Copyright ©1996 by NeXT Software, Inc. All Rights Reserved.

;D_CurrencyConverter_DefineClasses.rtfd;;~ Previous Section ;F_CurrencyConverter_Build.rtfd;;~ Next
Section

2. Currency Converter Tutorial
Implementing the Classes of Currency Converter

Interface Builder generates source code files from the (partial) class definitions you've made. These files are
askeletal,® in the sense that they contain little more than essential Objective C directives and the class-
definition information. You'll usually need to supplement these files with your own code.

1 In Interface Builder, generate header and implementation files.

Go to the Classes display of the nib file window.
Select the ConverterController class.
Choose Create Files from the Operations pull-down menu.

_IB_CreateFilesA.eps -

Interface Builder then displays two attention panels, one after the other:

When a Create Files panel is displayed, click Yes.

A second Create Files panel is displayed; click Yes again.
Repeat for the Converter class.

Save the nib file.

_IB_CreateFilesB.eps -

Now we leave Interface Builder for this application. You'll complete the application using Project Builder.

2 Examine an interface (header) file in Project Builder.

Hide Interface Builder and activate Project Builder.
Click Headers in the project browser.
Select ConverterController.h.

_PB_TemplateHeader.eps -

You can add instance variables or method declarations to a header file generated by Interface Builder. This is
commonly done, but it isn't necessary in ConverterController's case. But we do need to add a method to the
Converter class that the ConverterController object can invoke to get the result of the computation. Let's start
with by declaring the method in Converter.h.

3 Add a method declaration.

Select Converter.h in the project browser.
Insert a declaration for convertAmount:byRate:.

#import <AppKit/AppKit.h>
#import <Foundation/Foundation.h>

@interface Converter:NSObject
{

}
- (float)convertAmount: (float) rate byRate: (float)amt;

dend
This declaration states that convertAmount:byRate: takes two arguments of type float, and returns a float value.

When parts of a method name have colons, such as convertAmount: and byRate:, they are keywords which
introduce arguments. (These are keywords in a sense different from keywords in the C language.) Most

method declarations begin with a dash (-), followed by a space.

Now you need to update both implementation files. First examine Converter.m.

Examine an implementation file.

Click Classes in the project browser.
Select Converter.m.

_PB_BIlankMFile.eps -

For this class, implement the method declared in Converter.h. Between @implementation Converter and @end
add the following code:

Implement the classes.
Type the code below between @implementation and @end in Converter.m.

- (float)convertAmount: (float)amt byRate: (float)rate
{

return (amt * rate);

The method simply multiplies the two arguments and returns the result. Simple enough. Next update the
aempty® implementation of the convert: method that Interface Builder generated.

Select ConverterController.m in the project browser.
Update the convert: method as shown in the example below.
Import Converter.h.

- (void) convert: (id) sender

float rate, amt, total;

amt = [dollarField floatValue]; €EEEEEEEEEEEEEEEEEE/* 1 */
rate = [rateField floatValue];

total = [converter convertAmount:amt byRate:rate]; /* 2 */
[totalField setFloatValue:total]; €EEEEEEEEEEEEEEEe/* 3 */
[rateField selectText:self]; €EEEECEECECEECEEECEEEEEEEee/* 4 */

}

The convert: method does the following:
1. Gets the floating-point values typed into the rate and dollar-amount fields
2. Invokes the convertAmount:byRate: method and gets the returned value.
3. Uses setFloatValue: to write the returned value in the Amount in Other Currency text field (totalField).

4. Sends selectText: to the rate field; this puts the cursor in the rate field so the user begin another
calculation.

Be sure to #import 2Converter.h®®ConverterController invokes a method defined in the Converter class, so it
needs to be aware of the method's declaration.

Related Concept: ;CurrencyConverterConcepts.rtfd;linkMarkername ObjectiveCQuickReference;, Obijective-
C Quick Reference

144635 _TableRule.eps ~Before You Go On

Each line of the convert: method shown above, excluding the declaration of floats, is a message. The @word® on
the left side of a message expression identifies the object receiving the message (called the @receiver©).
These objects are identified by the outlets you defined and connected. After the receiver comes the name of
the method that the sending object (called the 2sender®) wants to invoke. Messages often return values; in the
above example, the local variables rate, amt, and total hold these values.

435874 TableRule.eps =
Before you build the project, add a small bit of code to ConverterController.m that will make life a little easier for

your users. When the application starts up, you want Currency Converter's window to be selected and the
cursor to be in the Exchange Rate per $1 field. We can do this only after the nib file is unarchived, which

establishes the connection to the text field rateField. To enable set-up operations like this, Interface Builder
sends awakeFromNib to all objects when it finishes unarchiving. Implement this method to take appropriate

action.

6 Implement the awakeFromNib method to perform start-up tasks.

- (void)awakeFromNib

[rateField selectText:self]; /* 1 */
[[rateField window] makeKeyAndOrderFront:self]; /* 2 */

}

1. You've seen the selectText: message before, in the convert: implementation; it selects the text in the text
field that receives the message, inserting the cursor if there is no text.

2. The makeKeyAndOrderFront: message does as it says: It makes the receiving window the key window
and puts it before all other windows on the screen. This message also nests another message; [rateField
window] returns the window to which the text field belongs, and the makeKeyAndOrderFront: method is

then sent to this returned object.

