
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

;MakingYourClassADelegate.rtfd;;¬    Next Section ;GeneratingSourceCodeFiles.rtfd;;¬    Previous Section

ImplementingasubclassofNSObject;¬Implementing a
subclass of NSObject

arrow.eps ¬ Import header files.

arrow.eps ¬ Declare new instance variables.

arrow.eps ¬ Implement accessor methods.

arrow.eps ¬ Define target/action behavior.

arrow.eps ¬ Define initialization and deallocation behavior.

arrow.eps ¬ Define how objects are copied.

arrow.eps ¬ Define how objects are compared.

arrow.eps ¬ Implement archiving and unarchiving.

arrow.eps ¬ Define special behavior for your class.

This task summarizes the steps that you must completeÐand can optionally completeÐto implement a
subclass of NSObject. With this kind of subclass, the subtleties arising from inherited behavior are simplified.
Still, the interaction of your class with the root class is very important and applies to all subclasses.

The task assumes that you have completed the following prerequisites in Interface Builder, presented earlier
in this chapter:

SquareBullet.eps ¬Naming a class, positioning it in the class hierarchy
SquareBullet.eps ¬Specifying outlets and actions for the class
SquareBullet.eps ¬Creating an instance of the class
SquareBullet.eps ¬Connecting the instance to other objects through the outlets and actions
SquareBullet.eps ¬Generating code files from the nib file

When you have generated code files in Interface Builder, switch over to the Project Builder application and

open your project. Open your class's header file (ClassName.h) and implementation file (ClassName.m).
_ImplementingSubclassNSObject.eps ¬

For more on the NSObject class, see its description in the Foundation Framework Reference.   
;/NextLibrary/Frameworks/Foundation.framework/Resources/English.lproj/Documentation/Reference/Classes/
NSObject.rtfd;;¬

The book Object-Oriented Programming and the Objective-C Language describes in detail many topics related to
the NSObject class and class creation.   
;/NextLibrary/Documentation/NextDev/TasksAndConcepts/ObjectiveC/0_IntroObjC.rtf;;¬

Importing Header Files

This step is little different from what you must do in regular C programming: At the beginning of your
implementation file include the header files declaring all types and functions that your code is using, as well
as the header files for all referenced classes, protocols, and methods. Instead of #include, however, use the
#import directive; #import ensures that the file is included only once.

Remember to import your class's header file. By doing so you include the interface files for all inherited
classes. To include the Application Kit classes, all you need to do is #import <AppKit/AppKit.h>. (Interface
Builder imports both AppKit.h and your class header files for you automatically).

/* TAController.h */
#import <AppKit/AppKit.h>
#import "Country.h"

/* TAController.m (implementation file) */
#import "TAController.h"
#import "Converter.h" /* Needed in implementation, not interface */

Declaring New Instance Variables

The header file that Interface Builder generates declares outlets as instance variables. You might want to add
new instance variables for your class to this list. All instance variables should be data that is essential to an
instance of your class.They can be strings, integers, floating-point values, and other objects.

@interface TAController:NSObject
{

id tableView;
...
NSMutableDictionary *countryDict;

}

Notes on the code: In this example, the instance variable tableView derives from an outlet specified in Interface Builder. It is
written to the header file when template files are generated. The instance variable countryDict has been added to identify an
instance of the Foundation class NSMutableDictionary. Explicit typing is recommended.

Implementing Accessor Methods

Accessor methods retrieve and set the values of instance variables. They provide the encapsulation of an
object's data, which only the object itself (and usually instances of subclasses) can directly access. Accessor
methods mediate access to instance variables, allowing client objects to get and set values through an
object's interfaceÐthat is, by sending messages.

Accessor methods that retrieve the value of an instance variable by convention take the same name as the
instance variable. They usually have a single statement that returns the value of the instance variable.
Methods that set the value of an instance variable by convention take the name of the instance variable (first
letter capitalized) prefixed with ªset.º Set methods often test passed-in values for validity before assigning
them.

- (NSString *)name
{
 return name;

}

- (void)setName:(NSString *)str
{
 [name autorelease];
 name = [str copy];
}

Notes on the code: The name method retrieves the value of the instance variable name; it simply returns the value. The
setName: method sets the value of the instance variable name. Because name is an object, it releases the instance variable
before assigning it the new value. Again because name is an object, the new value is copied to make sure that it remains valid.

Your class might not need to implement accessor methods if it has no need for client objects to set or retrieve
the values of its objects' instance variables.

Defining Target/Action Behavior

When you defined your class in Interface Builder, you specified certain methods (actions) that NSControl
objects in the interface invoke in your object (the target) when an certain user event occurs. In implementing
your class, you must specify the behavior of these methods. The sole argument of action methods is sender,
the object sending the message.

- (void)handleTVClick:(id)sender
{

Country *newerRec;
int index = [sender selectedRow];

if (index >= 0 && index < [countryKeys count]) {
newerRec = [countryDict objectForKey:[countryKeys

objectAtIndex:index]];
[self populateFields:newerRec];
[commentsLabel setStringValue:[NSString stringWithFormat:

@"Notes and Itinerary for %@",
[countryField stringValue]]];

recordNeedsSaving=NO;
[tableView tile];

}
return;

}

Notes on the code: This method updates other fields in a window with information from an NSDictionary when the user selects
a row in a table view. It uses sender, which identifies the NSControl object sending the message, to find out which key to use
when retrieving the information from the NSDictionary.

handleTVClick: is an abbreviated version of a method you implemented if you worked through the TravelAdvisor
tutorial in Discovering OPENSTEP Programming.     
;/NextLibrary/Documentation/NextDev/TasksAndConcepts/DeveloperTutorial/0_Contents.rtfd;;¬

Defining Initialization and Deallocation Behavior

The NSObject class defines methods that subclasses must override to initialize their instances and to
deallocate them. These methods are invoked at the start and end of an object's life. Initialization sets the
initial values of instance variables and dynamically allocates and initializes variables. Deallocation frees the
memory allocated to these variables.

Subclasses of NSObject almost always need to override init and dealloc. (An exception is a subclass that has
no instance variables; in this case, it can rely on NSObject's implementation of init, which simply returns self.)
You can define other initialization methods for your class that take arguments and perform more specialized
initializations. However, a subclass of NSObject must always implement init, even if init only invokes one of
these specialized initializers, passing in a default value.

Designated Initializer One of a subclass's initialization methods must be the designated initializer. The
designated initializer invokes its superclass's designated initializer (in NSObject's case, init), performs most of
the work, and returns self. The other initialization methods in a class eventually end up invoking the
designated initializer.

For more on designated initializers, see the description of the init method in the NSObject class specification in
the Foundation Framework Reference    
;/NextLibrary/Frameworks/Foundation.framework/Resources/English.lproj/Documentation/Reference/Classes/
NSObject.rtfd;;¬    or see Object-Oriented Programming and the Objective-C Language.   
;/NextLibrary/Documentation/NextDev/TasksAndConcepts/ObjectiveC/0_IntroObjC.rtf;;¬

Invoking super's Initializer Since an object's full complement of attributes includes those instance variables
declared and initialized by superclasses, initialization should cascade down the inheritance chain, starting
with the NSObject class. This means that initialization should almost always begin with the invocation of the
superclass's designated initializer. For the same reason, deallocation should almost always end by invoking
the superclass's dealloc method, after deallocating its own dynamically allocated instance variables. If your
dealloc method invokes super's dealloc first, the object will be deallocated before it has had a chance to free its
own allocated storage.

- (id)init
{
 [super init];

 name=@"";
 airports=@"";
 airlines=@"";
 transportation=@"";
 hotels=@"";
 languages=@"";
 currencyName=@"";
 comments=@"";

 return self;
}

- (void)dealloc
{
 [name release];
 [airports release];
 [airlines release];
 [transportation release];
 [hotels release];

 [languages release];
 [currencyName release];
 [comments release];

 [super dealloc];
}

Notes on the code: This example shows the init method (which is also the designated initializer in this case) starting off by
sending init to super to have its superclass (NSObject) complete its initializations first. It then sets the object's instance
variables to initial values (empty strings here) and returns self. Until it returns self, the object is in an unusable state. The
dealloc method mirrors the init method. It releases all dynamically allocated instance variables. The release method
decrements an object's reference count and, if the count afterwards is zero, dealloc is invoked and the object is deallocated. It
then invokes super's dealloc method to have the superclass deallocate its own instance variables.

Remember, if you create an object (such as a instance of NSString) in your initialization code or elsewhere, you
are responsible for its deallocation (with autorelease or release). If you create an object in an initialization
method, the proper place for releasing it is in dealloc.

See ªCreating and Deallocating Different Types of Objectsº in this chapter for some background.   
  ;SubclassingConcepts.rtfd;CreatingandDeallocatingDifferentTypesofObjects;¬    For complete details, read the
introduction to the Foundation Framework Reference.

Defining How Objects Are Copied

If you expect that objects of your class will be copied, adopt the NSCopying protocol; if your class can create
mutable versions of an object, also adopt the NSMutableCopying protocol.

@interface MyClass : NSObject <NSCopying, NSMutableCopying>

Next implement the protocol methods, copyWithZone: and mutableCopyWithZone:. These are simple
implementations of these methods:

- (id)copyWithZone:(NSZone *)zone {
 return [[MyClass allocWithZone:zone] init];
}

- (id)mutableCopyWithZone:(NSZone *)zone {
 return [[MyMutableClass allocWithZone:zone] init];
}

Defining How Objects are Compared

A problem similar to copying objects is comparing objects. NSObject's default behavior, in the isEqual:
method, is to compare the identifiers of objects (their ids). If the ids of the receiving and argument objects are
equal, the objects are considered equal. You might find this behavior acceptable for instances of your class,
but if you don't, override isEqual:.

Suppose you have a class named Color, and this class has one instance variable, an integer which holds an
industry-accepted identifier of a color. What is important in demonstrating equality of objects in this case is not
the equality of ids, but of the values of their color instance variables.

Implementing Archiving and Unarchiving

When an object of your class has been around for awhile, responding to events and to messages from other
objects, its stateÐthe values of its instance variablesÐis likely to change. ªOffº might change to ªon,º true to
false, red to green. When the user quits the application owning your object, you want to save the important
parts of that object's state and then restore them the next time the application runs. This is called archiving.

The mechanism for archiving and unarchiving objects is implemented using the classes NSCoder,
NSArchiver, and NSUnarchiver and the protocol NSCoding. It encodes an application's object in a way that
enhances their persistency and distributability. The repository of this encoded object information can be a file
or an NSData object. You should archive any instance variables or other data critical to an object's state.

When a class adopts the NSCoding protocol, it receives a message requesting that it encode itself and a
message asking that it decode and initialize itself. You implement two NSCoding methods to intercept these
messages: encodeWithCoder: and initWithCoder:.

Both encodeWithCoder: and initWithCoder: should begin by invoking the corresponding superclass method so
that the superclass archives or unarchives its instance variables first. (If the class inherits directly from
NSObject or any other class that does not adopt NSCoding, however, these methods should not invoke the

superclass method.) The invocation of super's initWithCoder: returns the partially initialized object (self). End
initWithCoder: by returning self.

NSArchiver and NSUnarchiver provide methods that write data to and read data from the archive. Among
these are encodeObject:, encodeValuesOfObjCTypes:, decodeObject:, and decodeValuesOfObjCTypes:. You send
the message encodeRootObject: or archiveRootObject:toFile: to the NSArchiver class to invoke an
encodeWithCoder: method. To invoke an initWithCoder: method, you send the message unarchiveObjectWithFile:
or decodeObject to the NSUnarchiver class. You never invoke encodeWithCoder: or initWithCoder: directly.

- (void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeObject:name];
 [coder encodeObject:transportation];
 [coder encodeObject:hotels];
 [coder encodeObject:languages];
 [coder encodeValueOfObjCType:"s" at:&englishSpoken];
 [coder encodeObject:currencyName];
 [coder encodeValueOfObjCType:"f" at:¤cyRate];
 return;
}

- (id)initWithCoder:(NSCoder *)coder
{
 name = [[coder decodeObject] copy];
 transportation = [[coder decodeObject] copy];
 hotels = [[coder decodeObject] copy];
 languages = [[coder decodeObject] copy];
 [coder decodeValueOfObjCType:"s" at:&englishSpoken];
 currencyName = [[coder decodeObject] copy];
 [coder decodeValueOfObjCType:"f" at:¤cyRate];
 return self;
}

Notes on the code: NSCoder defines matching sets of methods for encoding and decoding objects of different types. In this
example, several objects are encoded using the encodeObject: method and decoded using the decodeObject: method. One
Boolean and one float variable are encoded and decoded using encodeValueOfObjCType: and decodeValueOfObjCType:,
respectively. Note that the data, by type, must be decoded in the same sequence as it was encoded. The superclass method is
not invoked because the class inherits directly from NSObject, which does not conform to NSCoding.

You don't need to archive every instance variable of your class. Some of these values you can re-create from
scratch and others are transitory and hence unimportant (such as a seconds variable used for timing the
period since a certain event). Application Kit objects configured in Interface Builder are automatically
unarchived from their nib file, but only as you originally initialized them. If you want to retain some changed
attribute of these objects, you should archive the attribute and then initialize the object with the unarchived
attribute in the awakeFromNib method. (An awakeFromNib message is sent to each of the objects unarchived
from a nib file after all of the objects in the nib file have been unarchived and all of the outlets are set.)

- (void)awakeFromNib
{

[countryField selectText:self];
...
[commentsField setDelegate:self];
...
[currencyRateField setDelegate:self];

}

Notes on the code: In this implementation of awakeFromNib, the object must communicate with fields on its interface through
the outlets countryField, commentsField, and currencyField. It places the cursor inside countryField and makes itself the
delegate of the fields commentsField and currencyRateField. These initializations are done here and not in init because the
connection between the objects must be unarchived from the nib file first.

Defining Special Behavior

The final step in implementing a subclass of NSObject is writing the methods that are special to your class,
those methods that give it its distinctive behavior. This step is all up to you. If you want examples that you can
use as models, look in /NextDeveloper/Examples.

Related Concept:      ;SubclassingConcepts.rtfd;TheStructureofHeaderFilesandImplementationFiles;¬   

The Structure of Header Files and Implementation Files

Related Concept:      ;SubclassingConcepts.rtfd;OtherNSObjectMethodsYouCouldOverride;¬    Other NSObject
Methods You Could Override

