
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

DBTypes

Adopted By: no NeXTSTEP classes

Declared In: dbkit/types.h

Protocol Description
The methods in the DBTypes protocol return information about the type of data that's held or
described by the object upon which they are invoked.    This information doesn't necessarily
correspond to an actual valueÐa DBTypes object may not even embody a ªrealº value, and the
protocol makes no provision for storing valuesÐit simply provides a means for abstractly describing
a data type.

The protocol's two primary methods are objcType and databaseType; they return strings that
represent, respectively, an Objective C data type, and a data type as given in the actual database.   
The Database Kit uses the following convention in representing Objective C data types as strings:

Objective C type DBTypes representation
id ª@º
char * ª*º
int ªiº
float ªfº
double ªdº

The value returned by databaseType, on the other hand, is completely adaptor-dependent. In
addition, not all objects have a database type.    For example, a relationship that's read from a
database model file isn't represented in the actual database, and so will have no database type.

None of the public Database Kit classes implements the DBTypes protocol.    However, the kit
automatically creates private DBTypes-conforming objects which it uses to store the data types of
properties and DBValues.    The DBProperties method propertyType returns such a private
DBTypes object, as does DBValue's valueType method.

Method Types
Querying for type - objcType

- databaseType
- objcClassName

Comparing types - isEntity
- matchesType:

Instance Methods
databaseType

- (const char *)databaseType

Returns a string that represents the object's data type as it resides in the database from which it was
read (or to which it will be written).

isEntity
- (BOOL)isEntity

Returns YES if the object's data type is an object that conforms to the DBEntities protocol,
otherwise returns NO.    This method is intended to be used to determine if a property is a
relationship, as shown below:

if ([[aProperty propertyType] isEntity])
 /* aProperty is a relationship. */

else
 /* aProperty is an attribute. */

matchesType:
- (BOOL)matchesType:(id <DBTypes>)anObject

Returns YES if the object's data type matches that of anObject, otherwise returns NO.

objcClassName

- (const char *)objcClassName

If the object's type is an id, this returns the name of the id's class.    If the type isn't an id, this returns
nil.

objcType
- (const char *)objcType

Returns a string that represents the object's Objective C data type.    The strings that are used by the
Database Kit to represent the standard Objective C types are listed in the class description, above.

