
OPENSTEP 4.2    Copyright1997 by Apple Computer, Inc.    All Rights Reserved.

OPENSTEP 4.2 Release Notes:
Foundation Framework

The Foundation Framework is a library of Objective-C classes providing the infrastructure for non-user-
interface object-based applications and other user-interface- and non-user-interface-based frameworks.
The OPENSTEP Foundation is compliant with the Foundation portion of the OpenStep specification, and
enriches OpenStep with a few extensions.

Within the Foundation are basic classes used by any Objective-C program: collection classes, Distributed
Objects, persistence frameworks, Unicode and internationalization support, the foundations of event-
driven programming, and facilities to insulate code from the underlying operating system.

These release notes are divided in three main sections:

· Comments on compatibility with OPENSTEP 4.0 and 4.1

· General comments on often-encountered problem areas and interesting things

· Known problems in this release

In the document below, "4.0" and "OPENSTEP 4.0" refer to all products that shipped with the 4.0
Foundation: OPENSTEP 4.0, D'OLE 4.0, and PDO 4.0 for HP-UXTM and SolarisTM. "4.1" and "OPENSTEP
4.1" refer to OPENSTEP 4.1 for Mach and OPENSTEP Enterprise 4.1. "4.2" and "OPENSTEP 4.2" refer
to OPENSTEP 4.2 for Mach and OPENSTEP Enterprise 4.2. All trademarks are property of their
respective owners.

__

Changes and Compatibility Between OPENSTEP 4.0, 4.1,

and 4.2

There have been a number of changes to Foundation since the shipment of OPENSTEP 4.0 and a few
since 4.1, both defect fixes and a few API additions. These are enumerated in the section below.

Note that if your application uses API which was added after 4.0, your application might not run under 4.0
(and similarly with 4.1 and API added after 4.1). (If you do not want to deploy your application on 4.0 or
4.1, then this is not an issue.) You can catch some of the potential problems by defining the macros
STRICT_40 and/or STRICT_41 at compile time. This #define is similar to STRICT_OPENSTEP and is
used in the Application and Foundation Frameworks to mark new API. Similarly, if you rely (perhaps
unintentionally) on a bug fixed in 4.2, your application may not function correctly under 4.0 or 4.1. Make
sure you test on your intended deployment platform.

A number of performance improvements have also made to Foundation for each release. Customers
developing on 4.2 may find performance to be significantly worse in some cases when an application is
deployed on 4.0, for example.

Here are the feature changes to Foundation in 4.1 (from 4.0):

· Some methods in 4.0 were not surrounded by #if !defined(STRICT_OPENSTEP) when they weren't,
in fact, in OpenStep.
CLASS HEADER METHOD
NSCharacterSet NSCharacterSet.h +characterSetWithContentsOfFile:
NSConnection NSConnection.h -connection:shouldMakeNewConnection:
NSArray NSPathUtilities.h -pathsMatchingExtensions:

· These methods were made public in 4.1. They were not public in 4.0, but existed in the 4.0
Foundation binary so there are no compatibility issues in using them. They are not in OpenStep,
however.
CLASS HEADER METHOD
NSArray NSArray.h -makeObjectsPerformSelector:
NSArray NSArray.h -makeObjectsPerformSelector:withObject:
NSSet NSSet.h -makeObjectsPerformSelector:
NSSet NSSet.h -makeObjectsPerformSelector:withObject:

· These methods and functions were added to Foundation in 4.1 and are not present in the 4.0
Foundation binary. Applications which do not take some precaution in using them will not run correctly
on OPENSTEP 4.0. These methods and functions are also not in OpenStep.
CLASS HEADER METHOD
NSBundle NSBundle.h +allBundles
NSBundle NSBundle.h +allFrameworks
NSFileHandle NSFileHandle.h +fileHandleWithNullDevice
NSFileHandle NSFileHandle.h -initWithNativeHandle:closeOnDealloc:
NSFileHandle NSFileHandle.h -initWithFileDescriptor:closeOnDealloc:
NSObject NSObject.h +instanceMethodSignatureForSelector:

FUNCTION HEADER
NSFrameAddress NSDebug.h
NSReturnAddress NSDebug.h
NSCountFrames NSDebug.h

Here are the feature changes to Foundation in 4.2 (from 4.1):

· Some methods in 4.1 were not surrounded by #if !defined(STRICT_OPENSTEP) when they weren't,
in fact, in OpenStep. They were guarded with #if !defined(STRICT_40).
CLASS HEADER METHOD
NSBundle NSBundle.h +allBundles
NSBundle NSBundle.h +allFrameworks
NSObject NSObject.h +instanceMethodSignatureForSelector:

· This method was made public in 4.2. It was not public in 4.0 or 4.1, but existed in the 4.0 and 4.1
Foundation binaries so there is no compatibility issues in using it. It is not in OpenStep, however.
CLASS HEADER METHOD
NSDictionary NSDictionary.h -initWithDictionary:copyItems:

· This method was made public in 4.2. It was not public in 4.1, but existed in the 4.1 Foundation binary
so there is no compatibility issues in using it for 4.1 deployment. It does not exist in the 4.0 binary. It
is also not in OpenStep.
CLASS HEADER METHOD
NSBundle NSBundle.h -load

· These global variables were added to Foundation in 4.2 and are not present in the 4.0 nor the 4.1
Foundation binaries. Applications which use these global variables will not run on OPENSTEP 4.0 or
4.1. These global variables are not in OpenStep.
VARIABLE HEADER
NSFileHandleDataAvailableNotification NSFileHandle.h
NSPositiveCurrencyFormatString NSUserDefaults.h
NSNegativeCurrencyFormatString NSUserDefaults.h

· These methods were added to Foundation in 4.2 and are not present in the 4.0 nor the 4.1
Foundation binaries. Applications which do not take some precaution in using them will not run
correctly on OPENSTEP 4.0 or 4.1. These methods are not in OpenStep.
CLASS HEADER METHOD
NSFileHandle NSFileHandle.h -waitForDataInBackgroundAndNotifyForModes:
NSFileHandle NSFileHandle.h -waitForDataInBackgroundAndNotify
NSRunLoop NSRunLoop.h -configureAsServer
NSTask NSTask.h -interrupt

· Some API was added to NSDebug.h. Production programs should not be referring to symbols
declared in NSDebug.h.

__

General Comments

NSDates and the Year 2000
Dates are represented in Foundation with NSDate (and NSCalendarDate) objects and NSTimeInterval
values. An NSTimeInterval is essentially a C-language double. NSDates (and NSCalendarDates) store
the date that they represent with an NSTimeInterval, which represents the time delta, in seconds, from the
Foundation reference date, 00:00:00 1 January 2001 GMT. This time delta is negative until the reference
date. There is no special significance to the year 2000 to NSDate objects or NSTimeInterval values.
However, refer to the topic Risks in Parsing and Displaying Dates in this section for more information on

issues in date presentation and the year 2000.

Since the internal time representation will transition across zero (at the reference date) at some point in
the future, unlike some other schemes which set the epoch to a date "always" in the past, there will be a
brief instant, on the order of microseconds in length, in which an NSDate object created to represent the
current time will have an NSTimeInterval of 0.0. The length of this instant is dependent on the resolution of
the system time provided by the particular operating system and platform an application is running on. An
NSTimeInterval of 0.0 has no special significance to NSDate or NSCalendarDate, but applications which
use the NSTimeInterval of a date object in division should protect against division by zero. Such
applications are vanishingly rare. More common might be to have an NSTimeInterval which represents
the delta between two arbitrary date objects (such as when timing events), and applications should take
appropriate caution in using such values (this is always a good idea apart from date usage).

Risks in Parsing and Displaying Dates
As with any communication between a program and a user, there can be miscommunication in showing
dates to the user and reading dates the user types in. When a user types a date into a text field in an
application they may intend one thing, and the program may interpret the date as something else. When a
date is displayed to a user, the user may interpret the date incorrectly. While an application cannot control
the user, there are certain things that an application can avoid doing, with respect to dates, to reduce the
potential for confusion and ambiguity and data corruption.

· Avoid two-digit years and all uses of the "%y" date format specifier.
· Do not use natural language date parsing.
· Avoid time zone abbreviations.

Each of these points is explained in greater detail below. Whenever it is important (or critical) that the user
get accurate information from the application, or the application get accurate information from the user, an
application should avoid the ambiguous behaviors below and require strict conformance to a fully
specified input format (for user input) and provide an equally verbose output description of dates.
Alternatively an application could ask for confirmation of input dates, but this seems to be rather more
heavyweight.

Avoid two-digit years and all uses of the "%y" date format specifier. Per POSIX and ANSI C (refer to

section 7.12, ANSI/ISO 9899-1990 for ANSI C definitions), a two-digit year YY means 1900 + YY. The
Foundation follows the lead of ANSI C here. Thus, when a user types "5/10/02" in to a text field with a
date formatter with format "%d/%m/%y", a date of 5 October 1902 is successfully created. If the user
meant 5 October 2002, they haven't entered that. Since %y means "two-digit year" it is not possible for the
user to type anything that will get them a date in the year 2002 (for example, if the user types "5/10/2002"
in this example, a date of 5 October 1920 will be successfully parsed). The date parsing routines parse at
most two-digits for %y, in order to support dates formatted like "980409" (also not a good idea).
Conversely, a user has no way of knowing whether "28/10/33" refers to 1933 or 2033 if they see that
displayed on the screen or in printed output. If a program uses "%Y" in the format string instead, this
problem is avoided.

Do not use natural language date parsing. The natural language parser is pretty sophisticated, but it is
after all just sophisticated guessing. The natural language parser is also usually successful at creating a
date from input, as long as the input is moderately close to something that looks like a date. However, as
with the previous problem, this may not be the date the user intended. Relatedly, don't enable natural
language parsing for date formatters. If it is enabled, and the user's input does not match the date
formatter's format, the input string is given to the natural language parser.

Here is an example where the natural language parser may fail to parse the date the user intended:
suppose the date formatter has a format "%d/%m/%Y" and the user types in "5-10-2002". This does not
match the format (which has slashes), so the date formatter gives the input to the natural language parser.
Now, what the "5" means and what the "10" means is ambiguous±it could equally be month-day-year or
day-month-year. The natural language parser prefers a particular ordering, given by the
NSDateTimeOrdering preference. If the user's preferred language is French, this is DMYH (denoting an
ordering: day month year hour). The built-in default, if the user has no preferred language, is MDYH
(denoting an ordering: month day year hour). NSDateTimeOrdering could also be set explicitly to
something else by the user. If the user's preferred language is French, the date will be "correctly" parsed
as 5 October 2002. By default it will be parsed as 10 May 2002. In general, an application writer can't
know a priori what the preferences of the user will be. If natural language parsing is desired, this and other
issues (such as use of 12- or 24-hour hour designations) should be taken into account and dealt with by
the application.

Avoid time zone abbreviations. Time zone abbreviations are inherently ambiguous. Many time zones
around the world map to the same abbreviations, by local convention, and there is usually very little

information in the abbreviations (most are of acronyms of a phrase such as "Something Standard Time" or
"Something Daylight Time", where the Something is the only differentiator). A time of 11:00 CST means
something different to a person in New York, New York, U.S.A. (indicating time in Chicago) than someone
in Sydney, Australia (indicating time in Darwin) (that hour by itself is also ambiguous±is it ante meridiem or
post meridiem?). Use of time zone names of the form GMT+hhmm and GMT-hhmm (as in GMT+0100)
can also be problematic, since the user cannot know what which convention (simple offset, or the POSIX
minutes-west) is being used. Thus, GMT+0200 can indicate either Helsinki or the mid-Atlantic.

Foundation's Time Zone Data
The Foundation now uses its own time zone data files (which describe when changes to the standard time
zone corrections from GMT occur) on all platforms. This provides for greater consistency of behavior, and
the ability to unarchive and transport time zones to any Foundation platform. However, it's possible that
the time zone data may become out-of-date relative to a particular platform's data as, for example, new
operating system updates are installed, but the new versions of PDO or OPENSTEP are not. The
Foundation's time zone data comes from a freely available source at elsie.nci.nih.gov, and is current
with that source as of November, 1996. The Resources/TimeZoneInfo directory inside the
Foundation.framework contains a file README.TimeZoneInfo which explains how the time zone data for
Foundation can be updated from this source, if required. Part of the reason for choosing the data from
elsie.nci.nih.gov is that it is an easily accessible source of current information (it is updated about once
per month). It is also quite complete.

The time zone data that Foundation uses in 4.2 is compatible with the data used in 4.0 and 4.1. However,
to save disk space on machines with disks with large allocation-block sizes, all of the data is bundled up
into a serialized property list (TimeZones.splist). The top-level property list is a dictionary where the keys
are time zone names (the same as the file names in 4.1) and the values are NSData objects containing
the bytes of the files. To use the data to update a 4.1 installation (for example), the data objects in this file
would need to be extracted into files with the file names given by the keys. It is fairly straightforward to
write a Foundation-based program to do this. An example of the opposite process, taking a directory
hierarchy and making the serialized property list is given in the
Resources/TimeZoneInfo/README.TimeZoneInfo file described above.

With the adoption of the time zone data from elsie.nci.nih.gov, Foundation has also adopted the zone

naming conventions of that data, where zone names usually have the form Area/Location, as in
America/Sao_Paulo or Europe/Paris. The previous, and conventional UNIX, time zone names are
supported for backwards compatibility.

The set of time zone abbreviations has also changed somewhat. How abbreviations map to time zones is
an arbitrary choice of the Foundation, since time zone abbreviations are ambiguous. Use of time zone
abbreviations is not encouraged (see Risks in Parsing and Displaying Dates in this section for more
information). Sites can customize this to some extent±see the file
Resources/TimeZoneInfo/README.TimeZoneInfo in the Foundation.framework.

Using performSelector: with Selectors Which Don't Return `id'
The NSObject methods -performSelector:, -performSelector:withObject:, and
-performSelector:withObject:withObject: have an "id" return value. This is something of a holdover
from pre-4.0 conventions where methods without otherwise interesting return values returned self. Much
of the time one can "get away with" performing a selector to an object with these methods, where the
target method does not have a return value or has a non-object return value. Such use is semantically
suspect, however, and is not valid. Any situation where the -performSelector:... message may be
forwarded will quickly illustrate this (with an abnormal program termination), as the NSInvocation object
attempts to retain the return value from after invocation, because the selector for -performSelector:... is
typed to return an object. Sending -performSelector: to a faulted object with a selector that does not
return id is an example of this. This behavior extends also to various other "perform" methods such as the
-makeObjectsPerformSelector: of some collection classes and the "delayed perform" and "ordered
perform" methods in NSRunLoop.h.

Where Do NSLog()'d Messages Go?
NSLog() and NSLogv() do not log an error message to stderr, as stated in the documentation.

On HP-UX, Solaris, and Mach, it writes the log to STDERR_FILENO if the file descriptor is open. If that
fails, the message is sent to the syslog subsystem, if it exists on a platform, with the LOG_USER facility
(or default facility if LOG_USER doesn't exist on a platform), with priority LOG_ERR (or similar, depending
on what the platform supports). If both of these attempts to write the message fail, the message is

discarded.

On Windows platforms, the message is written to the STD_ERROR_HANDLE, if that handle is valid, on
Windows platforms that support that standard handle. It is also written to the Windows Event Log on
Windows platforms that support the Event Log, or to the file c:\fndation.log on Windows platforms that do
not, if that file can be opened. If all of these attempts fail, the message is discarded. On some Windows
platforms, the message to the Event Log may be truncated if there is a limit to the size of a message that
the Event Log can accept. On Windows platforms that support an application discovering whether or not it
is running under a debugger, NSLog() and NSLogv() may only send the message to the debugger for its
handling, via standard WIN32 mechanisms, and not also write the message to STD_ERROR_HANDLE
and the Event Log. Note that a debugger may choose to not display messages thus sent to it, or may
choose not to display all of the message±NSLog() and NSLogv() have no control over that.

Output from NSLog() and NSLogv() is serialized, in that only one thread in a process can be doing the
writing/logging described above at a time. All attempts at writing/logging a message complete before the
next thread can begin its attempts.

The effects of NSLog() and NSLogv() are not serialized with other subsystems than those discussed
above (such as the standard I/O package) and do not produce side effects on those subsystems (such as
causing buffered output to be flushed, which may be undesirable).

The format specification allowed by NSLog() and NSLogv() is that which is understood by NSString's
formatting capabilities. That is not necessarily the set of format escapes and flags understood by printf(),
as mentioned in the documentation.

Foundation Examples
There are several Foundation examples in /NextDeveloper/Examples/Foundation.

Various examples illustrating the use of Distributed OLE and the NeXT ORB can be found on
NeXTanswers. NeXTanswers can be accessed through http://www.next.com/.

I/O Functionality

Two Foundation classes, NSFileHandle and NSPipe, provide objects that represent open files or
communications channels and support basic I/O operations. They make it easy for developers to write
code that is directly portable to other platforms. The interfaces for these classes are declared in
NSFileHandle.h. These classes replace the NSPosixFileDescriptor and NSPosixPipeDescriptor classes
made available in OPENSTEP 4.0 prereleases. The differences from the predecessor classes for the
most part involve naming and a refinement of semantics.

Note that the new (in 4.2) -waitForDataInBackgroundAndNotify functionality only works for
NSFileHandles which refer to sockets.

Archiving
NSUnarchivers own the objects that they decode. When an NSUnarchiver is deallocated, so are the
objects that it has decoded, unless they have been retained. The following code, for example, will
probably result in a decoded object being used after being freed:

NSAutoreleasePool *pool = [[NSAutoreleasePool allocWithZone:NULL] init];
NSUnarchiver *unarchiver = [[NSUnarchiver allocWithZone:NULL]

initForReadingWithData:myData];
id object = [unarchiver decodeObject];
[unarchiver release];
[pool release];
... use or return object here ...

object should be retained before the NSUnarchiver is released, and probably also autoreleased if object
is returned from the function or method. An exception to this are the -decodeValueOfObjCType:at: and
-decodeValueOfObjCTypes:... methods. Objects "returned" from these two methods, like those returned
from +allocWithZone: and -copyWithZone:, are not autoreleased, and must be explicitly released.

User Defaults
Foundation contains API (NSUserDefaults) which replaces the old defaults database suite of functions.
User defaults with 4.0 applications are stored differently and in a different place than 3.3 user defaults.
There is a new command-line utility called defaults that allows you to manipulate the new-style defaults
just as dread, dwrite, and dremove allowed you to manipulate old-style defaults.

On Windows NT, defaults are stored in the Windows registry. There is a program shipped with Windows
NT, REGEDT32, for viewing and editing registry entries. NSUserDefaults stores its domains and their key-
value pairs under the entry HKEY_CURRENT_USER\Software\NeXT\UserDefaults. The values are
currently stored as strings in the property list format.

The command /usr/bin/defconvert, in OPENSTEP 4.x for MACH, can be used to convert a user's 3.3
defaults database to 4.x-style defaults±simply run it from the command line with no parameters. This
program converts all old-style defaults, even those of non-OpenStep applications, adding them to the
user's new-style database. Since NEXTSTEP 3.3 applications may not use the same default names after
conversion to OPENSTEP 4.x, and 3.3 applications do not use the new defaults database, and increasing
the size of the defaults database increases the amount of memory needed by each OpenStep application,
converting an old defaults database to the new style usually provides little utility.

Errors in ASCII Property Lists
When a method like NSDictionary's +dictionaryWithContentsOfFile: is used to read and parse an ASCII
property list from a file, parse errors and exceptions are suppressed, and nil is returned upon error.
Sometimes a program wants to know about syntax errors in a property list, or wants finer-grained
information about why a property list cannot be read and parsed. Another method, NSString's
-propertyList, can be used for this purpose. The following example illustrates this:

- (id)readPropertyListFromFile:(NSString *)path mustBeOfType:(Class)targetClass logErrors:
(BOOL)showErrors {

NSString *string;
id plist = nil;

string = [[NSString allocWithZone:NULL] initWithContentsOfFile:path];
if (showErrors && nil == string) {

NSLog(@"%@: string could not be read from '%@'", NSStringFromSelector(_cmd), path);
}
NS_DURING

plist = [string propertyList];
NS_HANDLER

if (showErrors) {
NSLog(@"%@: received exception while parsing: %@", NSStringFromSelector(_cmd),

localException);

}
plist = nil;

NS_ENDHANDLER
[string release];
if (Nil != targetClass && ![plist isKindOfClass:targetClass]) {

if (showErrors) {
NSLog(@"%@: property list is not of desired type '%@'. It's an '%@'.",

NSStringFromSelector(_cmd), NSStringFromClass(targetClass),
NSStringFromClass([plist class]));

}
[plist release];
plist = nil;

}
return plist;

}

Grammars for Serialization and ASCII Property List Formats
Grammars and description of the serialization (NSSerializer) and ASCII property list representation
formats are available in the appendix to the OpenStep specification.

Strings which contain non-alphanumeric characters must be double quoted in property lists to ensure the
entire string is parsed as one string object. Parse failures will result, otherwise.

Retain Cycles and Invalidation
The retain/release strategy used in Foundation allows an incautious programmer to create reference
cycles in an object graph (that is, the graph of objects that retain one another in some manner). These
cycles are self-sustaining and constitute a memory leak. The simplest example is to create a
NSMutableArray instance and add it to itself. Since an array retains its objects, it retains itself independent
of its normal usage. Retains are essentially distributed across the network via the Distributed Objects
mechanism.

If retain cycles cannot be avoided by careful design, but are known a priori, the following technique can be
used to recover the memory. For the objects in the cycle(s) whose retain counts are solely due to the
cycle, all should be retained (perhaps in an array), each one told to release its retained objects, then all

released. The action of releasing its retained objects would undoubtedly cause an object to become
dysfunctional. Some objects already implement such a method by the name "-invalidate". It is a bug that
neither NSObject nor the collections implement this method to facilitate cycle recovery.

More on Autoreleasing and Retaining
The following statements are false:

Returned objects are guaranteed to be valid for the scope of the current method.
Returned objects are guaranteed to be valid until the current autorelease pool is released.
Returned objects are guaranteed to be valid until the end of the current event loop.

The Foundation's retain count mechanism operates via -retain and -release. A code fragment such as:
id object = [collection returnObject];

creates a reference (in object) to the returned object, but does not increment the retain count of object. If
you don't let the system know about your reference, by incrementing the retain count with -retain, the
system can't ensure that your reference remains valid for any length of time. For example:

object = [array objectAtIndex:7]; // get object
[array removeObjectAtIndex:7]; // removes object and releases it
[object dosomething]; // object may be invalid here

In that example, if array had the last retain on object, the second line will cause object to be deallocated
and the third line will cause the application to crash. Here is another example with the AppKit:

id oldTitle = [myWindow title]; // get current title
[myWindow setTitle:@"Calculating..."]; // set temporary title
... do calculation here ...
[myWindow setTitle:oldTitle]; // restore previous title

Here, the -setTitle: method gets rid of its reference to the existing title string and takes a reference to the
new title string. If the window had the only reference to the previous title string object, the last line of the
example will attempt to setTitle: to a freed object. If the AppKit in its implementation happens to send
-autorelease to the old title instead of -release, then the object referenced in oldTitle may not by freed
by the time of the last line, but in general you cannot know whether such a method will release or
autorelease the previous object. The Foundation almost exclusively uses -release, since that does not
have the performance overhead of autoreleasing, and Foundation objects are so common in applications.

In practice, you can get away with such "weak references" much of the time. But the safest approach
formalizes your reference to the object:

id object = [[collection returnObject] retain];
... do operations, some of which may be on object ...
/* Don't need object any longer */
[object release];
object = nil;

The -hash and -isEqual: Invariant
It is worthwhile to highlight an obscure requirement documented in NSObject class specification for the
-hash method: The -hash and -isEqual: methods of a class must be defined so that if two objects are
equal, their hash value is the same ([x isEqual:y] implies [x hash] == [y hash], but not the converse). This
is easy to forget, but especially important to ensure when putting custom objects into some collections
(such as NSSet and NSDictionary).

Forwarding Messages in OpenStep
Objects wishing to forward messages with the -forwardInvocation: method must also (re)implement the
-methodSignatureForSelector: method. This is a result of the compiler not providing call stack
descriptive information at each call site. Consequently, the runtime needs a source of information for how
the stack frame is constructed. It needs this to build the invocation that will be supplied to the
-forwardInvocation: method call. The -methodSignatureForSelector: method will need to be
reimplemented to provide a method signature for selectors to which the object does not respond.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)sel {
NSMethodSignature *result = [super methodSignatureForSelector:sel];

// if result is nil, self must not respond to the selector
if (nil == result)

result = [target methodSignatureForSelector:sel];
return result;

}

- (void)forwardInvocation:(NSInvocation *)invocation {
[invocation invokeWithTarget:target]; // let target implement methods that we do not

}

Faulted objects in EOF which wish to forward messages should also override
+instanceMethodSignatureForSelector:.

See the ForwardInvocation example in /NextDeveloper/Examples/Foundation/ForwardInvocation.

Debugging Aids
The OpenStep Conversion Guide describes several techniques for debugging Foundation and AppKit
applications. The header file NSDebug.h also has some global flags, functions, and methods which may
be useful. But be warned±although this header file is public, its contents are mostly unsupported, largely
undocumented, and are subject to change without warning. Do not depend on API within this header for
the operation of production programs.

Object Allocation Analysis
One of the useful flags defined in NSDebug.h is NSKeepAllocationStatistics, which allows you to
analyze the object allocation activity in a program. The AnalyzeAllocation command line program can be
used to analyze the output generated by running with this option enabled. You can also use the
ObjectAlloc demo application which comes OPENSTEP for Mach and Windows to graph the object
allocation activity in real time.

The +load Method
The +load message is sent to classes when they are added to the Objective C runtime. +load is usually
received before +initialize. +load is not inherited by subclasses.

The order in which +load messages are sent to classes is unspecified (and specifically, a class's
superclass is not guaranteed to have its +load method called before the class receives the message).
Therefore, you should not use any subsystems or classes which are loaded at the same time, or more
generally, which you do not know have received the +load message. If you do, you will probably cause

execution of code which assumes that +load (and anything that had to be done in +load) has been
previously executed.

There are two situations typically when classes are added to the runtime:
· when loaded dynamically from a bundle or framework by NSBundle
· at application launch

The restrictions on +load are perhaps most serious at launch time. The Foundation has classes and
subsystems (as might any other library) which depend on +load being called before they are fully
functional. For example, you should not use NSZoneMalloc() to allocate memory in +load methods which
are statically linked into an application. You certainly should not create any objects, or do anything with
creates objects.

Note that calling +load on a class isn't a solution (and is a generally bad idea), because that will cause
+initialize to be sent first, which the class may not handle. Not to mention that doing so places into your
code dependencies on which classes implement +load in a particular version of a library. In the case of
Foundation, for convenience sake, +load methods which must use Foundation API can call [NSObject
self] first to make sure Foundation has performed the initialization it needs.

+load is not intended as a general initialization mechanism, and should only be used when absolutely
necessary. Use +initialize for early initialization whenever possible.

Performance and NSNotificationCenter
NSNotificationCenter, although heavily optimized, by its nature can become a significant performance
bottleneck if heavy use of notifications is made. The notification mechanism should be used judiciously.

NSAutoreleasePool's -addObject: Method
You should never use the NSAutoreleasePool instance method -addObject:. Use the -autorelease
method, or [NSAutoreleasePool addObject:] to autorelease an object. Using the instance method incurs
the risk of adding an object to a pool which is not the top autorelease pool, a semantically suspect
operation, since the autorelease pool model is one of a (per-thread) stack of pools. OPENSTEP 4.x does
allow you to add objects to an autorelease pool that is not the top pool, but be warned that it is a much

more expensive operation (and always will be) than adding an object to the top pool.

Frameworks as NSBundles
Frameworks are a specialized form of bundle. An application can statically link against a framework at
compile time (like a library), or dynamically load a framework (like a bundle) at runtime. However, as a
specialized type of bundle, there are some constraints placed on frameworks:

· A framework must have a .framework extension
· The name of the executable code of a framework must have the same name as the framework

directory, minus the .framework extension. For example, the file name of the executable code for the
framework MyFramework.framework must be MyFramework (or on Windows, MyFramework.dll).

· On Windows only: The framework directory must be stored in a directory called Frameworks. The
executable code (.dll) must be stored in a directory called Executables that has the same parent as
the Frameworks directory. If the framework is statically linked into applications, the Executables
directory (full path) should be in the PATH environment variable. (On other OPENSTEP platforms, the
executable code file is stored within the framework directory, like a bundle.)

How NSBundles Search for Resources
The algorithm that NSBundles use to find resources has changed somewhat from that of NXBundles, and
there are changes to the structure of bundles themselves. A bundle's resources are now stored in a
directory named Resources within the bundle directory. Within the Resources directory are the non-
localized resources and the localized resource directories (English.lproj, Swedish.lproj, etc., as with
NXBundle). The addition of the Resources directory is primarily a way to simplify Framework versioning.
Other changes have been made to reduce the amount of computation required to find resources.

Suppose we are searching for the resource with name Main and type nib. The bundle's resource path,
the "top level", is searched first, for the file Main.nib. If the file is not found there, each of the language
subdirectories are each searched, in the user's preference order. This is a change from NXBundle's
behavior, where the language subdirectories were searched first. This change means that the localized
version of a resource that also exists at the top level will not be found, but the top level one will be. All
non-localized resources should be placed in the top level, and no localized resources should exist at the
top level.

When a resource is found, the algorithm checks to see if a resource of the name Main-$
(PLATFORM_OS) of type nib exists. $(PLATFORM_OS) represents the make variable of the same
name, and takes on the same values that the make variable takes on at compile time. For example, on
Windows, during a project build, $(PLATFORM_OS) in the Makefile.postamble will have the value
"winnt". When Main.nib is found in a directory, the search algorithm does one final check to see if Main-
winnt.nib exists in that same directory. If it does, the search algorithm returns the path to that resource; if
it does not, the search algorithm returns the path to Main.nib. Note that for Main-winnt.nib to be found, a
file named Main.nib must exist in the same directory; this also applies within each language resource
directory. It is expected that a developer will choose one of the platform-specific versions to name without
this $(PLATFORM_OS) suffix, and give the other platform-specific versions of the resource extended
names. The values that $(PLATFORM_OS) can take on are currently "winnt" (on OPENSTEP for
Windows), "nextstep" (on OPENSTEP for MACH), "hpux"(on PDO for HP-UX), and "solaris" (on PDO for
Solaris).

Another way to accommodate platform-specific resources is by using the inDirectory: parameter of the
resource-searching methods. The inDirectory: parameter is primarily intended to facilitate the collection
of resources of a common type or purpose into a single directory; for example, all images could be put
into a directory called Images within the resource directory. (Note that the AppKit's +imageNamed:
method in NSImage does not support searching arbitrary directories for images.) As such, the
inDirectory: parameter can be used to manage platform-specific resources. This is less "automatic"
however, and requires the developer to specify the name of the platform-specific directory as well as
replicate the required resources and language projects within that directory. The $(PLATFORM_OS)
mechanism described above is simpler to use, particularly if the number of platform-specific resources is
small.

Using API not in OpenStep
Many new methods and classes were added for 4.0 and some new methods for 4.1 and 4.2, many
outside the purview of the OpenStep specification. To restrict those that are defined to the methods and
classes in OpenStep, add the flag -DSTRICT_OPENSTEP to the OTHER_CFLAGS variable in the
project's Makefile.preamble.

__

Foundation Defect and Change List

This section documents many of the known problems with Foundation in OPENSTEP 4.0, 4.1, and 4.2,
and the fixes and changes that have been made in OPENSTEP 4.1 and 4.2. Not all of the problems apply
to the current release±refer to the Releases and Disposition fields in each note. Defects not present in the
current release are of interest to those developing software on the current release with plans to deploy on
a previous release. (However, we do not recommend that developers develop on a version newer than
that planned for deployment.)

Reference: 36156

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSBundle -localizedStringForKey:value:table: caches default values

Description: NSBundle's -localizedStringForKey:value:table: method incorrectly caches the default
value passed as the second parameter if the key isn't found in the table. On subsequent
calls with the same key this first default value is returned. Sometimes, however, the default
value may need to be different, even with the same key, in different locations in code.

Workaround: None

Reference: 41245

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSArray -componentsJoinedByString: extended

Description: NSArray -componentsJoinedByString: sends -description to each of the array's objects
and concatenates the results of that message together, rather than using the objects directly.
This means that this method will now operate on arrays which are composed of objects that
are not NSStrings.

Workaround: None

Reference: 47347

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSArchiver and NSUnarchiver do not understand bitfields

Description: Structures containing bitfields cannot be archived and unarchived.

Workaround: Encode the members of a structure containing bitfields individually, encoding the bitfields as
chars, shorts, or ints (or unsigned chars, shorts, or ints as appropriate).

Reference: 48447

Releases: OPENSTEP 4.0

Platforms: HP-UX

Disposition: Fixed in OPENSTEP 4.1

Problem: D.O. crashes sending some structures containing doubles

Description: D.O. would crash when attempting to send a parameter or return value which was a
structure larger than 8 bytes and contained a double field.

Workaround: None

Reference: 49001

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Extended formatting for NSCalendarDates

Description: The number-formatting sequences for NSCalendarDates (%d, %e, %H, %I, %j, %m, %M,
%S, %w, %y, %Y), during the construction of a description, can now contain formatting flags
between the `%' and format code, to the extent that the string methods
+stringWithFormat:, -appendFormat:, etc. understand them. Format flags are not
understood during parsing from a format, however. Note that per 70220 [below],
NSDateFormatters use their format string both to display the date and to parse a date from a
string (which the user entered in a text field, for example), so this modest extension should
not be used in the format string of NSDateFormatters. Setting the date formatter to allow
natural language may obviate the problem (but may be undesirable for application reasons)

Workaround: None

Reference: 49084

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSInvocation always retains the return value

Description: NSInvocation always retains object return values. This can cause problems if the return
value of a method is not a fully initialized object. Only +alloc and +allocWithZone: return
uninitialized objects, so this is only a problem if a program uses invocations to send either of
those methods to a class object. If an application contains its own methods which return
objects which are not fully initialized, it should avoid sending those messages with an
NSInvocation or over Distributed Objects.

Workaround: None

Reference: 50670

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSMethodSignature's -getArgumentTypeAtIndex: and -methodReturnType return too
much information

Description: These NSMethodSignature methods return a string which contains the type descriptors for
the requested argument plus all the type descriptors for the arguments following.

Workaround: Use NSGetSizeAndAlignment() to parse the first type. NSGetSizeAndAlignment() returns
the first parameter pointer, advanced to the next type in the type string. Pass the return
value of either of those methods as the first parameter to NSGetSizeAndAlignment() and
pass NULL for the second and third parameters (or pass pointers to unsigned integers if
either of those values is interesting); record the return value of that function in another
variable. The difference between the return value and the first parameter is the length of the
first type in the first parameter to NSGetSizeAndAlignment(). The single type string can
then be strncpy()'d into its own buffer.

Reference: 51108

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: Kanji text in NSLog() messages shows as Unicode hex on Japanese systems

Description: Strings that contain non-ASCII characters are displayed with the non-ASCII characters
translated to a hex representation (\uNNNN). This makes strings with Kanji essentially
unreadable.

Workaround: None

Reference: 55579

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Collections that contain themselves don't unarchive well

Description: Unarchiving an object graph with a collection which contains itself, or contains an object

which archived a reference to the collection, may cause a program either to crash
immediately when the archiving system attempts to retain it, or to crash later when a freed
object is sent a message. The problem here is that the collection gets retained when the
recursive reference is unarchived (which is normal) before it has completed its initialization
in -initWithCoder:, which can be a problem for objects which keep track of their own retain
count (as the collection classes do).

Workaround: None

Reference: 56330

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSConnection doesn't let go on NSRunLoop when it has nothing to do

Description: NSConnections do not register/un-register their ports with the run loop lazily, as they have
something to serve. Specifically, an NSConnection with no root object and no local objects
vended over the wire (no local proxies) should not have its ports registered with a run loop,
since it can never receive any messages. This causes code like the following to never
terminate:

id server = [NSConnection rootProxyForConnectionWithRegisteredName:@"name"
host:@"*"];
... do stuff with server ...
[server release];
... do stuff which adds a one-shot timer to the current run loop ...
... and run the run loop ...
[[NSRunLoop currentRunLoop] run];
/* NOTREACHED */

Workaround: None

Reference: 56644

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSArchiver tracks char * pointers as equivalent to their contents

Description: During archiving, NSArchiver keeps track of the char * strings it has seen by the address
passed in for encoding. If a program uses the stack or malloc() to construct a char *, then
encodes it using the "*" type primitive (or @encode(char *)), the archiver only remembers
the stack/malloc address, assuming it has constant contents.

Workaround: Do not archive char * strings from the stack. Do not mutate or free malloc'd char * strings
during archiving.

Reference: 56659

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: Proxies cannot be notification observers unless they are retained

Description: Because NSNotificationCenter does not retain observers, registering an observer with a
remote NSNotificationCenter (the observer would be a proxy in the remote process) will
eventually cause a crash of the remote process when it tries to message a freed object,
unless the remote process explicitly retains the proxy. This situation is a bit arcane, but the
same type of problem can happen with other objects that don't retain objects that they know
about.

Workaround: Use an explicit protocol to tell the server (the process vending the notification center) to
register and unregister an observer. The server then retains and registers the observer with
the vended notification center, and unregisters and releases the observer when the client
tells it to do so. (If an unregister mechanism is not part of the protocol, and used, the object
will never be released.)

Reference: 57984

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: No way to get list of non-defaults command-line arguments

Description: In NEXTSTEP 3.3 (and earlier releases), command-line arguments that looked like defaults
were removed from NXArgv. The array returned by [[NSProcessInfo processInfo]
arguments], NXArgv's replacement, however, contains all of the command-line arguments.

Workaround: Code that expected defaults options to have been stripped from NXArgv will have to be
rewritten to skip default option names and their values, or the arguments array will need to
be processed to remove them before using it. The NSArgumentDomain dictionary can be
retrieved from the standard user defaults instance to find out what NSUserDefaults
interpreted as a default option.

Reference: 58137

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: No way to create an NSData which does not free the bytes

Description: NSData and NSMutableData instances always take ownership of the byte pointer with which
they are initialized, and then call free() to free the storage when they are deallocated. This
applies to all existing creation and initialization methods. Only pointers to storage which can
be passed to free() should be used to initialize data objects. As a corollary problem, there is
no way to create a data object which refers to VM allocated storage.

Workaround: None

Reference: 59230

Releases: OPENSTEP 4.0, 4.1

Platforms: Mach, HP-UX, Solaris

Disposition: Fixed in OPENSTEP 4.2

Problem: The main bundle can be allocated with the wrong directory

Description: If an application is not launched with a full path, NSBundle attempts to create the main
bundle instance with the current directory. If the application is launched from the command-
line without a full path, and the application is not in the current directory (but found via the
shell $PATH environment variable), the main bundle will be created with the wrong path. The
Mach Workspace Manager always launches applications as a full path, so this is not a
problem for applications launched with Workspace Manager.

Workaround: Launch the application with the full path, or launch the application from the directory in which
it exists.

Reference: 61520

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Handler is called twice when deleting a directory

Description: NSFileManager's -removeFileAtPath:handler: method, when deleting a directory, calls the
handler method -fileManager:shouldProceedAfterError: twice on each subdirectory or file
error, and fails to call the handler for the top-level directory itself.

Workaround: None

Reference: 62019

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Character tables are not Unicode 2.0 compliant

Description: The tables used by NSCharacterSet and shipped as resources with the 4.0 Foundation are
compliant with Unicode 1.1. The Unicode 2.0 tables were not yet available at the time of
release.

Workaround: None

Reference: 62044

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Default uncaught exception handler changed

Description: The default uncaught exception handler now includes the name of the exception and a
"numeric backtrace" in the logged message it generates. The backtrace consists only of the
return addresses on the execution stack. Additionally, on Windows, an application exception
is raised (via RaiseException()), which can be handled by a debugger.

Workaround: None

Reference: 62235

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: Can't search for characters case-insensitively

Description: NSString's -rangeOfCharactersFromSet: ignores the NSCaseInsensitiveSearch flag. This
also affects NSScanner's -scanCharactersFromSet:intoString: method when the scanner
has been set to be case insensitive.

Workaround: None

Reference: 62576

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSNumber -compare: results odd results with NaN

Description: Two NSNumbers containing with NaN (created, say, via +numberWithDouble:) compare
NSOrderedSame and are -isEqual:. However, in C, NaN is not equal to NaN.

Workaround: None

Reference: 62812

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: Changed defaults don't appear sometimes to have taken affect

Description: The default NSUserDefaults domain search order places the NSArgumentDomain before
the application's domain. This is usually desirable for reading defaults, but may not be if you
set/change default values. If you set a value for a default that was passed as an option on
the command-line, the value is correctly set/changed in the application's domain, but
-objectForKey: will still return the value found in the NSArgumentDomain, because by
default it is searched first.

Workaround: There are various workarounds depending upon the application and its use of user defaults.
The following options are relative to a particular NSUserDefaults instance (that is, if you
create multiple user defaults instances, you'd have to do the workaround for each
individually).

1. Remove the NSArgumentDomain from the search list, perhaps after adding any keys it
contains to the registration domain; command-line specified defaults will not be found, or
not have priority over same-keyed defaults in the application's domain, however.

2. Move the NSArgumentDomain after the application's domain; command-line specified
defaults will not have priority over same-keyed defaults in the application's domain,
however.

3. Each time you set a default value, set it in the argument domain (difficult and not worth the
trouble).

4. Best solution: Create a subclass of NSUserDefaults. For each defaults instance created,
create a new volatile domain, tell the instance about it (-setVolatileDomain:forName:)

perhaps calling it "ChangedDefaults" (don't give it a name beginning with "NS"!), and
insert it first in the domain search list of the new defaults instance. Override the
-setObject:forKey: and -removeObjectForKey: methods to set/remove the value in the
"ChangedDefaults" volatile domain, and then call [super ...] to do the same for the
application domain. The following code illustrates what these override methods might look
like:
- (void)setObject:(id)value forKey:(NSString *)defaultName {

NSDictionary *changedDomain;
id oldValue;
[super setObject:value forKey:defaultName];
changedDomain = [self volatileDomainForName:@"ChangedDefaults"];
oldValue = [changedDomain objectForKey:defaultName];
if (![oldValue isEqual:value]) { // Something to do

NSMutableDictionary *newDomain;
newDomain = [[NSMutableDictionary allocWithZone:[self zone]]

initWithDictionary:changedDomain];
[newDomain setObject:value forKey:defaultName];
[self setVolatileDomain:newDomain forName:@"ChangedDefaults"];
[newDomain release];

}
}

- (void)removeObjectForKey:(NSString *)defaultName {
NSDictionary *changedDomain;
id oldValue;
[super removeObjectForKey:defaultName];
changedDomain = [self volatileDomainForName:@"ChangedDefaults"];
oldValue = [changedDomain objectForKey:defaultName];
if (oldValue) { // Something to do

NSMutableDictionary *newDomain;
newDomain = [[NSMutableDictionary allocWithZone:[self zone]]

initWithDictionary:changedDomain];
[newDomain removeObjectForKey:defaultName];
[self setVolatileDomain:newDomain forName:@"ChangedDefaults"];
[newDomain release];

}
}

Reference: 63974

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Time zone information not up-to-date

Description: The time zone information in Foundation's resources directory on Windows was quite a bit
out-of-date. It has been updated for 4.2. The files contained in the directory and the way in
which they are used has also changed internally in Foundation, so it is not possible to
directly update a 4.1 deployment by copying the new resource files into the Foundation's
resource directory. The Foundation now always uses its time zone data on all platforms,
rather than any system data that may exist. For more information, see the section
Foundation's Time Zone Data in the General Comments section of the Foundation release
notes.

Workaround: None

Reference: 64605

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: HP-UX

Disposition: None

Problem: NSBundles cannot dynamically load code

Description: Unlike NeXT's implementations of OpenStep on other platforms, Foundation in PDO for HP-
UX cannot dynamically load code. This is due to limitations in the compiler and Objective C
runtime, which we hope to resolve in a future release.

Workaround: None

Reference: 66411

Releases: OPENSTEP 4.0, 4.1

Platforms: Solaris

Disposition: Fixed in OPENSTEP 4.2

Problem: Formatted floats sometimes loose sign

Description: Formatted strings created with the NSString methods like +stringWithFormat: lose the sign
of floats formatted with %f (and %g) in some cases. For instance, [NSString
stringWithFormat:@"%f", -2.3e-2] results in @"0.023000".

Workaround: Use sprintf() to create the character string with the desired format, then create the NSString
from that with +stringWithCString:.

Reference: 66538

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSString +stringWithFormat: doesn't work with %p or some formatting flags

Description: Unlike what the documentation seems to say, NSString does not understand all ANSI C
printf()-style formatting escapes and flags, and never has.

Workaround: Use sprintf() to create the character string with the desired format, then create the NSString
from that with +stringWithCString:.

Reference: 66725

Releases: OPENSTEP 4.0, 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: Workaround CreateProcess() bug in NSTask

Description: There is a bug in CreateProcess() on Windows NT 3.51, and possibly 4.0, such that when
an environment is provided that is of size n*2048+1 bytes (n >= 1), the call fails with error
ERROR_MORE_DATA. NSTask now works around this bug.

Workaround: None

Reference: 66766

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSBundle doesn't load _profile and _debug binaries in bundles

Description: NSBundle does not attempt to load code from debug or profile versions of their binary code,
which the makefiles give the _debug and _profile suffixes, respectively. If the
non-debug/non-profile binary doesn't exist in the bundle, no code will be loaded. NSBundle
doesn't care how the binary has been compiled, it just only looks for the file with the name
given by the NSExecutable key in the Info.plist file in the Resources directory.

Workaround: [Mach, Solaris, HP-UX]: Create a symbolic link named without the _profile or _debug suffix
to the _profile or _debug binary at the top level of the bundle directory. [All platforms]: Move
the _profile or _debug binary to a file of the same name without that suffix. [All platforms]:
Modify the value of the NSExecutable key in the Info.plist file to include the desired _profile
or _debug suffix.

Reference: 67201

Releases: OPENSTEP 4.0

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.1

Problem: Files mapped with -initWithContentsOfMappedFile: cannot be removed

Description: On Windows, you cannot remove a file that a process has mapped; this is a feature of the
operating system. However, even after an NSData initialized with
-initWithContentsOfMappedFile: is deallocated, a program may not be able to immediately
remove the file. The problem is that an internal file-mapping object was autoreleased at the
time the data was initialized.

Workaround: The autorelease pool which was active at that time must be released, and then the mapping
will be undone, and the file can be removed. Surround the initialization of the NSData with

an autorelease pool so that when the data is deallocated, the mapping is immediately
undone:

{
id tmpPool = [[NSAutoreleasePool allocWithZone:NULL] init];
mappedData = [[NSData allocWithZone:NULL]

initWithContentsOfMappedFile:@"/temp/foo"];
[tmpPool release];

}

Reference: 67382

Releases: OPENSTEP 4.0, 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: NSTask -terminate does not terminate child processes of the subprocess

Description: The -terminate method in NSTask does not recursively terminate any and all child
processes of the launched process on Windows, as it does on other platforms.

Workaround: None

Reference: 68041

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSString's -stringByStandardizingPath raises an exception in certain circumstances

Description: When passed an absolute path that ends with ª..º, NSString's -stringByStandardizingPath
method raises an exception.

Workaround: None.

Reference: 68155

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: Windows

Disposition: None

Problem: NSUserDefaults does not reflect Windows Registry case semantics

Description: The Windows Registry is case-preserving but case-insensitive with respect to keys (registry
keys, not default keys). NSUserDefaults doesn't reflect this in its behavior, so, for example, if
a persistent domain "MyApp" exists, and a persistent domain "MYAPP" is created, the new
domain will eradicate the existing one and all defaults in the existing one will be lost. This
does not affect default keys or values, only domain names.

Workaround: None

Reference: 68223

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: -stringByAbbreviatingWithTildeInPath sometimes incorrectly abbreviated

Description: If the first part of a path matched the user's home directory, '~' would be substituted for that
prefix, regardless of whether or not the partial component at the end of the prefix was a
complete component or not. For example,

[@"/me-local/foo/bar" stringByAbbreviatingWithTildeInPath] =>
@"~/local/foo/bar"

if the example was executed by the "me" user whose account is "/me".

Workaround: None

Reference: 68251

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Various minor defects in the semantics of some path utility methods in corner cases

Description: -stringByAppendingPathComponent: doesn't compress extra slashes when receiver is
the empty string

"" + "///x/y//z" -> "///x/y//z"
-stringByAppendingPathExtension: will append an extension beginning with a slash

"abc" + "/a" -> "abc./a"
-stringByAppendingPathExtension: will append an extension beginning with a drive

"abc" + "c:foo" -> "abc.c:foo"
-stringByAppendingPathExtension: does not compress extra slashes in the appended
extension (although it is very unusual to do this)

"abc" + "de///fg////h" -> "abc.de///fg////h"
-stringByDeletingPathExtension does not compress extra slashes when there is no
extension

"///a/b//c" -> "///a/b//c"

Workaround: None

Reference: 68447, 68781

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: D.O. and archiving type signature checks don't take structure tags into account

Description: The NeXT compiler does not include structure names in type encoding strings produced
from typedefs of structures (for example, @encode(NSRange)); instead, the structure tag is
given as "?". This is a bug in the compiler, but one that cannot be fixed for backwards
compatibility reasons. To achieve compatibility with SunSoft's compiler (which correctly
emits all structure tags), a "?" as a structure tag now acts as a "wildcard", matching
anything. This is unlikely to affect user applications, but developers who construct their own
type encoding strings should note this, as 4.1 is more permissive than OPENSTEP 4.0 was,
a possible backwards-deployment issue.

Workaround: None

Reference: 68449

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: Windows

Disposition: None

Problem: Cannot get a proxy for a distributed OLE object using OPENSTEP D.O.

Description: When trying to get a proxy for an OLE object, you may get the following error:
"deserializeObjectAt: class `NSDistantIDispatchProxy' not loaded".

Workaround: Include nxorb.m (from NextDeveloper/Libraries) in your client. Although the D'OLE
Developer's Guide states that nxorb.m is only needed for use with NXConnections, it's
needed in some circumstances for NSConnections as well.

Workaround: None

Reference: 68675

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: HP-UX

Disposition: None

Problem: Hang while looking up connection after fork

Description: If you have a DO client which tries to look up a connection using NSConnection's
connectionWithRegisteredName:host:, then forks a process, and then tries to look up the
connection again, the client will hang. If the fork is omitted, the client won't hang.

Workaround: None

Reference: 68709

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Deadlock between NSTask and NSNotificationQueue

Description: A process can sometimes deadlock in NSTask's -waitUntilExit method. The triggering
conditions are not fully understood.

Workaround: None

Reference: 68790

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSConnectionDidDieNotification not sent in some circumstances

Description: If a client attempts to send a message to a server which had died before the client had
processed the port death notification (which can take quite a while to arrive), an
NSInvalidSendPortException is raised rather than the NSConnectionDidDieNotification
being sent.

Workaround: None

Reference: 69019

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: byref ignored by NSCalendarDates

Description: The byref keyword is no longer ignored when transporting NSCalendarDates (as a
parameter or return value) over D.O. Thus, a parameter or return value which is declared
with byref now results in a proxy to the calendar date instance, rather than a real calendar
date instance. By default, NSCalendarDates still go over the wire bycopy. NSDates always
go over the wire bycopy.

Workaround: None

Reference: 69056

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: HP-UX

Disposition: None

Problem: Multi-threaded DO example occasionally hangs on HP-UX

Description: Compiling and running the multi-threaded DO example in
/NextDeveloper/Examples/Foundation/MultiThreadedDO occasionally results in a hang.

Workaround: None

Reference: 69110

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: (unsigned char)45 and (long long)-1 are ordered ascending

Description: This is actually correct behavior, in that NSNumber follows the C type promotion rules. Thus,
the (long long)-1 is promoted to (unsigned long long)18446744073709551615 and
(unsigned char)45 is promoted to (unsigned long long)45, and then the comparison makes
sense. This is, however, not all that desirable.

Workaround: None

Reference: 69152

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: HP-UX

Disposition: None

Problem: HP-UX nmserver has problems when passing large structures

Description: On HP-UX systems, passing large structures over D.O. without having first defined a
protocol can cause the nmserver to become non-functional.

Workaround: Use protocols when passing large structures over D.O. on HP-UX.

Reference: 69174

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Lossy conversion to NSASCIIStringEncoding more lossy than intended

Description: When NSString finds a non-ASCII character during lossy conversion to
NSASCIIStringEncoding, NSString converts it to an underscore. In 4.0, when NSString
finds a non-ASCII character during such conversion, NSString converts the character and all
the remaining characters in the string to underscores, even if they were ASCII.

Workaround: None

Reference: 69293

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Change to +pathForResource:ofType:inDirectory:

Description: The NSBundle class method +pathForResource:ofType:inDirectory: now first searches a
Resources subdirectory of the third parameter if such a subdirectory exists. It used to
examine only the directory specified in the third parameter.

Workaround: None

Reference: 69321

Releases: OPENSTEP 4.0

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.1

Problem: D.O. leaks every messaged object

Description: On Windows, every object that is messaged via D.O. is leaked due to an extraneous retain.

Workaround: None

Reference: 69471

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSPipe leaks file descriptors

Description: NSPipes and NSFileHandles do not take ownership of the file descriptor by default. If such
an object was released without an explicit close of the descriptors, the descriptors were not
recovered. The new methods -initWithNativeHandle:closeOnDealloc: and
-initWithFileDescriptor:closeOnDealloc: allow for the creation of file handles which own
the descriptors.

Workaround: None

Reference: 69926

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSNotificationCenter sometimes sent duplicate notifications

Description: In some situations, NSNotificationCenter sent observers two (or more) copies of a single
notification. This only happened to observers which were registered to receive any
notification name (perhaps with restriction to particular object).

Workaround: None

Reference: 70028

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Fault objects could not forward messages

Description: EOFault would cause an unrecognized selector exception rather than causing
-forwardInvocation: to be invoked on the faulted object when the fault was sent a message
that the faulted object did not understand (in other words, an object faulted would not get an
opportunity for forward an unknown selector). Faulted objects which wish to forward a
message which may cause them to be faulted should override the new NSObject class
method +instanceMethodSignatureForSelector: to return an NSMethodSignature for the
eventual target of the forwarded message. See the subsection Forwarding Messages in
OpenStep in the General Comments section below.

Workaround: None

Reference: 70172

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSCalendarDate -setCalendarFormat: doesn't handle nil format properly

Description: NSDate's -dateWithCalendarFormat:timeZone: and NSCalendarDate's
-setCalendarFormat: now have the documented behavior with respect to the first
parameter being nil. In 4.0, they would simply set the format to nil, which resulted in the
various -description methods returning an empty string.

Workaround: None

Reference: 70220

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSDateFormatter didn't convert input in the same way as output

Description: NSDateFormatters did not use the output format string to parse user-entered strings, so in
most cases strings could not be entered in the same format in which they were displayed.

Now a date displayed with "%m/%y" (for example) can also be entered in that format.

Workaround: None

Reference: 70323

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSDateFormatter does not allow empty string

Description: Once the user had begun typing in a text field that had a date formatter, the user could not
leave the field without entering a valid date; in particular, the user could not leave the field
empty. Empty is now valid, and the date formatter produces nil for an empty string in its
-getObjectValue:forString:errorDescription: method.

Workaround: None

Reference: 70334

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Time zones generated with wrong offset

Description: The +timeZoneForSecondsFromGMT: was incorrectly using the negative of the supplied
parameter to generate the returned time zone. This also affected the parsing of dates where
the time zone was specified with a raw GMT offset, like "-0700", but not where the time zone
was a name, such as "GMT-0800" or "PST".

Workaround: None

Reference: 70440

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSRunLoop incorrectly computed whether or not there was work to be done

Description: In some situations using background monitoring of file handles, NSRunLoop would not take
into account the file handles in deciding whether or not it had any more input sources.

Workaround: None

Reference: 70463

Releases: OPENSTEP 4.0, 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: Cannot NSLog() large messages

Description: Due to Event Log limitations on NT 3.51, NSLog()'d messages greater than ~32K are
dropped and do not appear in the Event Log. Also, messages greater than ~60K stopped
appearing in the console for console based processes. In 4.2, messages longer than
~32000 bytes are truncated and the message:

[NSLog log message too long; remainder deleted]
is appended before being sent to the Event Log. Multiple writes are done to the console for
large messages.

Workaround: None

Reference: 70565

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSNumberFormatter is not handling nil and NaN correctly

Description: If you tab into a cell with an NSNumberFormatter, and the cell has a nil object value, if you
tab out of the cell, the number formatter inserts NaN into the cell. This value can be
persistent and hard to get rid of, even when a valid number is typed into the field.

Workaround: None

Reference: 70580

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSNumber hashed long long numbers incorrectly

Description: NSNumber hashed long longs by simply casting the value to (unsigned int). This caused
some equal numbers to have different hash values, breaking the hash±isEqual: invariant.

Workaround: None

Reference: 70612, 70718

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: NSDecimalNumber inaccuracies

Description: An error in the text from which the division algorithm was taken caused inaccuracies in the
less significant end of the result of -decimalNumberByDividingBy:withBehavior: (in the
fractional part, the ones, and tens digits, depending on the size of the numbers). Also, digits
of precision were being lost during initialization on the less significant end of the number,
and the decimal point was being incorrectly positioned in the result of
-decimalNumberBySubtracting:withBehavior:.

Workaround: None

Reference: 70955

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Cannot append path components beginning with tilde

Description: NSString -stringByAppendingPathComponent: would refuse to append a component that
began with `~' in 4.0. This was to prevent the accidental concatenation of "~username" onto
a path, but `~' is a valid (but perhaps uncommon) first character of a file name, and that
behavior was of marginal benefit, so it was eliminated.

Workaround: None

Reference: 70975

Releases: OPENSTEP 4.0, 4.1

Platforms: Mach

Disposition: Fixed in OPENSTEP 4.2

Problem: Loading bundles with duplicate or undefined symbols crashes applications

Description: In NEXTSTEP 3.3 and prior versions, attempting to load a bundle with symbols which
duplicated already-existing symbols, or had undefined symbols which were still undefined
after the bundle was loaded into the executable image, simply caused the bundle load to fail.
In OPENSTEP, this causes an application to crash.

Workaround: By default, this is not fixed to restore the 3.3 behavior, since the fix is somewhat expensive.
The 3.3 behavior can be enabled by setting the default NSSafeBundleLoading to YES in a
user's defaults database. The success or failure of the operation can be tested with the
NSBundle -load method.

Reference: 71118

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: Collections that contain themselves don't describe

Description: Sending the -description method to collections which contain themselves, or contain
objects that contain the collection, causes infinite recursion.

Workaround: None

Reference: 71288

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Problem popping initial autorelease pool

Description: A program could crash if it repeatedly created and released the top autorelease pool.

Workaround: None

Reference: 71646

Releases: OPENSTEP 4.0

Platforms: All

Disposition: Fixed in OPENSTEP 4.1

Problem: Formatter.strings missing

Description: A missing strings file has been added to the Foundation, so in 4.1 error strings returned from
the formatters (NSDateFormatter and NSNumberFormatter) will be localized.

Workaround: None

Reference: 71911

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSMutableData -setData: method does not reduce length of receiving data

Description: The NSMutableData -setData: method will increase the length of the receiving data object
to accommodate all the bytes in the parameter, but does not shrink the size of the receiving
data if the parameter contains fewer bytes than the receiver.

Workaround: Do an explicit -setLength: after -setData:.

Reference: 71962

Releases: OPENSTEP 4.0, 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: NSBundle cannot identify the main bundle over Samba

Description: NSBundle is not able to identify the main bundle for applications launched from a directory
mounted in Windows via Samba, where the Samba server has been configured to be case
sensitive. Applications will terminate immediately on launch.

Workaround: Set the Samba server to be case insensitive (but this can cause other problems, such as
files being inaccessible).

Reference: 72144

Releases: OPENSTEP 4.0, 4.1

Platforms: Mach

Disposition: Fixed in OPENSTEP 4.2

Problem: NSData's -writeToFile:atomically: always fails on DOS-formatted disks

Description: The temporary file that NSData creates when the second parameter to
-writeToFile:atomically: is YES is not a valid file name on DOS-formatted disks (it's too
long).

Workaround: None

Reference: 72464

Releases: OPENSTEP 4.0, 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: Domains seem to be missing

Description: NSUserDefaults sometimes fails to identify the longest-named domain in the registry as a
domain, and it will be omitted from lists, such as that produced by the command `defaults
domains'.

Workaround: None

Reference: 72479

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSScanner's -scanDouble: and -scanFloat: too eager

Description: In cases where NSScanner encounters a lone 'E' or a lone '.', it currently puts 0.0 into the
variable and returns YES. In some future release, it will probably return NO in such a
situation.

Workaround: None

Reference: 73292

Releases: OPENSTEP 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSMutableDictionary -setDictionary: crash

Description: The -setDictionary: method of NSMutableDictionary will cause an application to crash
when the parameter is an empty immutable dictionary.

Workaround: None

Reference: 73320

Releases: OPENSTEP 4.1, 4.2

Platforms: All

Disposition: None

Problem: In NSNumberFormatter, specifying different formats for negative and positive values causes
problems

Description: When the formats you specify for positive and negative values aren't parallel in their
treatment of separators, for example:

[numForm setFormat:@"###,##0.00;-(##0.00)"];
the positive format takes on the separator characteristics of the negative format. For
example, given the above statement, positive values will be displayed without thousand
separators even though their format includes separators.

Workaround: None

Reference: 73352

Releases: OPENSTEP 4.0, 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: -stringByResolvingSymlinksInPath now does more

Description: On Windows, -stringByResolvingSymlinksInPath now fixes the cases of characters so
that the case of the name in the returned string matches the on-disk case, and it also
converts 8.3 names to the full names.

Workaround: None

Reference: 73686

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSFileHandle error notification not handled correctly

Description: If an error occurs in attempting a background monitoring operation, NSFileHandle may send
an empty notification to observers. This may occur when a native file handle has not been

configured correctly for use, for example.

Workaround: None

Reference: 73689

Releases: OPENSTEP 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: NSCalendarDate won't archive correctly unless TZFILE is set

Description: In 4.1, NSTimeZone attempted to use information from the registry to choose the default
time zone, so that the TZFILE environment variable, required in 4.0, was no longer
necessary. However, the time zone object that was created in the absence of TZFILE was
not transportable over Distributed Objects, and could not be unarchived from an object
archive on any platform (so NSCalendarDates which use the default time zone could not be
unarchived either).

Workaround: Set the TZFILE environment variable for a user to the name of a time zone, like
"US/Eastern" or "Japan".

Reference: 73751

Releases: OPENSTEP 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Incorrect behavior when copying NSMutableDictionarys

Description: According to the OpenStep specification, when you send -copy or -copyWithZone: to an
NSMutableDictionary you should get back a deep immutable copy. This was the behavior
implemented in OPENSTEP 4.0. However, in OPENSTEP 4.1 (all platforms) what you get
back is a shallow immutable copy--the objects in the dictionary are merely retained instead
of being copied.

This change in behavior can have subtle effects within any code that copies

NSMutableDictionarys. For example, suppose you have a mutable dictionary populated with
objects, and you create a copy (which should be a deep immutable copy). If you then modify
one of the objects that you had put into the original dictionary, the modified object will appear
in the copy of the dictionary as well as in the original. This bug means that a copy of a
dictionary can change out from under you unexpectedly. In an application, you might see no
change, incorrect operation, or a crash as a result. Because it doesn't always crash your
applications, and because it manifests itself in a number of different ways, this bug can be
particularly difficult to detect.

Workaround: While you may not be able to alter the way that libraries you link against are written, in your
own code you can work around this bug simply by avoiding the use of either -copy or
-copyWithZone: with NSMutableDictionarys. The easiest way to do this is to use the
undocumented (in 4.1) -initWithDictionary:copyItems: method, as shown here:

[[NSDictionary allocWithZone:NULL] initWithDictionary:dict copyItems:YES]

This method only makes sense when you know you have a dictionary object, but that's often
the case (-isKindOfClass: can be used for testing this). Note that
-initWithDictionary:copyItems: isn't part of the OpenStep specification.

Reference: 73880

Releases: OPENSTEP 4.0, 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: NSFullUserName() always returned nil

Description: Note that this DLL is not implemented on Windows 95, so this function will always return nil
on Windows 95. Applications should be prepared for a nil return value.

Workaround: None

Reference: 74192

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSTimeZones are not equal

Description: Unless the receiver and parameter are the same identical object, NSTimeZone's -isEqual:
method returns NO for identical time zone objects.

Workaround: None

Reference: 74198

Releases: OPENSTEP 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Misbehavior in initializing NSArrays

Description: In 4.1, the following code doesn't cause a nil-object exception, but it should.
id ids[5] = {[NSObject new], nil, nil, [NSObject new], [NSObject new]};
id a = [NSMutableArray arrayWithObjects:ids count:5];

Workaround: None

Reference: 74246

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Time zone offsets not parsed well

Description: The date can be misparsed from a string with a bare time zone offset (as opposed to a time
zone name). For example:

dateWithNaturalLanguageString:@"1996-10-22 13:44:03 -0700"
returns the date

700-10-22 13:44:03 -0800

Workaround: None

Reference: 74271

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSUserDefaults +initialize causes crash on second invocation

Description: If NSUserDefaults' +initialize method was invoked a second time, say by the presence of a
subclass, an application would crash.

Workaround: A subclass can provide an empty implementation of +initialize so that NSUserDefaults
implementation does not get called multiple times.

Reference: 74349

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSAutoreleasePool crashes with a memory fault

Description: NSAutoreleasePool can crash with a memory violation during an autorelease
if the following sequence of events occurs:

1. the non-top pools get a sum of exactly (2019 - 4 * P + 2048 * N) objects in them, where:
N is any integer N >= 2,
M is the maximum number of pools there have ever been at any instant, up to that

point, and
P = { 0 if M <= 16; ceil(M - 13) / 4) if M > 16 }

2. the top pool grows to be large (having more than 4096 objects in it), and is then
released

Upon the next autorelease, the autorelease pool will shrink its storage, shrinking it to exactly
the amount required for the (2019 - 4 * P + 2048 * N) objects in the remaining pools, and
then try to add the newly autoreleased object one slot past the end of the new storage. The
shrink in this case is not taking into account the extra storage that will immediately be
needed.

Workaround: None

Reference: 74560

Releases: OPENSTEP 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: Prefix "\\" stripped by path utilities

Description: The path utilities go to a lot of trouble to preserve a prefix "\\" on Windows, which indicates a
UNC file name. However, due to a bug, this was being stripped in one common code path.

Workaround: None

Reference: 74725

Releases: OPENSTEP 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSMutableDictionary -initWithDictionary:copyItems: crash

Description: NSMutableDictionary's -initWithDictionary:copyItems: method can crash a program on a
nil dictionary parameter.

Workaround: None

Reference: 74787

Releases: OPENSTEP 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSNumberFormatter may not use the default attributes

Description: -attributedStringForObjectValue:withDefaultAttributes: doesn't always use the default
text attributes passed in as the second parameter. Specifically, they weren't used when

formatting zero, nil, and NaN.

Workaround: None

Reference: 74791

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSFileHandle shouldn't raise if it doesn't write all the data

Description: The -writeData: method raises if it can't write all the data in one attempt.

Workaround: None

Reference: 74823

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSWeekDayNameArray is incorrect for French, German, Spanish, Swedish, & Italian.

Description: The NSWeekDayNameArray default in the French, German, Spanish, Swedish, & Italian
language files in the Foundation resources start with Monday. The array should start with
Sunday (even though Monday may be the conventional first-day-of-the-week).

Workaround: None

Reference: 74849

Releases: OPENSTEP 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSNumberFormatter's -attributedStringForObjectValue:withDefaultAttributes: doesn't
work with nil second parameter

Description: NSNumberFormatter's -attributedStringForObjectValue:withDefaultAttributes: doesn't
handle the case where nil is passed as the default attributes dictionary.

Workaround: None

Reference: 75011

Releases: OPENSTEP 4.0, 4.1

Platforms: Windows

Disposition: Fixed in OPENSTEP 4.2

Problem: Language preference in registry is inserted into NSLanguages default

Description: In 4.1, if the user did not have an NSLanguages default, NSUserDefaults looked into the
Windows registry and created an NSLanguages default in the registration domain from the
user's preferred language stored by the Control Panel. Now, the language from the registry
is appended to the list if it doesn't already occur in the NSLanguages default (with the
default being created in the registration domain as before if it doesn't exist). Also, whenever
the language "English" is not present in the list, it is now appended to the list.

Workaround: None

Reference: 75359

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSData -hash algorithm is too simple

Description: NSData used to return the length of the data as its hash value. For EOF, where fixed-length
data objects may be used as primary keys, this results in terrible hashing performance.
NSData now uses a better algorithm that depends on the byte contents of the data.

Workaround: None

Reference: 75568

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSCalendarDate %F format flag truncates rather than rounds

Description: The %F format flag for NSCalendarDates indicates where milliseconds are to be indicated in
a formatted string. However, it was truncating a series of nines in the result, rather than
rounding. For example, if the millisecond value was 120, it might be stored as
.119999999999..., and the formatting for %F would truncate the excess fractional part and
result in "119" in the formatted string.

Workaround: None

Reference: 75881

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSNumberFormatter can use wrong formats

Description: If an NSNumberFomatter is asked to format a number after the positive format or negative
format has been changed from the default, but before the -positiveFormat or
-negativeFormat methods have been called (such as by
-getObjectValue:forString:errorDescription:), the number formatter will use the previous
positive or negative format(s) rather than the new ones.

Workaround: Call -positiveFormat after setting the positive format or -negativeFormat after setting the
negative format.

Reference: 75947

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Problems with NSDecimalNumber addition and subtraction

Description: When two NSDecimalNumber objects have a large difference in their precision (for example,
1070464.1 and 10458008.8588800005822512160500000055879), the numbers can be
added or subtracted incorrectly.

Workaround: None

Reference: 76051

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Path utilities don't handle multi-byte strings

Description: The path utility methods can return corrupted strings for receiving strings which have multi-
byte characters.

Workaround: None

Reference: 76181

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSValues and NSNumbers in 3.3 archives can't be unarchived

Description: In the 3.3 Foundation, NSValues and NSNumbers were archived in such a way that a helper
class, NSValueDecoder, was needed to unarchive them. This class does not exist in the
Foundation in 4.0 or 4.1, so such archives cannot be read in.

Workaround: None

Reference: 76716

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Date parsing not handling 1-digit numbers well

Description: If an application parsed the string "96/5" with the format "%y/%m", the application would
raise an out-of-bounds exception. If the string was "96/05", things worked fine.

Workaround: None

Reference: 77004

Releases: OPENSTEP 4.0, 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: Attempting to transport or unarchive the local time zone object fails

Description: The object returned by [NSTimeZone localTimeZone] cannot be unarchived if archived, nor
transported over the wire with Distributed Objects.

Workaround: None

Reference: 77079

Releases: OPENSTEP 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSArray methods not working with fault parameters

Description: The NSArray methods -indexOfObject:, -indexOfObject:inRange:, and -containsObject:
cause a raise of a selector-not-recognized exception when the first parameter is a faulted
object. The -firstObjectCommonWithArray: has the same problem when the array
parameter is an array of faults.

Workaround: None

Reference: 77202

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: NSFileManager methods don't work on strict 8.3 DOS file systems

Description: The NSFileManager methods -createFileAtPath:contents:attributes: and
-movePath:toPath:handler: can fail on FAT file systems which are strict about 8.3 file
names, such as available on Mach. The FAT file systems of Windows NT and Windows 95
are more forgiving.

Workaround: None

Reference: 77309

Releases: OPENSTEP 4.0, 4.1, 4.2

Platforms: All

Disposition: None

Problem: Local proxies not immediately released when remote proxy released

Description: For performance reasons, Distributed Objects batches, on the remote side, release methods
destined for local proxies. Whenever a synchronous method (i.e., non-oneway) is sent to a
remote object, all pending releases on local objects are returned with the return value of the
method (which may be void of course). Since the local proxy retains the object it represents
(part of its function is to make sure the local object which has been vended remains valid at
least as long as there is an outstanding remote proxy for it), a local object which has been
vended over the wire, but released on the server side, will persist until the client sends a
synchronous message to the server. If a client and server communicate only with oneway
messages, local objects which are sent remotely by proxy (as a parameter for example) will
persist "forever", or until the local connection is invalidated. This can be a problem for long-
lived clients which maintain a persistent connection to a server.

Workaround: Occasionally send a synchronous message from the client to the server. The message does
not have to have a return value or parameters, or do anything, but will serve to flush pended
releases back to the client. Another workaround would be to occasionally invalidate the

connection to the server and reconnect.

Reference: 77559

Releases: OPENSTEP 4.2

Platforms: Mach, HP-UX, Solaris

Disposition: None

Problem: Process name is empty string

Description: If argv[0] of a process is not an absolute path, and the Foundation can't find argv[0] by
searching the PATH environment variable to compute the absolute path, the process name
computation may result in the empty string. This can only happen if a process uses fork()
and execve() (or related function) to create a Foundation-based process, and the first
argument to execve() specifies an executabe which does not exist in the PATH list and the
argv[0] passed into execve() is not that same full path, but a relative one. There isn't
anything the Foundation can do in this case about computing the full path to the executable,
for use in computing the main bundle for example. However, the process name should not
be empty string, but rather the last component of argv[0] unchanged. An empty string for the
process name causes trouble for other Foundation subsystems, like user defaults.

Workaround: Pass the same string in argv[0] as the first argument, to execve() or related function.

Reference: 77678

Releases: OPENSTEP 4.1

Platforms: All

Disposition: Fixed in OPENSTEP 4.2

Problem: NSNumber's -decimalValue method broken for non-English usage

Description: The -decimalValue method of NSNumber incorrectly computes its result for users whose
defaults specify a decimal point other than period (`.'). This may cause
NSNumberFormatters to not accept any input other than "2" in a text field. This affects the
scale field in the AppKit's print panel in 4.1, for example.

Workaround: None
