
Copyright ã1997 by Apple Computer, Inc.    All Rights Reserved.

Services

Introduction

The OpenStep services facility allows an application to offer its functionality to other applications, without
requiring the other applications to know in advance what's offered. A service-providing application advertises
an operation that it can perform on a particular type of dataÐfor example, encrypting text, performing optical
character recognition on a bitmapped image, or providing text such as a message of the day (with no input
data). Any application that uses the services facility then automatically has access to that functionality through
its Services menu, or through certain other mechanisms. It doesn't need to know what the operations are in
advance; it merely indicates what types of data it has, and the Services menu makes available the operations
that apply to those types. The services facility thus gives applications an open-ended means of extending
each others' functionality.

This document describes the four available types of service: standard services, which the user chooses from
the Services menu; filter services, which the developer invokes through the NSPasteboard class; print filter
services, which the user chooses when saving a printout as a PostScript file; and spell checker services,
which the user chooses from the standard spelling checker panel. The first section, ªStandard Services,º
describes the general structure of all the services and the details of standard services. The second section,
ªVariations on Standard Services,º describes ways that the other three types of service differ from standard
services.

Standard Services

In general terms, the standard services facility works as though the user copies data from one application and
pastes it into another, modifies the data, then copies the result and pastes it back into the original application.
The standard services facility does in fact use the pasteboard to transfer data, automatically copying the
selection from the service requestor and pasting the altered data backÐthough the data transfer doesn't have
to be two-way, as the examples in the introduction indicate. You should be familiar with the Application Kit's
NSPasteboard class before working with the standard services facility.

This section describes how to provide a service in your application, and how to make sure your application
can also request appropriate services in any situation. ªProviding a Standard Serviceº covers everything you
need to know as the implementor of a service. ªUsing Servicesº shows you what you need to make your
custom classes work as requestors of services.

Providing a Standard Service
Suppose you're working on a program to read USENET news, and have an object with a method to encrypt
and decrypt articles, such as the one below. News articles containing offensive material are often encrypted
with this algorithm, called ªrot13,º in which letters are shifted halfway through the alphabet.

- (NSString *)rotateLettersInString:(NSString *)aString
{
 NSString *newString;
 unsigned length;
 unichar *buf;
 unsigned i;

 length = [aString length];
 buf = malloc((length + 1) * sizeof(unichar));
 [aString getCharacters:buf];

 buf[length] = (unichar)0; // not really needed....

 for (i = 0; i < length; i++) {
 if (buf[i] >= (unichar)'a' && buf[i] <= (unichar) 'z') {
 buf[i] += 13;
 if (buf[i] > 'z') buf[i] -= 26;
 }
 else if (buf[i] >= (unichar)'A' &&

buf[i] <= (unichar) 'Z') {
 buf[i] += 13;
 if (buf[i] > 'Z') buf[i] -= 26;
 }
 }

 newString = [NSString stringWithCharacters:buf length:length];
 free(buf);

 return newString;
}

Since this feature is generally useful as a simple encryption scheme, it can be exported to other applications.
To offer this functionality as a service, write a method such as this:

- (void)simpleEncrypt:(NSPasteboard *)pboard
 userData:(NSString *)data
 error:(NSString **)error
{
 NSString *pboardString;
 NSString *newString;
 NSArray *types;

 types = [pboard types];
 if (![types containsObject:NSStringPboardType]) {
 *error = NSLocalizedString(@"Error: couldn't encrypt text.",
 @"pboard couldn't give string.");
 return;
 }

 pboardString = [pboard stringForType:NSStringPboardType];
 if (!pboardString) {
 *error = NSLocalizedString(@"Error: couldn't encrypt text.",
 @"pboard couldn't give string.");
 return;
 }

 newString = [self rotateLettersInString:pboardString];

 if (!newString) {
 *error = NSLocalizedString(@"Error: couldn't encrypt text.",
 @"self couldn't rotate letters.");
 return;
 }

 types = [NSArray arrayWithObject:NSStringPboardType];
 [pboard declareTypes:types owner:nil];
 [pboard setString:newString forType:NSStringPboardType];

 return;
}

A method for providing a standard service is of the form serviceName:userData:error: and takes arguments as
shown in the example. The method itself takes data from the pasteboard as needed, operates on it, and

writes any results back to the pasteboard. In case of an error, the method simply sets the pointer given by the
error argument to a non-nil NSString and returns. The userData argument isn't used here; see ªEntries in a
Service Specificationº and ªAdd-on Servicesº for some suggestions on how to use it.

Making a Service Available
Now you have an object with methods that allow it to perform a service for another application. There are two
things remaining to do: register the object at run time so the services facility knows which object to have
perform the service, and advertise the service to the services facility. You create and register your object in
the applicationDidFinishLaunching: application delegate method (or equivalent) with NSApplication's
setServicesProvider: method. If your object is called encryptor you create and register it with this code
fragment:

EncryptoClass *encryptor;

encryptor = [[EncryptoClass alloc] init];
[NSApp setServicesProvider:encryptor];

You can register only one service provider per application. If you have more than one service to provide, a
single object must be able to provide all of the services.

In order for the system to know that your application provides a service, you must advertise that fact. You do
this by adding an entry to your application project's CustomInfo.plist file, which is incorporated into the
application's Info.plist file when you build your project. The entry you add is called the service specification. In
our example, the service specification looks like this:

{
 NSServices = (

 { NSPortName = NewsReader;
 NSMessage = simpleEncrypt;
 NSSendTypes = (NSStringPboardType);
 NSReturnTypes = (NSStringPboardType);
 NSMenuItem = {
 default = "Encrypt Text";
 English = "Encrypt Text";
 French = "Encoder le texte";
 German = "Text verschlösseln";
 };
 NSKeyEquivalent = {
 default = E;
 German = S;
 };
 }
);
}

The meaning of each of the subfields is explained further in the section below, ªEntries in a Service
Specification.º

Note: If you've just built an application with a service and you want to test the service, log out and log back in
again. The application must be in one of the standard directories: ~/Apps, /NextApps, or /LocalApps.

Entries in a Service Specification

This template shows all possible fields in a standard service specification:

NSServices = (
{ NSMessage = messageName;

NSPortName = programName;
NSSendTypes = (type1 [, type2] ...);

NSReturnTypes = (type1 [, type2] ...);
NSMenuItem = { default = item; [language = item;] };
NSKeyEquivalent = { default = character; [language = character;] };
NSUserData = string;
NSTimeout = milliseconds;
NSHost = hostName;
NSExecutable = pathname;

}
[, { another service entry }] ...

);

Filter, print filter, and spell checker services differ slightly. Their service specifications are described in
ªVariations on Standard Services.º

NSMessage indicates the name of the Objective-C method to invoke. Its value is the first part of the method
name, which follows the form messageName:userData:error:. This is a required entry.

NSPortName is the name of the port the application should use to listen for service requests. Its value depends
on how you registered the service provider. If you used the NSApplication method setServicesProvider:,
NSPortName is the application name. If you used the NSRegisterServicesProvider() function (which should only
be used for filter services), NSPortName is the value passed to that function for its name argument. See ªFilter
Servicesº for more information on NSRegisterServicesProvider(). This is a required entry.

NSSendTypes and NSReturnTypes are arrays of names for data types, such as NSStringPboardType. Send types
are the types sent from the service requestor; return types are the types returned to the service requestor.
See the NSPasteboard class specification for a list of standard data types. A service provider must specify
one or both of these entries.

NSMenuItem and NSKeyEquivalent indicate the text of the Services menu item and its key equivalent (if any).
Both of these entries take the form of dictionaries, with language names as keys and the text as values. In
addition to actual language names, you can define a value for the key default, which is used when no

languages in the user's preferences match the languages named in the service specification. The text of a
menu item can indicate a single submenu with a slash; for example, ªMail/Send Selectionº appears in the
Services menu as a submenu named ªMailº with an item named ªSend Selectionº. NSMenuItem is required,
but NSKeyEquivalent is optional.

NSUserData is a string containing a value of your choice. You can use this string to control the behavior of your
service method; this entry is useful for applications that provide open-ended services (see ªAdd-on
Servicesº). NSUserData is an optional entry.

NSTimeout is a string indicating the number of milliseconds the Services facility should wait for a response
from the service provider when a response is required. If this time is exceeded, the services facility opens an
attention panel informing the user that an error has occurred. This is an optional entry. If you don't specify this
entry, the timeout value is 3000 milliseconds (30 seconds).

NSHost is a string containing the name of a host on the network. The executable is launched on this host
instead of on the host of the application requesting the service. This is an optional entry.

NSExecutable is the path of the application that performs this service. This can either be a full or relative path.
If it is a relative path, the application must be located in the same bundle as this service declaration. This
entry is most useful for filter services. This entry is optional.

Add-on Services

You typically define services when you create your application and advertise them in the Info.plist file of the
application's bundle. The services facility also allows you to advertise services outside of the application
bundle, enabling you to create ªadd-onº services after the fact. This is where the NSUserData entry becomes
truly useful: You can define a single message in your application that performs actions based on the user data
provided, such as running the user data string as a UNIX command (which the Terminal application does) or
treating it as a special argument in addition to the selected data that gets sent through the pasteboard.

To define an add-on service, you create a bundle with a .service extension that contains an Info.plist file, which
in turn contains the add-on service specification. You then put this bundle into a Services directory in the

library search path (~/Library, /LocalLibrary, /NextLibrary). The services facility scans these directories when the
user logs in and takes note of which services are defined; you can force this scanning by running the
make_services UNIX command. If your application creates a service at run time and needs it to be available
immediately, it calls this function to force scanning:

void€NSUpdateDynamicServices(void)

Using Services
If you add a Services menu to your application in Interface Builder, there's nothing else you need to do for
your application to work with the standard services facility; your application automatically has access to all
appropriate services provided by other applications. If you need to construct menus programmatically or if you
subclass NSView or NSWindow (or any other subclass of NSResponder), however, you need to do a little
work to tie things into the standard services facility. Setting a Services menu programmatically is
straightforward. You simply designate the NSMenu that you want as your Services menu with NSApplication's
setServicesMenu: method. Tying custom NSViews or NSWindows into the standard services facility falls into
three steps, in which you invoke or implement these methods:

registerServicesMenuSendTypes:returnTypes:
validRequestorForSendType:returnType:
writeSelectionToPasteboard:types:
readSelectionFromPasteboard:

The following sections cover each of these methods. A final section, ªInvoking a Standard Service
Programmatically,º shows how to invoke a standard service in your code.

Registering User-Interface Objects for Standard Services

The Services menu doesn't contain every standard service offered by other applications. For example, in a
text editor a service to invert a bitmapped image is of no use and shouldn't be offered. Which services appear
in the Services menu is determined by the data types that the objects in the applicationÐspecifically the
NSResponder objectsÐcan send and receive through the pasteboard.

An NSResponder registers these data types using NSApplication's
registerServicesMenuSendTypes:returnTypes: method. Application Kit objects already do this, but your custom
NSResponder subclass must do this in its initialize class method. All types used by instances of the class
must be registered, even if they're not always available; Services menu items are enabled and disabled
dynamically based on what's available at the moment, as described in ªEnabling Services Menu Items Based
on the Selectionº.

An object doesn't have to register the same types for both sending and receiving. Suppose you're writing a
rich text editor that can send unformatted and rich text, but can only receive unformatted text. Here's a portion
of the initialization method for the text-editor NSView subclass:

+ (void)initialize
{
 static BOOL initialized = NO;

 /* Make sure code only gets executed once. */
 if (initialized == YES) return;
 initialized = YES;

 sendTypes = [NSArray arrayWithObjects:NSStringPboardType,
 NSRTFPboardType, nil];
 returnTypes = [NSArray arrayWithObjects:NSStringPboardType,
€€€€€€€€nil];
 [NSApp registerServicesMenuSendTypes:sendTypes
 €returnTypes:returnTypes];

 return;
}

Your NSResponder object can register any pasteboard data type, public or proprietary, common or rare. If it
handles the public and common types, of course, it will have access to more services. See the NSPasteboard
class specification for a list of standard pasteboard data types.

Enabling Services Menu Items Based on the Selection

While your application is running, various types of data can be selected and available for transfer on the
pasteboard. If a service doesn't apply to the type of the selected data, its menu item needs to be disabled. To
check whether a service applies, the application object sends validRequestorForSendType:returnType:
messages to objects in the responder chain to see whether they have data of the type used by that service.
While the Services menu is visible, this method is invoked frequentlyÐtypically many times per eventÐto
ensure that the menu items for all service providers are properly enabled: It's sent for each service and
possibly for many objects in the responder chain. Because this method is invoked so frequently, it must be
fast so that event handling doesn't fall behind the user's actions.

The following example shows how this method can be implemented for an object that handles unformatted
text:

- (id)validRequestorForSendType:(NSString *)sendType
 returnType:(NSString *)returnType;
{
 if ((!sendType || [sendType isEqual:NSStringPboardType]) &&
 (!returnType || [returnType isEqual:NSStringPboardType])) {
 if (([self selection] || !sendType) &&
 ([self isEditable] || !returnType)) {
 return self;
 }
 }

 return [super validRequestorForSendType:sendType
 returnType:returnType];

}

This implementation checks both the types indicated and the state of the object. The object is a valid
requestor if the send and return types are unformatted text or simply aren't specified, and if the object has a
selection and is editable (when send and return types are given). If this object can't handle the service
request in its current state, it invokes its superclass' implementation.

validRequestorForSendType:returnType: is sent along an abridged responder chain, comprising only the
responder chain for the key window and the application object. The main window is excluded.

Sending and Receiving Data

When the user chooses a Services menu command, the responder chain is checked with
validRequestorForSendType:returnType: and the first object that returns a value other than nil is called upon to
handle the service request by providing data (if any is required) with a writeSelectionToPasteboard:types:
message. You can implement this method to provide the data immediately or to provide the data only when
it's actually requested. Here's an implementation for an object that writes unformatted text immediately:

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
 types:(NSArray *)types
{
 NSArray *typesDeclared;

 if ([types containsObject:NSStringPboardType] == NO) {
 return NO;
 }

 typesDeclared = [NSArray arrayWithObject:NSStringPboardType];
 [pboard declareTypes:typesDeclared owner:nil];
 return [pboard setString:[self selection]

 forType:NSStringPboardType];
}

This method returns YES if it successfully writes or declares any data and NO if it fails. If you want to provide
the data only on demandÐwhich makes sense for large amountsÐyou have to declare an object as the owner
for the data and then make sure that object responds to pasteboard:provideDataForType: (as described in the
NSPasteboard class specification). In such a case, the two methods look like this:

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
 types:(NSArray *)types
{
 NSArray *typesDeclared;

 if ([types containsObject:NSStringPboardType] == NO) {
 return NO;
 }

 typesDeclared = [NSArray arrayWithObject:NSStringPboardType];
 [pboard declareTypes:typesDeclared owner:self];
 return YES;
}

- (void)pasteboard:(NSPasteboard *)pboard
 provideDataForType:(NSString *)type
{
 [pboard setString:[self selection] forType:NSStringPboardType];
 return;
}

You can even write some types in writeSelectionToPasteboard:types: and offer the rest on demand only via
pasteboard:provideDataForType:. Remember that the owner of a pasteboard must exist when the data is finally
requested. To be safe, you should make sure the owner is an object that will never be deallocated.

Once the service requestor writes data to the pasteboard, it waits for a response as the service provider is
invoked to perform the operation; if the service doesn't return data, of course, the requesting application
simply continues running and none of the following applies. The service provider reads the data from the
pasteboard, works on it, and then returns the result. At this point the service requestor is sent a
readSelectionFromPasteboard: message telling it to replace the selection with whatever data came back. Our
simple text object can implement this method as follows:

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard;
{
 NSArray *types;
 unsigned index;
 NSString *theText;

 types = [pboard types];
 index = [types indexOfObject:NSStringPboardType];
 if ([types containsObject:NSStringPBoardType] == NO) {
 return NO;
 }
 theText = [pboard stringForType:NSStringPboardType];
 [self replaceSelectionWithString:theText];
 return YES;
}

This method returns YES if it successfully reads the data from the pasteboard, NO otherwise.

Invoking a Standard Service Programmatically

Though the user typically invokes a standard service by choosing an item in the Services menu, you can
invoke it in code using this function:

BOOL€NSPerformService(NSString€*serviceItem, NSPasteboard€*pboard)

This function returns YES if the service is successfully performed, NO otherwise. serviceItem is the name of a
Services menu item (in any language). It must be the full name of the service, including the submenu and
slash; for example, ªMail/Selectionº. pboard contains the data to be used for the service, and when the
function returns contains the data resulting from the service. You can then do with the data what you wish.

Variations on Standard Services

The three other types of servicesÐfilter, print filter, and spell checkerÐall share the use of a service
specification, but they're each implemented in different ways. The following sections describe how the service
specification for each type of service differs from that for a standard service, and how you take advantage of
that type of service.

Filter Services
The NSPasteboard class automatically uses a filter service when you invoke a method for filtering data, such
as:

+€(NSArray€*)typesFilterableTo:(NSString€*)type
+€(NSPasteboard *)pasteboardByFilteringFile:(NSString€*)filename
+€(NSPasteboard *)pasteboardByFilteringData:(NSData€*)data

ofType:(NSString *)type
+€(NSPasteboard *)pasteboardByFilteringTypesInPasteboard:

(NSPasteboard€*)pboard

Because filter services commonly translate data from unknown file formats into known formats, you need a
way of dynamically specifying pasteboard types. The filter services and pasteboard facilities define types
based on file extensions with these functions:

NSString€*NSCreateFilenamePboardType(NSString€*fileExtension)
NSString€*NSCreateFileContentsPboardType(NSString *fileExtension)
NSString€*NSGetFileType(NSString *pboardType)
NSArray€*NSGetFileTypes(NSArray *pboardTypes)

The fileExtension argument is a file extension, minus the period (for example, ªepsº or ªtiffº). You create
pasteboard type strings with the first two functions, and get file types (extensions) from pasteboard type
strings with the second two functions. In a service specification (in the CustomInfo.plist file), you can indicate a
file type based on the extension as NSTypedFilenamesPboardType:fileExtension and a file contents type as
NSTypedFileContentsPboardType:fileExtension; for example:

NSSendTypes = (NSTypedFilenamesPboardType:tiff);
NSSendTypes = (NSTypedFileContentsPboardType:tiff);

You implement a filter service exactly like a standard service, with a filterName:userData:error: method that
accepts a pasteboard containing a file path, converts the contents of the file to the requested type or types,
and returns the converted data on the pasteboard. There are two major differences between filter services
and standard services. The first major difference is in the way you register the service provider. With filter
services, you typically don't have an NSApplication object to register the service provider with. Instead, you
use the function NSRegisterServicesProvider(). This function's declaration is:

(void)NSRegisterServicesProvider(id€provider, NSString€*name)

provider is the object that provides the services, and name is the same value you specify for the NSPortName
entry in the services specification. After making this function call, the filter service must enter the run loop in

order to respond to service requests as shown:

while(1) {
NS_DURING

[[NSRunLoop currentRunLoop] run];
NS_HANDLER

NSLog(@"Received exception: %@", localException);
NS_ENDHANDLER

}

The second major difference is in the service specification: Instead of an NSMessage entry you define an
NSFilter entry with filterName as the value; you must define both send and return types; and the NSMenuItem
and NSKeyEquivalent entries are ignored.

A filter service can use data-transfer mechanisms other than the pasteboard, indicated by an optional entry in
the filter service specification. The key is NSInputMechanism, and it can have a value of NSUnixStdio,
NSMapFile, or NSIdentity. If you specify an input mechanism, the value for the NSFilter entry is ignored (though
it's still required).

NSUnixStdio allows you to turn nearly any UNIX command-line program into a filter service. Instead of sending
an Objective-C message to an object in your filter service program, the services facility simply runs the
executable specified in the service specification with the contents of the pasteboard as the argument (which
must be of NSFilenamesPboardType or NSTypedFilenamesPboardType). If there is more than one filename on the
pasteboard, only the first is used. The output of the filter program (on stdout) is captured by the services
facility and put on a pasteboard for use by the requestor of the filter. Note that the UNIX program must be
relaunched every time the service is invoked; if you're creating a filter service from scratch it's more efficient
to package it as an application that can remain running. Here's a sample service specification for a UNIX
program that converts GIF images to TIFF:

{
 NSServices = (
 { NSFilter = "";
 NSPortName = gif2tiff;
 NSInputMechanism = NSUnixStdio;
 NSSendTypes = (NSTypedFilenamesPboardType:gif);
 NSReturnTypes = (NSTIFFPboardType);
 }
);
}

NSMapFile defines an ªemptyº service for data in files, used when you invoke NSPasteboard's
pasteboardByFilteringFile: class method. Its value must be an NSFilenamesPboardType or an
NSTypedFilenamesPboardType. When the filter service is invoked for a file, the services facility merely puts the
contents of the file on the pasteboard. This input mechanism is useful for file types with nonstandard or
special extensions whose format is nonetheless the same as a standard type. For example, if you've defined
an image format based on a subset of TIFF and given it a file extension of stif, you can define a service that
maps the stif file extension to NSTIFFPboardType:

{
 NSServices = (
 { NSFilter = "";
 NSInputMechanism = NSMapFile;
 NSSendTypes = (NSTypedFilenamesPboardType:stif);
 NSReturnTypes = (NSTIFFPboardType);
 }
);
}

NSIdentity defines an empty service for data in memory, used when you invoke NSPasteboard's
pasteboardByFilteringData:ofType: class method. It declares that the send type is effectively identical to the
return typeÐthough the reverse isn't necessarily true. For example, you can define a service that filters your
custom image format in memory with this service specification:

{
 NSServices = (
 { NSFilter = "";
 NSInputMechanism = NSIdentity;
 NSSendTypes = (MyCustomImagePboardType);
 NSReturnTypes = (NSTIFFPboardType);
 }
);
}

Neither NSMapFile nor NSIdentity result in any program being executed, so their services specifications lack
the NSPortName entry.

Print Filter Services
A print filter service is invoked when the user saves a file as a PostScript file through the Print panel. When
the user clicks the Save... button on the Print panel a Save panel opens with a pop-up list near the bottom.
This pop-up list contains special types of PostScript that the user can choose from. A print filter service adds
an entry to this list.

You implement a print filter service as a UNIX command line program that reads PostScript on the standard
input stream and writes it to a file specified on the command line by a -o option; for example:

ps2superps -o outputfile.ps

Instead of an NSMessage entry, the service specification for a print filter service contains a NSPrintFilter entry,

whose value is the extension used for the output file. If it's empty ªpsº is used by default. The NSPortName
entry is the name of the UNIX programÐps2superps in the example. NSMenuItem gives the string that appears
in the pop-up list. The following entries are ignored in a print filter service specification:

NSKeyEquivalent
NSSendTypes
NSReturnTypes
NSUserData

A print filter service specification adds one entry: NSDeviceDependent. Its value is ªYESº or ªNOº (the default).
If you specify ªYESº for this entry the PostScript code sent through your print filter is specific to the type of
printer chosen in the Print panel.

Here's a sample print filter service specification:

{
 NSServices = (
 { NSPrintFilter = "superps";
 NSPortName = ps2superps;
 NSMenuItem = {
 default = "Super PostScript for Chosen Printer";
 English = "Super PostScript for Chosen Printer";
 French =
 "Super PostScript pour l'imprimante sÝlectionnÝe";
 German = "SuperPostScript för ausgewÙhlten Drucker";
 };
 NSDeviceDependent = "YES";
 }
);
}

Spell Checker Services
A Spell checker service is made available in the Application Kit's standard spell checker panel. You implement
a spell checker service by creating a program that uses an NSSpellServer object. See the NSSpellServer
class specification for full information on creating a spell checker service. You'll want to create the spell check
service as an add-on service as described in ªAdd-on Services.º Instead of a NSMessage entry, the service
specification for a spell checker service contains a NSSpellChecker entry, whose value is the text that should
be used to identify the spell checker in the spelling panel's pop-up list. A spell checker service specification
should also contain a NSLanguages entry whose value is the language for which the spell checker applies. The
spell checker won't be advertised unless one of its values for NSLanguages matches one of the user's
preferred languages.

As an example, here's the service specification for the NeXT spell checker:

{
 NSServices = (
 {NSExecutable = NeXTspell;
€€€€€€€NSLanguages = (English);
€€€€€€€NSSpellChecker = NeXT;
€€€€€€},
);
}

