
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

;ToDo_Intro.rtfd;linkMarkername ;¬ Previous Section    ;B_ToDo_SettingUp.rtfd;linkMarkername ;¬ Next 
Section

4. To Do Tutorial

The Design of To Do
The To Do application vaults past Travel Advisor in terms of complexity. Instead of Travel Advisor's one nib file, 
To Do has three nib files. Instead of three custom classes, To Do has seven. This diagram shows the 
interrelationships among instances of some of those classes and the nib files that they load:

TD_Design1.eps ¬

Some of the objects in this diagram are familiar, fitting as they do into the Model-View-Controller paradigm. 
The ToDoItem class provides the model objects for the application; instances of this class encapsulate the 
data associated with the items appearing in documents. They also offer functions for computing subsets of that 
data. And then there's the controller object...actually, there is more than one controller object. 

The ToDoInspector instance in the above diagram is an offshoot of the application controller, ToDoController. By 
breaking down a problem domain into distinct areas of responsibility, and assigning certain types of objects to each 
area, you increase the modularity and reusability of the object, and make maintenance and trouble-shooting easier. See 
ªObject-Oriented Programmingº in the appendix for more on this.

To Do's Multi-Document Design

Two types of controller objects are at the heart of multi-document application design. They claim different 
areas of responsibility within an application. ToDoController is the application controller; it manages events that 
affect the application as a whole. Each ToDoDoc object is a document controller, and manages a single 
document, including all the ToDoItems that belong to the document. Naturally, it's essential that the application 



controller be able to communicate with its (potentially) numerous document controllers, and they with it.

As multi-document applications typically do, To Do includes the Document menu found on Interface Builder's 
Menus palette. When users choose New from the Document menu, the application controller allocates and 
initializes an instance of the ToDoDoc class. When the ToDoDoc instance initializes itself, it loads the 
ToDoDoc.nib file. When the user has finished entering items into the document, and chooses Save from the 
Document menu, a Save panel appears and the user saves the document in the file system under an assigned 
name. Later, the user can open the document using the Open menu command, which causes the Open panel 
to be displayed.

The rationale behind, and process of, constructing    multi-document applications is discussed in ``The Structure of 
Multi-Document Applications.'' ;ToDoConcepts.rtfd;linkMarkername TheStructureofMulti-DocumentApplications;¬

The controller objects of To Do respond to a variety of delegation messages sent when certain events 
occurÐprimarily from windows and NSAppÐin order to save and store object state. One example of such an 
event is when the user closes a document window; another is when data is entered into a document. Often 
when these events happen, one controller sends a message to the other controller to keep it informed.

How To Do Stores and Accesses its Data

The data elements of a To Do document (ToDoDoc) are ToDoItems. When a user enters an item in a 
document's list, the ToDoDoc creates a ToDoItem and inserts that object in a mutable array (NSMutableArray); 
the ToDoItem occupies the same position in the array as the item in the matrix's text field. This positional 
correspondence of objects in the array and items in the matrix is an essential part of the design. For instance, 
when users delete the first entry in the document's list, the document removes the corresponding ToDoItem (at 
index 0) from the array. 

TD_Design3.eps ¬

The array of ToDoItems is associated with a particular day. Thus the data for a document consists of a 
(mutable) dictionary with arrays of ToDoItems for values and dates for keys. 



TD_Design4.eps ¬

When users select a day in the calendar, the application computes the date, which it then uses as the key to 
locate an array of ToDoItems in the dictionary.

To Do's Custom Views

The discussion so far has touched on model objects and controller objects, but has said nothing about the 
second member of the Model-View-Controller triad: view objects. Unlike Travel Advisor, which uses only ªoff-
the-shelfº views, To Do's interface features objects from three custom Application Kit subclasses.

TD_Design5.eps ¬

You'll learn much more about these custom subclasses in the pages that follow.


