
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

 ;D_CurrencyConverter_DefineClasses.rtfd;;¬ Previous Section        ;F_CurrencyConverter_Build.rtfd;;¬ Next 
Section

2. Currency Converter Tutorial

Implementing the Classes of Currency Converter

Interface Builder generates source code files from the (partial) class definitions you've made. These files are 
ªskeletal,º in the sense that they contain little more than essential Objective C directives and the class-
definition information. You'll usually need to supplement these files with your own code.

1 In Interface Builder, generate header and implementation files.

Go to the Classes display of the nib file window.

Select the ConverterController class.

Choose Create Files from the Operations pull-down menu.

_IB_CreateFilesA.eps ¬

Interface Builder then displays two attention panels, one after the other:

When a Create Files panel is displayed, click Yes.

A second Create Files panel is displayed; click Yes again.

Repeat for the Converter class.

Save the nib file.

_IB_CreateFilesB.eps ¬

Now we leave Interface Builder for this application. You'll complete the application using Project Builder.



2 Examine an interface (header) file in Project Builder.

Hide Interface Builder and activate Project Builder.

Click Headers in the project browser.

Select ConverterController.h.

_PB_TemplateHeader.eps ¬

You can add instance variables or method declarations to a header file generated by Interface Builder. This is 
commonly done, but it isn't necessary in ConverterController's case. But we do need to add a method to the 
Converter class that the ConverterController object can invoke to get the result of the computation. Let's start 
with by declaring the method in Converter.h.

3 Add a method declaration.

Select Converter.h in the project browser.

Insert a declaration for convertAmount:byRate:.

#import <AppKit/AppKit.h>
#import <Foundation/Foundation.h>

@interface Converter:NSObject
{
}
- (float)convertAmount:(float)rate byRate:(float)amt; 

@end

This declaration states that convertAmount:byRate: takes two arguments of type float, and returns a float value. 
When parts of a method name have colons, such as convertAmount: and byRate:, they are keywords which 
introduce arguments. (These are keywords in a sense different from keywords in the C language.) Most 



method declarations begin with a dash (-), followed by a space. 

Now you need to update both implementation files. First examine Converter.m. 

4 Examine an implementation file.

Click Classes in the project browser.

Select Converter.m.

_PB_BlankMFile.eps ¬

For this class, implement the method declared in Converter.h. Between @implementation Converter and @end 
add the following code:

5 Implement the classes.

Type the code below between @implementation and @end in Converter.m.

- (float)convertAmount:(float)amt byRate:(float)rate
{

return (amt * rate); 
}

The method simply multiplies the two arguments and returns the result. Simple enough. Next update the 
ªemptyº implementation of the convert: method that Interface Builder generated. 

Select ConverterController.m in the project browser.

Update the convert: method as shown in the example below.

Import Converter.h.

- (void)convert:(id)sender
{

float rate, amt, total;



amt = [dollarField floatValue]; €€€€€€€€€€€€€€€€€€€/* 1 */
rate = [rateField floatValue];
total = [converter convertAmount:amt byRate:rate];  /* 2 */
[totalField setFloatValue:total]; €€€€€€€€€€€€€€€€€/* 3 */
[rateField selectText:self]; €€€€€€€€€€€€€€€€€€€€€€/* 4 */

}

The convert: method does the following:

1. Gets the floating-point values typed into the rate and dollar-amount fields

2. Invokes the convertAmount:byRate: method and gets the returned value.

3. Uses setFloatValue: to write the returned value in the Amount in Other Currency text field (totalField).

4. Sends selectText: to the rate field; this puts the cursor in the rate field so the user begin another 
calculation.

Be sure to #import ªConverter.hºÐConverterController invokes a method defined in the Converter class, so it 
needs to be aware of the method's declaration.

Related Concept: ;CurrencyConverterConcepts.rtfd;linkMarkername ObjectiveCQuickReference;,    Objective-
C Quick Reference

144635_TableRule.eps ¬Before You Go On 

Each line of the convert: method shown above, excluding the declaration of floats, is a message. The ªwordº on 
the left side of a message expression identifies the object receiving the message ( called the ªreceiverº). 
These objects are identified by the outlets you defined and connected. After the receiver comes the name of 
the method that the sending object (called the ªsenderº) wants to invoke. Messages often return values; in the 
above example, the local variables rate, amt, and total hold these values.



435874_TableRule.eps ¬
Before you build the project, add a small bit of code to ConverterController.m that will make life a little easier for 
your users. When the application starts up, you want Currency Converter's window to be selected and the 
cursor to be in the Exchange Rate per $1 field. We can do this only after the nib file is unarchived, which 
establishes the connection to the text field rateField. To enable set-up operations like this, Interface Builder 
sends awakeFromNib to all objects when it finishes unarchiving. Implement this method to take appropriate 
action.

6 Implement the awakeFromNib method to perform start-up tasks.

- (void)awakeFromNib
{

[rateField selectText:self]; /* 1 */
[[rateField window] makeKeyAndOrderFront:self]; /* 2 */

}

1. You've seen the selectText: message before, in the convert: implementation; it selects the text in the text 
field that receives the message, inserting the cursor if there is no text. 

2. The makeKeyAndOrderFront: message does as it says: It makes the receiving window the key window 
and puts it before all other windows on the screen. This message also nests another message; [rateField 
window] returns the window to which the text field belongs, and the makeKeyAndOrderFront: method is 
then sent to this returned object.


