
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

;H_ToDo_Subclass2.rtfd;;¬ Previous Section    ;J_ToDo_Subclass3.rtfd;linkMarkername ;¬ Next Section

4. To Do Tutorial

Creating and Managing an Inspector
(ToDoInspector)

An inspector is a panel of fields and controls that enable users to examine and set an object's attributes.
Because objects often have many attributes and because you want to make it easy for users to set those
attributes, inspectors usually have more than one display; users typically access these multiple displays using
a pop-up list.

The ToDo application has an inspector panel that allows users to inspect and set the attributes of the currently
selected ToDoItem. The inspector panel has its own controller: ToDoInspector. While showing you how to
create the inspector panel and ToDoInspector, this section focuses on four things:

SquareBullet.eps ¬ Managing displays according to user selections
461651_SquareBullet.eps ¬ Getting the current ToDoItem
584652_SquareBullet.eps ¬ Updating the currently selected display
706421_SquareBullet.eps ¬ Updating the current ToDoItem as users make changes to it

In Interface Builder

1 Create a new nib file named ToDoInspector.nib and add it to the ToDo project.

2 Create the inspector panel.

Drag a panel object from the Windows palette.

Make the title of the panel ªInspector.º

Resize the panel, using the example at right as a guide.

Put labels and fields on the panel and set their attributes (as shown).

Put a pop-up button on the panel and set cell titles (as shown).

Assign tags to the pop-up button cells.

Create a separator line just below the pop-up button.

Put an empty box object in the lower part of the panel.

TD_CreatingInspector1.eps ¬

TableRule.eps ¬Before You Go On

You might be wondering about the empty box object in the lower part of the panel. This box by itself may not
seem a promising thing for displaying object attributes, but it is critical to the workings of the inspector panel. A
box that you drag from the Views palette contains one subview, called the content view. NSBox's content view
fits entirely within the bounds of the box. NSBox provides methods for obtaining and changing the content view
of boxes. You'll use these methods to change what the inspector panel displays.
446655_TableRule.eps ¬

3 Create an off-screen panel holding the inspector's displays.

Drag a panel object from the Windows palette.

Resize the panel, using the example at right as a guide.

Put the labels, text fields, scroll view, and switch and radio-button matrices on the panel shown in the example at right.

Make the When to Reschedule and When to Notify groupings (boxes).

Make three other groupings for the three displays: Notes, Reschedule, and Notification.

Resize the resulting boxes to the same dimensions as the ªdummyº view in the inspector panel.

TD_CreatingInspector2.eps ¬

36226_TableRule.eps ¬Before You Go On

You probably now see where the inspector panel gets its displays and how it puts them in place. When the
inspector panel is first opened (and ToDoInspector.nib is loaded) the inspector controller, ToDoInspector,
replaces the content view of the inspector's empty box (dummyView) with the content view of the Notification

box in the off-screen panel. Thereafter, every time the user chooses a new pop-up button in the inspector
panel, ToDoInspector replaces the currently displayed content view with the content view of the associated off-
screen box.

ChangingInspectorView.eps ¬

866957_TableRule.eps ¬

4 Define the ToDoInspector class.

Create a subclass of NSObject and name it ªToDoInspector.º

Add the outlets and actions in the tables below to the new class.

Instantiate ToDoInspector.

Connect the ToDoInspector object to its outlets and as the target of action messages (see tables below).

Connect ToDoInspector and the inspector panel via the panel's delegate outlet.

Close both panels.

Save ToDoInspector.nib.

Create source-code files for ToDoInspector and add them to the project.

Outlet Connection From ToDoInspector To...
TableHeadRule.eps ¬
dummyView The empty box object in the inspector panel
121729_TableRule.eps ¬
inspectorViews The title bar of the off-screen panel
230832_TableRule.eps ¬
notesView The box in the off-screen panel containing the scroll view
338492_TableRule.eps ¬
notifView The box in the off-screen panel containing the fields and controls related to notification of

impending items
447184_TableRule.eps ¬
reschedView The box in the off-screen panel containing the fields and controls related to rescheduling items
556137_TableRule.eps ¬

inspPopUp The pop-up button on the inspector panel
664998_TableRule.eps ¬
inspDate The uneditable text field next to the ªDateº label
774517_TableRule.eps ¬
inspItem The uneditable text field next to the ªItemº label
884312_TableRule.eps ¬
inspNotifHour The first field after the ªTimeº label
992653_TableRule.eps ¬
inspNotifMinute The second field after the ªTimeº label
100925_TableRule.eps ¬
inspNotifAMPM The matrix holding the ªAMº and ªPMº radio buttons
210004_TableRule.eps ¬
inspNotifOtherHours The text field in the ªWhen to Notifyº box
373753_TableRule.eps ¬
inspNotifSwitchMatrix The matrix of switches in the ªWhen to Notifyº box
485006_TableRule.eps ¬
inspSchedComplete The ªTask Completedº switch
659124_TableRule.eps ¬
inspSchedDate The text field in the ªWhen to Rescheduleº box
754494_TableRule.eps ¬
inspSchedMatrix The matrix of switches in the ªWhen to Rescheduleº box
849876_TableRule.eps ¬
inspNotes The text object inside the scroll view
945383_TableRule.eps ¬

Action Connection To ToDoInspector From...
42815_TableHeadRule.eps ¬
newInspectorView: The pop-up button on the inspector panel
152520_TableRule.eps ¬
switchChecked: The matrix of switches in the ªWhen to Notifyº box, the AM-PM matrix, the ªTask Completedº

switch, and the matrix of switches in the ªWhen to Rescheduleº switches.
259392_TableRule.eps ¬

In Project Builder

5 Add declarations to ToDoInspector.h.

Open ToDoInspector.h.

Type the declarations shown below (ellipses indicate existing declarations).

Import ToDoItem.h and ToDoDoc.h.

@interface ToDoInspector : NSObject
{
 ToDoItem *currentItem;
 /* ... */
}
/* ... */
- (void)setCurrentItem:(ToDoItem *)newItem;
- (ToDoItem *)currentItem;
- (void)updateInspector:(ToDoItem *)item;
@end

The ToDoInspector class has a utility function for clearing switches set in a matrix and defines constants for
the tags assigned to the pop-up buttons.

Open ToDoInspector.m.

Forward-declare clearButtonMatrix() at the beginning of the file.

Define enum constants for the pop-up button tags.

static void clearButtonMatrix(id matrix);
enum { notifTag = 0, reschedTag, notesTag };

Using tags to identify cells rather than cell titles is a better localization strategy.

ToDoInspector has two accessor methods, one that gives out the current item and one that sets the current
item.

6 Implement the accessor methods for the class.

Implement currentItem to return the instance variables it names.

Implement setCurrentItem: as shown at right.

- (void)setCurrentItem:(ToDoItem *)newItem
{
 if (currentItem) [currentItem autorelease];
 if (newItem)
 currentItem = [newItem retain]; /* 1 */
 else
 currentItem = nil;
 [self updateInspector:currentItem]; /* 2 */
}

This implementation of a ªsetº accessor method probably seems familiar to youÐexcept for a couple of things:

1. Instead of copying the new value, this implementation retains it. By retaining, it shares the current
ToDoItem with the document controller (ToDoDoc) that has sent the setCurrentItem: message, enabling
both objects to update the same ToDoItem simultaneously.

Note: Later in this section, you'll invoke ToDoInspector's setCurrentItem: method in various places in
ToDoDoc.m.

2. Updates the current display of the inspector with the appropriate values of the new ToDoItem.

7 Switch inspector displays based on user selections.

Implement newInspectorView:.

- (void)newInspectorView:(id)sender

{
 NSBox *newView=nil;
 NSView *cView = [[inspPopUp window] contentView]; /* 1 */
 int selected = [[inspPopUp selectedItem] tag];
 switch(selected){ /* 2 */
 case notifTag:
 newView = notifView;
 break;
 case reschedTag:
 newView = reschedView;
 break;
 case notesTag:
 newView = notesView;
 }
 if ([[cView subviews] containsObject:newView]) return; /* 3 */
 [dummyView setContentView:newView]; /* 4 */
 if (newView == notifView) [inspNotifHour selectText:self];
 if (newView == notesView) [inspNotes
 setSelectedRange:NSMakeRange(0,0)];
 [self updateInspector:currentItem]; /* 5 */
 [cView display];
}

This method switches the current inspector display according to the pop-up button users select; it does this
switching by replacing the dummyView's content view. Toward this end, the method:

1. Gets the panel's content view and the tag of the selected pop-up button.

2. Assigns to the newView local variable the off-screen box object corresponding to the tag of the selected
pop-up button.

3. Returns if the selected display is already on the inspector panel. The subviews message returns an
array of all subviews of the inspector panel's control view, and the containsObject: message determines
if the chosen display is among these subviews.

4. Replaces the content view of the inspector panel's dummyView. In awakeFromNib (which you'll soon
implement) you'll retain each original content view. The setContentView: method replaces the new view
and releases the old one; because it's been retained, the replaced view doesn't disappear.

5. Updates the inspector with the current item; this item hasn't changed, but the display is new and so the
set of instance variables to be displayed is different. The display message forces a re-draw of the
inspector panel's views.

8 Update the current inspector display with the new ToDoItem.

Write the first part of the updateInspector: method shown at right.

- (void)updateInspector:(ToDoItem *)newItem
{
 int minute=0, hour=0, selected=0;
 selected = [[inspPopUp selectedItem] tag]; /* 1 */
 [[inspPopUp window] orderFront:self];
 if (newItem && [newItem isKindOfClass:[ToDoItem class]]) { /* 2 */
 [inspItem setStringValue:[newItem itemName]];
 [inspDate setStringValue:[[newItem day]
 descriptionWithCalendarFormat:@"%a, %b %d %Y"
 timeZone:[NSTimeZone localTimeZone] locale:nil]];
 switch(selected) {
 case notifTag: { /* 3 */
 long notifSecs, dueSecs = [newItem secsUntilDue];
 BOOL ampm = ConvertSecondsToTime(dueSecs, &hour, &minute);
 [[inspNotifAMPM cellAtRow:0 column:0] setState:!ampm];

 [[inspNotifAMPM cellAtRow:0 column:1] setState:ampm];
 [inspNotifHour setIntValue:hour];
 [inspNotifMinute setIntValue:minute];
 notifSecs = dueSecs - [newItem secsUntilNotif];
 if (notifSecs == dueSecs) notifSecs = 0;
 clearButtonMatrix(inspNotifSwitchMatrix);
 switch(notifSecs) { /* 4 */
 case 0:
 [[inspNotifSwitchMatrix cellAtRow:0 column:0]
 setState:YES];
 break;
 case (hrInSecs/4):
 [[inspNotifSwitchMatrix cellAtRow:1 column:0]
 setState:YES];
 break;
 case (hrInSecs):
 [[inspNotifSwitchMatrix cellAtRow:2 column:0]
 setState:YES];
 break;
 case (dayInSecs):
 [[inspNotifSwitchMatrix cellAtRow:3 column:0]
 setState:YES];
 break;
 default: /* Other */
 [[inspNotifSwitchMatrix cellAtRow:4 column:0]
 setState:YES];
 [inspNotifOtherHours setIntValue:
 ((dueSecs-notifSecs)/hrInSecs)];
 break;
 }

 break;
 }
 case reschedTag:
 break;

The updateInspector: method is a long one, so we'll approach it in stages. This first part updates the common
data elements (item name and date) and, if the selected display is for notifications, updates that display.

1. Gets the tag assigned to the selected pop-up button.

2. Tests the argument newItem to see if it is a ToDoItem. This test is important because if the argument is
nil, the method clears the display of existing data (next example).

If newItem is a ToDoItem, updateInspector: first updates the Item and Date fields.

3. If the tag of the selected pop-up button is notifTag, updates the associated inspector display. This task
starts by converting the due time from seconds to an array of NSNumbers (hour, minute, and PM
boolean) and then setting the appropriate fields and button matrix with these values.

4. Sets the appropriate switch in the ªWhen to Notifyº matrix. It starts with the difference (in seconds)
between the time the item is due and the time the item notification is sent. It calls clearButtonMatrix() to
turn all switches off and then, in a switch statement, sets the switch corresponding to the difference in
value between seconds from midnight before due and before notification.

544538_TableRule.eps ¬Before You Go On

Update the Notes display: Add code to update the inspector's Notes display from the information in the ToDoItem
passed into updateInspector:. (Check the documentation on NSText to see what method is suitable for this.)
The selected pop-up button must have notesTag assigned to it. Also put the cursor at the start of the text object
by selecting a ªnullº range.

Note that tutorial omits the rescheduling logic of the ToDo application, including the code in this method that

would update the ªRescheduleº display. Rescheduling of ToDoItems is reserved as an optional exercise for
you at the end of this tutorial.
650971_TableRule.eps ¬

Finish the implementation of updateInspector: by resetting all displays if the argument is nil.

 }
 else if (!newItem) { /* newItem is nil */
 [inspItem setStringValue:@""];
 [inspDate setStringValue:@""];
 [inspNotifHour setStringValue:@""];
 [inspNotifMinute setStringValue:@""];
 [[inspNotifAMPM cellAtRow:0 column:0] setState:YES];
 [[inspNotifAMPM cellAtRow:0 column:1] setState:NO];
 clearButtonMatrix(inspNotifSwitchMatrix);
 [[inspNotifSwitchMatrix cellAtRow:0 column:0]

setState:YES];
 [inspNotifOtherHours setStringValue:@""];
 [inspNotes setString:@""];
 }
}

As you've most likely noticed, the updateInspector: method calls the function clearButtonMatrix(), which resets
the states of all button cells in a switch matrix to NO. This function has a counterpart, indexOfSetCell(), that
returns the index of the currently selected switch.

Implement the clearButtonMatrix() utility function.

void clearButtonMatrix(id matrix)
{
 int i, cnt=[[matrix cells] count];
 for(i=0; i<cnt; i++)

 [[matrix cellAtRow:i column:0] setState:NO];
}

The cells message returns the cells of the matrix as an array; the count message determines the number of
cells.

9 Update the current item with new values entered in the inspector.

Implement switchChecked: to apply changes made through switches and other controls.

- (void)switchChecked:(id)sender
{
 long tmpSecs=0;
 int idx = 0;
 id doc = [[NSApp mainWindow] delegate];
 if (sender == inspNotifAMPM) { /* 1 */
 if ([inspNotifHour intValue]) {
 tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],
 [inspNotifMinute intValue],
 [[sender cellAtRow:0 column:1] state]);
 [currentItem setSecsUntilDue:tmpSecs];
 [[NSApp mainWindow] setDocumentEdited:YES];
 [doc updateMatrix];
 }
 } else if (sender == inspNotifSwitchMatrix) { /* 2 */
 idx = [inspNotifSwitchMatrix selectedRow];
 tmpSecs = [currentItem secsUntilDue];
 switch(idx) {
 case 0:
 [currentItem setSecsUntilNotif:0];
 break;

 case 1:
 [currentItem setSecsUntilNotif:tmpSecs-(hrInSecs/4)];
 break;
 case 2:
 [currentItem setSecsUntilNotif:tmpSecs-hrInSecs];
 break;
 case 3:
 [currentItem setSecsUntilNotif:tmpSecs-dayInSecs];
 break;
 case 4: // Other
 [currentItem setSecsUntilNotif:([inspNotifOtherHours intValue]
 * hrInSecs)];
 break;
 default:
 NSLog(@"Error in selectedRow");
 break;
 }
 [[NSApp mainWindow] setDocumentEdited:YES];
 } else if (sender == inspSchedComplete) { /* 3 */
 [currentItem setItemStatus:complete];
 [[NSApp mainWindow] setDocumentEdited:YES];
 [doc updateMatrix];

 } else if (sender == inspSchedMatrix) { /* 4 */
 }
}

When users click a switch button on any inspector display, or when they click one of the AM-PM radio buttons,
the switchChecked: method is invoked. This method works by evaluating the sender argument: the sending
object.

1. If sender is the radio-button matrix (AM-PM), gets the new time due by calling the utility function
ConvertTimeToSeconds(), sets the current item to have this new value, marks the document as edited,
and then sends updateMatrix to the document controller to have it display this new time.

2. If sender is the ªWhen to Notifyº matrix, gets the index of the selected cell and the seconds until the item
is due. It evaluates the first value in a switch statement and uses the second value to set the current
item's new secsUntilNotif value. It also sets the window to indicate an edited document.

3. If sender is the ªTask Completedº switch, sets the status of the current item to ªcomplete,º sets the
window to indicate an edited document, and has the document controller update its matrices.

4. As before, implementation of this rescheduling block is left as a final exercise.

Since text fields are controls that send target/action messages, you could also have switchChecked: respond
when data is entered in the fields. However, users might not press Return in a text field so you can't assume
the action message will be sent. Therefore, it's better to rely upon delegation messages.

Update the current item if changes are made to the contents of text fields or the text object of the inspector panel.

- (void)textDidEndEditing:(NSNotification *)notif /* 1 */
{
 if ([notif object] == inspNotes)
 [currentItem setNotes:[inspNotes string]];
 [[NSApp mainWindow] setDocumentEdited:YES];
}

- (void)controlTextDidEndEditing:(NSNotification *)notif
{
 long tmpSecs=0;
 if ([notif object] == inspNotifHour || /* 2 */
 [notif object] == inspNotifMinute) {

 tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],
 [inspNotifMinute intValue],
 [[inspNotifAMPM cellAtRow:0 column:1] state]);
 [currentItem setSecsUntilDue:tmpSecs];
 [[[NSApp mainWindow] delegate] updateMatrix];
 [[NSApp mainWindow] setDocumentEdited:YES];
 } else if ([notif object] == inspNotifOtherHours) { /* 3 */
 if ([inspNotifSwitchMatrix selectedRow] == 4) {
 [currentItem setSecsUntilNotif:([inspNotifOtherHours
 intValue] * hrInSecs)];
 [[NSApp mainWindow] setDocumentEdited:YES];
}
 } else if ([notif object] == inspSchedDate) { /* 4 */
 }
}

The textDidEndEditing: and controlTextDidEndEditing: notification messages are sent to the delegate (and all
other observers) when the cursor leaves a text object or text field (respectively) after editing has occurred.

1. After editing takes place in the ªNotesº text object, this method is invoked, and it responds by resetting
the notes instance variable of the ToDoItem with the contents of the text object.

2. If the object behind the notification is the hour or minute field of the ªNotificationsº display,
controlTextDidEndEditing: computes the new due time, sets the current item to have this new value, and
then sends updateMatrix to the document controller to have it display this new time. (This code is almost
the same as that for the AM-PM matrix in the switchChecked: method.)

3. If the object behind the notification is the ªOther...hoursº text field in the ªWhen to Notifyº box, the
method verifies that the ªOtherº switch is checked and, if it is, sets the ToDoItem with the new value.

4. Here is another empty rescheduling block of code that you can fill out in a later exercise.

Now it's time to address two related problems in synchronizing displays of data. The first is the requirement for
the inspector to display the ToDoItem currently selected in the document. In ToDoDoc.m write code that
communicates this object to ToDoInspector through notification.

10 Synchronize the items displayed in the document with the inspector.

Open ToDoDoc.m.

Import ToDoInspector.h.

Add the code below to the end of the controlTextDidEndEditing: method.

Post identical notifications in the other ToDoDoc methods listed in the table below.

In ToDoDoc.h declare as extern the string constant ToDoItemChangedNotification.

In ToDoDoc.m, declare and initialize the same constant.

 id curItem;
/* ... */
 if (curItem = [currentItems objectAtIndex:row]) {
 if (![curItem isKindOfClass:[ToDoItem class]])
 curItem = nil;
 [[NSNotificationCenter defaultCenter] postNotificationName:
 ToDoItemChangedNotification object:curItem
 userInfo:nil];
 }

The controlTextDidEndEditing: method is where ToDoItems are added, removed, or modified, so it's especially
important here to let ToDoInspector know when there's a change in the current ToDoItem. The fragment of
code above gets the current item (row holds the index of the selected row); if the returned object isn't a
ToDoItem, curItem is set to nil. Then the code posts a ToDoItemChangedNotification, passing in curItem as the
object related to the notification.

Post an identical notification in other ToDoDoc methods that select a ToDoItem or that require the removal of
the currently displayed ToDoItem from the inspector's display. In methods of this second type, there is no need

to get the current item because the object argument of the notification should always be nil. This argument is
eventually passed to ToDoInspector's updateInspector:, to which nil means ªclear the display.º

Other Methods Posting Notifications to ToDoInspector object: Argument
904507_TableHeadRule.eps ¬
calendarMatrix:didChangeToDate: nil
10250_TableRule.eps ¬
calendarMatrix:didChangeToMonth:year: nil
116839_TableRule.eps ¬
windowShouldClose: (for both ªSaveº and ªCloseº) nil
212049_TableRule.eps ¬
selectionInMatrix: current item or nil
415972_TableRule.eps ¬

The second data-synchronization problem involves the selection and display of initial values in the document
and the inspector when the user:

512834_SquareBullet.eps ¬ Opens the inspector
629746_SquareBullet.eps ¬ Opens a document
739347_SquareBullet.eps ¬ Selects a new day from the calendar

You must return to ToDoDoc.m to write code that implements this behavior.

11 Open the inspector panel when users choose the Inspector command.

Implement ToDoController's showInspector: method to load
ToDoInspector.nib and make the inspector panel the key window.

12 Update the document and inspector to display initial values.

In ToDoDoc.m, implement selectItem:.

Invoke this method at the appropriate places (see table below).

- (void)selectItem:(int)item
{

 id thisItem = [currentItems objectAtIndex:item];
 [itemMatrix selectCellAtRow:item column:0];
 if (thisItem) {
 if (![thisItem isKindOfClass:[ToDoItem class]]) thisItem = nil;
 [[NSNotificationCenter defaultCenter]
 postNotificationName:ToDoItemChangedNotification
 object:thisItem
 userInfo:nil];
 }
}

The selectItem: method selects the text field identified in the argument and posts a notification to the inspector
with the associated ToDoItem as argument (or nil if the text field is empty). Next, invoke selectItem: in these
methods:

Method Comment
880971_TableHeadRule.eps ¬
calendarMatrix:didChangeToDate: Make it the final message, with an argument of 0 (ToDoDoc.m).
992130_TableRule.eps ¬
openDoc: Invoke after opening a document, with an argument of 0 (ToDoController.m)
100026_TableRule.eps ¬
showInspector: Invoke afer opening the inspector panel, passing in the index of the selected row in the

document. (ToDoController.m). Hint: Get the current document by querying for the delegate
of the main window, then obtain the selected row from this object.

214946_TableRule.eps ¬
The use of notifications to communicate changes in one object to another object in an application is a good design
strategy because it removes the need for the objects to have specific knowledge of each other. It also makes the
application more extensible, because any number of objects can also become observers of the changes. However,
there is a way for ToDoDoc to locate ToDoInspector reliably using the various relationships established within the
program framework. See "The Application Quartet: NSResponder, NSApplication, NSWindow, and
NSView." ;ToDoConcepts.rtfd;linkMarkername
TheApplicationQuartet:NSResponder,NSApplication,NSWindow,andNSView;¬

369340_TableRule.eps ¬Before You Go On

Make ToDoInspector respond to the notification. Declare a notification method named currentItemChanged: and
implement it to set the current item with the object value of the notification. Then, in init or awakeFromNib, add
ToDoInspector as an observer of the ToDoItemChangedNotification, identifying currentItemChanged: as the
method to be invoked.
549506_TableRule.eps ¬

13 Format and validate the contents of inspector text fields.

In ToDoInspector.m:

Implement awakeFromNib as shown below.

Implement control:isValidObject: to ensure that users can only enter the
proper range of numbers in the hour and minute text fields.

- (void)awakeFromNib
{
 NSDateFormatter *dateFmt;

 [[inspNotifHour cell] setEntryType:NSPositiveIntType]; /* 1 */
 [[inspNotifMinute cell] setEntryType:NSPositiveIntType];
 dateFmt = [[NSDateFormatter alloc] /* 2 */
 initWithDateFormat:@"%m/%d/%y" allowNaturalLanguage:YES];
 [[inspSchedDate cell] setFormatter:dateFmt];
 [dateFmt release];
 [inspPopUp selectItemAtIndex:0]; /* 3 */
 [inspNotes setDelegate:self];

 [[notifView contentView] removeFromSuperview]; /* 4 */
 notifView = [[notifView contentView] retain];
 [[reschedView contentView] removeFromSuperview];
 reschedView = [[reschedView contentView] retain];
 [[notesView contentView] removeFromSuperview];

 notesView = [[notesView contentView] retain];
 [inspectorViews release];
 [self newInspectorView:self];
}

ToDoInspector's awakeFromNib method sets up formatters for the inspector's hour, minute, and date fields. It
also performs some necessary ªhousekeepingº tasks.

1. Sets the hour and minute fields to accept only positive integer values.

2. Creates a date formatter (an instance of NSDateFormatter) that accepts and formats dates as (for
example) ª12/25/96.º After associating the formatter with the date text-field cell, it releases it
(setFormatter: retains the formatter).

3. Makes the Notification display the start-up default, using the index of the ªNotificationº cell rather than its
title to improve localization. Then it sets self to be the delegate of the text object.

4. Each of the three inspector displays in the off-screen panel (inspectorViews) is the content view of an
NSBox. This section of code extracts and retains each of those content views, reassigning each to its
original NSBox instance variable in the process. This explicit retaining is necessary because, in
newInspectorView:, each currrent content view is released when it's swapped out. Once all content views
are retained, the code releases the off-screen window and invokes newInspectorView: to put up the
default display

