
other options restrict the output.

‘-b’
Print information about the revisions on the default branch,
normally the highest branch on the trunk.

‘-d DATES’
Print information about revisions with a checkin date/time in the
range given by the semicolon-separated list of dates. The
following table explains the available range formats:

‘D1<D2’
‘D2>D1’

Select the revisions that were deposited between D1 and D2.

‘<D’
‘D>’

Select all revisions dated D or earlier.

‘D<’
‘>D’

Select all revisions dated D or later.

‘D’
Select the single, latest revision dated D or earlier.

The ‘>’ or ‘<’ characters may be followed by ‘=’ to indicate an
inclusive range rather than an exclusive one.

Note that the separator is a semicolon (;).

‘-h’
Print only the RCS pathname, working pathname, head, default
branch, access list, locks, symbolic names, and suffix.

‘-l’
Local; run only in current working directory. (Default is to run
recursively).

‘-N’
Do not print the list of tags for this file. This option can be
very useful when your site uses a lot of tags, so rather than
"more"’ing over 3 pages of tag information, the log information is
presented without tags at all.

‘-R’
Print only the name of the RCS history file.

‘-rREVISIONS’
Print information about revisions given in the comma-separated
list REVISIONS of revisions and ranges. The following table
explains the available range formats:

cvs 87 / 121

‘REV1:REV2’
Revisions REV1 to REV2 (which must be on the same branch).

‘:REV’
Revisions from the beginning of the branch up to and
including REV.

‘REV:’
Revisions starting with REV to the end of the branch
containing REV.

‘BRANCH’
An argument that is a branch means all revisions on that
branch.

‘BRANCH1:BRANCH2’
A range of branches means all revisions on the branches in
that range.

‘BRANCH.’
The latest revision in BRANCH.

A bare ‘-r’ with no revisions means the latest revision on the
default branch, normally the trunk. There can be no space between
the ‘-r’ option and its argument.

‘-s STATES’
Print information about revisions whose state attributes match one
of the states given in the comma-separated list STATES.

‘-t’
Print the same as ‘-h’, plus the descriptive text.

‘-wLOGINS’
Print information about revisions checked in by users with login
names appearing in the comma-separated list LOGINS. If LOGINS is
omitted, the user’s login is assumed. There can be no space
between the ‘-w’ option and its argument.

‘log’ prints the intersection of the revisions selected with the
options ‘-d’, ‘-s’, and ‘-w’, intersected with the union of the
revisions selected by ‘-b’ and ‘-r’.

1.110 cvs.guide/log examples

log examples

Contributed examples are gratefully accepted.

cvs 88 / 121

1.111 cvs.guide/rdiff

rdiff--’patch’ format diffs between releases
==

* rdiff [-flags] [-V vn] [-r t|-D d [-r t2|-D d2]] modules...

* Requires: repository.

* Changes: nothing.

* Synonym: patch

Builds a Larry Wall format patch(1) file between two releases, that
can be fed directly into the patch program to bring an old release
up-to-date with the new release. (This is one of the few CVS commands
that operates directly from the repository, and doesn’t require a prior
checkout.) The diff output is sent to the standard output device.

You can specify (using the standard ‘-r’ and ‘-D’ options) any
combination of one or two revisions or dates. If only one revision or
date is specified, the patch file reflects differences between that
revision or date and the current head revisions in the RCS file.

Note that if the software release affected is contained in more than
one directory, then it may be necessary to specify the ‘-p’ option to
the patch command when patching the old sources, so that patch is able
to find the files that are located in other directories.

rdiff options rdiff options
rdiff examples rdiff examples

1.112 cvs.guide/rdiff options

rdiff options

These standard options are supported by ‘rdiff’ (see Common options,
for a complete description of them):

‘-D DATE’
Use the most recent revision no later than DATE.

‘-f’
If no matching revision is found, retrieve the most recent
revision (instead of ignoring the file).

‘-l’
Local; don’t descend subdirectories.

‘-r TAG’
Use revision TAG.

cvs 89 / 121

In addition to the above, these options are available:

‘-c’
Use the context diff format. This is the default format.

‘-s’
Create a summary change report instead of a patch. The summary
includes information about files that were changed or added
between the releases. It is sent to the standard output device.
This is useful for finding out, for example, which files have
changed between two dates or revisions.

‘-t’
A diff of the top two revisions is sent to the standard output
device. This is most useful for seeing what the last change to a
file was.

‘-u’
Use the unidiff format for the context diffs. This option is not
available if your diff does not support the unidiff format.
Remember that old versions of the ‘patch’ program can’t handle the
unidiff format, so if you plan to post this patch to the net you
should probably not use ‘-u’.

‘-V VN’
Expand RCS keywords according to the rules current in RCS version
VN (the expansion format changed with RCS version 5).

1.113 cvs.guide/rdiff examples

rdiff examples

Suppose you receive mail from foo@bar.com asking for an update from
release 1.2 to 1.4 of the tc compiler. You have no such patches on
hand, but with CVS that can easily be fixed with a command such as this:

$ cvs rdiff -c -r FOO1_2 -r FOO1_4 tc | \
$$ Mail -s ’The patches you asked for’ foo@bar.com

Suppose you have made release 1.3, and forked a branch called
‘R_1_3fix’ for bugfixes. ‘R_1_3_1’ corresponds to release 1.3.1, which
was made some time ago. Now, you want to see how much development has
been done on the branch. This command can be used:

$ cvs patch -s -r R_1_3_1 -r R_1_3fix module-name
cvs rdiff: Diffing module-name
File ChangeLog,v changed from revision 1.52.2.5 to 1.52.2.6
File foo.c,v changed from revision 1.52.2.3 to 1.52.2.4
File bar.h,v changed from revision 1.29.2.1 to 1.2

cvs 90 / 121

1.114 cvs.guide/release

release--Indicate that a Module is no longer in use
===

* release [-d] directories...

* Requires: Working directory.

* Changes: Working directory, history log.

This command is meant to safely cancel the effect of ‘cvs checkout’.
Since CVS doesn’t lock files, it isn’t strictly necessary to use this
command. You can always simply delete your working directory, if you
like; but you risk losing changes you may have forgotten, and you leave
no trace in the CVS history file (see history file) that you’ve
abandoned your checkout.

Use ‘cvs release’ to avoid these problems. This command checks that
no uncommitted changes are present; that you are executing it from
immediately above a CVS working directory; and that the repository
recorded for your files is the same as the repository defined in the
module database.

If all these conditions are true, ‘cvs release’ leaves a record of
its execution (attesting to your intentionally abandoning your
checkout) in the CVS history log.

release options release options
release output release options
release examples release examples

1.115 cvs.guide/release options

release options

The ‘release’ command supports one command option:

‘-d’
Delete your working copy of the file if the release succeeds. If
this flag is not given your files will remain in your working
directory.

Warning: The ‘release’ command uses ‘rm -r ‘module’’ to delete
your file. This has the very serious side-effect that any
directory that you have created inside your checked-out sources,
and not added to the repository (using the ‘add’ command; see add)
will be silently deleted--even if it is non-empty!

cvs 91 / 121

1.116 cvs.guide/release output

release output

Before ‘release’ releases your sources it will print a one-line
message for any file that is not up-to-date.

Warning: Any new directories that you have created, but not added
to the CVS directory hierarchy with the ‘add’ command (see add) will be
silently ignored (and deleted, if ‘-d’ is specified), even if they
contain files.

‘U FILE’
There exists a newer revision of this file in the repository, and
you have not modified your local copy of the file.

‘A FILE’
The file has been added to your private copy of the sources, but
has not yet been committed to the repository. If you delete your
copy of the sources this file will be lost.

‘R FILE’
The file has been removed from your private copy of the sources,
but has not yet been removed from the repository, since you have
not yet committed the removal. See commit.

‘M FILE’
The file is modified in your working directory. There might also
be a newer revision inside the repository.

‘? FILE’
FILE is in your working directory, but does not correspond to
anything in the source repository, and is not in the list of files
for CVS to ignore (see the description of the ‘-I’ option, and see
cvsignore). If you remove your working sources, this file will be
lost.

Note that no warning message like this is printed for spurious
directories that CVS encounters. The directory, and all its
contents, are silently ignored.

1.117 cvs.guide/release examples

release examples

Release the module, and delete your local working copy of the files.

$ cd .. # You must stand immediately above the
sources when you issue ‘cvs release’.

$ cvs release -d tc
You have [0] altered files in this repository.

cvs 92 / 121

Are you sure you want to release (and delete) module ‘tc’: y
$

1.118 cvs.guide/rtag

rtag--Add a symbolic tag to a module
====================================

* rtag [-falnR] [-b] [-d] [-r tag | -Ddate] symbolic_tag modules...

* Requires: repository.

* Changes: repository.

* Synonym: rfreeze

You can use this command to assign symbolic tags to particular,
explicitly specified source revisions in the repository. ‘rtag’ works
directly on the repository contents (and requires no prior checkout).
Use ‘tag’ instead (see tag), to base the selection of revisions on the
contents of your working directory.

If you attempt to use a tag name that already exists, CVS will
complain and not overwrite that tag. Use the ‘-F’ option to force the
new tag value.

rtag options rtag options

1.119 cvs.guide/rtag options

rtag options

These standard options are supported by ‘rtag’ (see Common options,
for a complete description of them):

‘-D DATE’
Tag the most recent revision no later than DATE.

‘-f’
Only useful with the ‘-D DATE’ or ‘-r TAG’ flags. If no matching
revision is found, use the most recent revision (instead of
ignoring the file).

‘-F’
Overwrite an existing tag of the same name on a different
revision. This option is new in CVS 1.4. The old behavior is
matched by ‘cvs tag -F’.

cvs 93 / 121

‘-l’
Local; run only in current working directory.

‘-n’
Do not run any tag program that was specified with the ‘-t’ flag
inside the ‘modules’ file. (see modules).

‘-R’
Commit directories recursively. This is on by default.

‘-r TAG’
Only tag those files that contain TAG. This can be used to rename
a tag: tag only the files identified by the old tag, then delete
the old tag, leaving the new tag on exactly the same files as the
old tag.

In addition to the above common options, these options are available:

‘-a’
Use the ‘-a’ option to have ‘rtag’ look in the ‘Attic’ (see
Removing files) for removed files that contain the specified tag.
The tag is removed from these files, which makes it convenient to
re-use a symbolic tag as development continues (and files get
removed from the up-coming distribution).

‘-b’
Make the tag a branch tag. See Branches.

‘-d’
Delete the tag instead of creating it.

In general, tags (often the symbolic names of software
distributions) should not be removed, but the ‘-d’ option is
available as a means to remove completely obsolete symbolic names
if necessary (as might be the case for an Alpha release, or if you
mistagged a module).

1.120 cvs.guide/status

status--Display status information on checked out files
===

* status [-lR] [-v] [files...]

* Requires: working directory, repository.

* Changes: nothing.

Display a brief report on the current status of files with respect
to the source repository, including any sticky tags, dates, or ‘-k’
options.

You can also use this command to determine the potential impact of a
‘cvs update’ on your working source directory--but remember that things

cvs 94 / 121

might change in the repository before you run ‘update’.

status options status options

1.121 cvs.guide/status options

status options

These standard options are supported by ‘status’ (see
Common options, for a complete description of them):

‘-l’
Local; run only in current working directory.

‘-R’
Commit directories recursively. This is on by default.

There is one additional option:

‘-v’
Verbose. In addition to the information normally displayed, print
all symbolic tags, together with the numerical value of the
revision or branch they refer to.

1.122 cvs.guide/tag

tag--Add a symbolic tag to checked out versions of files
==

* tag [-lR] [-b] [-c] [-d] symbolic_tag [files...]

* Requires: working directory, repository.

* Changes: repository.

* Synonym: freeze

Use this command to assign symbolic tags to the nearest repository
versions to your working sources. The tags are applied immediately to
the repository, as with ‘rtag’, but the versions are supplied
implicitly by the CVS records of your working files’ history rather than
applied explicitly.

One use for tags is to record a snapshot of the current sources when
the software freeze date of a project arrives. As bugs are fixed after
the freeze date, only those changed sources that are to be part of the
release need be re-tagged.

cvs 95 / 121

The symbolic tags are meant to permanently record which revisions of
which files were used in creating a software distribution. The
‘checkout’ and ‘update’ commands allow you to extract an exact copy of
a tagged release at any time in the future, regardless of whether files
have been changed, added, or removed since the release was tagged.

This command can also be used to delete a symbolic tag, or to create
a branch. See the options section below.

If you attempt to use a tag name that already exists, CVS will
complain and not overwrite that tag. Use the ‘-F’ option to force the
new tag value.

tag options tag options

1.123 cvs.guide/tag options

tag options

These standard options are supported by ‘tag’ (see Common options,
for a complete description of them):

‘-F’
Overwrite an existing tag of the same name on a different
revision. This option is new in CVS 1.4. The old behavior is
matched by ‘cvs tag -F’.

‘-l’
Local; run only in current working directory.

‘-R’
Commit directories recursively. This is on by default.

Two special options are available:

‘-b’
The -b option makes the tag a branch tag (see Branches), allowing
concurrent, isolated development. This is most useful for
creating a patch to a previously released software distribution.

‘-c’
The -c option checks that all files which are to be tagged are
unmodified. This can be used to make sure that you can
reconstruct the current file contents.

‘-d’
Delete a tag.

If you use ‘cvs tag -d symbolic_tag’, the symbolic tag you specify
is deleted instead of being added. Warning: Be very certain of
your ground before you delete a tag; doing this permanently
discards some historical information, which may later turn out to

cvs 96 / 121

be valuable.

1.124 cvs.guide/update

update--Bring work tree in sync with repository
===

* update [-AdflPpR] [-d] [-r tag|-D date] files...

* Requires: repository, working directory.

* Changes: working directory.

After you’ve run checkout to create your private copy of source from
the common repository, other developers will continue changing the
central source. From time to time, when it is convenient in your
development process, you can use the ‘update’ command from within your
working directory to reconcile your work with any revisions applied to
the source repository since your last checkout or update.

update options update options
update output update output
update examples update examples

1.125 cvs.guide/update options

update options

These standard options are available with ‘update’ (see
Common options, for a complete description of them):

‘-D date’
Use the most recent revision no later than DATE. This option is
sticky, and implies ‘-P’. See See Sticky tags, for more
information on sticky tags/dates.

‘-f’
Only useful with the ‘-D DATE’ or ‘-r TAG’ flags. If no matching
revision is found, retrieve the most recent revision (instead of
ignoring the file).

‘-k KFLAG’
Process RCS keywords according to KFLAG. See co(1). This option
is sticky; future updates of this file in this working directory
will use the same KFLAG. The ‘status’ command can be viewed to
see the sticky options. See status.

‘-l’

cvs 97 / 121

Local; run only in current working directory. See
Recursive behavior.

‘-P’
Prune empty directories.

‘-p’
Pipe files to the standard output.

‘-R’
Operate recursively. This is on by default. See
Recursive behavior.

‘-r tag’
Retrieve revision TAG. This option is sticky, and implies ‘-P’.
See See Sticky tags, for more information on sticky tags/dates.

These special options are also available with ‘update’.

‘-A’
Reset any sticky tags, dates, or ‘-k’ options. See See
Sticky tags, for more information on sticky tags/dates.

‘-d’
Create any directories that exist in the repository if they’re
missing from the working directory. Normally, ‘update’ acts only
on directories and files that were already enrolled in your
working directory.

This is useful for updating directories that were created in the
repository since the initial checkout; but it has an unfortunate
side effect. If you deliberately avoided certain directories in
the repository when you created your working directory (either
through use of a module name or by listing explicitly the files
and directories you wanted on the command line), then updating
with ‘-d’ will create those directories, which may not be what you
want.

‘-I NAME’
Ignore files whose names match NAME (in your working directory)
during the update. You can specify ‘-I’ more than once on the
command line to specify several files to ignore. Use ‘-I !’ to
avoid ignoring any files at all. See cvsignore, for other ways to
make CVS ignore some files.

‘-WSPEC’
Specify file names that should be filtered during update. You can
use this option repeatedly.

SPEC can be a file name pattern of the same type that you can
specify in the ‘.cvswrappers’ file. See Wrappers.

‘-jREVISION’
With two ‘-j’ options, merge changes from the revision specified
with the first ‘-j’ option to the revision specified with the
second ‘j’ option, into the working directory.

cvs 98 / 121

With one ‘-j’ option, merge changes from the ancestor revision to
the revision specified with the ‘-j’ option, into the working
directory. The ancestor revision is the common ancestor of the
revision which the working directory is based on, and the revision
specified in the ‘-j’ option.

In addition, each -j option can contain an optional date
specification which, when used with branches, can limit the chosen
revision to one within a specific date. An optional date is
specified by adding a colon (:) to the tag:
‘-jSYMBOLIC_TAG:DATE_SPECIFIER’.

See Merging.

1.126 cvs.guide/update output

update output

‘update’ keeps you informed of its progress by printing a line for
each file, preceded by one character indicating the status of the file:

‘U FILE’
The file was brought up to date with respect to the repository.
This is done for any file that exists in the repository but not in
your source, and for files that you haven’t changed but are not
the most recent versions available in the repository.

‘A FILE’
The file has been added to your private copy of the sources, and
will be added to the source repository when you run ‘commit’ on
the file. This is a reminder to you that the file needs to be
committed.

‘R FILE’
The file has been removed from your private copy of the sources,
and will be removed from the source repository when you run
‘commit’ on the file. This is a reminder to you that the file
needs to be committed.

‘M FILE’
The file is modified in your working directory.

‘M’ can indicate one of two states for a file you’re working on:
either there were no modifications to the same file in the
repository, so that your file remains as you last saw it; or there
were modifications in the repository as well as in your copy, but
they were merged successfully, without conflict, in your working
directory.

CVS will print some messages if it merges your work, and a backup
copy of your working file (as it looked before you ran ‘update’)
will be made. The exact name of that file is printed while
‘update’ runs.

cvs 99 / 121

‘C FILE’
A conflict was detected while trying to merge your changes to FILE
with changes from the source repository. FILE (the copy in your
working directory) is now the output of the rcsmerge(1) command on
the two revisions; an unmodified copy of your file is also in your
working directory, with the name ‘.#FILE.REVISION’ where REVISION
is the RCS revision that your modified file started from. (Note
that some systems automatically purge files that begin with ‘.#’
if they have not been accessed for a few days. If you intend to
keep a copy of your original file, it is a very good idea to rename
it.)

‘? FILE’
FILE is in your working directory, but does not correspond to
anything in the source repository, and is not in the list of files
for CVS to ignore (see the description of the ‘-I’ option, and see
cvsignore).

Note that no warning message like this is printed for spurious
directories that CVS encounters. The directory, and all its
contents, are silently ignored.

1.127 cvs.guide/update examples

update examples

The following line will display all files which are not up-to-date
without actually change anything in your working directory. It can be
used to check what has been going on with the project.

$ cvs -n -q update

1.128 cvs.guide/Administrative files

Reference manual for the Administrative files

Inside the repository, in the directory ‘$CVSROOT/CVSROOT’, there
are a number of supportive files for CVS. You can use CVS in a limited
fashion without any of them, but if they are set up properly they can
help make life easier. For a discussion of how to edit them, See
Intro administrative files.

The most important of these files is the ‘modules’ file, which
defines the modules inside the repository.

modules Defining modules

cvs 100 / 121

Wrappers Treat directories as files
commit files The commit support files
commitinfo Pre-commit checking
editinfo Specifying how log messages are created
loginfo Where should log messages be sent?
rcsinfo Templates for the log messages
cvsignore Ignoring files via cvsignore
history file History information
Variables Various variables are expanded

1.129 cvs.guide/modules

The modules file
================

The ‘modules’ file records your definitions of names for collections
of source code. CVS will use these definitions if you use CVS to
update the modules file (use normal commands like ‘add’, ‘commit’, etc).

The ‘modules’ file may contain blank lines and comments (lines
beginning with ‘#’) as well as module definitions. Long lines can be
continued on the next line by specifying a backslash (‘\’) as the last
character on the line.

A module definition is a single line of the ‘modules’ file, in
either of two formats. In both cases, MNAME represents the symbolic
module name, and the remainder of the line is its definition.

‘MNAME -a ALIASES...’
This represents the simplest way of defining a module MNAME. The
‘-a’ flags the definition as a simple alias: CVS will treat any
use of MNAME (as a command argument) as if the list of names
ALIASES had been specified instead. ALIASES may contain either
other module names or paths. When you use paths in aliases,
‘checkout’ creates all intermediate directories in the working
directory, just as if the path had been specified explicitly in
the CVS arguments.

‘MNAME [options] DIR [FILES...] [&MODULE...]’
In the simplest case, this form of module definition reduces to
‘MNAME DIR’. This defines all the files in directory DIR as
module mname. DIR is a relative path (from ‘$CVSROOT’) to a
directory of source in the source repository. In this case, on
checkout, a single directory called MNAME is created as a working
directory; no intermediate directory levels are used by default,
even if DIR was a path involving several directory levels.

By explicitly specifying files in the module definition after DIR,
you can select particular files from directory DIR. The sample
definition for ‘modules’ is an example of a module defined with a
single file from a particular directory. Here is another example:

m4test unsupported/gnu/m4 foreach.m4 forloop.m4

cvs 101 / 121

With this definition, executing ‘cvs checkout m4test’ will create
a single working directory ‘m4test’ containing the two files
listed, which both come from a common directory several levels deep
in the CVS source repository.

A module definition can refer to other modules by including
‘&MODULE’ in its definition. ‘checkout’ creates a subdirectory
for each such module, in your working directory.

‘-d NAME’
Name the working directory something other than the module
name.

‘-e PROG’
Specify a program PROG to run whenever files in a module are
exported. PROG runs with a single argument, the module name.

‘-i PROG’
Specify a program PROG to run whenever files in a module are
committed. PROG runs with a single argument, the full
pathname of the affected directory in a source repository.
The ‘commitinfo’, ‘loginfo’, and ‘editinfo’ files provide
other ways to call a program on commit.

‘-o PROG’
Specify a program PROG to run whenever files in a module are
checked out. PROG runs with a single argument, the module
name.

‘-s STATUS’
Assign a status to the module. When the module file is
printed with ‘cvs checkout -s’ the modules are sorted
according to primarily module status, and secondarily
according to the module name. This option has no other
meaning. You can use this option for several things besides
status: for instance, list the person that is responsible for
this module.

‘-t PROG’
Specify a program PROG to run whenever files in a module are
tagged with ‘rtag’. PROG runs with two arguments: the module
name and the symbolic tag specified to ‘rtag’. There is no
way to specify a program to run when ‘tag’ is executed.

‘-u PROG’
Specify a program PROG to run whenever ‘cvs update’ is
executed from the top-level directory of the checked-out
module. PROG runs with a single argument, the full path to
the source repository for this module.

1.130 cvs.guide/Wrappers

The cvswrappers file
====================

cvs 102 / 121

Wrappers allow you to set a hook which transforms files on their way
in and out of CVS. Most or all of the wrappers features do not work
with client/server CVS.

The file ‘cvswrappers’ defines the script that will be run on a file
when its name matches a regular expresion. There are two scripts that
can be run on a file or directory. One script is executed on the
file/directory before being checked into the repository (this is denoted
with the ‘-t’ flag) and the other when the file is checked out of the
repository (this is denoted with the ‘-f’ flag)

The ‘cvswrappers’ also has a ‘-m’ option to specify the merge
methodology that should be used when the file is updated. ‘MERGE’
means the usual CVS behavior: try to merge the files (this generally
will not work for binary files). ‘COPY’ means that ‘cvs update’ will
merely copy one version over the other, and require the user using
mechanisms outside CVS, to insert any necessary changes. The ‘-m’
wrapper option only affects behavior when merging is done on update; it
does not affect how files are stored. See See Binary files, for more on
binary files.

The basic format of the file ‘cvswrappers’ is:

wildcard [option value][option value]...

where option is one of
-f from cvs filter value: path to filter
-t to cvs filter value: path to filter
-m update methodology value: MERGE or COPY
-k keyword expansion value: expansion mode

and value is a single-quote delimited value.

*.nib -f ’unwrap %s’ -t ’wrap %s %s’ -m ’COPY’

*.c -t ’indent %s %s’

The above example of a ‘cvswrappers’ file states that all
files/directories that end with a ‘.nib’ should be filtered with the
‘wrap’ program before checking the file into the repository. The file
should be filtered though the ‘unwrap’ program when the file is checked
out of the repository. The ‘cvswrappers’ file also states that a ‘COPY’
methodology should be used when updating the files in the repository
(that is no merging should be performed).

The last example line says that all files that end with a ‘*.c’
should be filtered with ‘indent’ before being checked into the
repository. Unlike the previous example no filtering of the ‘*.c’ file
is done when it is checked out of the repository.

The ‘-t’ filter is called with two arguments, the first is the name of
the file/directory to filter and the second is the pathname to where
the resulting filtered file should be placed.

The ‘-f’ filter is called with one argument, which is the name of the
file to filter from. The end result of this filter will be a file in
the users directory that they can work on as they normally would.

cvs 103 / 121

For another example, the following command imports a directory,
treating files whose name ends in ‘.exe’ as binary:

cvs import -I ! -W "*.exe -k ’b’" first-dir vendortag reltag

1.131 cvs.guide/commit files

The commit support files
========================

The ‘-i’ flag in the ‘modules’ file can be used to run a certain
program whenever files are committed (see modules). The files
described in this section provide other, more flexible, ways to run
programs whenever something is committed.

There are three kind of programs that can be run on commit. They
are specified in files in the repository, as described below. The
following table summarizes the file names and the purpose of the
corresponding programs.

‘commitinfo’
The program is responsible for checking that the commit is
allowed. If it exits with a non-zero exit status the commit will
be aborted.

‘editinfo’
The specified program is used to edit the log message, and
possibly verify that it contains all required fields. This is
most useful in combination with the ‘rcsinfo’ file, which can hold
a log message template (see rcsinfo).

‘loginfo’
The specified program is called when the commit is complete. It
receives the log message and some additional information and can
store the log message in a file, or mail it to appropriate
persons, or maybe post it to a local newsgroup, or... Your
imagination is the limit!

syntax The common syntax

1.132 cvs.guide/syntax

The common syntax

The four files ‘commitinfo’, ‘loginfo’, ‘rcsinfo’ and ‘editinfo’ all
have a common format. The purpose of the files are described later on.
The common syntax is described here.

cvs 104 / 121

Each line contains the following:

* A regular expression

* A whitespace separator--one or more spaces and/or tabs.

* A file name or command-line template.

Blank lines are ignored. Lines that start with the character ‘#’ are
treated as comments. Long lines unfortunately can *not* be broken in
two parts in any way.

The first regular expression that matches the current directory name
in the repository is used. The rest of the line is used as a file name
or command-line as appropriate.

1.133 cvs.guide/commitinfo

Commitinfo
==========

The ‘commitinfo’ file defines programs to execute whenever ‘cvs
commit’ is about to execute. These programs are used for pre-commit
checking to verify that the modified, added and removed files are really
ready to be committed. This could be used, for instance, to verify
that the changed files conform to to your site’s standards for coding
practice.

As mentioned earlier, each line in the ‘commitinfo’ file consists of
a regular expression and a command-line template. The template can
include a program name and any number of arguments you wish to supply
to it. The full path to the current source repository is appended to
the template, followed by the file names of any files involved in the
commit (added, removed, and modified files).

The first line with a regular expression matching the relative path
to the module will be used. If the command returns a non-zero exit
status the commit will be aborted.

If the repository name does not match any of the regular expressions
in this file, the ‘DEFAULT’ line is used, if it is specified.

All occurances of the name ‘ALL’ appearing as a regular expression
are used in addition to the first matching regular expression or the
name ‘DEFAULT’.

Note: when CVS is accessing a remote repository, ‘commitinfo’ will
be run on the *remote* (i.e., server) side, not the client side (see
Remote repositories).

cvs 105 / 121

1.134 cvs.guide/editinfo

Editinfo
========

If you want to make sure that all log messages look the same way,
you can use the ‘editinfo’ file to specify a program that is used to
edit the log message. This program could be a custom-made editor that
always enforces a certain style of the log message, or maybe a simple
shell script that calls an editor, and checks that the entered message
contains the required fields.

If no matching line is found in the ‘editinfo’ file, the editor
specified in the environment variable ‘$CVSEDITOR’ is used instead. If
that variable is not set, then the environment variable ‘$EDITOR’ is
used instead. If that variable is not set a precompiled default,
normally ‘vi’, will be used.

The ‘editinfo’ file is often most useful together with the ‘rcsinfo’
file, which can be used to specify a log message template.

Each line in the ‘editinfo’ file consists of a regular expression
and a command-line template. The template must include a program name,
and can include any number of arguments. The full path to the current
log message template file is appended to the template.

One thing that should be noted is that the ‘ALL’ keyword is not
supported. If more than one matching line is found, the first one is
used. This can be useful for specifying a default edit script in a
module, and then overriding it in a subdirectory.

If the repository name does not match any of the regular expressions
in this file, the ‘DEFAULT’ line is used, if it is specified.

If the edit script exits with a non-zero exit status, the commit is
aborted.

Note: when CVS is accessing a remote repository, or when the ‘-m’ or
‘-F’ options to ‘cvs commit’ are used, ‘editinfo’ will not be consulted.
There is no good workaround for this.

editinfo example Editinfo example

1.135 cvs.guide/editinfo example

Editinfo example

The following is a little silly example of a ‘editinfo’ file,
together with the corresponding ‘rcsinfo’ file, the log message
template and an editor script. We begin with the log message template.
We want to always record a bug-id number on the first line of the log

cvs 106 / 121

message. The rest of log message is free text. The following template
is found in the file ‘/usr/cvssupport/tc.template’.

BugId:

The script ‘/usr/cvssupport/bugid.edit’ is used to edit the log
message.

#!/bin/sh
#
bugid.edit filename
#
Call $EDITOR on FILENAME, and verify that the
resulting file contains a valid bugid on the first
line.
if ["x$EDITOR" = "x"]; then EDITOR=vi; fi
if ["x$CVSEDITOR" = "x"]; then CVSEDITOR=$EDITOR; fi
$CVSEDITOR $1
until head -1|grep ’^BugId:[]*[0-9][0-9]*$’ < $1
do echo -n "No BugId found. Edit again? ([y]/n)"

read ans
case ${ans} in

n*) exit 1;;
esac
$CVSEDITOR $1

done

The ‘editinfo’ file contains this line:

^tc /usr/cvssupport/bugid.edit

The ‘rcsinfo’ file contains this line:

^tc /usr/cvssupport/tc.template

1.136 cvs.guide/loginfo

Loginfo
=======

The ‘loginfo’ file is used to control where ‘cvs commit’ log
information is sent. The first entry on a line is a regular expression
which is tested against the directory that the change is being made to,
relative to the ‘$CVSROOT’. If a match is found, then the remainder of
the line is a filter program that should expect log information on its
standard input.

The filter program may use one and only one % modifier (a la
printf). If ‘%s’ is specified in the filter program, a brief title is
included (enclosed in single quotes) showing the modified file names.

If the repository name does not match any of the regular expressions
in this file, the ‘DEFAULT’ line is used, if it is specified.

cvs 107 / 121

All occurances of the name ‘ALL’ appearing as a regular expression
are used in addition to the first matching regular expression or
‘DEFAULT’.

The first matching regular expression is used.

See commit files, for a description of the syntax of the ‘loginfo’
file.

Note: when CVS is accessing a remote repository, ‘loginfo’ will be
run on the *remote* (i.e., server) side, not the client side (see
Remote repositories).

loginfo example Loginfo example

1.137 cvs.guide/loginfo example

Loginfo example

The following ‘loginfo’ file, together with the tiny shell-script
below, appends all log messages to the file
‘$CVSROOT/CVSROOT/commitlog’, and any commits to the administrative
files (inside the ‘CVSROOT’ directory) are also logged in
‘/usr/adm/cvsroot-log’.

ALL /usr/local/bin/cvs-log $CVSROOT/CVSROOT/commitlog
^CVSROOT /usr/local/bin/cvs-log /usr/adm/cvsroot-log

The shell-script ‘/usr/local/bin/cvs-log’ looks like this:

#!/bin/sh
(echo "---";
echo -n $USER" ";
date;
echo;
sed ’1s+’${CVSROOT}’++’) >> $1

1.138 cvs.guide/rcsinfo

Rcsinfo
=======

The ‘rcsinfo’ file can be used to specify a form to edit when
filling out the commit log. The ‘rcsinfo’ file has a syntax similar to
the ‘editinfo’, ‘commitinfo’ and ‘loginfo’ files. See syntax. Unlike
the other files the second part is *not* a command-line template.
Instead, the part after the regular expression should be a full
pathname to a file containing the log message template.

cvs 108 / 121

If the repository name does not match any of the regular expressions
in this file, the ‘DEFAULT’ line is used, if it is specified.

All occurances of the name ‘ALL’ appearing as a regular expression
are used in addition to the first matching regular expression or
‘DEFAULT’.

The log message template will be used as a default log message. If
you specify a log message with ‘cvs commit -m MESSAGE’ or ‘cvs commit -f
FILE’ that log message will override the template.

See editinfo example, for an example ‘rcsinfo’ file.

When CVS is accessing a remote repository, the contents of ‘rcsinfo’
at the time a directory is first checked out will specify a template
which does not then change. If you edit ‘rcsinfo’ or its templates,
you may need to check out a new working directory.

1.139 cvs.guide/cvsignore

Ignoring files via cvsignore
============================

There are certain file names that frequently occur inside your
working copy, but that you don’t want to put under CVS control.
Examples are all the object files that you get while you compile your
sources. Normally, when you run ‘cvs update’, it prints a line for
each file it encounters that it doesn’t know about (see update output).

CVS has a list of files (or sh(1) file name patterns) that it should
ignore while running ‘update’, ‘import’ and ‘release’. This list is
constructed in the following way.

* The list is initialized to include certain file name patterns:
names associated with CVS administration, or with other common
source control systems; common names for patch files, object files,
archive files, and editor backup files; and other names that are
usually artifacts of assorted utilities. Currently, the default
list of ignored file name patterns is:

RCS SCCS CVS CVS.adm
RCSLOG cvslog.*
tags TAGS
.make.state .nse_depinfo

~ # .#* ,* _$* *$

*.old *.bak *.BAK *.orig *.rej .del-*
*.a *.olb *.o *.obj *.so *.exe

*.Z *.elc *.ln
core

* The per-repository list in ‘$CVSROOT/CVSROOT/cvsignore’ is
appended to the list, if that file exists.

cvs 109 / 121

* The per-user list in ‘.cvsignore’ in your home directory is
appended to the list, if it exists.

* Any entries in the environment variable ‘$CVSIGNORE’ is appended
to the list.

* Any ‘-I’ options given to CVS is appended.

* As CVS traverses through your directories, the contents of any
‘.cvsignore’ will be appended to the list. The patterns found in
‘.cvsignore’ are only valid for the directory that contains them,
not for any sub-directories.

In any of the 5 places listed above, a single exclamation mark (‘!’)
clears the ignore list. This can be used if you want to store any file
which normally is ignored by CVS.

1.140 cvs.guide/history file

The history file
================

The file ‘$CVSROOT/CVSROOT/history’ is used to log information for
the ‘history’ command (see history). This file must be created to turn
on logging. This is done automatically if the ‘cvs init’ command is
used to set up the repository (see Creating a repository).

The file format of the ‘history’ file is documented only in comments
in the CVS source code, but generally programs should use the ‘cvs
history’ command to access it anyway, in case the format changes with
future releases of CVS.

1.141 cvs.guide/Variables

Expansions in administrative files
==================================

Sometimes in writing an administrative file, you might want the file
to be able to know various things based on environment CVS is running
in. There are several mechanisms to do that.

To find the home directory of the user running CVS (from the ‘HOME’
environment variable), use ‘~’ followed by ‘/’ or the end of the line.
Likewise for the home directory of USER, use ‘~USER’. These variables
are expanded on the server machine, and don’t get any resonable
expansion if pserver (see Password authenticated) is in used; therefore
user variables (see below) may be a better choice to customize behavior
based on the user running CVS.

One may want to know about various pieces of information internal to

cvs 110 / 121

CVS. A CVS internal variable has the syntax ‘${VARIABLE}’, where
VARIABLE starts with a letter and consists of alphanumberic characters
and ‘_’. If the character following VARIABLE is a non-alphanumeric
character other than ‘_’, the ‘{’ and ‘}’ can be omitted. The CVS
internal variables are:

‘CVSROOT’
This is the value of the CVS root in use. See Repository, for a
description of the various ways to specify this.

‘RCSBIN’
This is the value CVS is using for where to find RCS binaries.
See Global options, for a description of how to specify this.

‘CVSEDITOR’
‘VISUAL’
‘EDITOR’

These all expand to the same value, which is the editor that CVS
is using. See Global options, for how to specify this.

‘USER’
Username of the user running CVS (on the CVS server machine).

If you want to pass a value to the administrative files which the
user that is running CVS can specify, use a user variable. To expand a
user variable, the administrative file contains ‘${=VARIABLE}’. To set
a user variable, specify the global option ‘-s’ to CVS, with argument
‘VARIABLE=VALUE’. It may be particularly useful to specify this option
via ‘.cvsrc’ (see ~-.cvsrc).

For example, if you want the administrative file to refer to a test
directory you might create a user variable ‘TESTDIR’. Then if CVS is
invoked as ‘cvs -s TESTDIR=/work/local/tests’, and the administrative
file contains ‘sh ${=TESTDIR}/runtests’, then that string is expanded
to ‘sh /work/local/tests/runtests’.

All other strings containing ‘$’ are reserved; there is no way to
quote a ‘$’ character so that ‘$’ represents itself.

1.142 cvs.guide/Environment variables

All environment variables which affect CVS

**

This is a complete list of all environment variables that affect CVS.

‘$CVSIGNORE’
A whitespace-separated list of file name patterns that CVS should
ignore. See cvsignore.

‘$CVSWRAPPERS’
A whitespace-separated list of file name patterns that CVS should
treat as wrappers. See Wrappers.

cvs 111 / 121

‘$CVSREAD’
If this is set, ‘checkout’ and ‘update’ will try hard to make the
files in your working directory read-only. When this is not set,
the default behavior is to permit modification of your working
files.

‘$CVSROOT’
Should contain the full pathname to the root of the CVS source
repository (where the RCS history files are kept). This
information must be available to CVS for most commands to execute;
if ‘$CVSROOT’ is not set, or if you wish to override it for one
invocation, you can supply it on the command line: ‘cvs -d cvsroot
cvs_command...’ Once you have checked out a working directory, CVS
stores the appropriate root (in the file ‘CVS/Root’), so normally
you only need to worry about this when initially checking out a
working directory.

‘$EDITOR’
‘$CVSEDITOR’

Specifies the program to use for recording log messages during
commit. If not set, the default is ‘/usr/ucb/vi’. ‘$CVSEDITOR’
overrides ‘$EDITOR’. ‘$CVSEDITOR’ does not exist in CVS 1.3, but
the next release will probably include it.

‘$PATH’
If ‘$RCSBIN’ is not set, and no path is compiled into CVS, it will
use ‘$PATH’ to try to find all programs it uses.

‘$RCSBIN’
Specifies the full pathname of the location of RCS programs, such
as co(1) and ci(1). If not set, a compiled-in value is used, or
your ‘$PATH’ is searched.

‘$HOME’
‘$HOMEPATH’

Used to locate the directory where the ‘.cvsrc’ file is searched
(‘$HOMEPATH’ is used for Windows-NT). see ~-.cvsrc

‘$CVS_RSH’
Used in client-server mode when accessing a remote repository
using RSH. The default value is ‘rsh’. You can set it to use
another program for accssing the remote server (e.g. for HP-UX 9,
you should set it to ‘remsh’ because ‘rsh’ invokes the restricted
shell). see Connecting via rsh

‘$CVS_SERVER’
Used in client-server mode when accessing a remote repository
using RSH. It specifies the name of the program to start on the
server side when accessing a remote repository using RSH. The
default value is ‘cvs’. see Connecting via rsh

‘$CVS_PASSFILE’
Used in client-server mode when accessing the ‘cvs login server’.
Default value is ‘$HOME/.cvspass’. see
Password authentication client

‘$CVS_PASSWORD’

cvs 112 / 121

Used in client-server mode when accessing the ‘cvs login server’.
see Password authentication client

‘$CVS_CLIENT_PORT’
Used in client-server mode when accessing the server via Kerberos.
see Kerberos authenticated

‘$CVS_RCMD_PORT’
Used in client-server mode. If set, specifies the port number to
be used when accessing the RCMD demon on the server side.
(Currently not used for Unix clients).

‘$CVS_CLIENT_LOG’
Used for debugging only in client-server mode. If set, everything
send to the server is logged into ‘‘$CVS_CLIENT_LOG’.in’ and
everything send from the server is logged into
‘‘$CVS_CLIENT_LOG’.out’.

‘$CVS_SERVER_SLEEP’
Used only for debugging the server side in client-server mode. If
set, delays the start of the server child process the the
specified amount of seconds so that you can attach to it with a
debugger.

‘$CVS_IGNORE_REMOTE_ROOT’
(What is the purpose of this variable?)

‘$COMSPEC’
Used under OS/2 only. It specifies the name of the command
interpreter and defaults to CMD.EXE.

‘$TMPDIR’
‘$TMP’
‘$TEMP’

Directory in which temporary files are located. Those parts of
CVS which are implemented using RCS inspect the above variables in
the order they appear above and the first value found is taken; if
none of them are set, a host-dependent default is used, typically
‘/tmp’. The CVS server checks ‘TMPDIR’, and if not set, it uses
‘/tmp’. Some parts of CVS will always use ‘/tmp’ (via the
‘tmpnam’ function provided by the system).

On Windows NT, ‘TMP’ is used (via the ‘_tempnam’ function provided
by the system).

The ‘patch’ program which is used by the CVS client uses ‘TMPDIR’,
and if it is not set, uses ‘/tmp’ (at least with GNU patch 2.1).

CVS invokes RCS to perform certain operations. The following
environment variables affect RCS. Note that if you are using the
client/server CVS, these variables need to be set on the server side
(which may or not may be possible depending on how you are connecting).
There is probably not any need to set any of them, however.

‘$LOGNAME’
‘$USER’

If set, they affect who RCS thinks you are. If you have trouble

cvs 113 / 121

checking in files it might be because your login name differs from
the setting of e.g. ‘$LOGNAME’.

‘$RCSINIT’
Options prepended to the argument list, separated by spaces. A
backslash escapes spaces within an option. The ‘$RCSINIT’ options
are prepended to the argument lists of most RCS commands.

1.143 cvs.guide/Troubleshooting

Troubleshooting

Magic branch numbers Magic branch numbers

1.144 cvs.guide/Magic branch numbers

Magic branch numbers
====================

Externally, branch numbers consist of an odd number of dot-separated
decimal integers. See Revision numbers. That is not the whole truth,
however. For efficiency reasons CVS sometimes inserts an extra 0 in
the second rightmost position (1.2.3 becomes 1.2.0.3, 8.9.10.11.12
becomes 8.9.10.11.0.12 and so on).

CVS does a pretty good job at hiding these so called magic branches,
but in at least four places the hiding is incomplete.

* The magic branch can appear in the output from ‘cvs status’ in
vanilla CVS 1.3. This is fixed in CVS 1.3-s2.

* The magic branch number appears in the output from ‘cvs log’.
This is much harder to fix, since ‘cvs log’ runs ‘rlog’ (which is
part of the RCS distribution), and modifying ‘rlog’ to know about
magic branches would probably break someone’s habits (if they use
branch 0 for their own purposes).

* You cannot specify a symbolic branch name to ‘cvs log’.

* You cannot specify a symbolic branch name to ‘cvs admin’.

You can use the ‘admin’ command to reassign a symbolic name to a
branch the way RCS expects it to be. If ‘R4patches’ is assigned to the
branch 1.4.2 (magic branch number 1.4.0.2) in file ‘numbers.c’ you can
do this:

$ cvs admin -NR4patches:1.4.2 numbers.c

cvs 114 / 121

It only works if at least one revision is already committed on the
branch. Be very careful so that you do not assign the tag to the wrong
number. (There is no way to see how the tag was assigned yesterday).

1.145 cvs.guide/Copying

GNU GENERAL PUBLIC LICENSE

1.146 cvs.guide/Index

Index

-j (merging branches) Merging a branch
-k (RCS kflags) Substitution modes
.bashrc Repository
.cshrc Repository
.cvsrc file ~-.cvsrc
.profile Repository
.tcshrc Repository
/usr/local/cvsroot Repository
:kserver: Kerberos authenticated
:local: Repository
:pserver: Password authentication client
:server: Connecting via rsh
<<<<<<< Conflicts example
======= Conflicts example
>>>>>>> Conflicts example
A sample session A sample session
About this manual Preface
Add (subcommand) add
Add options add options
Adding a tag Tags
Adding files Adding files
Admin (subcommand) admin
Administrative files (intro) Intro administrative files
Administrative files (reference) Administrative files
Administrative files, editing them Intro administrative files
ALL in commitinfo commitinfo
annotate (subcommand) annotate
Atomic transactions, lack of Concurrency
authenticated client, using Password authentication client
authenticating server, setting up Password authentication server
Author keyword Keyword list
Automatically ignored files cvsignore
Avoiding editor invocation Common options
Binary files Binary files
Branch merge example Merging a branch
Branch number Revision numbers

cvs 115 / 121

Branch numbers Creating a branch
Branch, creating a Creating a branch
Branch, vendor- Tracking sources
Branches Branches
Branches motivation Branches motivation
Branches, copying changes between Merging
Branches, sticky Sticky tags
Bringing a file up to date Updating a file
Bugs, known in this manual BUGS
Bugs, reporting (manual) BUGS
Changes, copying between branches Merging
Changing a log message admin options
Checkin program modules
Checking commits commitinfo
Checking out source Getting the source
Checkout (subcommand) checkout
Checkout program modules
Checkout, example Getting the source
Cleaning up Cleaning up
Client/Server Operation Remote repositories
Co (subcommand) checkout
Command reference Invoking CVS
Command structure Structure
Comment leader admin examples
Commit (subcommand) commit
Commit files commit files
Commit, when to When to commit
Commitinfo commitinfo
Committing changes Committing your changes
Common options Common options
Common syntax of info files syntax
COMSPEC Environment variables
Conflict markers Conflicts example
Conflict resolution Conflicts example
Conflicts (merge example) Conflicts example
Contributors (CVS program) What is CVS?
Contributors (manual) Credits
Copying changes Merging
Correcting a log message admin options
Creating a branch Creating a branch
Creating a project Starting a new project
Creating a repository Creating a repository
Credits (CVS program) What is CVS?
Credits (manual) Credits
CVS 1.6, and watches Watches Compatibility
CVS command structure Structure
CVS passwd file Password authentication server
CVS, history of What is CVS?
CVS, introduction to What is CVS?
CVS_CLIENT_LOG Environment variables
CVS_CLIENT_PORT Kerberos authenticated
CVS_IGNORE_REMOTE_ROOT Environment variables
CVS_PASSFILE, environment variable Password authentication client
CVS_PASSWORD, environment variable Password authentication client
CVS_RCMD_PORT Environment variables
CVS_RSH Environment variables
CVS_SERVER Connecting via rsh

cvs 116 / 121

CVS_SERVER_SLEEP Environment variables
CVSEDITOR Environment variables
CVSEDITOR, environment variable Committing your changes
CVSIGNORE Environment variables
cvsignore (admin file), global cvsignore
CVSREAD Environment variables
CVSREAD, overriding Global options
cvsroot Repository
CVSROOT Environment variables
CVSROOT (file) Administrative files
CVSROOT, environment variable Repository
CVSROOT, module name Intro administrative files
CVSROOT, multiple repositories Multiple repositories
CVSROOT, overriding Global options
CVSWRAPPERS Environment variables
cvswrappers (admin file) Wrappers
CVSWRAPPERS, environment variable Wrappers
Date keyword Keyword list
Dates Common options
Decimal revision number Revision numbers
DEFAULT in commitinfo commitinfo
DEFAULT in editinfo editinfo
Defining a module Defining the module
Defining modules (intro) Intro administrative files
Defining modules (reference manual) modules
Deleting files Removing files
Deleting revisions admin options
Deleting sticky tags Sticky tags
Descending directories Recursive behavior
Diff Viewing differences
Diff (subcommand) diff
Differences, merging Merging two revisions
Directories, moving Moving directories
Directory, descending Recursive behavior
Disjoint repositories Multiple repositories
Distributing log messages loginfo
driver.c (merge example) Conflicts example
edit (subcommand) Editing files
editinfo (admin file) editinfo
Editing administrative files Intro administrative files
Editing the modules file Defining the module
EDITOR Environment variables
Editor, avoiding invocation of Common options
EDITOR, environment variable Committing your changes
EDITOR, overriding Global options
Editor, specifying per module editinfo
editors (subcommand) Watch information
emerge Conflicts example
Environment variables Environment variables
Errors, reporting (manual) BUGS
Example of a work-session A sample session
Example of merge Conflicts example
Example, branch merge Merging a branch
Export (subcommand) export
Export program modules
Fetching source Getting the source
File locking Multiple developers

cvs 117 / 121

File permissions File permissions
File status File status
Files, moving Moving files
Files, reference manual Administrative files
Fixing a log message admin options
Forcing a tag match Common options
Form for log message rcsinfo
Format of CVS commands Structure
Four states of a file File status
Getting started A sample session
Getting the source Getting the source
Global cvsignore cvsignore
Global options Global options
Group File permissions
Header keyword Keyword list
History (subcommand) history
History browsing History browsing
History file history file
History files User modules
History of CVS What is CVS?
HOME Environment variables
HOMEPATH Environment variables
Id keyword Keyword list
Ident (shell command) Using keywords
Identifying files Keyword substitution
Ignored files cvsignore
Ignoring files cvsignore
Import (subcommand) import
Importing files From files
Importing files, from other version control systesm From other version ←↩

control systems
Importing modules First import
Index Index
Info files (syntax) syntax
Informing others Informing others
init (subcommand) Creating a repository
Introduction to CVS What is CVS?
Invoking CVS Invoking CVS
Isolation History browsing
Join Merging a branch
kerberos Kerberos authenticated
Keyword expansion Keyword substitution
Keyword substitution Keyword substitution
Kflag Substitution modes
kinit Kerberos authenticated
Known bugs in this manual BUGS
Layout of repository Repository
Left-hand options Global options
Linear development Revision numbers
List, mailing list What is CVS?
Locally modified File status
Locker keyword Keyword list
Locking files Multiple developers
locks, cvs Concurrency
Log (subcommand) log
Log information, saving history file
Log keyword Keyword list

cvs 118 / 121

Log keyword, selecting comment leader admin examples
Log message entry Committing your changes
Log message template rcsinfo
Log message, correcting admin options
Log messages loginfo
Log messages, editing editinfo
Login (subcommand) Password authentication client
loginfo (admin file) loginfo
LOGNAME Environment variables
Mail, automatic mail on commit Informing others
Mailing list What is CVS?
Mailing log messages loginfo
Main trunk (intro) Revision numbers
Main trunk and branches Branches
Many repositories Multiple repositories
Markers, conflict Conflicts example
Merge, an example Conflicts example
Merge, branch example Merging a branch
Merging Merging
Merging a branch Merging a branch
Merging a file Updating a file
Merging two revisions Merging two revisions
Modifications, copying between branches Merging
Module status modules
Module, defining Defining the module
Modules (admin file) modules
Modules (intro) Basic concepts
Modules file Intro administrative files
Modules file, changing Defining the module
Motivation for branches Branches motivation
Moving directories Moving directories
Moving files Moving files
Multiple developers Multiple developers
Multiple repositories Multiple repositories
Name keyword Keyword list
Name, symbolic (tag) Tags
Needing merge File status
Needing update File status
Newsgroups What is CVS?
notify (admin file) Getting Notified
Nroff (selecting comment leader) admin examples
Number, branch Revision numbers
Number, revision- Revision numbers
option defaults ~-.cvsrc
Options, global Global options
Outdating revisions admin options
Overlap Updating a file
Overriding CVSREAD Global options
Overriding CVSROOT Global options
Overriding EDITOR Global options
Overriding RCSBIN Global options
Parallel repositories Multiple repositories
passwd (admin file) Password authentication server
password client, using Password authentication client
password server, setting up Password authentication server
PATH Environment variables
Per-module editor editinfo

cvs 119 / 121

Policy When to commit
Precommit checking commitinfo
Preface Preface
Pserver (subcommand) Password authentication server
RCS history files User modules
RCS keywords Keyword list
RCS revision numbers Tags
RCS, CVS uses RCS User modules
RCS, importing files from From other version control systems
RCS-style locking admin options
RCSBIN Environment variables
RCSBIN, overriding Global options
RCSfile keyword Keyword list
rcsinfo (admin file) rcsinfo
RCSINIT Environment variables
Rdiff (subcommand) rdiff
Read-only files Global options
Read-only mode Global options
Recursive (directory descending) Recursive behavior
Reference manual (files) Administrative files
Reference manual for variables Environment variables
Reference, commands Invoking CVS
Release (subcommand) release
Releases, revisions and versions Versions revisions releases
Releasing your working copy Cleaning up
Remote repositories Remote repositories
Remove (subcommand) Removing files
Removing a change Merging two revisions
Removing files Removing files
Removing your working copy Cleaning up
Renaming directories Moving directories
Renaming files Moving files
Replacing a log message admin options
Reporting bugs (manual) BUGS
Repositories, multiple Multiple repositories
Repositories, remote Remote repositories
Repository (intro) Basic concepts
Repository, example Repository
Repository, setting up Creating a repository
Repository, user parts User modules
Reserved checkouts admin options
Resetting sticky tags Sticky tags
Resolving a conflict Conflicts example
Restoring old version of removed file Sticky tags
Resurrecting old version of dead file Sticky tags
Retrieving an old revision using tags Tags
Revision keyword Keyword list
Revision management Revision management
Revision numbers Revision numbers
Revision tree Revision numbers
Revision tree, making branches Branches
Revisions, merging differences between Merging two revisions
Revisions, versions and releases Versions revisions releases
Right-hand options Common options
rsh Connecting via rsh
Rtag (subcommand) rtag
rtag, creating a branch using Creating a branch

cvs 120 / 121

Saving space admin options
SCCS, importing files from From other version control systems
Security File permissions
setgid File permissions
Setting up a repository Creating a repository
setuid File permissions
Signum Support Preface
Source keyword Keyword list
Source, getting CVS source What is CVS?
Source, getting from CVS Getting the source
Specifying dates Common options
Spreading information Informing others
Starting a project with CVS Starting a new project
State keyword Keyword list
Status (subcommand) status
Status of a file File status
Status of a module modules
sticky date Sticky tags
Sticky tags Sticky tags
Sticky tags, resetting Sticky tags
Storing log messages loginfo
Structure Structure
Subdirectories Recursive behavior
Support, getting CVS support Preface
Symbolic name (tag) Tags
Syntax of info files syntax
Tag (subcommand) tag
Tag program modules
tag, command, introduction Tags
tag, example Tags
Tag, retrieving old revisions Tags
Tag, symbolic name Tags
taginfo user-defined logging
Tags Tags
Tags, sticky Sticky tags
tc, Trivial Compiler (example) A sample session
Team of developers Multiple developers
TEMP Environment variables
Template for log message rcsinfo
temporary files, location of Environment variables
Third-party sources Tracking sources
Time Common options
TMP Environment variables
TMPDIR Environment variables
Trace Global options
Traceability History browsing
Tracking sources Tracking sources
Transactions, atomic, lack of Concurrency
Trivial Compiler (example) A sample session
Typical repository Repository
Undoing a change Merging two revisions
unedit (subcommand) Editing files
Up-to-date File status
Update (subcommand) update
Update program modules
update, introduction Updating a file
Updating a file Updating a file

cvs 121 / 121

USER Environment variables
User modules User modules
users (admin file) Getting Notified
Vendor Tracking sources
Vendor branch Tracking sources
Versions, revisions and releases Versions revisions releases
Viewing differences Viewing differences
watch add (subcommand) Getting Notified
watch off (subcommand) Setting a watch
watch on (subcommand) Setting a watch
watch remove (subcommand) Getting Notified
watchers (subcommand) Watch information
Watches Watches
Wdiff (import example) First import
What (shell command) Using keywords
What branches are good for Branches motivation
What is CVS? What is CVS?
When to commit When to commit
Work-session, example of A sample session
Working copy Multiple developers
Working copy, removing Cleaning up
Wrappers Wrappers

	cvs
	cvs.guide
	cvs.guide/Preface
	cvs.guide/Checklist
	cvs.guide/Credits
	cvs.guide/BUGS
	cvs.guide/What is CVS?
	cvs.guide/Basic concepts
	cvs.guide/Revision numbers
	cvs.guide/Versions revisions releases
	cvs.guide/A sample session
	cvs.guide/Getting the source
	cvs.guide/Committing your changes
	cvs.guide/Cleaning up
	cvs.guide/Viewing differences
	cvs.guide/Repository
	cvs.guide/User modules
	cvs.guide/File permissions
	cvs.guide/Intro administrative files
	cvs.guide/Multiple repositories
	cvs.guide/Creating a repository
	cvs.guide/Remote repositories
	cvs.guide/Connecting via rsh
	cvs.guide/Password authenticated
	cvs.guide/Password authentication server
	cvs.guide/Password authentication client
	cvs.guide/Password authentication security
	cvs.guide/Kerberos authenticated
	cvs.guide/Starting a new project
	cvs.guide/Setting up the files
	cvs.guide/From files
	cvs.guide/From other version control systems
	cvs.guide/From scratch
	cvs.guide/Defining the module
	cvs.guide/Multiple developers
	cvs.guide/File status
	cvs.guide/Updating a file
	cvs.guide/Conflicts example
	cvs.guide/Informing others
	cvs.guide/Concurrency
	cvs.guide/Watches
	cvs.guide/Setting a watch
	cvs.guide/Getting Notified
	cvs.guide/Editing files
	cvs.guide/Watch information
	cvs.guide/Watches Compatibility
	cvs.guide/Branches
	cvs.guide/Tags
	cvs.guide/Branches motivation
	cvs.guide/Creating a branch
	cvs.guide/Sticky tags
	cvs.guide/Merging
	cvs.guide/Merging a branch
	cvs.guide/Merging more than once
	cvs.guide/Merging two revisions
	cvs.guide/Recursive behavior
	cvs.guide/Adding files
	cvs.guide/Removing files
	cvs.guide/Tracking sources
	cvs.guide/First import
	cvs.guide/Update imports
	cvs.guide/Binary files in imports
	cvs.guide/Moving files
	cvs.guide/Outside
	cvs.guide/Inside
	cvs.guide/Rename by copying
	cvs.guide/Moving directories
	cvs.guide/History browsing
	cvs.guide/log messages
	cvs.guide/history database
	cvs.guide/user-defined logging
	cvs.guide/annotate
	cvs.guide/Keyword substitution
	cvs.guide/Keyword list
	cvs.guide/Using keywords
	cvs.guide/Avoiding substitution
	cvs.guide/Substitution modes
	cvs.guide/Log keyword
	cvs.guide/Binary files
	cvs.guide/Revision management
	cvs.guide/When to commit
	cvs.guide/Invoking CVS
	cvs.guide/Structure
	cvs.guide/~-.cvsrc
	cvs.guide/Global options
	cvs.guide/Common options
	cvs.guide/add
	cvs.guide/add options
	cvs.guide/add examples
	cvs.guide/admin
	cvs.guide/admin options
	cvs.guide/admin examples
	cvs.guide/checkout
	cvs.guide/checkout options
	cvs.guide/checkout examples
	cvs.guide/commit
	cvs.guide/commit options
	cvs.guide/commit examples
	cvs.guide/diff
	cvs.guide/diff options
	cvs.guide/diff examples
	cvs.guide/export
	cvs.guide/export options
	cvs.guide/history
	cvs.guide/history options
	cvs.guide/import
	cvs.guide/import options
	cvs.guide/import examples
	cvs.guide/log
	cvs.guide/log options
	cvs.guide/log examples
	cvs.guide/rdiff
	cvs.guide/rdiff options
	cvs.guide/rdiff examples
	cvs.guide/release
	cvs.guide/release options
	cvs.guide/release output
	cvs.guide/release examples
	cvs.guide/rtag
	cvs.guide/rtag options
	cvs.guide/status
	cvs.guide/status options
	cvs.guide/tag
	cvs.guide/tag options
	cvs.guide/update
	cvs.guide/update options
	cvs.guide/update output
	cvs.guide/update examples
	cvs.guide/Administrative files
	cvs.guide/modules
	cvs.guide/Wrappers
	cvs.guide/commit files
	cvs.guide/syntax
	cvs.guide/commitinfo
	cvs.guide/editinfo
	cvs.guide/editinfo example
	cvs.guide/loginfo
	cvs.guide/loginfo example
	cvs.guide/rcsinfo
	cvs.guide/cvsignore
	cvs.guide/history file
	cvs.guide/Variables
	cvs.guide/Environment variables
	cvs.guide/Troubleshooting
	cvs.guide/Magic branch numbers
	cvs.guide/Copying
	cvs.guide/Index

