
id-utils

id-utils ii

COLLABORATORS

TITLE :

id-utils

ACTION NAME DATE SIGNATURE

WRITTEN BY December 7, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

id-utils iii

Contents

1 id-utils 1

1.1 id-utils.guide . 1

1.2 id-utils.guide/Introduction . 1

1.3 id-utils.guide/Quick start . 2

1.4 id-utils.guide/Common options . 3

1.5 id-utils.guide/Universal options . 3

1.6 id-utils.guide/Reading options . 4

1.7 id-utils.guide/Writing options . 4

1.8 id-utils.guide/Walker options . 4

1.9 id-utils.guide/File listing options . 5

1.10 id-utils.guide/Extraction options . 5

1.11 id-utils.guide/Language map . 6

1.12 id-utils.guide/C-C++ scanner . 8

1.13 id-utils.guide/Assembler scanner . 9

1.14 id-utils.guide/Text scanner . 10

1.15 id-utils.guide/Defining scanners . 10

1.16 id-utils.guide/mkid invocation . 11

1.17 id-utils.guide/lid invocation . 11

1.18 id-utils.guide/lid aliases . 14

1.19 id-utils.guide/Emacs gid interface . 14

1.20 id-utils.guide/eid invocation . 15

1.21 id-utils.guide/fid invocation . 16

1.22 id-utils.guide/fnid invocation . 16

1.23 id-utils.guide/xtokid invocation . 17

1.24 id-utils.guide/Past and Future . 17

1.25 id-utils.guide/Index . 18

id-utils 1 / 21

Chapter 1

id-utils

1.1 id-utils.guide

ID utilities

This manual documents version 3.2 of the ID utilities.

Introduction Overview of the tools with tutorial.
Quick start Quick start procedure.
Common options Common command-line options.
mkid invocation Creating an ID database.
lid invocation Querying an ID database by token.
fid invocation Listing a file’s tokens.
fnid invocation Looking up file names.
xtokid invocation Testing language scanners.
Past and Future History and future directions.
Index General index.

1.2 id-utils.guide/Introduction

Introduction

An "ID database" is a binary file containing a list of file names, a
list of tokens, and a sparse matrix indicating which tokens appear in
which files.

With this database and some tools to query it (described in this
manual), many text-searching tasks become simpler and faster. For
example, you can list all files that reference a particular ‘#include’
file throughout a huge source hierarchy, search for all the memos
containing references to a project, or automatically invoke an editor
on all files containing references to some function or variable.
Anyone with a large software project to maintain, or a large set of text
files to organize, can benefit from the ID utilities.

id-utils 2 / 21

Although the name ‘ID’ is short for ‘identifier’, the ID utilities
handle more than just identifiers; they also treat other kinds of
tokens, most notably numeric constants, and the contents of certain
character strings. Thus, this manual will use the word "token" as a
term that is inclusive of identifiers, numbers and strings.

There are several programs in the ID utilities family:

‘mkid’
scans files for tokens and builds the ID database file.

‘lid’
queries the ID database for tokens, then reports matching file
names or matching lines.

‘fid’
lists all tokens recorded in the database for given files, or
tokens common to two files.

‘fnid’
matches the file names in the database, rather than the tokens.

‘xtokid’
extracts raw tokens--helps with testing of new ‘mkid’ scanners.

In addition, the ID utilities have historically provided several
query programs which are specializations of ‘lid’:

‘gid’
(alias for ‘lid -R grep’) lists all lines containing the requested
pattern.

‘eid’
(alias for ‘lid -R edit’) invokes an editor on all files
containing the requested pattern, and if possible, initiates a
text search for that pattern.

‘aid’
(alias for ‘lid -ils’) treats the requested pattern as a
case-insensitive literal substring.

Please report bugs to ‘bug-gnu-utils@gnu.ai.mit.edu’. Remember to
include the version number, machine architecture, input files, and any
other information needed to reproduce the bug: your input, what you
expected, what you got, and why it is wrong. Diffs are welcome, but
please include a description of the problem as well, since this is
sometimes difficult to infer. See Bugs.

1.3 id-utils.guide/Quick start

Quick Start Procedure

id-utils 3 / 21

Unpack the distribution.

Type ‘./configure’

Type ‘make’

Type ‘make install’ as a user with the appropriate privileges
(e.g., ‘bin’ or perhaps even ‘root’).

Type ‘cd /usr/include; mkid’ to build an ID database covering all
of the system header files.

Type ‘lid FILE’, then ‘gid strtok’, then ‘aid stdout’.

You have just built, installed and used the most common commands of
the GNU ID utilities. If you ever need help remembering which system
header files contain a particular declaration, or reference a
particular symbol, you’ll want to keep the ID file you built in
‘/usr/include’ for later use. If your working directory is elsewhere
at the time, simply provide the ‘-f /usr/include’ option to ‘lid’ (see
Reading options).

1.4 id-utils.guide/Common options

Common command-line options

Certain options, and regular expression syntax, are shared by various
groupings of the ID utilities. We describe these in the sections below,
rather than repeating them for each program.

Universal options Options common to all programs.
Extraction options Options for programs that extract tokens from source ←↩

files.
Walker options Options for programs that walk file and directory ←↩

trees.
Reading options Options for programs that read ID databases.
Writing options Options for programs that write ID databases.
File listing options Options for programs that list file names.

1.5 id-utils.guide/Universal options

Options Common to All Programs
==============================

‘--help’
Print a usage message listing all available options, then exit
successfully.

id-utils 4 / 21

‘--version’
Print the version number, then exit successfully.

1.6 id-utils.guide/Reading options

Options for Programs that Read ID Databases
===

‘-f FILENAME’
‘--file=FILENAME’

FILENAME is the ID database to read when processing queries. At
present, only a single ‘--file’ option is processed, but in future
releases, more than one ID database may be named on the command
line.

‘$IDPATH’
‘IDPATH’ is an environment variable that contains a
colon-separated list of ID database names. If this variable is
present, and no ‘--file’ options are presented on the command
line, the ID databases named in ‘IDPATH’ are implied.(1)

If no ID databases are specified either on the command line or via
the ‘IDPATH’ environment variable, then the ID utilities search for a
file named ‘ID’ in the current working directory, and then in
successive parent directories.

---------- Footnotes ----------

(1) At present, this feature is fully implemented, since only the
first of a list of ID database names is processed.

1.7 id-utils.guide/Writing options

Options for Programs that Write ID Databases
==

‘-o FILENAME’
‘--output=FILENAME’

The ‘--output’ option names the file in which to write a new ID
database. If no ‘--output’ (or ‘--file’) option is present, an
output file named ‘ID’ is implied.

‘-f FILENAME’
‘--file=FILENAME’

This is a synonym for ‘--output’

1.8 id-utils.guide/Walker options

id-utils 5 / 21

Options for Programs that Walk File and Directory Trees.
==

The programs ‘mkid’ and ‘xtokid’ accept the names of files and
directories on the command line. Files are scanned if there is a
scanner available and enabled for the file’s source language.
Directories are recursively descended, searching for files whose names
match the rules listed in the *language map* file (see Language map).

The following option controls the file tree walker:

‘-p NAMES’
‘--prune=NAMES’

One or more file or directory names may appear in NAMES. The file
tree walker will stop short at these files and directories and
their contents will not be scanned.

1.9 id-utils.guide/File listing options

Options for Programs that List File Names
===

The programs ‘lid’ and ‘fnid’ can print lists of file names as the
result of queries. The following option controls how these lists are
formatted:

‘-S STYLE’
‘--separator=STYLE’

STYLE may be one of ‘braces’, ‘space’ or ‘newline’.

The STYLE of ‘braces’ means that file names with common directory
prefix and common suffix are printed using the shell’s brace
notation in order to compress the output. For example,
‘../src/foo.c ../src/bar.c’ can be printed in brace notation as
‘../src/{foo,bar}.c’.

The STYLEs of ‘space’ and ‘newline’ mean that file names are
separated spaces or by newlines, respectively.

If the list of files is being printed on a terminal, brace
notation is the default. If not, file names are separated by
spaces if the KEY is included in the output, and by newlines the
KEY STYLE is ‘none’ (see lid invocation).

1.10 id-utils.guide/Extraction options

Options for Programs that Scan Source Files
===

id-utils 6 / 21

‘mkid’ and ‘xtokid’ walk file trees, select source files by name,
and extract tokens from source files. They accept the following
options:

‘-m MAPFILE’
‘--lang-map=MAPFILE’

MAPFILE contains rules for determining the source languages from
file names. See Language map

‘-i LANGUAGES’
‘--include=LANGUAGES’

The ‘--include’ option names LANGUAGES whose source files should
be scanned and incorporated into the ID database. By default, all
languages known to the ID utilities are enabled.

‘-x LANGUAGES’
‘--exclude=LANGUAGES’

The ‘--exclude’ option names LANGUAGES whose source files should
NOT be scanned. The default list of excluded languages is empty.
Note that only one of ‘--include’ or ‘--exclude’ may be specified
on the command line for a single run.

‘-l LANGUAGE:OPTIONS’
‘--lang-option=LANGUAGE:OPTIONS’

Language-specific scanners also accept options. LANGUAGE denotes
the desired scanner, and OPTION are the command-line options that
should be passed through to it. For example, to pass the -X
-COKE-BOTTLE options to the scanner for the language SWIZZLE, pass
this: -L SWIZZLE:"-X -COKE-BOTTLE", or this:
-LANG-OPTION=SWIZZLE:"-X -COKE-BOTTLE", or this: -L SWIZZLE-X -L
SWIZZLE:-COKE-BOTTLE. Use the ‘--help’ option to see the
command-line option summary for

To determine which tokens to extract from a file and store in the
database, ‘mkid’ calls a "scanner"; we say a scanner "recognizes" a
particular language. Scanners for several languages are built-in to
‘mkid’; you can add your own scanners as well, as explained in See
Defining scanners.

The ID utilities determine which scanner to use for a particular
file by consulting the language-map file. Scanners for several are
already built-in to the ID utilities. You can see which languages have
built-in scanners, and examine their language-specific options by
invoking ‘mkid --help’ or ‘xtokid --help’.

Language map Mapping file names to source languages.
C-C++ scanner For the C and C++ programming language.
Assembler scanner For assembly language.
Text scanner For documents or other non-source code.
Defining scanners Defining new scanners in the source code.

1.11 id-utils.guide/Language map

id-utils 7 / 21

Mapping file names to source languages

The file ‘id-lang.map’, installed by default in
‘$(prefix)/share/id-lang.map’, contains rules for mapping file names to
source languages. Each rule comprises three parts: a shell GLOB
pattern, a language name, and language-specific scanner options.

The special pattern ‘**’ denotes the default source language. This
is the language that’s assigned to file names that don’t match any other
pattern.

The special pattern ‘***’ should be followed by a file name. The
named file should contain more language-map rules and is included at
this point.

The order in which rules are presented in a language-map file is
significant. This order influences the order in which files are
displayed as the result of queries. For example, the distributed
language-map file places all rules for C .H files ahead of .C files, so
that in general, declarations will precede definitions in query output.
The same thing is done for C++ and its many different source file name
extensions.

Here is a pared-down version of the ‘id-lang.map’ file distributed
with the ID utilities:

Default language

** IGNORE # Although this is listed first,
the default language pattern is
logically matched last.

Backup files

*~ IGNORE

*.bak IGNORE

*.bk[0-9] IGNORE

SCCS files
[sp].* IGNORE

list header files before code files

*.h C

*.h.in C

*.H C++

*.hh C++

*.hpp C++

*.hxx C++

list C ‘meta’ files next

*.l C

*.lex C

*.y C

*.yacc C

list C code files after header files

id-utils 8 / 21

*.c C

*.C C++

*.cc C++

*.cpp C++

*.cxx C++

list assembly language after C

*.[sS] asm --comment=;

*.asm asm --comment=;

[nt]roff

*.[0-9] roff

*.ms roff

*.me roff

*.mm roff

TeX and friends

*.tex TeX

*.ltx TeX

*.texi texinfo

*.texinfo texinfo

1.12 id-utils.guide/C-C++ scanner

C/C++ Language Scanner

The C scanner is the most commonly used. Files that match the glob
pattern ‘*.h’, ‘*.c’, as well as ‘yacc’ files that match ‘*.y’ or
‘*.yacc’, and ‘lex’ files that match ‘*.l’ or ‘*.lex’, are processed
with this scanner.

Scanner-specific options (Note, these options are presented WITHOUT
the required ‘-l’ or ‘--lang-option=’ prefix):

‘-k CHARACTER-CLASS’
‘--keep=CHARACTER-CLASS’

Consider the characters in CHARACTER-CLASS as valid constituents of
identifier names. For example, if you are indexing C code that
contains ‘$’ in some of its identifiers, you can include these by
using ‘--lang-option=C:--keep=$’, or ‘-l C:"-k $"’ (if you don’t
like to type so much).

‘-i CHARACTER-CLASS’
‘--ignore=CHARACTER-CLASS’

x mkiConsider the characters in CHARACTER-CLASS as valid
constituents of identifier names, but discard all tokens
containing these characters. For example, if some C code has
identifiers containing ‘$’, but you don’t want these cluttering up
your ID database, use ‘--lang-option=C:--ignore=$’, or the terser
equivalent ‘-l C:"-i $"’.

‘-u’
‘--strip-underscore’

id-utils 9 / 21

Strip one leading underscore from C identifiers encapsulated as
character strings. This option is useful if you are indexing C
code that contains symbol-table name strings for systems that
prepend an underscore to external symbols. By default, the
leading underscore is retained.

1.13 id-utils.guide/Assembler scanner

Assembly Language Scanner

Assembly languages use a variety of commenting conventions, and
allow a variety of special characters to *dirty up* local symbols,
preventing name space conflicts with symbols defined by higher-level
languages. Also, some compilation systems prepend an underscore to
external symbols. The options listed below are designed to address
these differences.

‘-c CHARACTER-CLASS’
‘--comment=CHARACTER-CLASS’

The characters in CHARACTER-CLASS are considered left delimiters
for comments that extend until the end of the current line.

‘-k CHARACTER-CLASS’
‘--keep=CHARACTER-CLASS’

Consider the characters of CHARACTER-CLASS as valid constituents of
identifier names. For example, if you are indexing assembly code
that prepends ‘.’ to assembler directives, and prepends ‘%’ to
register names, you can keep these characters in the tokens by
specifying ‘--lang-option=asm:--keep=.%’, or ‘-l asm:"-k .%"’.

‘-i CHARACTER-CLASS’
‘--ignore=CHARACTER-CLASS’

Consider the characters of CHARACTER-CLASS as valid consituents of
identifier names, but discard all tokens containing these
characters. For example, if you don’t want to clutter your ID
database with assembler directives that begin with a leading ‘.’
or with assembler labels that contain ‘@’, use
‘--lang-option=asm:--ignore=.@’, or ‘-l asm:"-i .@"’.

‘-u’
‘--strip-underscore’

Strip one leading underscore from identifiers. This option is
useful if your compilation system prepends an underscore to
external symbols. By stripping the underscore, you can
canonicalize such names and bring them into conformance the way
they are expressed in the C language. By default, the leading
underscore is retained.

‘-n’
‘--no-cpp’

Do not recognize C preprocessor directives. By default, such
lines are handled in the same way as they are by the C language
scanner.

id-utils 10 / 21

1.14 id-utils.guide/Text scanner

Text Scanner

The plain text scanner is intended for human-language documents, or
as the scanner of last resort for files that have no scanner that is
more specific. It is customizable to the extent that character classes
can be designated as token constituents or as token delimiters. The
default token constituents are the alpha-numerics; all other characters
are considered token delimiters.

‘-i CHARACTER-CLASS’
‘--include=CHARACTER-CLASS’

Include characters belonging to CHARACTER-CLASS in tokens.

‘-x CHARACTER-CLASS’
‘--exclude=CHARACTER-CLASS’

Exclude characters belonging to CHARACTER-CLASS from tokens, i.e.,
treat them as token delimiters.

1.15 id-utils.guide/Defining scanners

Defining New Scanners in the Source Code
--

To add a new scanner in source code, you should add a new section to
the file ‘scanners.c’. It might be easiest to clone one of the
existing scanners and modify it as necessary. For the hypothetical
language FOO, you must define the functions ‘get_token_foo’,
‘parse_args_foo’, ‘help_me_foo’, as well as the tables
‘long_options_foo’ and ‘args_foo’. If your scanner is modelled after
one of the existing scanners, you’ll also need a character-attribute
table ‘ctype_foo’.

This is not a terribly difficult programming task, but it requires
recompiling and installing the new version of ‘mkid’ and ‘xtokid’. You
should use ‘xtokid’ to test the operation of the new scanner.

Once these functions and tables are ready, add function prototypes
and an entry to to the ‘languages_0’ table near the beginning of the
file.

Be warned that the existing scanners are built for speed, not
elegance or readability. You might wish to create a new scanner that’s
easier to read and understand if you don’t feel that speed is so
important.

id-utils 11 / 21

1.16 id-utils.guide/mkid invocation

‘mkid’: Creating an ID Database

‘mkid’ builds an ID database. It accepts the names of files and/or
directories on the command line, selects files that have an enabled
scanner, then extracts and stores tokens from those files. The
resulting ID database is architecture- and byte-order-independent so it
can be shared among all systems.

The primary virtues of ‘mkid’ are speed and high capacity. The size
of the source trees it can index is limited only by available system
memory. ‘mkid’’s indexing algorithm is very space-efficient and
exhibits excellent locality-of-reference, and so is capable of
operating with a working-set size that is only half the size of its
virtual address space. A typical UNIX-like operating system with 16
megabytes of system memory should be able to build an ID database
covering approximately 12,000-14,000 source files totalling
approximately 50-100 Megabytes. A 66 Mhz 486 computer can build such a
large ID database in approximately 10-15 minutes.

In a future release, ‘mkid’ will be able to incrementally update an
ID database much faster than it can build one from scratch. Until this
feature becomes available, it might be a good idea to schedule a ‘cron’
job to regularly update large ID databases during off-hours.

‘mkid’ writes the ID file, therefore it accepts the ‘--output’ (and
‘--file’) options as described in See Writing options. ‘mkid’ extracts
tokens from source files, therefore it accepts the ‘--lang-map’,
‘--include’, ‘--exclude’, and ‘--lang-option’ options, as well as the
language-specific scanner options, all of which are described in See
Extraction options. ‘mkid’ walks file trees, therefore it handles file
and directory names on its command line and the ‘--prune’ option as
described in See Walker options.

In addition, ‘mkid’ accepts the following command-line options:

‘-s’
‘--statistics’

‘mkid’ reports statistics about resource usage at the end of its
run.

‘-v’
‘--verbose’

‘mkid’ reports statistics about each file as it is scanned, and
about the resource usage of its indexing algorithm at regular
intervals.

1.17 id-utils.guide/lid invocation

‘lid’: Querying an ID Database by Token

id-utils 12 / 21

The ‘lid’ program accepts PATTERNS on the command line which it
matches against the tokens stored in an ID database. The
interpretation of a PATTERN is determined by the makeup of the PATTERN
string itself, or can be overridden by command-line options. If a
PATTERN contains regular expression meta-characters, it is used to
perform a regular-expression substring search. If no such
meta-characters are present, PATTERN is used to perform a literal word
search. (By default, all searches are sensitive to alphabetic case.)
If no PATTERN is supplied on the command line, ‘lid’ lists every entry
in the ID database.

‘lid’ reads the ID database, therefore it accepts the ‘--file’
option, and consults the ‘IDPATH’ environment variable, as described in
See Reading options. ‘lid’ lists file names, therefore it accepts the
‘--separator’ option, as described in See File listing options.

In addition, ‘lid’ accepts the following command-line options:

‘-i’
‘--ignore-case’

Ignoring differences in alphabetic case between the PATTERN and
the tokens in the ID database.

‘-l’
‘--literal’

Match PATTERN as a literal string. Use this option if PATTERN
contains regular-expression meta-characters, but you don’t wish to
perform a regular-expression search.

‘-r’
‘--regexp’

Match PATTERN as an *extended* regular expression(1). Use this
option if no regular-expression expression meta-characters are
present in PATTERN, but you wish to force a regular-expression
search (note: in this case, a *literal substring* search might be
faster).

‘-w’
‘--word’

Match PATTERN using a word-delimited (non substring) search. This
is the default for literal searches.

‘-s’
‘--substring’

Match PATTERN using a substring (non word-delimited) search. This
is the default for regular expression searches.

‘-k STYLE’
‘--key=STYLE’

STYLE can be one of ‘token’, ‘pattern’ or ‘none’. This option
controls how the subject of the query is presented. This is best
illustrated by example:

$ lid --key=token ’^dest.’
destaddr libsys/memcpy.c
destination libsys/regex.c

id-utils 13 / 21

destlst libsys/rx.c
destpos libsys/rx.c
destset libsys/rx.h libsys/rx.c

$ lid --key=pattern ’^dest.’
^dest. libsys/rx.h libsys/{memcpy,regex,rx}.c

$ lid --key=none ’^dest.’
libsys/rx.h libsys/{memcpy,regex,rx}.c

When ‘--key’ is either ‘token’ or ‘pattern’, the first column of
output is a TOKEN or PATTERN, respectively. When ‘--key’ is
‘none’, neither of these is printed, and the file name list begins
immediately. The default is ‘token’.

‘-R STYLE’
‘--result=STYLE’

STYLE can be one of ‘filenames’, ‘grep’, ‘edit’ or ‘none’. This
option controls how the value associated with the query’s KEY
presented. When STYLE is ‘filenames’, a list of file names is
printed (this is the default). When STYLE is ‘grep’, the lines
that match PATTERN are printed in the same format as ‘egrep -n’.
When STYLE is ‘edit’, the file names are passed to an editor, and
if possible PATTERN is passed as an initial search string (see
eid invocation). When STYLE is ‘none’, the file names are not
processed in any way. This can be useful if you wish to see what
tokens match a PATTERN, but don’t care about where they reside.

‘-d’
‘-o’
‘-x’

These options may be used in any combination to specify the radix
of numeric matches. ‘-d’ allows matching on decimal numbers, ‘-o’
on octal numbers, and ‘-x’ on hexadecimal numbers. Any
combination of these options may be used. The default is to match
all three radixes.

‘-F RANGE’
‘--frequency=RANGE’

Match tokens whose occurrence count falls in RANGE. RANGE may be
expressed as a single number N, or as a range N‘..’M. Either
limit of the range may be omitted (e.g., ‘..’M, or N..‘..’). If
the lower limit N is omitted, it defaults to ‘1’. If the upper
limit is omitted, it defaults in the present implementation to
‘65535’, the maximum value of an unsigned 16-bit integer.

Particularly useful queries are ‘lid -F1’, which helps locate
identifiers that are defined but never used, or are used but never
defined. Similarly, ‘lid -F2’ can help find functions that possess
a prototype declaration and a definition, but are never called.

‘-a NUMBER’
‘--ambiguous=NUMBER’

List identifiers (not numbers) that are ambiguous for the first
NUMBER characters. This feature might be in useful when porting
programs to ancient pea-brained compilers that don’t support long
identifier names. However, the best long-term option is to set

id-utils 14 / 21

such systems on fire.

lid aliases Aliases for specialized lid queries
Emacs gid interface GNU Emacs query interface
eid invocation Invoking an editor on query results

---------- Footnotes ----------

(1) Extended regular expressions are the same as those accepted by
‘egrep’.

1.18 id-utils.guide/lid aliases

Aliases for Specialized ‘lid’ Queries
=====================================

Historically, the ID utilities have provided several query interfaces
which are specializations of ‘lid’ (see lid invocation).

‘gid’
(alias for ‘lid -R grep’) lists all lines containing the requested
pattern.

‘eid’
(alias for ‘lid -R edit’) invokes an editor on all files
containing the requested pattern, and optionally initiates a text
search for that pattern.

‘aid’
(alias for ‘lid -ils’) treats the requested pattern as a
case-insensitive literal substring.

1.19 id-utils.guide/Emacs gid interface

GNU Emacs query interface
=========================

The ‘id-utils’ source distribution comes with a file ‘id-utils.el’,
which defines a GNU Emacs interface to ‘gid’. To install it, put
‘id-utils.el’ somewhere that Emacs will find it (i.e., in your
‘load-path’) and put

(autoload ’gid "gid" nil t)

in one of Emacs’ initialization files, e.g., ‘~/.emacs’. You will then
be able to use ‘M-x gid’ to run the command.

The ‘gid’ function prompts you with the word around point. If you
want to search for something else, simply delete the line and type the

id-utils 15 / 21

pattern of interest.

The function then runs the ‘gid’ program in a ‘*compilation*’
buffer, so the normal ‘next-error’ function can be used to visit all
the places the identifier is found (see Compilation).

1.20 id-utils.guide/eid invocation

‘eid’: Invoking an Editor on Query Results
==

‘lid -R edit’ is an editing interface for the ID utilities that is
most commonly used with ‘vi’. Emacs users should use the interface
defined in ‘id-utils.el’ (see Emacs gid interface). The ID utilities
include an alias called ‘eid’, and for the sake of brevity, we’ll use
this alias for the remainder of this section. ‘eid’ performs a
‘lid’-style, then asks if you wish to edit the files. If your query
yields more than one line of output, you will be prompted after each
line. This is the prompt you’ll see:

Edit? [y1-9^S/nq]

You may respond with:

‘y’
Edit all files listed.

‘1...9’
Edit all files starting at the N + 1’st file.

‘/STRING or ‘CTRL-S’REGEXP’
Search into the file list, and begin editing with the first file
name that matches the regular expression REGEXP.

‘n’
Don’t edit any files. If another line of query output is pending,
advance to that line, for which another ‘Edit?’ prompt will appear.

‘q’
Quit--don’t edit any files, and don’t process any more lines of
query output.

Here is an example:

prompt$ eid FILE \^print
FILE {ansi2knr,fid,filenames,idfile,idx,lid,misc,...}.c
Edit? [y1-9^S/nq] n
^print {ansi2knr,fid,getopt,getopt1,lid,mkid,regex,scanners}.c
Edit? [y1-9^S/nq] 2

This will start editing at ‘getopt’.c.

‘eid’ invokes the editor defined by the environment variable
‘VISUAL’. If ‘VISUAL’ is undefined, it uses the environment variable

id-utils 16 / 21

‘EDITOR’ instead. If ‘EDITOR’ is undefined, it defaults to ‘vi’. It
is possible for ‘eid’ to pass the editor an initial search pattern so
that your cursor will immediately alight on the token of interest.
This feature is controlled by the following environment variables:

‘EIDARG’
A printf(3) format string for the editor argument to search for the
matching token. For ‘vi’, this should be ‘+/%s/’.

‘EIDLDEL’
The regular-expression meta-character(s) for delimiting the
beginning of a word (the ‘‘eid’ Left DELimiter’). ‘eid’ inserts
this in front of the matching token when a word-search is desired.
For ‘vi’, this should be ‘\<’.

‘EIDRDEL’
The regular-expression meta-character(s) for delimiting the end of
a word (the ‘‘eid’ Right DELimiter’). ‘eid’ inserts this in end
of the matching token when a word-search is desired. For ‘vi’,
this should be ‘\>’.

1.21 id-utils.guide/fid invocation

‘fid’: Listing a file’s tokens

‘fid’ prints the tokens found in a given file. If two file names
are passed on the command line, ‘fid’ prints the tokens that are common
to both files (i.e., the *set intersection* of the two token sets).

‘lid’ reads the ID database, therefore it accepts the ‘--file’
option, and consults the ‘IDPATH’ environment variable, as described in
See Reading options.

If the standard output is attached to a terminal, the printed tokens
are separated by spaces. Otherwise, the tokens are printed one per
line.

1.22 id-utils.guide/fnid invocation

‘fnid’: Looking up filenames

‘fnid’ queries the list of file names stored in the ID database. It
accepts shell *wildcard* patterns on the command line. If no pattern
is supplied, ‘*’ is implied. ‘fnid’ prints the file names that match
the given patterns.

‘fnid’ prints file names, and as such accepts the ‘--separator’
option as described in See File listing options.

id-utils 17 / 21

For example, the command:

fnid *.c

lists all the ‘.c’ files in the database. (The ‘\’ here protects the
‘*’ from being expanded by the shell.)

1.23 id-utils.guide/xtokid invocation

‘xtokid’: Testing Language Scanners

‘xtokid’ accepts the names of files and/or directories on the
command line, then extracts and prints a stream of tokens from those
files for which it has a valid, enabled scanner. This is useful
primarily for debugging new ‘mkid’ scanners (see Defining scanners).

‘xtokid’ extracts tokens from source files, therefore it accepts the
‘--lang-map’, ‘--include’, ‘--exclude’, and ‘--lang-option’ options, as
well as the language-specific scanner options, all of which are
described in See Extraction options. ‘xtokid’ walks file trees,
therefore it handles file and directory names on its command line and
the ‘--prune’ option as described in See Walker options.

The name ‘xtokid’ indicates that it is the "eXtract TOKens ID
utility".

1.24 id-utils.guide/Past and Future

Past and Future

Greg McGary conceived of the ideas behind the ID utilities when he
began working on the Unix kernel in 1984. He needed a navigation tool
to help him find his way around the expansive, unfamiliar landscape.
The first ‘id-utils’-like tools were shell scripts, and produced an
ASCII database that looks much like the output of ‘lid ".*"’. It took
over an hour on a VAX 11/750 to build a database for a 4.1BSD derived
kernel. The first version of ‘lid’ used the UNIX system utility
‘look’, modified to handle very long lines.

In 1986, Greg rewrote the shell scripts in C to improve performance.
Build times for the ID file were shortened by an order of magnitude.
The ID utilities were first posted to ‘comp.sources.unix’ in September
1987 under the name ‘id’.

Over the next few years, several versions diverged from the original
source. Tom Horsley at Harris Computer Systems Division stepped forward
to take over maintenance and integrated some of the fixes from divergent

id-utils 18 / 21

versions. A first release of the renamed ‘mkid’ version 2 was posted
to ‘alt.sources’ near the end of 1990. At that time, Tom wrote a
Texinfo manual with the encouragement the net community. (Tom
especially thanks Doug Scofield and Bill Leonard whom he dragooned into
helping poorfraed and edit--they found several problems in the initial
version.) Karl Berry revamped the manual for Texinfo style, indexing,
and organization in 1995.

In January 1995, Greg McGary reemerged as the primary maintainer and
launched development of ‘mkid’ version 3, whose primary new feature is
an efficient algorithm for building databases that is linear in both
time and space over the size of the input text. (The old algorithm was
quadratic in space so it was incapable of handling very large source
trees.) For the first time, the code was released under the GNU Public
License.

In June 1996, the package was renamed again to ‘id-utils’ and was
released for the first time under FSF copyright as part of the GNU
system. All programs had their command-line arguments completely
revised. The ‘mkid’ and ‘xtokid’ programs also gained a file-tree
walker, so that directory names can be passed on the command line
instead of the names of every individual file. Greg reorganized and
rewrote most of the Texinfo manual to reflect these changes.

Future releases of ‘id-utils’ might include:

an optional coupling with GNU ‘grep’, so that ‘grep’ can use an ID
database for hints

a ‘cscope’ work-alike query interface

incremental update of the ID database.

1.25 id-utils.guide/Index

Index

compilation Emacs buffer Emacs gid interface
-ambiguous lid invocation
-comment Assembler scanner
-exclude <1> Extraction options
-exclude Text scanner
-file <1> Writing options
-file Reading options
-frequency lid invocation
-help Universal options
-ignore <1> Assembler scanner
-ignore C-C++ scanner
-ignore-case lid invocation
-include <1> Extraction options
-include Text scanner
-keep <1> Assembler scanner
-keep C-C++ scanner

id-utils 19 / 21

-lang-map Extraction options
-lang-option Extraction options
-lang-option=asm:-comment Assembler scanner
-lang-option=asm:-ignore Assembler scanner
-lang-option=asm:-keep Assembler scanner
-lang-option=asm:-no-cpp Assembler scanner
-lang-option=asm:-strip-underscore Assembler scanner
-lang-option=asm:-c Assembler scanner
-lang-option=asm:-i Assembler scanner
-lang-option=asm:-k Assembler scanner
-lang-option=asm:-n Assembler scanner
-lang-option=asm:-u Assembler scanner
-lang-option=C:-ignore C-C++ scanner
-lang-option=C:-keep C-C++ scanner
-lang-option=C:-strip-underscore C-C++ scanner
-lang-option=C:-i C-C++ scanner
-lang-option=C:-k C-C++ scanner
-lang-option=C:-u C-C++ scanner
-lang-option=text:-exclude Text scanner
-lang-option=text:-include Text scanner
-lang-option=text:-i Text scanner
-lang-option=text:-x Text scanner
-literal lid invocation
-no-cpp Assembler scanner
-output Writing options
-prune Walker options
-regexp lid invocation
-result lid invocation
-separator File listing options
-statistics mkid invocation
-strip-underscore <1> Assembler scanner
-strip-underscore C-C++ scanner
-substring lid invocation
-verbose mkid invocation
-version Universal options
-word lid invocation
-a lid invocation
-c Assembler scanner
-d lid invocation
-F lid invocation
-f <1> Reading options
-f Writing options
-i <1> Extraction options
-i <2> lid invocation
-i <3> Text scanner
-i <4> Assembler scanner
-i C-C++ scanner
-k <1> Assembler scanner
-k <2> lid invocation
-k C-C++ scanner
-l <1> Extraction options
-l lid invocation
-l asm:-comment Assembler scanner
-l asm:-ignore Assembler scanner
-l asm:-keep Assembler scanner
-l asm:-no-cpp Assembler scanner
-l asm:-strip-underscore Assembler scanner

id-utils 20 / 21

-l asm:-c Assembler scanner
-l asm:-i Assembler scanner
-l asm:-k Assembler scanner
-l asm:-n Assembler scanner
-l asm:-u Assembler scanner
-l C:-ignore C-C++ scanner
-l C:-keep C-C++ scanner
-l C:-strip-underscore C-C++ scanner
-l C:-i C-C++ scanner
-l C:-k C-C++ scanner
-l C:-u C-C++ scanner
-l text:-exclude Text scanner
-l text:-include Text scanner
-l text:-i Text scanner
-l text:-x Text scanner
-m Extraction options
-n Assembler scanner
-o <1> lid invocation
-o Writing options
-p Walker options
-R lid invocation
-s lid invocation
-S File listing options
-s mkid invocation
-u <1> C-C++ scanner
-u Assembler scanner
-v mkid invocation
-w lid invocation
-x <1> Extraction options
-x <2> lid invocation
-x Text scanner
mkid progress mkid invocation
alphabetic case, ignoring differences in lid invocation
ambiguous identifier names, finding lid invocation
architecture-independence mkid invocation
assembler scanner Assembler scanner
assembly language scanner Assembler scanner
beginning-of-word editor argument eid invocation
Berry, Karl Past and Future
bugs, reporting Introduction
C scanner, predefined C-C++ scanner
common command-line options Common options
creating databases mkid invocation
cron mkid invocation
cscope Past and Future
databases, creating mkid invocation
eid eid invocation
EIDARG eid invocation
EIDLDEL eid invocation
EIDRDEL eid invocation
Emacs interface to gid Emacs gid interface
end-of-word editor argument eid invocation
exclude languages Extraction options
fid fid invocation
file name separator File listing options
file tree pruning Walker options
filenames, matching fnid invocation

id-utils 21 / 21

fnid fnid invocation
future Past and Future
gid Emacs function Emacs gid interface
grep Past and Future
help, online Universal options
history Past and Future
Horsley, Tom Past and Future
ID database file name <1> Reading options
ID database file name <2> Writing options
ID database file name <3> Reading options
ID database file name Writing options
ID database, definition of Introduction
ID file format mkid invocation
id-utils.el interface to Emacs Emacs gid interface
ignoring differences in alphabetic case lid invocation
include languages Extraction options
introduction Introduction
language map file Extraction options
language-specific option Extraction options
languages_0 Defining scanners
left delimiter editor argument eid invocation
Leonard, Bill Past and Future
load-path Emacs gid interface
look and mkid 1 Past and Future
matching filenames fnid invocation
McGary, Greg Past and Future
numeric matches, specifying radix of lid invocation
overview Introduction
radix of numeric matches, specifying lid invocation
right delimiter editor argument eid invocation
scanners Extraction options
scanners, defining in source code Defining scanners
scanners.c Defining scanners
Scofield, Doug Past and Future
search for token, initial eid invocation
sharing ID files mkid invocation
single matches, showing lid invocation
statistics mkid invocation
text scanner Text scanner
tokens common to two files fid invocation
tokens in a file fid invocation
version number, finding Universal options

	id-utils
	id-utils.guide
	id-utils.guide/Introduction
	id-utils.guide/Quick start
	id-utils.guide/Common options
	id-utils.guide/Universal options
	id-utils.guide/Reading options
	id-utils.guide/Writing options
	id-utils.guide/Walker options
	id-utils.guide/File listing options
	id-utils.guide/Extraction options
	id-utils.guide/Language map
	id-utils.guide/C-C++ scanner
	id-utils.guide/Assembler scanner
	id-utils.guide/Text scanner
	id-utils.guide/Defining scanners
	id-utils.guide/mkid invocation
	id-utils.guide/lid invocation
	id-utils.guide/lid aliases
	id-utils.guide/Emacs gid interface
	id-utils.guide/eid invocation
	id-utils.guide/fid invocation
	id-utils.guide/fnid invocation
	id-utils.guide/xtokid invocation
	id-utils.guide/Past and Future
	id-utils.guide/Index

