
OPENSTEP 4.2    Copyright1997 by Apple Computer, Inc.    All Rights Reserved.

OPENSTEP 4.2 Release Notes:
Project Builder

This file contains release notes for the Project Builder application distributed with OpenStep
4.2. It includes information specific to OPENSTEP for Mach and to OPENSTEP for Windows
as well as information general to both platforms.

Project Builder provides integrated code development capabilities for the sophisticated
developer. Its main window combines a project browser with a full-featured code editor. You
can bring up panels for building, debugging, finding information in the project, and setting
project attributes. To familiarize yourself with Project Builder's capabilities and features, you
can do one of the following:

· On Mach, choose the Help command from Project Builder's Info menu. This launches a
Digital Librarian bookshelf containing the on-line book OpenStep Development: Tools and
Techniques.

· On Windows, choose the How To command from Project Builder's Help menu. This
launches a Windows Help version of the same book.

New Features for 4.2

Click-to-Find Button

A new context help button has been added to the right of the toolbar.      It activates the context
help mode, denoted by the question-mark cursor.    In context help mode, you can get
information on UI items by clicking on them.    You can also use this button    for "Click-To-Find"
operations to access symbols in the project's index.    To get definitions for source code
symbols,    move the cursor over the source file and click when the symbol has been
highlighted.    This will bring up the finder panel to display the results.

grab2.tiff ¬

Fuzzy Indexing

A new lighter-weight style of project indexing debuts in this release on both Mach and
Windows.    It provides a more reliable and low-cost index that is not based on the strict pre-
processing and formal parsing methodology employed in 4.0 and 4.1 (which is only available
on Mach via a defaults setting).    In addition to using less virtual memory and CPU time, the
fuzzy parsing system can index symbols inside #ifdefs that are not currently turned on in your
builds.

Information about frameworks is shared across projects that link against them and can be
accessed from the project find panel associated with each such projects.    Information about
other header files you may import is not currently stored.      All existing preferences, indexing
panel operations, and find panel queries now apply to the new Fuzzy Indexing feature.

Limitations for 4.2 pre-release: The symbol index is not built for source code modules that
contain C++ code or for .h files that appear to contain C++-specific declarations.    Additionally,
reference queries do not work in the project find panel.    These should be corrected in the final
4.2 release.

Framework Documentation Access

Although the Find panel can be used to access documentation about a particular symbol, all of

the documentation associated with a framework can now be browsed.    The Frameworks
suitcase will now show for each framework the on-line available documentation structure.   
This works as a direct link to the file system with the use of filtering.    On Mach, the user can
browse the documentation and display any file directly from the project browser.    On
Windows, the WinHelp system can be launched on a particular framework's documentation.

grab1.tiff ¬

Syntax Coloring

It is now possible to use syntax coloring on source files (C, C++, Obj-C, Java).    Syntax
coloring is a feature that allows Project Builder to show parts of a source file (tokens) using
different text attributes depending on their meaning.    For instance, comments can appear in
italic text and string constants in red.
 grab3.tiff ¬

A new "Syntax Coloring" preferences pane has been added to allow you to switch the syntax
coloring off or change the font and color for each lexical category of text.

pref.tiff ¬

The current set of lexical categories include: Comments, Keywords, Strings, and Numbers.    It
is also possible to use the normal text attributes for a lexical category inherited from the
existing "Fonts, Sizes & Colors" preferences pane.    Tokens that don't appear in one of the
lexical categories (such as identifiers) will always inherit these default attributes.    Switching
syntax coloring on and off takes place right away.    Setting attributes for one or more tokens
"dirties" the window; these settings are applied and saved to the defaults when Set is pressed.
Revert takes you back to the previously-saved syntax-coloring preferences.

Improved Debugging

A number of bugs have been fixed in the Launcher/Debugger facilicities of Project Builder.
New features include the ability to set the directory paths needed for dynamically loaded
libraries and, on Windows, better integration between building and debugging an executable.   
When a path is entered in the Launcher Options Panel environment section, the Launcher sets
the appropriate environment variable so that launched and debugged programs use
dynamically-loaded libraries located in the specified directory.    When building a project on
Windows,    the final link of the executable will fail if the executable is being run or debugged.   
Project Builder will now ask you if you want to stop a launched executable    when building. If
the executable is being debugged, Project Builder will notify gdb to release the executable and
then reload its symbols when the build finishes.    While the build is in progress, you cannot run
the executable from within the debugger, but you can manipulate breakpoints.

New Features for 4.1

New Makefiles

Project Builder includes new makefiles that offer several advantages over the previous ones.
These makefiles:

· Build projects with lower overhead.
· Fix a number of extensibility problems.
· Allow a higher degree of parallelism with gnumake -j.
· Make it easier to diagnose problems.

When you first open a project that uses the old makefiles, Project Builder displays a panel that
lets you do one of the following:

· Convert immediately to the new makefiles.

· Keep your current makefiles.
· Defer the decision to later.

If you convert to the new makefiles,    the project defines this path to them in MAKEFILEDIR:

 $NEXT_ROOT/NextDeveloper/Makefiles/Project Builder_makefiles
 
The original 4.0 Makefiles are located in this directory:
 

$NEXT_ROOT/NextDeveloper/Makefiles/project

Currently, you can override the MAKEFILEDIR attribute for your project in Makefile.preamble
by setting it to the desired directory. Or you can edit the MAKEFILEDIR attribute in Project
Builder.project, but not through the user interface of Project Builder.    You are strongly
encouraged to convert your projects to the new makefiles if that is feasible. For instance, a
new facility that automatically generates .def files (see below) depends on these makefiles.
However, you might keep older makefiles intact for those exceptional projects that depend
upon unique implementation details in the project makefiles.

Microsoft Linker

The Microsoft linker is now the default for projects on Windows built with Project Builder. This
is the same linker that ships with the current Visual C++.    For information on using the linker,
consult the Visual C++ documentation. See the following item, "Automatic Generation of .def
Files," for a related issue.

Automatic Generation of .def Files

On WIndows, the Microsoft linker requires symbols exported from a framework DLL to be

explictly specified. One way of doing this is in a .def file in the project (for example,
"MyFramework.def"). In prior releases, this file had to be manually created. Project Builder
now generates a .def file for frameworks and dynamic libraries (that is, library projects
producing DLLs).    It re-creates the file the first time a project is built and, thereafter, updates it
every time an object file changes.    To get this feature, you must update to the new makefiles
(See "New Makefiles," above).

If you currently have a .def file for a framework, and it is not highly customized, delete it and let
Project Builder regenerate it for you. Otherwise, leave it where it is. Project Builder creates a
.def file only if there isn't one already in the project.

The .def file that Project Builder creates is comprehensive, so if you want to create a
customized .def file that is a subset of it, first build your project. Then add the generated .def
file in derived_src to Supporting Files in your project and edit it as necessary.

Note:    You should use the CONSTANT keyword instead DATA in your .def file. The export of
framework functions also requires a little extra code.    For more on both of these items, see
"Known Problems in this Release, " below.

In creating the .def file for frameworks and dynamic libraries (DLLs), Project Builder handles
Objective-C symbols and data but not functions. If you have functions in your framework that
need to be callable from the outside, define certain macros in a header file and then use them
in your function declarations. These macros allow you to export non-static functions from the
DLL (FRAMEWORK_EXTERN) or to declare them as extern, but not exported
(FRAMEWORK_PRIVATE_EXTERN).    The following example shows how (substitute your
own framework name for FRAMEWORK):

#ifndef _FRAMEWORKDEFINES_H
#define _FRAMEWORKDEFINES_H

#if defined(WIN32)

//
// For Windows
//

#ifndef _FRAMEWORK_BUILDING_DLL
#define _FRAMEWORK_WINDOWS_DLL __declspec(dllimport)
#else
#define _FRAMEWORK_WINDOWS_DLL __declspec(dllexport)
#endif

#ifdef __cplusplus
#define FRAMEWORK_EXTERN extern "C" _FRAMEWORK_WINDOWS_DLL
#define FRAMEWORK_PRIVATE_EXTERN extern
#else
#define FRAMEWORK_EXTERN _FRAMEWORK_WINDOWS_DLL extern
#define FRAMEWORK_PRIVATE_EXTERN extern
#endif

You need to import this header in all your other headers and declare your function prototypes
accordingly. Then make sure you define FRAMEWORK_BUILDING_DLL when building your
framework.

New Features for 4.0

Some or all of these new features may exist in the Windows version of Project Buiilder
depending on its state at the time of the release:

· The new Launcher Panel allows you to run or debug executables built by the project.

· Printing is now supported.

· The Build Attributes Inspector    allows you to specify OS specific values for compiler flags,

linker flags, installation and build directories, and build tool.

· The Build Options panel values persist across invocations of Project Builder. The values
you specify on this panel are saved per-user, per-project.

· In the Project Attributes Inspector    for an application project, you can specify a help file and
icons for both NT (.ico, .ICO) and Mach (.eps, .tiff).

· Project Builder by default sets tab stops at regular intervals of eight spaces each. There is
now a dwrite, ªtabStopCharsº, that allows you alter this interval to any desired number of
spaces, as long as that number is greater than zero.

Converting 3.x applications to 4.x

The _main.m files of 3.x applications have to be manually converted to the new _main.m
content. To do this, copy the main() code from existing 4.1 projects or create a new project
and copy its main() code. You can also copy and paste this code directly from here:

#import <AppKit/AppKit.h>

int main(int argc, const char *argv[]) {
 return NSApplicationMain(argc, argv);
}

Known Problems in The 4.2 Release Ð Mach and Windows

These problems are known to exist with this release on both Mach and Windows:

Reference: 76321
 

Problem: Project Builder edit caches file changes in memory between close and reopen of a
project

 

Description: If you choose not to save changes to a file when closing a project, when the project is
opened again Project Builder reuses the file buffer containing the unsaved changes
for that file, instead of the version of the file from the disk

Reference: 76133
 

Problem: File renaming doesn't work properly
 

Description: Using the Inspector to change the name of a file causes exceptions to be raised
inside Project Builder.

Reference: 76114
 

Problem: Yellow arrows are not displayed in the browser
 

Description: If you open a file and then index the project, the yellow arrow, which signifies the file
is indexed,    is not displayed for that file. The arrows are displayed for other files.

Reference: 77979
 

Problem: LIBRARY_STYLE=STATIC excludes frameworks
 

Description: If your builds terminate with link errors claiming that imported frameworks are
undefined, check your Makefile.preamble to see if the following line is
uncommented.

LIBRARY_STATIC = STYLE

If it is uncommented, prepend a hash character (#) to comment it out. Due to a
change in the make process, "LIBRARY_STYLE=STATIC" tells the linker not to link
against frameworks (such as AppKit and Foundation), even if they are added to the
project.

Known Problems in The 4.2 Release Ð Windows

These problems are known to exist with this release on Windows:

Reference: 69061
 

Problem: Builds will fail if NEXT_ROOT has been modified to contain backward slashes.
 

Description: The installer specifies NEXT_ROOT with forward slashes, for example:
 

C:/NeXT/
 

Do not edit this variable in the Environment section of the System control panel, even
if to change the forward slashes to backward slashes.

Reference: 72307
 

Problem: The Microsoft linker emits a bogus warning about CONSTANT keywords.
 

Description: When you build framework projects, you will see messages complaining about the
use of CONSTANT keywords in your .def file. Because of problems with the linker,
CONSTANT should be used in place of DATA. You can ignore the warnings.

Reference: 76192
 

Problem: Find results don't show the documentation icon for methods.
 

Description: After indexing the project, a find on a method name does not show the documentution
icon
(a book) for methods which have documentation.

Reference: 75239
 

Problem: Project Builder thinks some .nib files have been modifed
 

Description: Open a project and then start Interface Builder.    Open a .nib file with Interface
Builder, not by double-clicking on the nib inside Project Builder.    Build the project in
Project Builder and Project Builder will warn that the .nib file is modified, when it is
not. The workaround is to start Interface Builder by double-clicking the nib inside
Project Builder.

Known Problems in The 4.2 Release Ð Mach

These problems are known to exist with this release on Mach:

Reference: 67785
 

Problem: Breakpoints on functions or methods without debugging information aren't displayed
in the breakpoint inspector.

Reference: 67712
 

Problem: Moving a breakpoint icon doesn't update the line number in the Breakpoint inspector.
However, the location of the breakpoint is updated in gdb.

