
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

4

Mach Functions

This chapter gives detailed descriptions of the C functions provided by the NeXT Mach operating system.    It also
describes some macros that behave like functions.    For this chapter, the functions and macros are divided into five
groups:

· C-thread functionsÐUse these to implement multiple threads in an application.

· Mach kernel functionsÐUse these to get access to the Mach operating system.

· Bootstrap Server functionsÐUse these to set up communication between the task that provides a local service and
the tasks that use the service.

· Network Name Server functionsÐUse these to set up communication between tasks that might not be on the
same machine.

· Kernel-server loader functionsÐUse these to load and unload loadable kernel servers, to add and delete servers to
and from the kernel-server loader, and to get information about servers.

Within each section, functions are subgrouped with other functions that perform related tasks.    These subgroups are
described in alphabetical order by the name of the first function listed in the subgroup.    Functions within subgroups
are also listed alphabetically, with a pointer to the subgroup description.

For convenience, these functions are summarized in the NEXTSTEP Programming Interface Summary.    The
summary lists functions by the same subgroups used in this chapter and combines several related subgroups under a
heading such as ªBasic C-Thread€Functionsº or ªTask Functions.º    For each function, the summary shows the
calling sequence.

C-Thread Functions

These functions provide a C language interface to the low-level, language-independent primitives for manipulating
threads of control.

In a multithreaded application, you should use the C-thread functions whenever possible, rather than Mach kernel
functions.    If you need to call a Mach kernel function that requires a thread_t argument, you can find the Mach
thread that corresponds to a particular C thread by calling cthread_thread().

condition_alloc(), mutex_alloc()

SUMMARY Create a condition or mutex object

SYNOPSIS #import <mach/cthreads.h>

condition_t condition_alloc(void)
mutex_t mutex_alloc(void)

DESCRIPTION The macros condition_alloc() and mutex_alloc() provide dynamic allocation of condition and mutex
objects.    When you're finished using these objects, you can deallocate them using condition_free() and
mutex_free().

EXAMPLE my_condition = condition_alloc();
my_mutex = mutex_alloc();

SEE ALSO condition_init(), mutex_init(), condition_free(), mutex_free()

condition_broadcast()

SUMMARY Broadcast a condition

SYNOPSIS #import <mach/cthreads.h>

void condition_broadcast(condition_t c)

DESCRIPTION The macro condition_broadcast() wakes up all threads that are waiting (with condition_wait()) for the
condition c.    This macro is similar to condition_signal(), except that condition_signal() doesn't wake up every
waiting thread.

EXAMPLE any_t listen(any_t arg)
{
 mutex_lock(my_mutex);
 while(!data)
 condition_wait(my_condition, my_mutex);
 /* . . . */
 mutex_unlock(my_mutex);

 mutex_lock(printing);
 printf("Condition has been met\n");
 mutex_unlock(printing);
}

main()
{
 my_condition = condition_alloc();
 my_mutex = mutex_alloc();
 printing = mutex_alloc();

 cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)0));

 mutex_lock(my_mutex);
 data = 1;
 mutex_unlock(my_mutex);
 condition_broadcast(my_condition);
 /* . . . */
}

SEE ALSO condition_signal(), condition_wait()

condition_clear(), mutex_clear()

SUMMARY Clear a condition or mutex object

SYNOPSIS #import <mach/cthreads.h>

void condition_clear(struct condition *c)
void mutex_clear(struct mutex *m)

DESCRIPTION You must call one of these macros before freeing an object of type struct condition or struct mutex.   
See the discussion of condition_init() and mutex_init() for information on why you might want to use these types
instead of condition_t and mutex_t.

EXAMPLE struct mystruct {
 my_data_t data;
 struct mutex m;
};
struct mystruct *mydata;
mydata = (struct mystruct *)malloc(sizeof (struct mystruct));

mutex_init(&mydata->m);
/* . . . */
mutex_lock(&mydata->m);
/* Do something to mydata that only one thread can do. */
mutex_unlock(&mydata->m);
/* . . . */
mutex_clear(&mydata->m);
free(mydata);

SEE ALSO condition_init(), mutex_init(), condition_free(), mutex_free()

condition_free(), mutex_free()

SUMMARY Deallocate a condition or mutex object

SYNOPSIS #import <mach/cthreads.h>

void condition_free(condition_t c)
void mutex_free(mutex_t m)

DESCRIPTION The macros condition_free() and mutex_free() let you deallocate condition and mutex objects that were
allocated dynamically.    Before deallocating such an object, you must guarantee that no other thread will reference
it.    In particular, a thread blocked in mutex_lock() or condition_wait() should be viewed as referencing the object
continually; freeing the object out from under such a thread is erroneous, and can result in bugs that are extremely
difficult to track down.

SEE ALSO condition_alloc(), mutex_alloc(), condition_clear(), mutex_clear()

condition_init(), mutex_init()

SUMMARY Initialize a condition variable or mutex

SYNOPSIS #import <mach/cthreads.h>

void condition_init(struct condition *c)
void mutex_init(struct mutex *m)

DESCRIPTION The macros condition_init() and mutex_init() initialize an object of the struct condition or struct
mutex referent type, so that its address can be used wherever an object of type condition_t or mutex_t is expected.
Initialization of the referent type is most often used when you have included the referent type itself (rather than a
pointer) in a larger structure, for more efficient storage allocation.

For instance, a data structure might contain a component of type struct mutex to allow each instance of that

structure to be locked independently.    During initialization of the instance, you would call mutex_init() on the
struct mutex component.    The alternative of using a mutex_t component and initializing it using mutex_alloc()
would be less efficient.

If you're going to free a condition or mutex object of type struct condition or struct mutex, you should first clear it
using condition_clear() or mutex_clear().

EXAMPLE struct mystruct {
 my_data_t data;
 struct mutex m;
};
struct mystruct *mydata;
mydata = (struct mystruct *)malloc(sizeof (struct mystruct));

mutex_init(&mydata->m);
/* . . . */
mutex_lock(&mydata->m);
/* Do something to mydata that only one thread can do. */
mutex_unlock(&mydata->m);
/* . . . */
mutex_clear(&mydata->m);
free(mydata);

SEE ALSO condition_alloc(), mutex_alloc(), condition_clear(), mutex_clear()

condition_name(), condition_set_name(), mutex_name(), mutex_set_name()

SUMMARY Associate a string with a condition or mutex variable

SYNOPSIS #import <mach/cthreads.h>

char *condition_name(condition_t c)
void condition_set_name(condition_t c, char *name)
char *mutex_name(mutex_t m)
void mutex_set_name(mutex_t m, char *name)

DESCRIPTION These macros let you associate a name with a condition or a mutex object.    The name is used when trace
information is displayed.    You can also use this name for your own application-dependent purposes.

EXAMPLE /* Do something if this is a "TYPE 1" condition. */
if (strcmp(condition_name(c), "TYPE 1") == 0)
 /* Do something. */;

condition_signal()

SUMMARY Signal a condition

SYNOPSIS #import <mach/cthreads.h>

void condition_signal(condition_t c)

DESCRIPTION The macro condition_signal() should be called when one thread needs to indicate that the condition
represented by the condition variable is now true.    If any other threads are waiting (using condition_wait()), at least
one of them will be awakened.    If no threads are waiting, nothing happens.    The macro condition_broadcast() is
similar to this one, except that it wakes up all threads that are waiting.

EXAMPLE any_t listen(any_t arg)
{

 mutex_lock(my_mutex);
 while(!data)
 condition_wait(my_condition, my_mutex);
 /* . . . */
 mutex_unlock(my_mutex);

 mutex_lock(printing);
 printf("Condition has been met\n");
 mutex_unlock(printing);
}

main()
{
 my_condition = condition_alloc();
 my_mutex = mutex_alloc();
 printing = mutex_alloc();

 cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)0));

 mutex_lock(my_mutex);
 data = 1;
 mutex_unlock(my_mutex);
 condition_signal(my_condition);
 /* . . . */
}

SEE ALSO condition_broadcast(), condition_wait()

condition_wait()

SUMMARY Wait on a condition

SYNOPSIS #import <mach/cthreads.h>

void condition_wait(condition_t c, mutex_t m)

DESCRIPTION The function condition_wait() unlocks the mutex it takes as a argument, suspends the calling thread
until the specified condition is likely to be true, and locks the mutex again when the thread resumes.    There's no
guarantee that the condition will be true when the thread resumes, so this function should always be used as follows:

mutex_t m;
condition_t c;

mutex_lock(m);
/* . . . */
while (/* condition isn't true */)
 condition_wait(c, m);
/* . . . */
mutex_unlock(m);

SEE ALSO condition_broadcast(), condition_signal()

cthread_abort()

SUMMARY Interrupt a C thread

SYNOPSIS #import <mach/cthreads.h>

kern_return_t cthread_abort(cthread_t t)

DESCRIPTION This function provides the functionality of thread_abort() to C threads.    The cthread_abort() function
interrupts system calls; it's usually used along with thread_suspend(), which stops a thread from executing any
more user code.    Calling cthread_abort() on a thread that isn't suspended is risky, since it's difficult to know
exactly what system trap, if any, the thread might be executing and whether an interrupt return would cause the
thread to do something useful.

See thread_abort() for a full description of the use of this function.

cthread_count()

SUMMARY Get the number of threads in this task

SYNOPSIS #import <mach/cthreads.h>

int cthread_count()

DESCRIPTION This function returns the number of threads that exist in the current task.    You can use this function to
help make sure that your task doesn't create too many threads (over 200 or so).    See cthread_set_limit() for
information on restricting the number of threads in a task.

EXAMPLE printf("C thread count should be 1, is %d\n", cthread_count());
cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)0));
printf("C thread count should be 2, is %d\n", cthread_count());

SEE ALSO cthread_limit(), cthread_set_limit()

cthread_data(), cthread_set_data()

SUMMARY Associate data with a thread

SYNOPSIS #import <mach/cthreads.h>

any_t cthread_data(cthread_t t)
void cthread_set_data(cthread_t t, any_t data)

DESCRIPTION The macros cthread_data() and cthread_set_data() let you associate arbitrary data with€a€thread,
providing a simple form of thread-specific ªglobalº variable.    More elaborate€mechanisms, such as per-thread
property lists or hash tables, can then be built with these macros.

EXAMPLE int listen(any_t arg)
{
 mutex_lock(printing);
 printf("This thread's data is: %d\n",
 (int)cthread_data(cthread_self()));
 mutex_unlock(printing);
 /* . . . */
}

main()
{
 cthread_t lthread;

 printing = mutex_alloc();

 lthread = cthread_fork((cthread_fn_t)listen, (any_t)0);
 cthread_set_data(lthread, (any_t)100);
 cthread_detach(lthread);
 /* . . . */
}

SEE ALSO cthread_name(), cthread_set_name()

cthread_detach()

SUMMARY Detach a thread

SYNOPSIS #import <mach/cthreads.h>

void cthread_detach(cthread_t t)

DESCRIPTION The function cthread_detach() is used to indicate that cthread_join() will never be called on the given
thread.    This is usually known at the time the thread is forked, so the most efficient usage is the following:

cthread_detach(cthread_fork(function, argument));

A thread may, however, be detached at any time after it's forked, as long as no other attempt is made to join it or
detach it.

EXAMPLE cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)reply_port));

SEE ALSO cthread_fork(), cthread_join()

cthread_errno()

SUMMARY Get a thread's errno value

SYNOPSIS #import <mach/cthreads.h>

int cthread_errno(void)

DESCRIPTION Use the cthread_errno() function to get the errno value for the current thread.    In the UNIX operating
system, errno is a process-wide global variable that's set to an error number when a UNIX system call fails.   
However, because Mach has multiple threads per process, Mach keeps errno information on a per-thread basis as
well as in errno.

Like the value of errno, the value returned by cthread_errno() is valid only if the last UNIX system call returned
-1.    Errno values are defined in the header file bsd/sys/errno.h.

EXAMPLE int ret;

ret = chown(FILEPATH, newOwner, newGroup);
if (ret == -1) {
 if (cthread_errno() == ENAMETOOLONG)
 /* . . . */
}

SEE ALSO cthread_set_errno(), intro(2) UNIX manual page

cthread_exit()

SUMMARY Exit a thread

SYNOPSIS #import <mach/cthreads.h>

void cthread_exit(any_t result)

DESCRIPTION The function cthread_exit() terminates the calling thread.    The result is passed to the thread that joins
the caller, or is discarded if the caller is detached.

An implicit cthread_exit() occurs when the top-level function of a thread returns, but it may also be called
explicitly.

EXAMPLE cthread_exit(0);

SEE ALSO cthread_detach(), cthread_fork(), cthread_join()

cthread_fork()

SUMMARY Fork a thread

SYNOPSIS #import <mach/cthreads.h>

cthread_t cthread_fork(any_t (*function)(), any_t arg)

DESCRIPTION The function cthread_fork() takes two arguments:    a function for the new thread to execute, and an
argument to this function.    The cthread_fork() function creates a new thread of control in which the specified
function is executed concurrently with the caller's thread.    This is the sole means of creating new threads.

The any_t type represents a pointer to any C type.    The cthread_t type is an integer-size handle that uniquely
identifies a thread of control.    Values of type cthread_t will be referred to as thread identifiers.    Arguments larger
than a pointer must be passed by reference.    Similarly, multiple arguments must be simulated by passing a pointer
to a structure containing several components.    The call to cthread_fork() returns a thread identifier that can be
passed to cthread_join() or cthread_detach().    Every thread must be either joined or detached exactly once.

EXAMPLE cthread_detach(cthread_fork((cthread_fn_t)listen, (any_t)reply_port));

SEE ALSO cthread_detach(), cthread_exit(), cthread_join()

cthread_join()

SUMMARY Join threads

SYNOPSIS #import <mach/cthreads.h>

any_t cthread_join(cthread_t t)

DESCRIPTION The function cthread_join() suspends the caller until the specified thread t terminates.    The caller
receives either the result of t's top-level function or the argument with which t explicitly called cthread_exit().

Attempting to join one's own thread results in deadlock.

EXAMPLE cthread_t t;
t = cthread_fork((any_t (*)())listen, (any_t)reply_port);
/* . . . (Do some work, perhaps forking other threads.) */
result = cthread_join(t); /* Wait for the thread to finish executing. */
/* . . . (Continue doing work) */

SEE ALSO cthread_detach(), cthread_exit(), cthread_fork()

cthread_limit(), cthread_set_limit()

SUMMARY Get or set the maximum number of threads in this task

SYNOPSIS #import <mach/cthreads.h>

int cthread_limit(void)
void cthread_set_limit(int limit)

ARGUMENTS limit:    The new maximum number of C threads per task.    Specify zero if you want no limit.

DESCRIPTION These functions can help you to avoid creating too many threads.    The danger in creating a large number
of threads is that the kernel might run out of resources and panic.    Usually, a task should avoid creating more than
about 200 threads.

Use cthread_set_limit() to set a limit on the number of threads in the current task.    When the limit is reached, new
C threads will appear to fork successfully.    However, they will have no associated Mach thread, so they won't do
anything.

Use cthread_limit() to find out how many threads can exist in the current task.    If the returned value is zero (the
default), then no limit is currently being enforced.

Important:    Use cthread_count() to determine when your task is approaching the maximum number of threads.

EXAMPLE cthread_set_limit(LIMIT);

/* . . . */

/* Fork if we haven't reached the limit. */
if ((LIMIT == 0) || (LIMIT > cthread_count()))
 cthread_detach(cthread_fork((any_t (*)())a_thread,(any_t)0));

cthread_name(), cthread_set_name()

SUMMARY Associate a string with a thread

SYNOPSIS #import <mach/cthreads.h>

char *cthread_name(cthread_t t)
void cthread_set_name(cthread_t t, char *name)

DESCRIPTION The functions cthread_name() and cthread_set_name() let you associate an arbitrary name with a
thread.    The name is used when trace information is displayed.    The name may also be used for application-
specific diagnostics.

EXAMPLE int listen(any_t arg)
{
 mutex_lock(printing);
 printf("This thread's name is: %s\n",
 cthread_name(cthread_self()));
 mutex_unlock(printing);
 /* . . . */
}

main()
{
 cthread_t lthread;

 printing = mutex_alloc();

 lthread = cthread_fork((cthread_fn_t)listen, (any_t)0);

 cthread_set_name(lthread, "lthread");
 cthread_detach(lthread);
 /* . . . */
}

SEE ALSO cthread_data(), cthread_set_data()

cthread_priority(), cthread_max_priority()

SUMMARY Set the scheduling priority for a C thread

SYNOPSIS #import <mach/cthreads.h>

kern_return_t cthread_priority(cthread_t t, int priority, boolean_t set_max)
kern_return_t cthread_max_priority(cthread_t t, processor_set_t processor_set, int€max_priority)

ARGUMENTS t:    The C thread whose priority is to be changed.

priority:    The new priority to change it to.

set_max:    Also set t's maximum priority if true.

processor_set:    The privileged port for the processor set to which thread is currently assigned.

max_priority:    The new maximum priority.

DESCRIPTION These functions give C threads the functionality of thread_priority() and thread_max_priority().    See
those functions for more details than are provided here.

The cthread_priority() function changes the base priority and (optionally) the maximum priority of t.    If the new
base priority is higher than the scheduled priority of the currently executing thread, this thread might be preempted.
The maximum priority of the thread is also set if set_max is true.    This call fails if priority is greater than the current
maximum priority of the thread.    As a result, cthread_priority() can lowerÐbut never raiseÐthe value of a thread's
maximum priority.

The cthread_max_priority() function changes the maximum priority of the thread.    Because it requires the
privileged port for the processor set, this call can reset the maximum priority to any legal value.    If the new
maximum priority is less than the thread's base priority, then the thread's base priority is set to the new maximum
priority.

EXAMPLE /* Get the privileged port for the default processor set. */
error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS) {
 mach_error("Error calling processor_set_default()", error);
 exit(1);
}

error=host_processor_set_priv(host_priv_self(), default_set,
 &default_set_priv);
if (error!=KERN_SUCCESS) {
 mach_error("Call to host_processor_set_priv() failed", error);
 exit(1);
}

/* Set the max priority. */
error=cthread_max_priority(cthread_self(), default_set_priv,
 priority);
if (error!=KERN_SUCCESS)
 mach_error("Call to cthread_max_priority() failed",error);

/* Set the thread's priority. */
error=cthread_priority(cthread_self(), priority, FALSE);

if (error!=KERN_SUCCESS)
 mach_error("Call to cthread_priority() failed",error);

RETURN KERN_SUCCESS:    Operation completed successfully

KERN_INVALID_ARGUMENT:    cthread is not a C thread, processor_set is not a privileged port for a processor
set, or priority is out of range (not in 0-31).

KERN_FAILURE:    The requested operation would violate the thread's maximum priority (only for
cthread_priority()) or the thread is not assigned to the processor set whose privileged port was presented.

SEE ALSO thread_priority(), thread_max_priority(), thread_policy(), task_priority(), processor_set_priority()

cthread_self()

SUMMARY Return the caller's C-thread identifier

SYNOPSIS #import <mach/cthreads.h>

cthread_t cthread_self(void)

DESCRIPTION The function cthread_self() returns the caller's own C-thread identifier, which is the same value that was
returned by cthread_fork() to the creator of the thread.    The C-thread identifier uniquely identifies the thread, and
hence may be used as a key in data structures that associate user data with individual threads.    Since thread
identifiers may be reused by the underlying implementation, you should be careful to clean up such associations
when threads exit.

EXAMPLE printf("This thread's name is: %s\n",
 cthread_name(cthread_self()));
mutex_unlock(printing);

SEE ALSO cthread_fork(), cthread_thread(), thread_self()

cthread_set_errno_self()

SUMMARY Set the current thread's errno value

SYNOPSIS #import <mach/cthreads.h>

void cthread_set_errno_self(int error)

DESCRIPTION Use this function to set the errno value for the current thread to error.    In the UNIX operating system,
errno is a process-wide global variable that's set to an error number when a UNIX system call fails.    However,
because Mach has multiple threads per process, Mach keeps errno information on a per-thread basis as well as in
errno.    This function has no effect on the value of errno.

The current thread's errno value can be obtained by calling cthread_errno().    Errno values are defined in the
header file bsd/sys/errno.h.

EXAMPLE cthread_set_errno_self(EPERM);

SEE ALSO cthread_errno(), intro(2) UNIX manual page

cthread_thread()

SUMMARY Return the caller's Mach thread identifier

SYNOPSIS #import <mach/cthreads.h>

thread_t cthread_thread(cthread_t t)

DESCRIPTION The macro cthread_thread() returns the Mach thread that corresponds to the specified C thread t.

EXAMPLE /* Save the cthread and thread values for the forked thread. */
l_cthread = cthread_fork((cthread_fn_t)listen, (any_t)0);
cthread_detach(l_cthread);
l_realthread = cthread_thread(l_cthread);

SEE ALSO cthread_fork(), cthread_self()

cthread_yield()

SUMMARY Yield the processor to other threads

SYNOPSIS #import <mach/cthreads.h>

void cthread_yield(void)

DESCRIPTION The function cthread_yield() is a hint to the scheduler, suggesting that this would be a convenient point
to schedule another thread to run on the current processor.

EXAMPLE int i, n;

/* n is set previously */
for (i = 0; i < n; i += 1)
 cthread_yield();

SEE ALSO cthread_priority(), thread_switch()

mutex_lock()

SUMMARY Lock a mutex variable

SYNOPSIS #import <mach/cthreads.h>

void mutex_lock(mutex_t m)

DESCRIPTION The macro mutex_lock() attempts to lock the mutex m and blocks until it succeeds.    If several threads
attempt to lock the same mutex concurrently, one will succeed, and the others will block until m is unlocked.    A
deadlock occurs if a thread attempts to lock a mutex it has already locked.

EXAMPLE /* Only one thread at a time should call printf. */
mutex_lock(printing);
printf("Condition has been met\n");
mutex_unlock(printing);

SEE ALSO mutex_try_lock(), mutex_unlock()

mutex_try_lock()

SUMMARY Try to lock a mutex variable

SYNOPSIS #import <mach/cthreads.h>

int mutex_try_lock(mutex_t m)

DESCRIPTION The function mutex_try_lock() attempts to lock the mutex m, like mutex_lock(), and returns true if it
succeeds.    If m is already locked, however, mutex_try_lock() immediately returns false rather than blocking.    For
example, a busy-waiting version of mutex_lock() could be written using mutex_try_lock():

void mutex_lock(mutex_t m)
{
 for (;;)
 if (mutex_try_lock(m))
 return;
}

SEE ALSO mutex_lock(), mutex_unlock()

mutex_unlock()

SUMMARY Unlock a mutex variable

SYNOPSIS #import <mach/cthreads.h>

void mutex_unlock(mutex_t m)

DESCRIPTION The function mutex_unlock() unlocks m, giving other threads a chance to lock it.

EXAMPLE /* Only one thread at a time should call printf. */
mutex_lock(printing);
printf("Condition has been met\n");
mutex_unlock(printing);

SEE ALSO mutex_lock(), mutex_try_lock()

Mach Kernel Functions

exc_server()

SUMMARY Dispatch a message received on an exception port

SYNOPSIS #import <mach/mach.h>
#import <mach/exception.h>

boolean_t exc_server(msg_header_t *in, msg_header_t *out)

ARGUMENTS in:    A message that was received on the exception port.    This message structure should be at least 64
bytes long.

out:    An empty message to be filled by exc_server() and then sent.    This message buffer should be at least 32 bytes
long.

DESCRIPTION This function calls the appropriate exception handler.    You should call this function after you've
received a message on an exception port that you set up previously.    Usually, this function is used along with a user-

defined exception handler, which must have the following protocol:

kern_return_t catch_exception_raise(port_t exception_port, port_t thread, port_t€task, int€exception, int€code,
int€subcode)

To receive a message on an exception port, you must first create a new port and make it the task or thread exception
port.    (You can't use the default task exception port because you can't get receive rights for it.)    Before calling
msg_receive(), you must set the local_port field of the header to the appropriate exception port and the msg_size
field to the size of the structure for the incoming message.

If it accepted the incoming message, exc_server() returns true; otherwise it returns false.

You should keep a global value that indicates whether your exception handler successfully handled the exception.   
If it couldn't, then you should forward the exception message to the old exception port.

EXAMPLE typedef struct {
 port_t old_exc_port;
 port_t clear_port;
 port_t exc_port;
} ports_t;

volatile boolean_t pass_on = FALSE;
mutex_t printing;

/* Listen on the exception port. */
any_t exc_thread(ports_t *port_p)
{
 kern_return_t r;
 char *msg_data[2][64];
 msg_header_t *imsg = (msg_header_t *)msg_data[0],
 *omsg = (msg_header_t *)msg_data[1];

 /* Wait for exceptions. */
 while (1) {
 imsg->msg_size = 64;
 imsg->msg_local_port = port_p->exc_port;
 r = msg_receive(imsg, MSG_OPTION_NONE, 0);

 if (r==RCV_SUCCESS) {
 /* Give the message to the Mach exception server. */
 if (exc_server(imsg, omsg)) {
 /* Send the reply message that exc_serv gave us. */
 r = msg_send(omsg, MSG_OPTION_NONE, 0);
 if (r != SEND_SUCCESS) {
 mach_error("msg_send", r);
 exit(1);
 }
 }
 else { /* exc_server refused to handle imsg. */
 mutex_lock(printing);
 printf("exc_server didn't like the message\n");
 mutex_unlock(printing);
 exit(2);
 }
 }
 else { /* msg_receive() returned an error. */
 mach_error("msg_receive", r);
 exit(3);
 }

 /* Pass the message to old exception handler, if necessary. */
 if (pass_on == TRUE) {
 imsg->msg_remote_port = port_p->old_exc_port;
 imsg->msg_local_port = port_p->clear_port;
 r = msg_send(imsg, MSG_OPTION_NONE, 0);
 if (r != SEND_SUCCESS) {
 mach_error("msg_send to old_exc_port", r);

 exit(4);
 }
 }
 }
}

/*
 * catch_exception_raise() is called by exc_server(). The only
 * exception it can handle is EXC_SOFTWARE.
 */
kern_return_t catch_exception_raise(port_t exception_port,
 port_t thread, port_t task, int exception, int code, int subcode)
{
 if ((exception == EXC_SOFTWARE) && (code == 0x20000)) {
 /* Handle the exception so that the program can continue. */
 mutex_lock(printing);
 printf("Handling the exception\n");
 mutex_unlock(printing);
 return KERN_SUCCESS;
 }
 else { /* Pass the exception on to the old port. */
 pass_on = TRUE;
 mach_NeXT_exception("Forwarding exception", exception,
 code, subcode);
 return KERN_FAILURE; /* Couldn't handle this exception. */
 }
}

main()
{
 int i;
 kern_return_t r;
 ports_t ports;

 printing = mutex_alloc();

 /* Save the old exception port for this task. */
 r = task_get_exception_port(task_self(), &(ports.old_exc_port));
 if (r != KERN_SUCCESS) {
 mach_error("task_get_exception_port", r);
 exit(1);
 }

 /* Create a new exception port for this task. */
 r = port_allocate(task_self(), &(ports.exc_port));
 if (r != KERN_SUCCESS) {
 mach_error("port_allocate 0", r);
 exit(1);
 }
 r = task_set_exception_port(task_self(), (ports.exc_port));
 if (r != KERN_SUCCESS) {
 mach_error("task_set_exception_port", r);
 exit(1);
 }

 /* Fork the thread that listens to the exception port. */
 cthread_detach(cthread_fork((cthread_fn_t)exc_thread,
 (any_t)&ports));
 /* Raise the exception. */
 ports.clear_port = thread_self();
 r = exception_raise(ports.exc_port, thread_reply(),
 ports.clear_port, task_self(), EXC_SOFTWARE, 0x20000, 6);

 if (r != KERN_SUCCESS)
 mach_error("catch_exception_raise didn't handle exception",
 r);
 else {
 mutex_lock(printing);

 printf("Successfully called exception_raise\n");
 mutex_unlock(printing);
 }
}

SEE ALSO exception_raise(), mach_NeXT_exception()

exception_raise()

SUMMARY Cause an exception to occur

SYNOPSIS #import <mach/mach.h>
#import <mach/exception.h>

kern_return_t exception_raise(port_t exception_port, port_t clear_port, port_t thread, port_t task, int exception, int
code, int subcode)

ARGUMENTS exception_port:    The exception port of the affected thread.    (If the thread doesn't have its own
exception port, then this should be the exception port of the task.)

clear_port:    The port to which a reply message should be sent from the exception handler.    If you don't care to see
the reply, you can use thread_reply().

thread:    The thread in which the exception condition occurred.    If the exception isn't thread-specific, then specify
THREAD_NULL.

task:    The task in which the exception condition occurred.

exception:    The type of exception that occurred; for example, EXC_SOFTWARE.    Values for this variable are
defined in the header file mach/exception.h.

code:    The exception code.    The meaning of this code depends on the value of exception.

subcode:    The exception subcode.    The meaning of this subcode depends on the values of exception and code.

DESCRIPTION This function causes an exception message to be sent to exception_port, which results in a call to the
exception handler.    Usually this function is used along with a user-defined exception handler.    (See exc_server()
and mach_NeXT_exception() for more information on user-defined exception handlers.)

You can obtain exception_port by calling thread_get_exception_port() or (if no thread exception port exists or the
exception affects the whole task) task_get_exception_port().

If you're defining your own type of exception, you must have exception equal to EXC_SOFTWARE and code equal
to or greater than 0x20000.

EXAMPLE /* Raise the exception. */
r = exception_raise(ports.exc_port, thread_reply(), thread_self(),
 task_self(), EXC_SOFTWARE, 0x20000, 6);
if (r != KERN_SUCCESS)
 mach_error("catch_exception_raise didn't handle exception", r);
else {
 /* Use mutex so only one thread at a time can call printf. */
 mutex_lock(printing);
 printf("Successfully called exception_raise\n");
 mutex_unlock(printing);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_FAILURE:    The exception handler didn't successfully deal with the exception.

KERN_INVALID_ARGUMENT:    One of the arguments wasn't valid.

SEE ALSO exc_server(), mach_NeXT_exception(), task_get_exception_port(), thread_get_exception_port()

host_info()

SUMMARY Get information about a host

SYNOPSIS #import <mach/mach.h>

kern_return_t host_info(host_t host, int flavor, host_info_t host_info, unsigned€int€*host_info_count)

ARGUMENTS host:    The host for which information is to be obtained.

flavor:    The type of statistics to be returned.    Currently HOST_BASIC_INFO, HOST_PROCESSOR_SLOTS, and
HOST_SCHED_INFO are implemented.

host_info:    Returns statistics about host.

host_info_count:    The number of integers in the info structure; returns the number of integers that Mach tried to fill
the info structure with.    For HOST_BASIC_INFO, you should set host_info_count to
HOST_BASIC_INFO_COUNT.    For HOST_PROCESSOR_SLOTS, you should set it to the maximum number of
CPUs (returned by HOST_BASIC_INFO).    For HOST_SCHED_INFO, set it to HOST_SCHED_INFO_COUNT.

DESCRIPTION Returns the selected information array for a host, as specified by flavor.    The host_info argument is an
array of integers that's supplied by the caller and returned filled with specified information.    The host_info_count
argument is supplied by the caller as the maximum number of integers in host_info (which can be larger than the
space required for the information).    On return, it contains the actual number of integers in host_info.

Warning:    This replaces the old host_info() call.    It isn't backwards compatible.

Basic information is defined by HOST_BASIC_INFO.    Its size is defined by HOST_BASIC_INFO_COUNT.   
Possible values of the cpu_type and cpu_subtype fields are defined in the header file mach/machine.h, which is
included in mach/mach.h.

struct host_basic_info {
 int max_cpus; /* maximum possible cpus for
 * which kernel is configured */
 int avail_cpus; /* number of cpus now available */
 vm_size_t memory_size; /* size of memory in bytes */
 cpu_type_t cpu_type; /* cpu type */
 cpu_subtype_t cpu_subtype; /* cpu subtype */
};
typedef struct host_basic_info *host_basic_info_t;

Processor slots of the active (available) processors are defined by HOST_PROCESSOR_SLOTS.    The size of this
information should be obtained from the max_cpus field of the structure returned by HOST_BASIC_INFO.   
HOST_PROCESSOR_SLOTS returns an array of integers, each of which is the slot number of a CPU.

Additional information of interest to schedulers is defined by HOST_SCHED_INFO.    The size of this information
is defined by HOST_SCHED_INFO_COUNT.

struct host_sched_info {
 int min_timeout; /* minimum timeout in milliseconds */
 int min_quantum; /* minimum quantum in milliseconds */
};

typedef struct host_sched_info *host_sched_info_t

EXAMPLE An example of using HOST_BASIC_INFO:

kern_return_t ret;
struct host_basic_info basic_info;
unsigned int count=HOST_BASIC_INFO_COUNT;

ret=host_info(host_self(), HOST_BASIC_INFO,
 (host_info_t)&basic_info, &count);
if (ret != KERN_SUCCESS)
 mach_error("host_info() call failed", ret);
else printf("This system has %d bytes of RAM.\n",
 basic_info.memory_size);

An example of using HOST_PROCESSOR_SLOTS (you also need to include the HOST_BASIC_INFO code above
so you can get max_cpus):

host_info_t slots;
unsigned int cpu_count, i;

cpu_count=basic_info.max_cpus;
slots=(host_info_t)malloc(cpu_count*sizeof(int));
ret=host_info(host_self(), HOST_PROCESSOR_SLOTS, slots,
 &cpu_count);
if (ret!=KERN_SUCCESS)
 mach_error("PROCESSOR host_info() call failed", ret);
else for (i=0; i<cpu_count; i++)
 printf("CPU %d is in slot %d.\n", i, *slots++);

An example of using HOST_SCHED_INFO:

kern_return_t ret;
struct host_sched_info sched_info;
unsigned int sched_count=HOST_SCHED_INFO_COUNT;

ret=host_info(host_self(), HOST_SCHED_INFO,
 (host_info_t)&sched_info, &sched_count);
if (ret != KERN_SUCCESS)
 mach_error("SCHED host_info() call failed", ret);
else
 printf("The minimum quantum is %d milliseconds.\n",
 sched_info.min_quantum);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    host is not a host, flavor is not recognized, or (for
HOST_PROCESSOR_SLOTS) *count is less than max_cpus.

KERN_FAILURE:    *count is less than HOST_BASIC_INFO_COUNT (when flavor is HOST_BASIC_INFO) or
HOST_SCHED_INFO_COUNT (for HOST_SCHED_INFO).

MIG_ARRAY_TOO_LARGE:    Returned info array is too large for host_info.    The host_info argument is filled as
much as possible, and host_info_count is set to the number of elements that would be returned if there were enough
room.

SEE ALSO host_kernel_version(), host_processors(), processor_info()

host_kernel_version()

SUMMARY Get kernel version information

SYNOPSIS #import <mach/mach.h>

kern_return_t host_kernel_version(host_t host, kernel_version_t version)

ARGUMENTS host:    The host for which information is being requested.

version:    Returns a character string describing the kernel version executing on host.

DESCRIPTION This function returns the version string compiled into host's kernel at the time it was built.    If you don't
use the kernel_version_t declaration, then you should allocate KERNEL_VERSION_MAX bytes for the version
string.

EXAMPLE kern_return_t ret;
kernel_version_t string;

ret=host_kernel_version(host_self(), string);
if (ret != KERN_SUCCESS)
 mach_error("host_kernel_version() call failed", ret);
else
 printf("Version string: %s\n", string);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    host was not a host.

KERN_INVALID_ADDRESS:    version points to inaccessible memory.

SEE ALSO host_info(), host_processors(), processor_info()

host_processor_set_priv()

SUMMARY Get the privileged port of a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t host_processor_set_priv(host_priv_t host_priv, processor_set_t€processor_set_name,
processor_set_t *processor_set)

ARGUMENTS host_priv:    The privileged host port for the desired host.

processor_set_name:    The name port of the processor set.

processor_set:    Returns the privileged port of the processor set.

DESCRIPTION This function returns send rights to the privileged port for the specified processor set.    This port is used
in calls that can affect other threads or tasks.    For example, processor_set_tasks() requires the privileged port
because it returns the port of every task on the system.

EXAMPLE kern_return_t error;
processor_set_t processor_set;
processor_set_t default_set;

error=processor_set_default(host_self(), &default_set);
if (error != KERN_SUCCESS)
 mach_error("Call to processor_set_default failed", error);

error=host_processor_set_priv(host_priv_self(), default_set,
 &processor_set);
if (error != KERN_SUCCESS)
 mach_error("Call to host_processor_set_priv failed; make sure
 you're superuser", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    host_priv was not a privileged host port, or processor_set_name didn't name a
valid processor set.

host_processor_sets()

SUMMARY Get the name ports of all processor sets on a host

SYNOPSIS #import <mach/mach.h>

kern_return_t host_processor_sets(host_t host, processor_set_name_array_t€*processor_set_list,
unsigned€int€*processor_set_count)

ARGUMENTS host:    The host port for the desired host.

processor_set_list:    Returns an array of processor sets currently existing on host; no particular ordering is
guaranteed.

processor_set_ count:    Returns the number of processor sets in the processor_set_list.

DESCRIPTION This function returns send rights to the name port for each processor set currently assigned to host.    The
host_processor_set_priv() function can be used to obtain the privileged ports from these if desired.    The
processor_set_list argument is an array that is created as a result of this call.    You should call vm_deallocate() on
this array when the data is no longer needed.

Note:    In single-processor systems, you can get the same information by calling processor_set_default().

EXAMPLE kern_return_t ret;
processor_set_name_array_t list;
unsigned int count;

ret=host_processor_sets(host_self(), &list, &count);
if (ret!=KERN_SUCCESS)
 mach_error("error calling host_processor_sets", ret);
else {
 /* . . . */
 ret=vm_deallocate(task_self(), (vm_address_t)list,
 sizeof(list)*count);
 if (ret!=KERN_SUCCESS)
 mach_error("error calling vm_deallocate", ret);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    host is not a host.

SEE ALSO host_processor_set_priv(), processor_set_create(), processor_set_tasks(), processor_set_threads(),
processor_set_default()

host_processors()

SUMMARY Get the processor ports for a host

SYNOPSIS #import <mach/mach.h>

kern_return_t host_processors(host_priv_t host_priv, processor_array_t€*processor_list, unsigned int
*processor_count)

ARGUMENTS host_priv:    Privileged host port for the desired host.

processor_list:    Returns the processors existing on host_priv; no particular ordering is€guaranteed.

processor_count:    Returns the number of processors in processor_list.

DESCRIPTION host_processors() gets send rights to the processor port for each processor existing on host_priv.    The
processor_list argument is an array that is created as a result of this call.    The caller may wish to call
vm_deallocate() on this array when the data is no longer needed.

EXAMPLE kern_return_t error;
processor_array_t list;
unsigned int count;

error=host_processors(host_priv_self(), &list, &count);
if (error!=KERN_SUCCESS){
 mach_error("error calling host_processors", error);
 exit(1);
}
/* . . . */
vm_deallocate(task_self(), (vm_address_t)list, sizeof(list)*count);
if (error!=KERN_SUCCESS)
 mach_error("Trouble freeing list", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    host_priv is not a privileged host port.

SEE ALSO processor_info(), processor_start(), processor_exit(), processor_control()

host_self(), host_priv_self()

SUMMARY Get the host port for this host

SYNOPSIS #import <mach/mach.h>

host_t host_self(void)
host_priv_t host_priv_self(void)

DESCRIPTION The host_self() function returns send rights to the host port for the host on which the call is executed.   
This port can be used only to obtain information about the host, not to control the host.

The host_priv_self() function returns send rights to the privileged host port for the host on which the call is
executed.    This port is used to control physical resources on that host and is only available to privileged tasks.   
PORT_NULL is returned if the invoker is not the UNIX superuser.

EXAMPLE /* Get the privileged port for the default processor set. */
error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS) {
 mach_error("Error calling processor_set_default()", error);
 exit(1);
}

error=host_processor_set_priv(host_priv_self(), default_set,
 &default_set_priv);
if (error!=KERN_SUCCESS) {
 mach_error("Call to host_processor_set_priv() failed", error);
 exit(1);
}

SEE ALSO host_processors(), host_info(), host_kernel_version()

mach_error(), mach_error_string()

SUMMARY Display or get a Mach error string

SYNOPSIS #import <mach/mach.h>
#import <mach/mach_error.h>

void mach_error(char *string, kern_return_t error)
char *mach_error_string(kern_return_t error)

ARGUMENTS string:    The string you want displayed before the Mach error string.

error:    The error value for which you want an error string.

DESCRIPTION The function mach_error() displays a message on stderr.    The message contains the string specified by
string, the string returned by mach_error_string(), and the actual error value (error).    Since mach_error() isn't
thread-safe, you might want to protect it with a mutex if you call it in a multiple-thread task.

The function mach_error_string() returns the string associated with error.

Note that because the error value specified by error is of type kern_return_t, these functions work only with Mach
functions.

EXAMPLE mutex_t printing;

main()
{
 kern_return_t error;
 port_t result;

 printing = mutex_alloc();

 /* . . . */
 if ((error=port_allocate(task_self(), &result)) != KERN_SUCCESS) {
 mutex_lock(printing);
 mach_error("Error calling port_allocate", error);
 mutex_unlock(printing);
 exit(1);
 }
 /* . . . */
}

mach_NeXT_exception(), mach_NeXT_exception_string()

SUMMARY Display or get a Mach exception string

SYNOPSIS #import <mach/mach.h>

void mach_NeXT_exception(char *string, int exception, int code, int subcode)
char *mach_NeXT_exception_string(int exception, int code, int subcode)

ARGUMENTS string:    The string you want displayed before the Mach exception string.

exception:    The exception value for which you want a string.

code:    The exception code.    How this is used depends on the value of exception.

subcode:    The exception subcode.    How this is used depends on the value of exception.

DESCRIPTION The function mach_NeXT_exception() displays a message on stderr.    The message contains the string
specified by string, then the string returned by mach_NeXT_exception_string(), and then the values of exception,

code, and subcode.    Since mach_NeXT_exception() isn't thread-safe, you might want to protect it with a mutex if
you call it in a multiple-thread task.

The function mach_NeXT_exception_string() returns the string associated with exception, code, and subcode.

EXAMPLE /*
 * catch_exception_raise() is called by exc_server(). The only
 * exception it can handle is EXC_SOFTWARE.
 */
kern_return_t catch_exception_raise(port_t exception_port,
 port_t thread, port_t task, int exception, int code, int subcode)
{
 if ((exception == EXC_SOFTWARE) && (code == 0x20000)) {
 /* Handle the exception so that the program can continue. */
 mutex_lock(printing);
 printf("Handling the exception\n");
 mutex_unlock(printing);
 return KERN_SUCCESS;
 }
 else { /* Pass the exception on to the old port. */
 pass_on = TRUE;
 mach_NeXT_exception("Forwarding exception", exception,
 code, subcode);
 return KERN_FAILURE; /* Couldn't handle this exception. */
 }
}

SEE ALSO exception_raise(), exc_server()

map_fd()

SUMMARY Map a file into virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t map_fd(int fd, vm_offset_t offset, vm_offset_t *address, boolean_t€find_space, vm_size_t size)

ARGUMENTS fd:    An open UNIX file descriptor for the file that's to be mapped.

offset:    The byte offset within the file, at which mapping is to begin.

address:    A pointer to an address in the calling process at which the mapped file should start.    This address, unlike
the offset, must be page-aligned.

find_space:    If true, the kernel will select an unused address range at which to map the file and return its value in
address.

size:    The number of bytes to be mapped.

DESCRIPTION The function map_fd() is a UNIX extension that's technically not part of Mach.    This function causes
size bytes of data starting at offset in the file specified by fd to be mapped into the virtual memory at the address
specified by address.    If find_space is true, the input value of address can be null, and the kernel will find an
unused piece of virtual memory to use.    (You should free this space with vm_deallocate() when you no longer need
it.)    If you provide a value for address, it must be page-aligned and at least size bytes long.    The sum of offset and
size must not exceed the length of the file.

Memory mapping doesn't cause I/O to take place.    When specific pages are first referenced, they cause page faults
that bring in the data.    The mapped memory is copy-on-write.    Modified data is returned to the file only by a
write() call.

EXAMPLE kern_return_t r;

int fd;
char *memfile, *filename = "/tmp/myfile";

/* Open the file. */
fd = open(filename, O_RDONLY);

/* Map part of it into memory. */
r = map_fd(fd, (vm_offset_t)0, &(vm_offset_t)memfile, TRUE,
 (vm_size_t)5);
if (r != KERN_SUCCESS)
 mach_error("Error calling map_fd()", r);
else
 printf("Second character in %s is: %c\n", filename, memfile[1]);

RETURN KERN_SUCCESS:    The data was mapped successfully.

KERN_INVALID_ADDRESS:    address wasn't valid.

KERN_INVALID_ARGUMENT:    An invalid argument was passed.

msg_receive()

SUMMARY Receive a message

SYNOPSIS #import <mach/mach.h>
#import <mach/message.h>

msg_return_t msg_receive(msg_header_t *header, msg_option_t option, msg_timeout_t€timeout)

ARGUMENTS header:    The address of a buffer in which the message is to be received.    Two fields of the message
header must be set before the call is made:    msg_local_port must be set to the value of the port from which the
message is to be received, and msg_size must be set to the maximum size of the message that may be received.   
This maximum size must be less than or equal to the size of the buffer.

option:    The failure conditions under which msg_receive() should terminate.    The value of this argument is a
combination (using the bitwise OR operator) of the following options.    Unless one of these values is explicitly
specified, msg_receive() does not return until a message has been received.

RCV_TIMEOUT:    Specifies that msg_receive() should return when the specified timeout elapses if a message
has not arrived by that time; if not specified, the timeout will be ignored (that is, it will be infinite).

RCV_INTERRUPT:    Specifies that msg_receive() should return when a software interrupt occurs in this thread.

RCV_LARGE:    Specifies that msg_receive() should return without dequeuing a message if the next message in
the queue is larger than header.msg_size.    (Normally, a message that is too large is dequeued and lost.)    You
can use this option to dynamically determine how large your message buffer must be.

Use MSG_OPTION_NONE to specify that none of the above options is desired.

timeout:    If RCV_TIMEOUT is specified in option, then timeout is the maximum time in milliseconds to wait for a
message before giving up.

DESCRIPTION The function msg_receive() retrieves the next message from the port or port set specified in the
msg_local_port field of header.    If a port is specified, the port must not be a member of a port set.

If a port set is specified, then msg_receive() will retrieve messages sent to any of the set's€member ports.    Mach
sets the msg_local_port field to the specific port on which the€message was found.    It's not an error for the port set
to have no members, or for members to be added and removed from a port set while a msg_receive() on the port set
is€in progress.

The message consists of its header, followed by a variable amount of data; the message header supplied to

msg_receive() must specify (in msg_size) the maximum size of the message that can be received into the buffer
provided.

If no messages are present on the port(s) in question, msg_receive() will wait until a message arrives, or until one of
the specified termination conditions is met (see the description of the option argument for this function).

If the message is successfully received, then msg_receive() sets the msg_size field of the header to the size of the
received message.    If the RCV_LARGE option was set and msg_receive() returned RCV_TOO_LARGE, then the
msg_size field is set to the size of the message that was too large.

If the received message contains out-of-line data (that is, data for which the msg_type_inline attribute was specified
as false), the data will be returned in a newly allocated region of memory; the message body will contain a pointer to
that new region.    You should deallocate this memory when the data is no longer needed.    See the vm_allocate()
call for a description of the state of newly allocated memory.

See Chapter 2, ªUsing Mach Messages,º for information on setting up messages and on writing Mach servers.

EXAMPLE msg_header_t *imsg, header;

/* Wait for messages. */
while (1) {
 /* Set up the message structure. */
 header.msg_size = sizeof header;
 header.msg_local_port = receive_port;

 /* Get the next message on the queue. */
 r = msg_receive(&header, RCV_LARGE, 0);

 /* If the message is too big ... */
 if (r==RCV_TOO_LARGE) {
 /* ... allocate a structure for it ... */
 imsg = (msg_header_t *)malloc(header.msg_size);
 /* ... initialize the structure ... */
 imsg->msg_size = header.msg_size;
 imsg->msg_local_port = receive_port;
 /* ... and get the message. */
 r = msg_receive(imsg, MSG_OPTION_NONE, 0);
 }

 if (r==RCV_SUCCESS) {
 /* Handle the message. */
 }
 else { /* msg_receive() returned an error. */
 mach_error("msg_receive", r);
 exit(3);
 }
}

RETURN RCV_SUCCESS:    The message has been received.

RCV_INVALID_MEMORY:    The message specified was not writable by the calling task.

RCV_INVALID_PORT:    An attempt was made to receive on a port to which the calling task does not have the
proper access, or which was deallocated (see port_deallocate()) while waiting for a message.

RCV_TOO_LARGE:    The message header and body combined are larger than the size specified by msg_size.   
Unless the RCV_LARGE option was set, the message has been dequeued and lost.    If the RCV_LARGE option
was specified, then Mach sets msg_size to the size of the message that was too large and leaves the message at the
head of the queue.

RCV_NOT_ENOUGH_MEMORY:    The message to be received contains more out-of-line data than can be
allocated in the receiving task.

RCV_TIMED_OUT:    The message was not received after timeout milliseconds.

RCV_INTERRUPTED:    A software interrupt occurred and the RCV_INTERRUPT option was specified.

RCV_PORT_CHANGE:    The port specified was added to a port set during the duration of the msg_receive() call.

msg_rpc()

SUMMARY Send and receive a message

SYNOPSIS #import <mach/mach.h>
#import <mach/message.h>

msg_return_t msg_rpc(msg_header_t *header, msg_option_t option, msg_size_t€rcv_size, msg_timeout_t
send_timeout, msg_timeout_t rcv_timeout)

ARGUMENTS header:    Address of a message buffer that will be used for both msg_send() and msg_receive().    This
buffer contains a message header followed by the data for the message to be sent.    The msg_remote_port field
specifies the port to which the message is to be sent.    The msg_local_port field specifies the port on which a
message is then to be received; if this port is the special value PORT_DEFAULT, it gets replaced by the value
PORT_NULL for the purposes of the msg_send() operation.

option:    A union of the option arguments for the send and receive (see msg_send() and msg_receive()).

rcv_size:    The maximum size allowed for the received message; this must be less than or equal to the size of the
message buffer.    The msg_size field in the header specifies the size of the message to be sent.

send_timeout, rcv_timeout:    The timeout values to be applied to the component operations.    These are used only if
the option SEND_TIMEOUT or RCV_TIMEOUT is specified.

DESCRIPTION The function msg_rpc() is a hybrid call that performs a msg_send() followed by a msg_receive(), using
the same message buffer.    Because of the order of the send and receive, this function is appropriate for clients of
Mach servers.    However, the msg_rpc() call to a Mach server is usually performed by MiG-generated code, not by
handwritten code.

See Chapter 2, ªUsing Mach Messages,º for information on setting up messages and on writing Mach servers.

RETURN RPC_SUCCESS:    The message was successfully sent and a reply was received.

Other possible values are the same as those for msg_send() and msg_receive(); any error during the msg_send()
portion will terminate the call.

msg_send()

SUMMARY Send a message

SYNOPSIS #import <mach/mach.h>
#import <mach/message.h>

msg_return_t msg_send(msg_header_t *header, msg_option_t option, msg_timeout_t€timeout)

ARGUMENTS header:    The address of the message to be sent.    A message consists of a fixed-size header followed by
a variable number of data descriptors and data items.    See the header file mach/message.h for a definition of the
message structure.

option:    The failure conditions under which msg_send() should terminate.    The value of this argument is a
combination (using the bitwise OR operator) of the following options.    Unless one of these values is explicitly
specified, msg_send() does not return until the message is successfully queued for the intended receiver.

SEND_TIMEOUT:    Specifies that the msg_send() request should terminate after the timeout period has
elapsed, even if the kernel has been unable to queue the message.

SEND_NOTIFY:    Allows the sender to send exactly one message without being suspended even if the
destination port is full.    When that message can be posted to the receiving port queue, this task receives a
message that notifies it that another message can be sent.    If the sender tries to send a second message with this
option to the same port before the first notification arrives, the result is an error.    If both SEND_NOTIFY and
SEND_TIMEOUT are specified, msg_send() will wait until the specified timeout has elapsed before invoking
the SEND_NOTIFY option.

SEND_INTERRUPT:    Specifies that msg_send() should return if a software interrupt occurs in this thread.

Use MSG_OPTION_NONE to specify that none of the above options is wanted.

timeout:    If the destination port is full and the SEND_TIMEOUT option has been specified, this value specifies the
maximum wait time (in milliseconds).

DESCRIPTION The function msg_send() transmits a message from the current task to the port specified in the message
header field.    The message consists of its header, followed by a variable number of data descriptors and data items.

If the msg_local_port field isn't set to PORT_NULL, send rights to that port will be passed to the receiver of this
message.    The receiver task can use that port to send a reply to this message.

If the SEND_NOTIFY option is used and this call returns a SEND_WILL_NOTIFY code, you can expect to receive
a notify message from the kernel.    This message will be either a NOTIFY_MSG_ACCEPTED or a
NOTIFY_PORT_DELETED message, depending on what happened to the queued message.    The notify_port field
in these messages is the port to which the original message was sent.    The formats for these messages are defined in
the header file sys/notify.h.

See Chapter 2, ªUsing Mach Messages,º for information on setting up messages and on writing Mach servers.

EXAMPLE /* From the handwritten part of a Mach server... */
while (TRUE)
{
 /* Receive a request from a client. */
 msg.head.msg_local_port = port;
 msg.head.msg_size = sizeof(struct message);
 ret = msg_receive(&msg.head, MSG_OPTION_NONE, 0);
 if (ret != RCV_SUCCESS) /* ignore errors */;

 /* Feed the request into the server. */
 (void)add_server(&msg, &reply);

 /* Send a reply to the client. */
 reply.head.msg_local_port = port;
 ret = msg_send(&reply.head, MSG_OPTION_NONE, 0);
 if (ret != SEND_SUCCESS) /* ignore errors */;
}

RETURN SEND_SUCCESS:    The message has been queued for the destination port.

SEND_INVALID_MEMORY:    The message header or body was not readable by the calling task, or the message
body specified out-of-line data that was not readable.

SEND_INVALID_PORT:    The message refers either to a port for which the current task does not have access, or to
which access was explicitly removed from the current task (see port_deallocate()) while waiting for the message to
be posted, or a msg_type_name field in the message specifies rights that the name doesn't denote in the task (for
example, specifying MSG_TYPE_SEND and supplying a port set name).

SEND_TIMED_OUT:    The message was not sent since the destination port was still full after timeout milliseconds.

SEND_WILL_NOTIFY:    The destination port was full but the SEND_NOTIFY option was specified.    A
notification message will be sent when the message can be posted.

SEND_NOTIFY_IN_PROGRESS:    The SEND_NOTIFY option was specified but a notification request is already
outstanding for this thread and given destination port.

port_allocate()

SUMMARY Create a port

SYNOPSIS #import <mach/mach.h>

kern_return_t port_allocate(task_t task, port_name_t *port_name)

ARGUMENTS task:    The task in which the new port is created (for example, use task_self() to specify the caller's task).

port_name:    Returns the name used by task for the new port.

DESCRIPTION The function port_allocate() causes a port to be created for the specified task; the resulting port is
returned in port_name.    The target task initially has both send and receive rights to the port.    The new port isn't a
member of any port set.

EXAMPLE port_t myport;
kern_return_t error;

if ((error=port_allocate(task_self(), &myport)) != KERN_SUCCESS) {
 mach_error("port_allocate failed", error);
 exit(1);
}

RETURN KERN_SUCCESS:    A port has been allocated.

KERN_INVALID_ARGUMENT:    task was invalid.

KERN_RESOURCE_SHORTAGE:    No more port slots are available for this task.

SEE ALSO port_deallocate()

port_deallocate()

SUMMARY Deallocate a port

SYNOPSIS #import <mach/mach.h>

kern_return_t port_deallocate(task_t task, port_name_t port_name)

ARGUMENTS task:    The task that wants to relinquish rights to the port (for example, use task_self() to specify the
caller's task).

port_name: The name that task uses for the port to be deallocated.

DESCRIPTION The function port_deallocate() requests that the target task's access to a port be relinquished.

If task has receive rights for the port and the port doesn't have a backup port, these things happen:

· The port is destroyed.
· All other tasks with send access to the port are notified of its destruction.
· If the port is a member of a port set, it's removed from the port set.

If task has receive rights for the port and the port does have a backup port, then the following things happen:

· If the port is a member of a port set, it's removed from the port set.

· Send and receive rights for the port are sent to the backup port in a notification message (see
port_set_backup()).

EXAMPLE port_t my_port;
kern_return_t error;

/* . . . */

error=port_deallocate(task_self(), my_port);
if (error != KERN_SUCCESS) {
 mach_error("port_deallocate failed", error);
 exit(1);
}

RETURN KERN_SUCCESS:    The port has been deallocated.

KERN_INVALID_ARGUMENT:    task was invalid or port_name doesn't name a valid€port.

SEE ALSO port_allocate()

port_extract_receive(), port_extract_send()

SUMMARY Remove access rights to a port and return them to the caller

SYNOPSIS #import <mach/mach.h>

kern_return_t port_extract_receive(task_t task, port_name_t its_name, port_t€*its_port)
kern_return_t port_extract_send(task_t task, port_name_t its_name, port_t€*its_port)

ARGUMENTS task:    The task whose rights the caller takes.

its_name:    The name by which task knows the port.

its_port:    Returns the receive or send rights.

DESCRIPTION The functions port_extract_receive() and port_extract_send() remove the port access rights that task
has for a port and return the rights to the caller.    This leaves task with no rights for the port.

The port_extract_send() function extracts send rights; task can't have receive rights for the named port.    The
port_extract_receive() function extracts receive rights.

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    task was invalid or its_name doesn't name a port for which task has the required
rights.

SEE ALSO port_insert_send(), port_insert_receive()

port_insert_receive(), port_insert_send()

SUMMARY Give a task rights with a specific name

SYNOPSIS #import <mach/mach.h>

kern_return_t port_insert_receive(task_t task, port_t my_port, port_name_t€its_name)

kern_return_t port_insert_send(task_t task, port_t my_port, port_name_t its_name)

ARGUMENTS task:    The task getting the new rights.

my_port:    Rights supplied by the caller.

its_name:    The name by which task will know the new rights.

DESCRIPTION The functions port_insert_receive() and port_insert_send() give a task rights with a specific name.    If
task already has rights named its_name, or has some other name for my_port, the operation will fail.    The its_name
argument can't be a predefined port, such as€PORT_NULL.

The port_insert_send() function inserts send rights, and port_insert_receive() inserts receive rights.

RETURN KERN_SUCCESS:    The call succeeded.

KERN_NAME_EXISTS:    task already has a right named its_name.

KERN_FAILURE:    task already has rights to my_port.

KERN_INVALID_ARGUMENT:    task was invalid or its_name was an invalid name.

SEE ALSO port_extract_send(), port_extract_receive()

port_names()

SUMMARY Get information about the port name space of a task

SYNOPSIS #import <mach/mach.h>

kern_return_t port_names(task_t task, port_name_array_t *port_names, unsigned€int€*port_names_count,
port_type_array_t *port_types, unsigned€int€*port_types_count)

ARGUMENTS task:    The task whose port name space is queried.

port_names:    Returns the names of the ports and port sets in the port name space of task, in no particular order.

port_names_count:    Returns the number of names returned.

port_types:    Returns the type of each corresponding name.    This indicates what kind of rights the task holds for the
port, or whether the name refers to a port set.    The type is one of the following:    PORT_TYPE_SEND (send rights
only), PORT_TYPE_RECEIVE_OWN (send and receive rights), PORT_TYPE_SET (the port is a port set).

port_types_count:    Returns the same value as port_names_count.

DESCRIPTION The function port_names() returns information about the port name space of task.    It returns the port
and port set names that are currently valid for task.    For each name, it also returns what type of rights task holds.

The port_names and port_types arguments are arrays that are automatically allocated when the reply message is
received.    You should use vm_deallocate() on them when the data is no longer needed.

EXAMPLE kern_return_t error;
port_name_array_t names;
unsigned int names_count, types_count;
port_type_array_t types;

error=port_names(task_self(), &names, &names_count, &types,
 &types_count);
if (error != KERN_SUCCESS) {
 mach_error("port_rename returned value of ", error);

 exit(1);
}
/* . . . */
error=vm_deallocate(task_self(), (vm_address_t)names,
 sizeof(names)*names_count);
if (error != KERN_SUCCESS)
 mach_error("Trouble freeing names", error);

error=vm_deallocate(task_self(), (vm_address_t)types,
 sizeof(names)*types_count);
if (error != KERN_SUCCESS)
 mach_error("Trouble freeing types", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    task was invalid.

SEE ALSO port_type(), port_status(), port_set_status()

port_rename()

SUMMARY Change the name by which a port or port set is known to a task

SYNOPSIS #import <mach/mach.h>

kern_return_t port_rename(task_t task, port_name_t old_name, port_name_t€new_name)

ARGUMENTS task:    The task whose port name space is changed.

old_name:    The current name of the port or port set.

new_name:    The new name for the port or port set.

DESCRIPTION The function port_rename() changes the name by which a port or port set is known to task.    The port
name specified in new_name must not already be in use, and it can't be a predefined port, such as PORT_NULL.   
Currently, a name is a small integer.

One way to guarantee that a name isn't already in use is to deallocate a port and then use its name as new_name.   
Another way is to check all the existing names, using port_names(), before you call port_rename().    If you choose
another naming scheme, you should be prepared to try another name if port_rename() returns a
KERN_NAME_EXISTS error.

EXAMPLE #define MY_PORT (port_name_t)99

port_name_t my_port;
kern_return_t error;

error=port_allocate(task_self(),&my_port);
if (error != KERN_SUCCESS) {
 mach_error("port_allocate failed", error);
 exit(1);
}

error=port_rename(task_self(), my_port, MY_PORT);
if (error == KERN_NAME_EXISTS)
 /* try again with a different name */;
else if (error != KERN_SUCCESS) {
 mach_error("port_rename failed", error);
 exit(1);
 }

RETURN KERN_SUCCESS:    The call succeeded.

KERN_NAME_EXISTS:    task already has a port or port set named new_name.

KERN_INVALID_ARGUMENT:    task was invalid, or task didn't know any ports or port sets named old_name, or
new_name was an invalid name.

SEE ALSO port_names()

port_set_add()

SUMMARY Move the named port into the named port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_add(task_t task, port_set_name_t set_name, port_name_t€port_name)

ARGUMENTS task:    The task that has receive rights for the port set and port.

set_name:    task's name for the port set.

port_name:    task's name for the port.

DESCRIPTION The function port_set_add() moves the named port into the named port set.    The task must have receive
rights for the port.    If the port is already a member of another port set, it's removed from that set first.

EXAMPLE kern_return_t error;
port_set_name_t set_name;
port_t my_port;

error=port_set_allocate(task_self(),&set_name);
if (error != KERN_SUCCESS) {
 mach_error("port_set_allocate failed", error);
 exit(1);
}

error=port_allocate(task_self(),&my_port);
if (error != KERN_SUCCESS) {
 mach_error("port_allocate failed", error);
 exit(1);
}

error=port_set_add(task_self(), set_name, my_port);
if (error != KERN_SUCCESS) {
 mach_error("port_allocate failed", error);
 exit(1);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_NOT_RECEIVER:    task doesn't have receive rights for the port.

KERN_INVALID_ARGUMENT:    task was invalid, or set_name doesn't name a valid port set, or port_name
doesn't name a valid port.

SEE ALSO port_set_remove()

port_set_allocate()

SUMMARY Create a port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_allocate(task_t task, port_set_name_t *set_name)

ARGUMENTS task:    The task in which the new port set is created.

set_name:    Returns task's name for the new port set.

DESCRIPTION The function port_set_allocate() causes a port set to be created for the specified task; the resulting set's
name is returned in set_name.    The new port set is empty.

EXAMPLE kern_return_t error;
port_set_name_t set_name;

error=port_set_allocate(task_self(),&set_name);
if (error != KERN_SUCCESS) {
 mach_error("port_set_allocate failed", error);
 exit(1);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    task was invalid.

KERN_RESOURCE_SHORTAGE:    The kernel ran out of memory.

SEE ALSO port_set_deallocate(), port_set_add()

port_set_backlog()

SUMMARY Set the size of the port queue

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_backlog(task_t task, port_name_t port_name, int backlog)

ARGUMENTS task:    The task that has receive rights for the named port (for example, use task_self() to specify the
caller's task).

port_name:    task's name for the port.

backlog:    The new backlog to be set.

DESCRIPTION The function port_set_backlog() changes the backlog value on the specified port (the port's backlog
value is the number of unreceived messages that are allowed in its message queue before the kernel will refuse to
accept any more sends to that port).

The task specified by task must have receive rights for the named port.

The maximum backlog value is the constant PORT_BACKLOG_MAX.    You can get a port's current backlog value
by calling port_status().

EXAMPLE #define MY_BACKLOG 10

kern_return_t error;
port_t my_port;

error=port_allocate(task_self(),&my_port);
if (error != KERN_SUCCESS) {
 mach_error("port_allocate failed", error);

 exit(1);
}

error=port_set_backlog(task_self(), my_port, MY_BACKLOG);
if (error!=KERN_SUCCESS)
 mach_error("Call to port_set_backlog failed", error);

RETURN KERN_SUCCESS:    The backlog value has been changed.

KERN_NOT_RECEIVER:    task doesn't have receive rights for the port.

KERN_INVALID_ARGUMENT:    task was invalid, or port_name doesn't name a valid port, or the desired backlog
wasn't greater than 0, or the desired backlog was greater than PORT_BACKLOG_MAX.

SEE ALSO msg_send(), port_status()

port_set_backup()

SUMMARY Set the backup port for a port

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_backup(task_t task, port_name_t port_name, port_t backup, port_t *previous)

ARGUMENTS task:    The task that has receive rights for the named port (for example, use task_self() to specify the
caller's task).

port_name:    task's name for the port right.

backup:    The new backup port.    If you want to disable the current backup port without setting a new one, set this to
PORT_NULL.

previous:    Returns the previous backup port.

DESCRIPTION Use this function to keep a port alive despite its being deallocated by its receiver.    If the call to
port_set_backup() is successful, then whenever port_name is deallocated by its receiver, backup will receive a
notification message with receive and send rights for port_name.    As far as task is concerned, the port will be
deleted; however, as far as senders to the port are concerned, the port will continue to exist.

To let a port die naturally after its backup port has been set, call port_set_backup() on it with backup set to
PORT_NULL.

EXAMPLE kern_return_t error;
port_t my_port, backup_port, previous_port;

error=port_allocate(task_self(),&my_port);
if (error != KERN_SUCCESS) {
 mach_error("port_allocate failed", error);
 exit(1);
}

error=port_allocate(task_self(),&backup_port);
if (error != KERN_SUCCESS) {
 mach_error("port_allocate failed", error);
 exit(1);
}

error=port_set_backup(task_self(), my_port, backup_port,
 &previous_port);
if (error!=KERN_SUCCESS)
 mach_error("Call to port_set_backlog failed", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    task was invalid, or port_name doesn't name a valid€port.

KERN_NOT_RECEIVER:    task doesn't have receive rights for port_name.

port_set_deallocate()

SUMMARY Destroy a port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_deallocate(task_t task, port_set_name_t set_name)

ARGUMENTS task:    The task that has receive rights for the port set to be destroyed.

set_name:    task's name for the doomed port set.

DESCRIPTION The function port_set_deallocate() requests that the port set of task be destroyed.    If the port set isn't
empty, any members are first removed.

EXAMPLE kern_return_t error;
port_set_name_t set_name;

error=port_set_deallocate(task_self(),set_name);
if (error != KERN_SUCCESS) {
 mach_error("port_set_deallocate failed", error);
 exit(1);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    task was invalid or set_name doesn't name a valid port set.

SEE ALSO port_set_allocate()

port_set_remove()

SUMMARY Remove the named port from a port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_remove(task_t task, port_name_t port_name)

ARGUMENTS task:    The task that has receive rights for the port and port set.

port_name:    task's name for the receive rights to be removed.

DESCRIPTION The function port_set_remove() removes the named port from a port set.    The task must have receive
rights for the port, and the port must be a member of a port set.

EXAMPLE error=port_set_remove(task_self(), my_port);
if (error != KERN_SUCCESS) {
 mach_error("port_set_remove failed", error);
 exit(1);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_NOT_RECEIVER:    task doesn't have receive rights for the port.

KERN_NOT_IN_SET:    The port isn't a member of a set.

KERN_INVALID_ARGUMENT:    task was invalid or port_name doesn't name a valid€port.

SEE ALSO port_set_add()

port_set_status()

SUMMARY Get the members of a port set

SYNOPSIS #import <mach/mach.h>

kern_return_t port_set_status(task_t task, port_set_name_t set_name, port_name_array_t€*members, unsigned int
*members_count)

ARGUMENTS task:    The task whose port set is queried.

set_name:    task's name for the port set.

members:    Returns task's names for the members of its port set.

members_count:    Returns the number of port names in members.

DESCRIPTION The function port_set_status() returns a list of the ports in a port set.    The members argument is an
array that's automatically allocated when the reply message is received.    You€should use vm_deallocate() on it
when the data is no longer needed.

EXAMPLE error=port_set_status(task_self(), set_name, &members,
 &members_count);
if (error != KERN_SUCCESS) {
 mach_error("port_set_status failed", error);
 exit(1);
}

/* . . . */
error=vm_deallocate(task_self(), (vm_address_t)members,
 sizeof(members)*members_count);
if (error != KERN_SUCCESS)
 mach_error("Trouble freeing members", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    task was invalid or set_name doesn't name a valid port€set.

SEE ALSO port_status()

port_status()

SUMMARY Examine a port's current status

SYNOPSIS #import <mach/mach.h>

kern_return_t port_status(task_t task, port_name_t port_name, port_set_name_t€*port_set_name, int *num_msgs,
int *backlog, boolean_t€*owner, boolean_t€*receiver)

ARGUMENTS task:    The task that has receive rights for the port in question (for example, use task_self() to specify the
caller's task).

port_name:    task's name for the port right.

port_set_name:    Returns task's name for the port set that the named port belongs to, or PORT_NULL if it isn't in a
set.

num_msgs:    Returns the number of messages queued on this port.    If task isn't the port's receiver, the number of
messages will be returned as negative.

backlog:    Returns the number of messages that can be queued to this port without causing the sender to block.

owner:    Returns the same value as receiver, since ownership rights and receive rights aren't€separable.

receiver:    Returns true if task has receive rights to port_name; otherwise, returns false.

DESCRIPTION The function port_status() returns the current port status associated with port_name.

EXAMPLE error=port_status(task_self(), my_port, &port_set_name, &num_msgs,
 &backlog, &owner, &receiver);
if (error!=KERN_SUCCESS)
 mach_error("Call to port_status failed", error);

RETURN KERN_SUCCESS:    The data has been retrieved.

KERN_INVALID_ARGUMENT:    task was invalid or port_name doesn't name a valid€port.

SEE ALSO port_set_backlog(), port_set_status()

port_type()

SUMMARY Determine the access rights of a task for a specific port name

SYNOPSIS #import <mach/mach.h>

kern_return_t port_type(task_t task, port_name_t port_name, port_type_t *port_type)

ARGUMENTS task:    The task whose port name space is queried.

port_name:    The name being queried.

port_type:    Returns a value that indicates what kind of rights the task holds for the port, or€whether the name refers
to a port set.    This value is one of the following:    PORT_TYPE_SEND (send rights only),
PORT_TYPE_RECEIVE_OWN (send and receive rights), PORT_TYPE_SET (the port is a port set).

DESCRIPTION The function port_type() returns information about task's rights for a specific name in its port name
space.

EXAMPLE error=port_type(task_self(), port, &type);
if (error != KERN_SUCCESS)
 mach_error("Couldn't get type of port", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    task was invalid or task didn't have any rights named port_name.

SEE ALSO port_names(), port_status(), port_set_status()

processor_assign(), processor_control(), processor_exit(), processor_get_assignment(),
processor_start()

SUMMARY Control a processor

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_assign(processor_t processor, processor_set_t€new_processor_set, boolean_t wait)
kern_return_t processor_control(processor_t processor, processor_info_t info, long€*count)
kern_return_t processor_exit(processor_t processor)
kern_return_t processor_get_assignment(processor_t processor, processor_set_t€*processor_set)
kern_return_t processor_start(processor_t processor)

DESCRIPTION processor_assign() changes the processor set to which processor is assigned.    processor_control()
returns information about processor.    processor_exit() shuts down€processor.    processor_get_assignment()
returns the processor set to which processor is assigned.    processor_start() starts up processor.

Note:    These functions are useful only on multiprocessor systems.

processor_info()

SUMMARY Get information about a processor

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_info(processor_t processor, int flavor, host_t *host, processor_info_t processor_info,
unsigned int *processor_info_count)

ARGUMENTS processor:    The processor for which information is to be obtained.

flavor:    The type of information that is wanted.    Currently only PROCESSOR_BASIC_INFO is implemented.

host:    Returns the non-privileged host port for the host on which the processor resides.

processor_info:    Returns information about the processor specified by processor.

processor_info_count:    Size of the info structure.    Should be PROCESSOR_BASIC_INFO_COUNT when flavor
is PROCESSOR_BASIC_INFO.

DESCRIPTION Returns the selected information array for a processor, as specified by flavor.    The processor_info
argument is an array of integers that is supplied by the caller and filled with specified information.    The
processor_info_count argument is supplied as the maximum number of integers in processor_info.    On return, it
contains the actual number of integers in processor_info.

Basic information is defined by PROCESSOR_BASIC_INFO.    The size of this information is defined by
PROCESSOR_BASIC_INFO_COUNT.    The data structures used by PROCESSOR_BASIC_INFO are defined in
the header file mach/processor_info.h.    Possible values of the cpu_type and cpu_subtype fields are defined in the
header file mach/machine.h.

typedef int *processor_info_t; /* variable length array of int */

/* one interpretation of info is */
struct processor_basic_info {
 cpu_type_t cpu_type; /* cpu type */
 cpu_subtype_t cpu_subtype; /* cpu subtype */
 boolean_t running; /* is processor running? */
 int slot_num; /* slot number */
 boolean_t is_master; /* is this the master processor */

};

typedef struct processor_basic_info *processor_basic_info_t;

EXAMPLE kern_return_t error;
host_t host;
unsigned int list_size, info_count;
struct processor_basic_info info;
processor_array_t list;

/* Get the processor port. */
error=host_processors(host_priv_self(), &list, &list_size);
if ((error!=KERN_SUCCESS) || (list_size < 1)){
 mach_error("Error calling host_processors (are you root?)",
 error);
 exit(1);
}

/* Get information about the processor. */
info_count=PROCESSOR_BASIC_INFO_COUNT;
error=processor_info(list[0], PROCESSOR_BASIC_INFO, &host,
 (processor_info_t)&info, &info_count);
if (error != KERN_SUCCESS)
 mach_error("Error calling processor_info", error);

/* Now that we're done with the processor port, free it. */
vm_deallocate(task_self(), (vm_address_t)list,
 sizeof(list)*list_size);
if (error!=KERN_SUCCESS)
 mach_error("Trouble freeing list", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    processor isn't a known processor.

MIG_ARRAY_TOO_LARGE:    Returned info array is too large for processor_info.    The processor_info argument
is filled as much as possible, and processor_info_count is set to the number of elements that would be returned if
there were enough room.

KERN_FAILURE:    flavor isn't recognized or processor_info_count is too small.

SEE ALSO processor_start(), processor_exit(), processor_control(), host_processors()

processor_set_create()

SUMMARY Create a new processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_create(host_t host, port_t *new_set, port_t *new_name)

DESCRIPTION This function creates a new processor set on host.

Note:    This function is useful only on multiprocessor systems.

processor_set_default()

SUMMARY Get the port of the default processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_default(host_t host, processor_set_t *default_set)

ARGUMENTS host:    The host whose default processor set is requested.

default_set:    Returns the name (nonprivileged) port for the default processor set.

DESCRIPTION The default processor set is used by all threads, tasks, and processors that aren't explicitly assigned to
other sets.    This function returns a port that can be used to obtain information about this set (for example, how
many threads are assigned to it).    This port isn't privileged and thus can't be used to perform operations on that set;
call host_processor_set_priv() after processor_set_default() to get the privileged port.

EXAMPLE error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS){
 mach_error("Error calling processor_set_default", error);
 exit(1);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    host is not a host.

SEE ALSO processor_set_info(), task_assign(), thread_assign()

processor_set_destroy()

SUMMARY Delete a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_destroy(processor_set_t processor_set)

DESCRIPTION This function destroys processor_set, reassigning all of its tasks, threads, and processors to the default
processor set.

Note:    This function is useful only on multiprocessor systems.

processor_set_info()

SUMMARY Get information about a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_info(processor_set_t processor_set, int flavor, host_t€*host, processor_set_info_t
processor_set_info, unsigned€int€*processor_set_info_count)

ARGUMENTS processor_set:    The processor set for which information is to be obtained.

flavor:    The type of information that is wanted.    Should be PROCESSOR_SET_BASIC_INFO or
PROCESSOR_SET_SCHED_INFO.

host:    Returns the nonprivileged host port for the host on which the processor set resides.

processor_set_info:    Returns information about the processor set specified by processor_set.

processor_set_info_count:    Size of the info structure.    Should be PROCESSOR_SET_BASIC_INFO_COUNT
when flavor is PROCESSOR_SET_BASIC_INFO, and PROCESSOR_SET_SCHED_INFO_COUNT when flavor
is PROCESSOR_SET_SCHED_INFO.

DESCRIPTION Returns the selected information array for a processor set, as specified by flavor.    The
processor_set_info argument is an array of integers that is supplied by the caller, and filled with specified
information.    The processor_set_info_count argument is supplied as the maximum number of integers in
processor_set_info.    On return, it contains the actual number of integers in processor_set_info.

Basic information is defined by PROCESSOR_SET_BASIC_INFO.    The size of this information is defined by
PROCESSOR_SET_BASIC_INFO_COUNT.    The load_average and mach_factor fields are scaled by the
constant LOAD_SCALE (that is,€the integer value returned is the load average or Mach factor multiplied by
LOAD_SCALE).

The Mach factor, like the UNIX load average, is a measurement of how busy the system is.    Unlike the load
average, higher Mach factors mean that the system is less busy.    The Mach factor tells you how much of a CPU you
have available for running an application.    For example, on a single-processor system with one job running, the
Mach factor is 0.5; this means if another job starts running it will get half of the CPU.    (Two jobs will be running,
each getting half the CPU.)    On a single-processor system, the Mach factor is between zero and one.    On a
multiprocessor system, the Mach factor can go over one.    For example, a three-processor system with one job
running has a Mach factor of 2.0, since two processors are available to new jobs.

struct processor_set_basic_info {
 int processor_count; /* number of processors */
 int task_count; /* number of tasks */
 int thread_count; /* number of threads */
 int load_average; /* scaled load average */
 int mach_factor; /* scaled mach factor */
};
typedef struct processor_set_basic_info *processor_set_basic_info_t;

Scheduling information is defined by PROCESSOR_SET_SCHED_INFO.    The size of this information is given by
PROCESSOR_SET_SCHED_INFO_COUNT.

struct processor_set_sched_info {
 int policies; /* allowed policies */
 int max_priority; /* max priority for new threads */
};
typedef struct processor_set_sched_info *processor_set_sched_info_t;

EXAMPLE kern_return_t error;
host_t host;
unsigned int info_count;
struct processor_set_basic_info info;
processor_set_t default_set;

error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS){
 mach_error("Error calling processor_set_default", error);
 exit(1);
}

info_count=PROCESSOR_SET_BASIC_INFO_COUNT;
error=processor_set_info(default_set, PROCESSOR_SET_BASIC_INFO,
 &host, (processor_set_info_t)&info, &info_count);
if (error != KERN_SUCCESS)
 mach_error("Error calling processor_set_info", error);

printf("The UNIX load average is %f\n",
 (float)info.load_average/LOAD_SCALE);
printf("The Mach factor is %f\n", (float)info.mach_factor/LOAD_SCALE);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    processor_set is not a processor set, or flavor is not€recognized.

KERN_FAILURE:    processor_set_info_count is less than what it should be.

MIG_ARRAY_TOO_LARGE:    Returned info array is too large for processor_set_info.

SEE ALSO processor_set_create(), processor_set_default(), processor_assign(), task_assign(), thread_assign()

processor_set_max_priority()

SUMMARY Set the maximum priority permitted on a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_max_priority(processor_set_t processor_set, int€max_priority, boolean_t
change_threads)

DESCRIPTION This function affects only newly created or newly assigned threads unless you specify change_threads as
true.

Note:    This function is useful only on multiprocessor systems.

processor_set_policy_enable(), processor_set_policy_disable()

SUMMARY Enable or disable a scheduling policy on a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_policy_enable(processor_set_t processor_set, int€policy)
kern_return_t processor_set_policy_disable(processor_set_t processor_set, int€policy, boolean_t change_threads)

ARGUMENTS processor_set:    The processor set whose allowed policies are to be changed.    This must be the
privileged processor set port, which is returned by host_processor_set_priv().

policy:    The policy to enable or disable.    Currently, the only valid policies are POLICY_TIMESHARE,
POLICY_INTERACTIVE, and POLICY_FIXEDPRI.    You can't disable timesharing.

change_threads:    Specify true if you want to reset to timesharing the policies of any threads with the newly
disallowed policy.    Otherwise, specify false.

DESCRIPTION Processor sets may restrict the scheduling policies to be used for threads assigned to them.    These two
calls provide the mechanism for designating permitted and forbidden policies.    The current set of permitted policies
can be obtained from processor_set_info().    Timesharing can't be forbidden by any processor set.    This is a
compromise to reduce the complexity of the assign operation; any thread whose policy is forbidden by the target
processor set has its policy reset to timesharing.    If the change_threads argument to
processor_set_policy_disable() is true, threads currently assigned to this processor set and using the newly disabled
policy will have their policy reset to timesharing.

Warning:    Don't use POLICY_FIXEDPRI unless you're familiar with the consequences of€fixed-priority
scheduling.    Using fixed-priority scheduling in a process can keep other processes from getting any CPU time.    If
processes that are essential to the functioning of€the system don't get CPU time, you might have to reboot your
system to make it work€normally.

EXAMPLE kern_return_t error;
processor_set_t default_set, default_set_priv;

error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS) {
 mach_error("Error calling processor_set_default()", error);
 exit(1);
}

error=host_processor_set_priv(host_priv_self(), default_set,
 &default_set_priv);
if (error != KERN_SUCCESS) {
 mach_error("Call to host_processor_set_priv() failed", error);
 exit(1);
}

error=processor_set_policy_enable(default_set_priv, POLICY_FIXEDPRI);
if (error != KERN_SUCCESS)
 mach_error("Error calling processor_set_policy_enable", error);

RETURN KERN_SUCCESS:    Operation completed successfully.

KERN_INVALID_ARGUMENT:    processor_set isn't the privileged port of a processor set, policy isn't a valid
policy, or an attempt was made to disable timesharing.

SEE ALSO thread_policy(), thread_switch()

processor_set_tasks()

SUMMARY Get kernel ports for tasks assigned to a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_tasks(processor_set_t processor_set, task_array_t€*task_list, unsigned int
*task_count)

ARGUMENTS processor_set:    The processor set to be affected.    This must be the privileged processor set port, which
is returned by host_processor_set_priv().

task_list:    Returns the set of tasks currently assigned to processor_set; no particular ordering is guaranteed.

task_count:    Returns the number of tasks in task_list.

DESCRIPTION This function gets send rights to the kernel port for each task currently assigned to processor_set.    The
task_list argument is an array that is created as a result of this call.    You€should call vm_deallocate() on this array
when you no longer need the data.

EXAMPLE task_array_t task_list;
unsigned int task_count;
processor_set_t default_set, default_set_priv;
kern_return_t error;

error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS) {
 mach_error("Error calling processor_set_default()", error);
 exit(1);
}

error=host_processor_set_priv(host_priv_self(), default_set,
 &default_set_priv);
if (error != KERN_SUCCESS) {
 mach_error("Call to host_processor_set_priv() failed", error);
 exit(1);
}

error=processor_set_tasks(default_set_priv, &task_list, &task_count);
if (error != KERN_SUCCESS) {
 mach_error("Call to processor_set_tasks() failed", error);
 exit(1);
}

/* . . . */
error=vm_deallocate(task_self(), (vm_address_t)task_list,
 sizeof(task_list)*task_count);
if (error != KERN_SUCCESS)
 mach_error("Trouble freeing task_list", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    processor_set isn't a privileged processor set.

SEE ALSO task_assign(), thread_assign(), processor_set_threads()

processor_set_threads()

SUMMARY Get kernel ports for threads assigned to a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t processor_set_threads(processor_set_t processor_set, thread_array_t€*thread_list, unsigned int
*thread_count)

ARGUMENTS processor_set:    The processor set to be affected.    This must be the privileged processor set port, which
is returned by host_processor_set_priv().

thread_list:    Returns the set of threads currently assigned to processor_set; no particular ordering is guaranteed.

thread_count:    Returns the number of threads in thread_list.

DESCRIPTION This function gets send rights to the kernel port for each thread currently assigned to processor_set.    The
thread_list argument is an array that is created as a result of this call.    You should call vm_deallocate() on
thread_list when you no longer need the data.

EXAMPLE thread_array_t thread_list;
unsigned int thread_count;
processor_set_t default_set, default_set_priv;
kern_return_t error;

error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS) {
 mach_error("Error calling processor_set_default()", error);
 exit(1);
}

error=host_processor_set_priv(host_priv_self(), default_set,
 &default_set_priv);
if (error != KERN_SUCCESS) {
 mach_error("Call to host_processor_set_priv() failed", error);
 exit(1);
}

error=processor_set_threads(default_set_priv, &thread_list, &thread_count);
if (error != KERN_SUCCESS) {
 mach_error("Call to processor_set_threads() failed", error);
 exit(1);
}

/* . . . */
error=vm_deallocate(task_self(), (vm_address_t)thread_list,
 sizeof(thread_list)*thread_count);
if (error != KERN_SUCCESS)
 mach_error("Trouble freeing thread_list", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    processor_set isn't a privileged processor set.

SEE ALSO task_assign(), thread_assign(), processor_set_tasks()

task_assign(), task_assign_default()

SUMMARY Assign a task to a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t task_assign(task_t task, processor_set_t new_processor_set, boolean_t€assign_threads)
kern_return_t task_assign_default(task_t task, boolean_t assign_threads)

DESCRIPTION The task_assign() function assigns task to new_processor_set; task_assign_default() assigns task to the
default processor set.

Note:    These functions are useful only on multiprocessor systems.

task_by_unix_pid()

SUMMARY Get the task port for a UNIX process on the same host

SYNOPSIS #import <mach/mach.h>

kern_return_t task_by_unix_pid(task_t task, int pid, task_t *result_task)

ARGUMENTS task:    A task that is used to check permission (usually task_self()).

pid:    The process ID of the desired process.

result_task:    Returns send rights to the task port of the process specified by pid.

DESCRIPTION Returns the task port for another process, named by its process ID, on the same host as task.    This call
succeeds only if the caller is the superuser or task has the same user ID as the process specified by pid.    If the call
fails, result_task is set to TASK_NULL.

EXAMPLE pid=fork();

if (pid==0) /* We're in the child. */ {
 /* do childish things */
}
else /* We're in the parent */ {
 result=task_by_unix_pid(task_self(), pid, &child_task);
 if (result != KERN_SUCCESS)
 mach_error("task_by_unix_pid", result);
 /* . . . */
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_FAILURE:    target_task has a different user ID from the process corresponding to pid, and the caller isn't the
superuser; or pid didn't refer to a valid process; or target_task wasn't a valid task.

SEE ALSO unix_pid()

task_create()

SUMMARY Create a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_create(task_t parent_task, boolean_t inherit_memory, task_t€*child_task)

ARGUMENTS parent_task:    The task from which the child's capabilities are drawn.

inherit_memory:    If set, the address space of the child task is built from the parent task according to its memory
inheritance values; otherwise, the child task is given an empty address space.

child_task:    Returns the new task.

DESCRIPTION The function task_create() creates a new task from parent_task; the resulting task (child_task) acquires
shared or copied parts of the parent's address space (see vm_inherit()).    The child task initially has no threads; you
put threads in it using thread_create().

Important:    Normally, you should use the UNIX fork() system call instead of task_create().

The child task gets the four special ports initialized for it at task creation.    The kernel port (task port) is created, and
send rights for it are given to the child and returned to the caller in child_task.    The notify port is initialized to null.
The child inherits its bootstrap and exception ports from the parent task.    The new task can get send rights to these
ports with the call task_get_special_port().

EXAMPLE error=task_create(task_self(), TRUE, &child_task);
if(error!=KERN_SUCCESS)
 mach_error("Call to task_create() failed", error);

RETURN KERN_SUCCESS:    A new task has been created.

KERN_INVALID_ARGUMENT:    parent_task is not a valid task port.

KERN_RESOURCE_SHORTAGE:    Some critical kernel resource is unavailable.

SEE ALSO task_terminate(), task_suspend(), task_resume(), task_get_special_port(), task_set_special_port(),
task_self(), task_threads(), thread_create(), thread_resume(), vm_inherit()

task_get_assignment()

SUMMARY Get the name of the processor set that a task is assigned to

SYNOPSIS #import <mach/mach.h>

kern_return_t task_get_assignment(task_t task, processor_set_t *processor_set)

Note:    This function is useful only on multiprocessor systems.

task_get_special_port(), task_set_special_port(), task_self(), task_notify()

SUMMARY Get or set a task's special ports

SYNOPSIS #import <mach/mach.h>

kern_return_t task_get_special_port(task_t task, int which_port, port_t€*special_port)
kern_return_t task_set_special_port(task_t task, int which_port, port_t special_port)
task_t task_self(void)
port_t task_notify(void)

ARGUMENTS task:    The task to get the port for.

which_port:    The port that's requested.    This is one of:

TASK_NOTIFY_PORT
TASK_BOOTSTRAP_PORT
TASK_EXCEPTION_PORT

special_port:    The value of the port that's being requested or set.

DESCRIPTION The function task_get_special_port() returns send rights to one of a set of special ports for€the task
specified by task.    In the case of the task's own notify port, the task also gets receive rights.

The function task_set_special_port() sets one of a set of special ports for the task specified by task.

The function task_self() returns the port to which kernel calls for the currently executing thread should be directed.
Currently, task_self() returns the task kernel port, which is a port for which the kernel has receive rights and which
it uses to identify a task.    In the future it may be possible for one task to interpose a port as another task's kernel
port.    At that time task_self() will still return the port to which the executing thread should direct kernel calls, but it
may no longer be a port for which the kernel has receive rights.

If a controller task has send access to the kernel port of a subject task, then the controller task can perform kernel
operations for the subject task.    Normally, only the task itself and the task that created it will have access to the task
kernel port, but any task may pass rights to its kernel port to any other task.

The function task_notify() returns receive and send rights to the notify port associated with the task to which the
executing thread belongs.    The notify port is a port on which the task should receive notification of such kernel
events as the destruction of a port to which it has send rights.

The other special ports associated with a task are the bootstrap port and the exception port.    The bootstrap port is a
port to which a thread may send a message requesting other system service ports.    This port isn't used by the kernel.
The task's exception port is the port to which messages are sent by the kernel when an exception occurs and the
thread causing the exception has no exception port of its own.

Important:    If you set your task's bootstrap port, you should also set the global variable bootstrap_port to
special_port.    The bootstrap_port variable is task-wide and is used by mach_init and other processes to determine
your task's bootstrap port.    Since you can't change the value of the bootstrap_port variable in another task, you
should use care when changing the bootstrap port of another task.

MACRO

EQUIVALENTS The following macros are defined in the header file mach/task_special_ports.h:

task_get_notify_port(task, port)
task_set_notify_port(task, port)

task_get_exception_port(task, port)
task_set_exception_port(task, port)

task_get_bootstrap_port(task, port)
task_set_bootstrap_port(task, port)

EXAMPLE /* Save the old exception port for this task. */
r = task_get_exception_port(task_self(), &(ports.old_exc_port));
if (r != KERN_SUCCESS) {
 mach_error("task_get_exception_port", r);
 exit(1);
}

 /* Create a new exception port for this task. */
r = port_allocate(task_self(), &(ports.exc_port));
if (r != KERN_SUCCESS) {
 mach_error("port_allocate 0", r);
 exit(1);
}
r = task_set_exception_port(task_self(), (ports.exc_port));
if (r != KERN_SUCCESS) {
 mach_error("task_set_exception_port", r);
 exit(1);
}

RETURN KERN_SUCCESS:    The port was returned or set.

KERN_INVALID_ARGUMENT:    Either task is not a task or which_port is an invalid port selector.

SEE ALSO thread_special_ports(), task_create()

task_info()

SUMMARY Get information about a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_info(task_t target_task, int flavor, task_info_t task_info, unsigned€int€*task_info_count)

ARGUMENTS target_task:    The task to be affected (for example, use task_self() to specify the caller's€task).

flavor:    The type of statistics that are wanted.    Currently only TASK_BASIC_INFO is€implemented.

task_info:    Returns statistics about target_task.

task_info_count:    Size of the info structure.    Currently this must be TASK_BASIC_INFO_COUNT.

DESCRIPTION The function task_info() returns the information specified by flavor about a task.    The task_info
argument is an array of integers that's supplied by the caller and returned filled with information.    The
task_info_count argument is supplied as the maximum number of integers in task_info.    On return, it contains the
actual number of integers in task_info.

Currently there's only one flavor of information, defined by TASK_BASIC_INFO.    Its size is defined by
TASK_BASIC_INFO_COUNT.    The definition of the information structure returned by TASK_BASIC_INFO is:

struct task_basic_info {
 int suspend_count; /* suspend count for task */
 int base_priority; /* base scheduling priority */
 vm_size_t virtual_size; /* number of virtual pages */
 vm_size_t resident_size; /* number of resident pages */
 time_value_t user_time; /* total user run time for
 terminated threads */
 time_value_t system_time; /* total system run time for
 terminated threads */
};
typedef struct task_basic_info *task_basic_info_t;

EXAMPLE kern_return_t error;
struct task_basic_info info;
unsigned int info_count=TASK_BASIC_INFO_COUNT;

error=task_info(task_self(), TASK_BASIC_INFO,
 (task_info_t)&info, &info_count);
if (error!=KERN_SUCCESS)
 mach_error("Error calling task_info()", error);

else
 printf("Base priority is %d\n", info.base_priority);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    target_task isn't a task, or flavor isn't recognized.

MIG_ARRAY_TOO_LARGE:    The returned info array is too large for task_info.    The task_info argument is filled
as much as possible, and task_info_count is set to the number of elements that would be returned if there were
enough room.

SEE ALSO task_threads(), thread_info(), thread_get_state()

task_priority()

SUMMARY Set the scheduling priority for a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_priority(task_t task, int priority, boolean_t change_threads)

ARGUMENTS task:    Task to set priority for.

priority:    New priority.

change_threads:    Change priority of existing threads if true.

DESCRIPTION The priority of a task is used only for creation of new threads; the priority of a new thread priority is set
to that of its task.    The task_priority() function changes this task priority.    It also sets the priorities of all threads in
the task to this new priority if change_threads is true.    Existing threads are not affected otherwise.    If this priority
change violates the maximum priority of some threads, as many threads as possible will be changed and an error
code will be returned.

Priorities range from 0 to 31, where higher numbers denote higher priorities.    You can retrieve the current
scheduling priority using thread_info().

EXAMPLE kern_return_t error;
struct task_basic_info info;
unsigned int info_count=TASK_BASIC_INFO_COUNT;

error=task_info(task_self(), TASK_BASIC_INFO,
 (task_info_t)&info, &info_count);
if (error!=KERN_SUCCESS)
 mach_error("Error calling task_info()", error);
else {
 /* Set this task's base priority to be much lower than normal */
 error = task_priority(task_self(), info.base_priority - 4, TRUE);
 if (error != KERN_SUCCESS)
 mach_error("Call to task_priority() failed", error);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    task is not a task, or priority is not a valid priority.

KERN_FAILURE:    change_threads was true and the attempt to change the priority of at least one existing thread
failed because the new priority would have exceeded that thread's maximum priority.

SEE ALSO thread_priority(), processor_set_max_priority(), thread_switch()

task_resume()

SUMMARY Resume a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_resume(task_t target_task)

ARGUMENTS target_task:    The task to be resumed.

DESCRIPTION The function task_resume() decrements the task's suspend count.    If the suspend count becomes 0, all
threads with 0 suspend counts in the task are resumed.    If the suspend count is already 0, it's not decremented (it
never becomes negative).

RETURN KERN_SUCCESS:    The task has been resumed.

KERN_FAILURE:    The suspend count is already 0.

KERN_INVALID_ARGUMENT:    target_task isn't a task.

SEE ALSO task_create(), task_terminate(), task_suspend(), task_info(), thread_suspend(), thread_resume(),
thread_info()

task_suspend()

SUMMARY Suspend a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_suspend(task_t target_task)

ARGUMENTS target_task:    The task to be suspended (for example, use task_self() to specify the caller's€task).

DESCRIPTION The function task_suspend() increments the task's suspend count and stops all threads in the task.    As
long as the suspend count is positive, newly created threads will not run.    This call doesn't return until all threads
are suspended.

If the count becomes greater than 1, it will take more than one task_resume() call to restart the task.

RETURN KERN_SUCCESS:    The task has been suspended.

KERN_INVALID_ARGUMENT:    target_task isn't a task.

SEE ALSO task_create(), task_terminate(), task_resume(), task_info(), thread_suspend()

task_terminate()

SUMMARY Terminate a task

SYNOPSIS #import <mach/mach.h>

kern_return_t task_terminate(task_t target_task)

ARGUMENTS target_task:    The task to be destroyed (for example, use task_self() to specify the caller's€task).

DESCRIPTION The function task_terminate() destroys the task specified by target_task and all its threads.    All
resources that are used only by this task are freed.    Any port to which this task has receive rights is destroyed.

RETURN KERN_SUCCESS:    The task has been destroyed.

KERN_INVALID_ARGUMENT:    target_task isn't a task.

SEE ALSO task_create(), task_suspend(), task_resume(), thread_terminate(), thread_suspend()

task_threads()

SUMMARY Get a task's threads

SYNOPSIS #import <mach/mach.h>

kern_return_t task_threads(task_t target_task, thread_array_t *thread_list, unsigned€int€*thread_count)

ARGUMENTS target_task:    The task to be affected (for example, use task_self() to specify the caller's€task).

thread_list:    Returns the set of threads contained within target_task; no particular ordering is guaranteed.

thread_count:    Returns the number of threads in thread_list.

DESCRIPTION The function task_threads() gets send rights to the kernel port for each thread contained in target_task.

The array thread_list is created as a result of this call.    You should call vm_deallocate() on this array when the data
is no longer needed.

EXAMPLE r = task_threads(task_self(), &thread_list, &thread_count);
if (r != KERN_SUCCESS)
 mach_error("Error calling task_threads", r);
else {
 if (thread_count == 1)
 printf ("There's 1 thread in this task\n");
 else
 printf("There are %d threads in this task\n", thread_count);

/* Deallocate the list of threads. */
 r = vm_deallocate(task_self(), (vm_address_t)thread_list,
 sizeof(thread_list)*thread_count);
 if (r != KERN_SUCCESS)
 mach_error("Trouble freeing thread_list", r);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    target_task isn't a task.

SEE ALSO thread_create(), thread_terminate(), thread_suspend()

thread_abort()

SUMMARY Interrupt a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_abort(thread_t target_thread)

ARGUMENTS target_thread:    The thread to be interrupted.

DESCRIPTION The function thread_abort() aborts page faults and the kernel functions msg_send(), msg_receive(),
and msg_rpc(), making the call return a code indicating that it was interrupted.    The call is interrupted whether or
not the thread (or task containing it) is currently suspended.    If it's suspended, the thread receives the interrupt when
it resumes.

A thread will retry an aborted page fault if its state isn't modified before it resumes.    The function msg_send()
returns SEND_INTERRUPTED; msg_receive() returns RCV_INTERRUPTED; and msg_rpc() returns either
SEND_INTERRUPTED or RCV_INTERRUPTED, depending on which half of the RPC was interrupted.

This function lets one thread stop another thread cleanly, thereby allowing the future execution of the target thread to
be controlled in a predictable way.    The thread_suspend() function keeps the target thread from executing any
further instructions at the user level, including the return from a system call.    The thread_get_state() and
thread_set_state() functions let you examine or modify the user state of a target thread.    However, if a suspended
thread was executing within a system call, it also has associated with it a kernel state.    This kernel state can't be
modified by thread_set_state(); therefore, when the thread is resumed the system call may return, changing the user
state and possibly user memory.

The thread_abort() function aborts the kernel call from the target thread's point of view by resetting the kernel state
so that the thread will resume execution just after the system call.    The system call will return one of the interrupted
codes described previously.    The system call will either be entirely completed or entirely aborted, depending on the
precise moment at which the abort was received.    Thus if the thread's user state has been changed by
thread_set_state(), it won't be modified by any unexpected system call side effects.

For example, to simulate a UNIX signal, the following sequence of calls may be used:

1. thread_suspend()ÐStops the thread.

2. thread_abort()ÐInterrupts any system call in progress, setting the return value to ªinterrupted.º    Since the
thread is stopped, it won't return to user code.

3. thread_set_state()ÐAlters the thread's state to simulate a procedure call to the signal handler.

4. thread_resume()ÐResumes execution at the signal handler.    If the thread's stack has been correctly set up, the
thread can return to the interrupted system call.

Calling thread_abort() on a thread that's not suspended is risky, since it's difficult to know exactly what system
trap, if any, the thread might be executing and whether an interrupt return would cause the thread to do something
useful.

RETURN KERN_SUCCESS:    The thread received an interrupt.

KERN_INVALID_ARGUMENT:    target_thread isn't a thread.

SEE ALSO thread_get_state(), thread_info(), thread_terminate(), thread_suspend()

thread_assign(), thread_assign_default()

SUMMARY Assign a thread to a processor set

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_assign(thread_t thread, processor_set_t new_processor_set)
kern_return_t thread_assign_default(thread_t thread)

DESCRIPTION thread_assign() assigns thread to new_processor_set; thread_assign_default() assigns thread to the
default processor set.

Note:    These functions are useful only on multiprocessor systems.

thread_create()

SUMMARY Create a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_create(task_t parent_task, thread_t *child_thread)

ARGUMENTS parent_task:    The task that should contain the new thread.

child_thread:    Returns the new thread.

DESCRIPTION The function thread_create() creates a new thread within parent_task.    The new thread has€no
processor state, and has a suspend count of 1.    To get a new thread to run, first call€thread_create() to get the new
thread's identifier, child_thread.    Then call thread_set_state() to set a processor state.    Finally, call
thread_resume() to schedule the€thread to execute.

Important:    Don't use this function unless you're writing a loadable kernel server or implementing a new thread
package, such as the C-thread functions.    For normal, user-level programming, use cthread_fork() instead.    You
can then use cthread_thread() if you need to get the Mach thread that corresponds to the new C-thread.

When the thread is created, send rights to its thread kernel port are given to it and returned to the caller in
child_thread.    The new thread's exception port is set to PORT_NULL.

RETURN KERN_SUCCESS:    A new thread has been created.

KERN_INVALID_ARGUMENT:    parent_task isn't a valid task.

KERN_RESOURCE_SHORTAGE:    Some critical kernel resource isn't available.

SEE ALSO task_create(), task_threads(), thread_terminate(), thread_suspend(), thread_resume(),
thread_special_ports(), thread_set_state()

thread_get_assignment()

SUMMARY Get the name of the processor set to which a thread is assigned

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_get_assignment(thread_t thread, processor_set_t *processor_set)

Note:    This function is useful only in multiprocessor systems.

thread_get_special_port(), thread_set_special_port(), thread_self(), thread_reply()

SUMMARY Get or set a thread's special ports

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_get_special_port(thread_t thread, int which_port, port_t€*special_port)
kern_return_t thread_set_special_port(thread_t thread, int which_port, port_t€special_port)
thread_t thread_self(void)

port_t thread_reply(void)

ARGUMENTS thread:    The thread to get the port for.

which_port:    The port that's requested.    This is one of:

THREAD_REPLY_PORT
THREAD_EXCEPTION_PORT

special_port:    The value of the port that's being requested or set.

DESCRIPTION The function thread_get_special_port() returns send rights to one of a set of special ports for the thread
specified by thread.    In the case of getting the thread's own reply port, receive rights are also given to the thread.

The function thread_set_special_port() sets one of a set of special ports for the thread specified by thread.

The function thread_self() returns the port to which kernel calls for the currently executing thread should be
directed.    Currently thread_self() returns the thread kernel port, which is a port for which the kernel has receive
rights and which it uses to identify a thread.    In the future it may be possible for one thread to interpose a port as
another thread's kernel port.    At that time thread_self() will still return the port to which the executing thread
should direct kernel calls, but it may no longer be a port for which the kernel has receive rights.

If a controller thread has send access to the kernel port of a subject thread, the controller thread can perform kernel
operations for the subject thread.    Normally only the thread itself and its parent task will have access to the thread
kernel port, but any thread may pass rights to its kernel port to any other thread.

The function thread_reply() returns receive and send rights to the reply port of the calling thread.    The reply port is
a port to which the thread has receive rights.    It's used to receive any initialization messages and as a reply port for
early remote procedure calls.

A thread also has access to its task's special ports.

MACRO

EQUIVALENTS The following macros are defined in the header file mach/thread_special_ports.h:

thread_get_reply_port(thread, port)
thread_set_reply_port(thread, port)

thread_get_exception_port(thread, port)
thread_set_exception_port(thread, port)

RETURN KERN_SUCCESS:    The port was returned or set.

KERN_INVALID_ARGUMENT:    thread isn't a thread, or which_port is an invalid port€selector.

SEE ALSO task_get_special_port(), task_set_special_port(), task_self(), thread_create()

thread_get_state(), thread_set_state()

SUMMARY Get or set a thread's state

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_get_state(thread_t target_thread, int flavor, thread_state_data_t€old_state, unsigned int
*old_state_count)

kern_return_t thread_set_state(thread_t target_thread, int flavor, thread_state_data_t€new_state, unsigned int
new_state_count)

ARGUMENTS target_thread:    The thread whose state is affected.

flavor:    The type of state that's to be manipulated.    This may be any one of the following:

NeXT_THREAD_STATE_REGS
NeXT_THREAD_STATE_68882
NeXT_THREAD_STATE_USER_REG

old_state:    Returns an array of state information.

new_state:    An array of state information.

old_state_count:    The size of the state information array.    This may be any one of the following:

NeXT_THREAD_STATE_REGS_COUNT
NeXT_THREAD_STATE_68882_COUNT
NeXT_THREAD_STATE_USER_REG_COUNT

new_state_count:    Same as old_state_count.

DESCRIPTION The function thread_get_state() returns the state component (that is, the machine registers) of
target_thread as specified by flavor.    The old_state is an array of integers that's€provided by the caller and returned
filled with the specified information.    You should€set old_state_count to the maximum number of integers in
old_state.    On return, old_state_count is equal to the actual number of integers in old_state.

The function thread_set_state() sets the state component of target_thread as specified by flavor.    The new_state is
an array of integers that the caller fills.    You should set new_state_count to the number of elements in new_state.   
The entire set of registers is reset.

target_thread must not be thread_self() for either of these calls.

The state structures are defined in the header file mach/machine/thread_status.h.

RETURN KERN_SUCCESS:    The state has been set or returned.

MIG_ARRAY_TOO_LARGE:    The returned state is too large for the new_state. The new_state argument is filled
in as much as possible, and new_state_count is set to the number of elements that would be returned if there were
enough room.

KERN_INVALID_ARGUMENT:    target_thread isn't a thread, target_thread is thread_self(), or flavor is
unrecognized for this machine.

SEE ALSO task_info(), thread_info()

thread_info()

SUMMARY Get information about a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_info(thread_t target_thread, int flavor, thread_info_t€thread_info, unsigned int
*thread_info_count)

ARGUMENTS target_thread:    The thread to be affected.

flavor:    The type of statistics wanted.    This can be THREAD_BASIC_INFO or THREAD_SCHED_INFO.

thread_info:    Returns statistics about target_thread.

thread_info_count:    Size of the info structure.    This can be THREAD_BASIC_INFO_COUNT or
THREAD_SCHED_INFO_COUNT.

DESCRIPTION The function thread_info() returns the selected information array for a thread, as specified by flavor.   
The thread_info argument is an array of integers that's supplied by the caller and returned filled with specified
information.    The thread_info_count argument is supplied as the maximum number of integers in thread_info.    On
return, it contains the actual number of integers in thread_info.

The size of the information returned by THREAD_BASIC_INFO is defined by THREAD_BASIC_INFO_COUNT.
The definition of the information structure returned by THREAD_BASIC_INFO is:

struct thread_basic_info {
 time_value_t user_time; /* user run time */
 time_value_t system_time; /* system run time */
 int cpu_usage; /* scaled cpu usage percentage */
 int base_priority; /* base scheduling priority */
 int cur_priority; /* current scheduling priority */
 int run_state; /* run state */
 int flags; /* various flags */
 int suspend_count; /* suspend count for thread */
 long sleep_time; /* number of seconds that thread
 has been sleeping */
};
typedef struct thread_basic_info *thread_basic_info_t;

The run_state field has one of the following values:

TH_STATE_RUNNING:    The thread is running normally.

TH_STATE_STOPPED:    The thread is suspended.    This happens when the thread or task suspend count is
greater than zero.

TH_STATE_WAITING:    The thread is sleeping normally.

TH_STATE_UNINTERRUPTIBLE:    The thread is in an uninterruptible sleep.    This should happen only for
very short times during some system calls.

TH_STATE_HALTED:    The thread is halted at a clean point.    This state happens only after a call to
thread_abort().

Possible values of the flags field are:

TH_FLAGS_SWAPPED:    The thread is swapped out.    This happens when the thread hasn't run in a long time,
and the kernel stack for the thread has been swapped out.

TH_FLAGS_IDLE:    The thread is the idle thread for the CPU.    This means that the CPU runs this thread
whenever it has no other threads to run.

The sleep_time field is useful only when run_state is TH_STATE_STOPPED.    (Currently sleep_time is always set
to zero, no matter how long the thread has been sleeping.)

The size of the information returned by THREAD_SCHED_INFO is defined by
THREAD_SCHED_INFO_COUNT.    The definition of the information structure returned by
THREAD_SCHED_INFO is:

struct thread_sched_info {
 int policy; /* scheduling policy */
 int data; /* associated data */
 int base_priority; /* base priority */
 int max_priority; /* max priority */
 int cur_priority; /* current priority */
 boolean_t depressed; /* depressed ? */
 int depress_priority; /* priority depressed from */
};
typedef struct thread_sched_info *thread_sched_info_t;

The policy field has one of the following values:    POLICY_FIXEDPRI, POLICY_TIMESHARE, or
POLICY_INTERACTIVE.    If policy is POLICY_FIXEDPRI, then data is the quantum (in milliseconds).   

Otherwise, data is meaningless.

EXAMPLE Example of using THREAD_BASIC_INFO:

kern_return_t error;
struct thread_basic_info info;
unsigned int info_count=THREAD_BASIC_INFO_COUNT;

error=thread_info(thread_self(), THREAD_BASIC_INFO,
 (thread_info_t)&info, &info_count);
if (error!=KERN_SUCCESS)
 mach_error("Error calling thread_info()", error);
else {
 printf("User time is %d seconds, %d microseconds\n",
 info.user_time.seconds, info.user_time.microseconds);
 printf("System time is %d seconds, %d microseconds\n",
 info.system_time.seconds, info.system_time.microseconds);
}

Example of using THREAD_SCHED_INFO:

kern_return_t error;
struct thread_sched_info info;
unsigned int info_count=THREAD_SCHED_INFO_COUNT;

error=thread_info(thread_self(), THREAD_SCHED_INFO,
 (thread_info_t)&info, &info_count);
if (error!=KERN_SUCCESS)
 mach_error("Error calling thread_info()", error);
else {
 printf("Base priority is %d\n", info.base_priority);
 printf("Max priority is %d\n", info.max_priority);
}

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    target_thread isn't a thread, or flavor isn't recognized, or thread_info_count is
smaller than it's supposed to be.

MIG_ARRAY_TOO_LARGE:    The returned info array is too large for thread_info.    The thread_info argument is
filled as much as possible, and thread_info_count is set to the number of elements that would have been returned if
there were enough room.

SEE ALSO thread_get_special_port(), task_threads(), task_info(), thread_get_state()

thread_policy()

SUMMARY Set scheduling policy for a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_policy(thread_t thread, int policy, int data)

ARGUMENTS thread:    Thread to set policy for.

policy:    Policy to set.    This must be POLICY_TIMESHARE, POLICY_INTERACTIVE, or POLICY_FIXEDPRI.

data:    Policy-specific data.

DESCRIPTION This function changes the scheduling policy for thread to policy.

The data argument is meaningless for the timesharing and interactive policies; for the fixed-priority policy, it's the

quantum to be used (in milliseconds).    The system will always€round the quantum up to the next multiple of the
basic system quantum (min_quantum, which can be obtained from host_info()).    You can find the current quantum
using thread_info().

Processor sets can restrict the allowed policies, so this call will fail if the processor set to€which thread is currently
assigned doesn't permit policy.

EXAMPLE kern_return_t error;
struct host_sched_info sched_info;
unsigned int sched_count=HOST_SCHED_INFO_COUNT;
int quantum;
processor_set_t default_set, default_set_priv;

/* Set quantum to a reasonable value. */
error=host_info(host_self(), HOST_SCHED_INFO,
 (host_info_t)&sched_info, &sched_count);
if (error != KERN_SUCCESS) {
 mach_error("SCHED host_info() call failed", error);
 exit(1);
}
else
 quantum = sched_info.min_quantum;

/*
 * Fix the default processor set to take a fixed priority thread.
 */
error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS) {
 mach_error("Error calling processor_set_default()", error);
 exit(1);
}

error=host_processor_set_priv(host_priv_self(), default_set,
 &default_set_priv);
if (error != KERN_SUCCESS) {
 mach_error("Call to host_processor_set_priv() failed", error);
 exit(1);
}

error=processor_set_policy_enable(default_set_priv, POLICY_FIXEDPRI);
if (error != KERN_SUCCESS)
 mach_error("Error calling processor_set_policy_enable", error);

/*
 * Change the thread's scheduling policy to fixed priority.
 */
error=thread_policy(thread_self(), POLICY_FIXEDPRI, quantum);
if (error != KERN_SUCCESS)
 mach_error("thread_policy() call failed", error);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    thread is not a thread, or policy is not a recognized policy.

KERN_FAILURE:    The processor set to which thread is currently assigned doesn't permit policy.

SEE ALSO processor_set_policy(), thread_switch()

thread_priority(), thread_max_priority()

SUMMARY Set scheduling priority for thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_priority(thread_t thread, int priority, boolean_t set_max)
kern_return_t thread_max_priority(thread_t thread, processor_set_t processor_set, int€priority)

ARGUMENTS thread:    The thread whose priority is to be changed.

priority:    The new priority to change it to.

set_max:    Also set thread's maximum priority if true.

processor_set:    The privileged port for the processor set to which thread is currently assigned.

DESCRIPTION Threads have three priorities associated with them by the system:    a base priority, a maximum priority,
and a scheduled priority.

The scheduled priority is used to make scheduling decisions about the thread.    It's determined from the base priority
by the policy.    (For the timesharing and interactive policies, this means adding an increment derived from CPU
usage).    The base priority can€be set under user control, but can never exceed the maximum priority.    Raising the
maximum priority requires presentation of the privileged port for the thread's processor set;€since the privileged port
for the default processor set is available only to the superuser, users cannot raise their maximum priority to unfairly
compete with other users on that set.    Newly created threads obtain their base priority from the task and their
maximum priority from the thread.

Priorities range from 0 to 31, where higher numbers denote higher priorities.    You can obtain the base, scheduled,
and maximum priorities using thread_info().

The thread_priority() function changes the base priority and optionally the maximum priority of thread.    If the
new base priority is higher than the scheduled priority of the currently executing thread, preemption may occur as a
result of this call.    The maximum priority of the thread is also set if set_max is true.    This call fails if priority is
greater than the current maximum priority of the thread.    As a result, thread_priority() can lowerÐbut never
raiseÐthe value of a thread's maximum priority.

The thread_max_priority() function changes the maximum priority of the thread.    Because it requires the
privileged port for the processor set, this call can reset the maximum priority to any legal value.    If the new
maximum priority is less than the thread's base priority, then the thread's base priority is set to the new maximum
priority.

EXAMPLE /* Get the privileged port for the default processor set. */
error=processor_set_default(host_self(), &default_set);
if (error!=KERN_SUCCESS) {
 mach_error("Error calling processor_set_default()", error);
 exit(1);
}

error=host_processor_set_priv(host_priv_self(), default_set,
 &default_set_priv);
if (error!=KERN_SUCCESS) {
 mach_error("Call to host_processor_set_priv() failed", error);
 exit(1);
}

/* Set the max priority. */
error=thread_max_priority(thread_self(), default_set_priv, priority);
if (error!=KERN_SUCCESS)
 mach_error("Call to thread_max_priority() failed",error);

/* Set the thread's priority. */
error=thread_priority(thread_self(), priority, FALSE);
if (error!=KERN_SUCCESS)
 mach_error("Call to thread_priority() failed",error);

RETURN KERN_SUCCESS:    Operation completed successfully.

KERN_INVALID_ARGUMENT:    thread is not a thread, processor_set is not a privileged port for a processor set,
or priority is out of range (not in 0-31).

KERN_FAILURE:    The requested operation would violate the thread's maximum (only for thread_priority()), or
the thread is not assigned to the processor set whose privileged port was presented.

SEE ALSO thread_policy(), task_priority(), processor_set_priority(), thread_switch()

thread_resume()

SUMMARY Resume a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_resume(thread_t target_thread)

ARGUMENTS target_thread:    The thread to be resumed.

DESCRIPTION The function thread_resume() decrements the thread's suspend count.    If the count becomes 0, the
thread is resumed.    If it's still positive, the thread is left suspended.    The suspend count never becomes negative.

RETURN KERN_SUCCESS:    The thread has been resumed.

KERN_FAILURE:    The suspend count is already 0.

KERN_INVALID_ARGUMENT:    target_thread isn't a thread.

SEE ALSO task_suspend(), task_resume(), thread_info(), thread_create(), thread_terminate(),
thread_suspend()

thread_suspend()

SUMMARY Suspend a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_suspend(thread_t target_thread)

ARGUMENTS target_thread:    The thread to be suspended.

DESCRIPTION The function thread_suspend() increments the thread's suspend count and prevents the thread from
executing any more user-level instructions.    In this context, a user-level instruction is either a machine instruction
executed in user mode or a system trap instruction (including page faults).

If a thread is currently executing within a system trap, the kernel code may continue to execute until it reaches the
system return code, or it may suspend within the kernel code.    In either case, when the thread is resumed the system
trap will return.    This could cause unpredictable results if you did a suspend and then altered the user state of the
thread in order to change its direction upon a resume.    The function thread_abort() lets you abort any currently
executing system call in a predictable way.

If the suspend count becomes greater than 1, it will take more than one thread_resume() call to restart the thread.

RETURN KERN_SUCCESS:    The thread has been suspended.

KERN_INVALID_ARGUMENT:    target_thread isn't a thread.

SEE ALSO task_suspend(), task_resume(), thread_get_state(), thread_info(), thread_resume(),
thread_terminate(), thread_abort()

thread_switch()

SUMMARY Cause a context switch

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_switch(thread_t new_thread, int option, int time)

ARGUMENTS new_thread:    Thread to switch to.    If you specify THREAD_NULL, be sure to specify the option
argument to be either SWITCH_OPTION_WAIT or SWITCH_OPTION_DEPRESS.

option:    Specifies options associated with context switch.    Three options are recognized:

SWITCH_OPTION_NONE:    No options; the time argument is ignored.    (You must set new_thread to a valid
thread.)

SWITCH_OPTION_WAIT:    This thread is blocked for the specified time.    The block can be aborted by
thread_abort().

SWITCH_OPTION_DEPRESS:    This thread's priority is depressed to the lowest possible value until one of the
following happens:    time milliseconds pass, this thread is scheduled again, or thread_abort() is called on this
thread (whichever happens first).    Priority depression is independent of operations that change this thread's
priority; for example, thread_priority() will not abort the depression.

time:    Time duration (in milliseconds) for options.    The minimum time can be obtained as the min_timeout value
from host_info().

DESCRIPTION This function provides low-level access to the scheduler's context switching code.    new_thread is a hint
that implements handoff scheduling.    The operating system will attempt to switch directly to new_thread
(bypassing the normal logic that selects the next thread to run) if possible.    If new_thread isn't valid or
THREAD_NULL, thread_switch() returns an error.

The thread_switch() function is often called when the current thread can proceed no farther for some reason; the
various options and arguments allow information about this reason to be transmitted to the kernel.    The new_thread
argument (handoff scheduling) is useful when the identity of the thread that must make progress before the current
thread runs again is known.    The SWITCH_OPTION_WAIT option is used when the amount of time that the
current thread must wait before it can do anything useful can be estimated and is fairly long.    The
SWITCH_OPTION_DEPRESS option is used when the required waiting time is fairly short, especially when the
identity of the thread that is being waited for is not known.

Users should beware of calling thread_switch() with an invalid new_thread (for example, THREAD_NULL) and
no option.    Because the timesharing and interactive schedulers vary the priority of threads based on usage, this may
result in a waste of CPU time if the thread that must be run is of lower priority.    The use of the
SWITCH_OPTION_DEPRESS option in this situation is highly recommended.

When a thread that's depressed is scheduled, it regains its old priority.    The code should recheck the conditions to
see if it wants to depress again.    If thread_abort() is called on a depressed thread, the priority of the thread is
restored.

Users relying on the preemption semantics of a fixed-priority policy should be aware that thread_switch() ignores
these semantics; it will run the specified new_thread independent of its priority and the priority of any other threads
that could be run instead.

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    new_thread is not a thread, or option is not a recognized option.

thread_terminate()

SUMMARY Terminate a thread

SYNOPSIS #import <mach/mach.h>

kern_return_t thread_terminate(thread_t target_thread)

ARGUMENTS target_thread:    The thread to be destroyed.

DESCRIPTION The function thread_terminate() destroys the thread specified by target_thread.

Warning:    Don't use this function on threads that were created using the C-thread functions.    Each C thread must
terminate itself either explicitly, by calling cthread_exit(), or implicitly, by returning from its top-level function.

RETURN KERN_SUCCESS:    The thread has been destroyed.

KERN_INVALID_ARGUMENT:    target_thread isn't a thread.

SEE ALSO task_terminate(), task_threads(), thread_create(), thread_resume(), thread_suspend()

unix_pid()

SUMMARY Get the process ID of a task

SYNOPSIS #import <mach/mach.h>

kern_return_t unix_pid(task_t target_task, int *pid)

ARGUMENTS target_task:    The task for which you want the process ID.

pid:    Returns the process ID of target_task.

DESCRIPTION Returns the process ID of target_task.    If the call doesn't succeed, pid is set to -1.

EXAMPLE result=unix_pid(task_self(), &my_pid);
if (result!=KERN_SUCCESS) {
 mach_error("Call to unix_pid failed", result);
 exit(1);
}

printf("My process ID is %d\n", my_pid);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_FAILURE:    target_task isn't a valid task.    This might be because target_task is a pure Mach task (one
created using task_create()).

SEE ALSO task_by_unix_pid()

vm_allocate()

SUMMARY Allocate virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_allocate(vm_task_t target_task, vm_address_t *address, vm_size_t€size, boolean_t anywhere)

ARGUMENTS target_task:    Task whose virtual memory is to be affected.    Use task_self() to allocate memory in the
caller's address space.

address:    Starting address.    If anywhere is true, the input value of this address will be ignored, and the space will
be allocated wherever it's available.    If anywhere is false, an attempt is made to allocate virtual memory starting at
this virtual address.    If this address isn't at the beginning of a virtual page, it gets rounded down so that it is.    If
there isn't enough space at this address, no memory will be allocated.    No matter what the value of anywhere is, the
address at which memory is actually allocated is returned in address.

size:    Number of bytes to allocate (rounded up by the system to an integral number of virtual€pages).

anywhere:    If true, the kernel should find and allocate any region of the specified size.    If€false, virtual memory is
allocated starting at address (rounded down to a virtual page boundary) if sufficient space exists.

DESCRIPTION The function vm_allocate() allocates a region of virtual memory, placing it in the address space of the
specified task.    The physical memory isn't actually allocated until the new virtual memory is referenced.    By
default, the kernel rounds all addresses down to the nearest page boundary and all memory sizes up to the nearest
page size.    The global variable vm_page_size contains the page size.    For languages other than C, the value of
vm_page_size can be obtained by calling vm_statistics().

Initially, the pages of allocated memory are protected to allow all forms of access, and are inherited in child tasks as
a copy.    Subsequent calls to vm_protect() and vm_inherit() may be used to change these properties.    The
allocated region is always zero-filled.

Note:    Unless you have a special reason for calling vm_allocate() (such as a need for page-aligned memory), you
should usually call malloc() or a similar C library function instead.    The C library functions don't necessarily make
UNIX or Mach system calls, so they're generally faster than using a Mach function such as vm_allocate().

EXAMPLE if ((ret = vm_allocate(task_self(), (vm_address_t *)&lock,
 sizeof(int), TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate returned value of ", ret);
 printf("Exiting with error.\n");
 exit(-1);
}
if ((ret = vm_inherit(task_self(), (vm_address_t)lock, sizeof(int),
 VM_INHERIT_SHARE)) != KERN_SUCCESS) {
 mach_error("vm_inherit returned value of ", ret);
 printf("Exiting with error.\n");
 exit(-1);
}

RETURN KERN_SUCCESS:    Memory allocated.

KERN_INVALID_ADDRESS:    Illegal address specified.

KERN_NO_SPACE:    Not enough space left to satisfy this request.

SEE ALSO vm_deallocate(), vm_inherit(), vm_protect(), vm_region(), vm_statistics()

vm_copy()

SUMMARY Copy virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_copy(vm_task_t target_task, vm_address_t source_address, vm_size_t€size, vm_address_t

dest_address)

ARGUMENTS target_task:    The task whose virtual memory is to be affected.

source_address:    The address in target_task of the start of the source range (must be a page boundary).

size:    The number of bytes to copy (must be a multiple of vm_page_size).

dest_address:    The address in target_task of the start of the destination range (must be a page boundary).

DESCRIPTION The function vm_copy() causes the source memory range to be copied to the destination address; the
destination region must not overlap the source region.    The destination address range must already be allocated and
writable; the source range must be readable.

For languages other than C, the value of vm_page_size can be obtained by calling vm_statistics().

EXAMPLE if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data1,
 vm_page_size, TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate returned value of ", rtn);
 printf("vm_copy: Exiting.\n");
 exit(-1);
}

temp = data1;
for (i = 0; (i < vm_page_size / sizeof(int)); i++)
 temp[i] = i;
printf("vm_copy: set data\n");

if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data2,
 vm_page_size, TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate returned value of ", rtn);
 printf("vm_copy: Exiting.\n");
 exit(-1);
}

if ((rtn = vm_copy(task_self(), (vm_address_t)data1, vm_page_size,
 (vm_address_t)data2)) != KERN_SUCCESS) {
 mach_error("vm_copy returned value of ", rtn);
 printf("vm_copy: Exiting.\n");
 exit(-1);
}

RETURN KERN_SUCCESS:    Memory copied.

KERN_INVALID_ARGUMENT:    The address doesn't start on a page boundary or the size isn't a multiple of
vm_page_size.

KERN_PROTECTION_FAILURE:    The destination region isn't writable, or the source region isn't readable.

KERN_INVALID_ADDRESS:    An illegal or nonallocated address was specified, or insufficient memory was
allocated at one of the addresses.

SEE ALSO vm_allocate(), vm_protect(), vm_write(), vm_statistics()

vm_deactivate()

SUMMARY Mark virtual memory as unlikely to be used soon

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_deactivate(vm_task_t target_task, vm_address_t address, vm_size_t€size, int€when)

ARGUMENTS target_task:    Task whose virtual memory is to be affected.

address:    Starting address (must be on a page boundary).

size:    The number of bytes to deactivate (must be a multiple of vm_page_size).    Specifying 0 deactivates all of the
task's memory at or above address.

when:    A mask specifying how aggressively the system should deactivate the memory, and whether the memory
should be deactivated if it's shared.    Values for when are defined in the header file mach/vm_policy.h.

DESCRIPTION This function lets you tell the operating system that a region of memory won't be used for a long time. It
differs from vm_deallocate() in that the task's mapping to the memory is retained; only the physical memory
associated with the region is affected.

A when value of VM_DEACTIVATE_NOW is the most extremeÐthe system will immediately place clean pages at
the front of the free list, and dirty pages at the front of the inactive list.    A when value of
VM_DEACTIVATE_SOON specifies that the system should place all pages on the tail of the inactive list.    You can
add the mask VM_DEACTIVATE_SHARED to indicate that only shared memory should be affected.

This call is used in the window server to deactivate the backing stores of windows in hidden applications, and is
used in the Application Kit to deactivate the text, data, and stack of hidden applications.

SEE ALSO vm_set_policy()

vm_deallocate()

SUMMARY Deallocate virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_deallocate(vm_task_t target_task, vm_address_t address, vm_size_t€size)

ARGUMENTS target_task:    Task whose virtual memory is to be affected.

address:    Starting address (this gets rounded down to a page boundary).

size:    Number of bytes to deallocate (this gets rounded up to a page boundary).

DESCRIPTION The function vm_deallocate() relinquishes access to a region of a task's address space, causing further
access to that memory to fail.    This address range will be available for reallocation.    Note that because of the
rounding to virtual page boundaries, more than size bytes may be deallocated.    Use vm_statistics() or the global
variable vm_page_size to get the current virtual page size.

This function may be used to deallocate memory that was passed to a task in a message (using out-of-line data).    In
that case, the rounding should cause no trouble, since the region of memory was allocated as a set of pages.

The function vm_deallocate() affects only the task specified by target_task.    Other tasks that may have access to
this memory can continue to reference it.

EXAMPLE r = vm_deallocate(task_self(), (vm_address_t)thread_list,
 sizeof(thread_list)*thread_count);
if (r != KERN_SUCCESS)
 mach_error("Trouble freeing thread_list", r);

RETURN KERN_SUCCESS:    Memory deallocated.

KERN_INVALID_ADDRESS:    Illegal or nonallocated address specified.

SEE ALSO vm_allocate(), vm_statistics(), msg_receive()

vm_inherit()

SUMMARY Inherit virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_inherit(vm_task_t target_task, vm_address_t address, vm_size_t€size, vm_inherit_t
new_inheritance)

ARGUMENTS target_task:    Task whose virtual memory is to be affected.

address:    Starting address (this gets rounded down to a page boundary).

size:    Size in bytes of the region for which inheritance is to change (this gets rounded up to a page boundary).

new_inheritance:    How this memory is to be inherited in child tasks.    Inheritance is specified by using one of these
following three values:

VM_INHERIT_SHARE:    Child tasks will share this memory with this task.
VM_INHERIT_COPY:    Child tasks will receive a copy of this region.
VM_INHERIT_NONE:    This region will be absent from child tasks.

DESCRIPTION The function vm_inherit() specifies how a region of a task's address space is to be passed to child tasks
at the time of task creation.    Inheritance is an attribute of virtual pages; thus the addresses and size of memory to be
set will be rounded to refer to whole pages.

Setting vm_inherit() to VM_INHERIT_SHARE and forking a child task is the only way two Mach tasks can share
physical memory.    However, all the threads of a given task share all the same memory.

EXAMPLE if ((ret = vm_allocate(task_self(), (vm_address_t *)&lock, sizeof(int),
 TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate returned value of ", ret);
 printf("Exiting with error.\n");
 exit(-1);
}
if ((ret = vm_inherit(task_self(), (vm_address_t)lock, sizeof(int),
 VM_INHERIT_SHARE)) != KERN_SUCCESS) {
 mach_error("vm_inherit returned value of ", ret);
 printf("Exiting with error.\n");
 exit(-1);
}

RETURN KERN_SUCCESS:    The inheritance has been set.

KERN_INVALID_ADDRESS:    Illegal address specified.

SEE ALSO task_create(), vm_region()

vm_protect()

SUMMARY Protect virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_protect(vm_task_t target_task, vm_address_t address, vm_size_t€size, boolean_t set_maximum,
vm_prot_t new_protection)

ARGUMENTS target_task:    Task whose virtual memory is to be affected.

address:    Starting address (this gets rounded down to a page boundary).

size:    Size in bytes of the region for which protection is to change (this gets rounded up to a page boundary).

set_maximum:    If set, make the protection change apply to the maximum protection associated with this address
range; otherwise, change the current protection on this range.    If the maximum protection is reduced below the
current protection, both will be changed to reflect the new maximum.

new_protection:    A new protection value for this region; either VM_PROT_NONE or some combination of
VM_PROT_READ, VM_PROT_WRITE, and VM_PROT_EXECUTE.

DESCRIPTION The function vm_protect() changes the protection of some pages of allocated memory in a task's address
space.    In general, a protection value permits the named operation.    When memory is first allocated it has all
protection bits on.    The exact interpretation of a protection value is machine-dependent.    In the NeXT Mach
operating system, three levels of memory protection are provided:

· No access
· Read and execute access
· Read, execute, and write access

VM_PROT_NONE permits no access.    VM_PROT_WRITE permits read, execute, and write access;
VM_PROT_READ or VM_PROT_EXECUTE permits read and execute access, but not write access.

EXAMPLE vm_address_t addr = (vm_address_t)mlock;

r = vm_protect(task_self(), addr, vm_page_size, FALSE, 0);
if (r != KERN_SUCCESS) {
 mach_error("vm_protect 0", r);
 exit(1);
}
printf("protect on\n");

RETURN KERN_SUCCESS:    The memory has been protected.

KERN_PROTECTION_FAILURE:    An attempt was made to increase the current or maximum protection beyond
the existing maximum protection value.

KERN_INVALID_ADDRESS:    An illegal or nonallocated address was specified.

vm_read()

SUMMARY Read virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_read(vm_task_t target_task, vm_address_t address, vm_size_t size, pointer_t *data, unsigned int
*data_count)

ARGUMENTS target_task:    Task whose memory is to be read.

address:    The first address to be read (must be on a page boundary).

size:    The number of bytes of data to be read (must be a multiple of vm_page_size).

data:    The array of data copied from the given task.

data_count:    Returns the size of the data array in bytes (will be an integral number of€pages).

DESCRIPTION The function vm_read() allows one task's virtual memory to be read by another task.    The€data array is

returned in a newly allocated region; the task reading the data should call€vm_deallocate() on this region when it's
done with the data.

For languages other than C, the value of vm_page_size can be obtained by calling vm_statistics().

EXAMPLE if ((rtn = vm_allocate(task_self(), (vm_address_t *)&data1,
 vm_page_size, TRUE)) != KERN_SUCCESS) {
 mach_error("vm_allocate returned value of ", rtn);
 printf("vmread: Exiting.\n");
 exit(-1);
}

temp = data1;
for (i = 0; (i < vm_page_size); i++)
 temp[i] = i;
printf("Filled space allocated with some data.\n");
printf("Doing vm_read....\n");
if ((rtn = vm_read(task_self(), (vm_address_t)data1, vm_page_size,
 (pointer_t *)&data2, &data_cnt)) != KERN_SUCCESS) {
 mach_error("vm_read returned value of ", rtn);
 printf("vmread: Exiting.\n");
 exit(-1);
}
printf("Successful vm_read.\n");

RETURN KERN_SUCCESS:    The memory has been read.

KERN_INVALID_ARGUMENT:    Either address does not start on a page boundary or size isn't an integral number
of pages.

KERN_NO_SPACE:    There isn't enough room in the caller's virtual memory to allocate space for the data to be
returned.

KERN_PROTECTION_FAILURE:    The address region in the target task is protected against reading.

KERN_INVALID_ADDRESS:    An illegal or nonallocated address was specified, or there were not size bytes of
data following that address.

SEE ALSO vm_write(), vm_copy(), vm_deallocate()

vm_region()

SUMMARY Get information about virtual memory regions

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_region(vm_task_t target_task, vm_address_t *address, vm_size_t€*size, vm_prot_t *protection,
vm_prot_t *max_protection, vm_inherit_t€*inheritance, boolean_t *shared, port_t *object_name,
vm_offset_t€*offset)

ARGUMENTS target_task:    The task for which an address space description is requested.

address:    The address at which to start looking for a region.    On return, address will contain the start of the region
(therefore, the value returned will be different from the value that was passed in if the specified region is part of a
larger region).

size:    Returns the size (in bytes) of the located region.

protection:    Returns the current protection of the region.

max_protection:    Returns the maximum allowable protection for this region.

inheritance:    Returns the inheritance attribute for this region.

shared:    Returns true if this region is shared, false if it isn't.

object_name:    Returns the port identifying the region's memory object.

offset:    Returns the offset into the pager object at which this region begins.

DESCRIPTION The vm_region() function returns a description of the specified region of the target task's virtual address
space.    This function begins at address, looking forward through memory until it comes to an allocated region.    (If
address is in a region, that region is used.)    If address isn't in a region, it's set to the start of the first region that
follows the incoming value.    In this way an entire address space can be scanned.    You can set address to the
constant VM_MIN_ADDRESS (defined in the header file mach/machine/vm_param.h) to specify the first address
in the address space.

EXAMPLE char *data;
kern_return_t r;
vm_size_t size;
vm_prot_t protection, max_protection;
vm_inherit_t inheritance;
boolean_t shared;
port_t object_name;
vm_offset_t offset;
vm_address_t address;

/* . . . */
/* Check the inheritance of "data". */
address = (vm_address_t)&data;
r = vm_region(task_self(), &address, &size, &protection,
 &max_protection, &inheritance, &shared, &object_name, &offset);

if (r != KERN_SUCCESS)
 mach_error("Error calling vm_region", r);
else {
 printf("Inheritance is: ");
 switch (inheritance) {
 case VM_INHERIT_SHARE:
 printf("Share with child\n");
 break;
 case VM_INHERIT_COPY:
 printf("Copy into child\n");
 break;
 case VM_INHERIT_NONE:
 printf("Absent from child\n");
 break;
 case VM_INHERIT_DONATE_COPY:
 printf("Copy and delete\n");
 break;
 }
}

RETURN KERN_SUCCESS:    The region was located and information has been returned.

KERN_NO_SPACE:    The task contains no region at or above address.

SEE ALSO vm_allocate(), vm_deallocate(), vm_protect(), vm_inherit()

vm_set_policy()

SUMMARY Set the paging policy for a region of memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_set_policy(vm_task_t target_task, vm_address_t address, vm_size_t€size, int€policy)

ARGUMENTS target_task:    Task whose virtual memory is to be affected.

address:    Starting address (must be on a page boundary).

size:    Number of bytes (must be a multiple of vm_page_size).

policy:    Mask specifying the paging policy.    Values for policy are defined in the header file mach/vm_policy.h.

DESCRIPTION This function lets you control the paging policy for a region of memory.    In addition to its normal
paging policy, the system can control the placement of pages under certain patterns of access.    These patterns are
currently limited to strictly sequential access in either direction.

The policy mask can have the following values, which can be combined:

· VM_POLICY_PAGE_AHEAD (page ahead)
· VM_POLICY_SEQ_DEACTIVATE (deactivate behind)
· VM_POLICY_SEQ_FREE (free behind)
· VM_POLICY_RANDOM (don't use a special paging policy)

Note:    The page-ahead policy isn't currently implemented.

Calls to vm_policy() affect memory at the backing store level, not the mapping level.    For example, calling
vm_policy() on a memory-mapped file affects the underlying file, and consequently all uses of that file.    It is
currently impossible for different users of the same file to have different policies for that file.

SEE ALSO vm_deactivate()

vm_statistics()

SUMMARY Examine virtual memory statistics

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_statistics(vm_task_t target_task, vm_statistics_data_t *vm_stats)

ARGUMENTS target_task:    The task that's requesting the statistics.

vm_stats:    Returns the statistics.

DESCRIPTION The function vm_statistics() returns statistics about the kernel's use of virtual memory since the kernel
was booted.    The system page size is contained in both the pagesize field of the vm_status and the global variable
vm_page_size, which is set at task initialization and remains constant for the life of the task.

struct vm_statistics {
 long pagesize; /* page size in bytes */
 long free_count; /* number of pages free */
 long active_count; /* number of pages active */
 long inactive_count; /* number of pages inactive */
 long wire_count; /* number of pages wired down */
 long zero_fill_count; /* number of zero-fill pages */
 long reactivations; /* number of pages reactivated */
 long pageins; /* number of pageins */
 long pageouts; /* number of pageouts */
 long faults; /* number of faults */
 long cow_faults; /* number of copy-on-writes */
 long lookups; /* object cache lookups */
 long hits; /* object cache hits */
};
typedef struct vm_statistics vm_statistics_data_t;

EXAMPLE result=vm_statistics(task_self(), &vm_stats);
if (result != KERN_SUCCESS)
 mach_error("An error calling vm_statistics()!", result);
else
 printf("%d bytes of RAM are free\n",
 vm_stats.free_count * vm_stats.pagesize);

RETURN KERN_SUCCESS:    The operation was successful.

vm_write()

SUMMARY Write virtual memory

SYNOPSIS #import <mach/mach.h>

kern_return_t vm_write(vm_task_t target_task, vm_address_t address, pointer_t data, unsigned int data_count)

ARGUMENTS target_task:    Task whose memory is to be written.

address:    Starting address in task to be affected (must be a page boundary).

data:    An array of bytes to be written.

data_count:    The size in bytes of the data array (must be a multiple of vm_page_size).

DESCRIPTION The function vm_write() allows a task's virtual memory to be written by another task.    For languages
other than C, the value of vm_page_size can be obtained by calling vm_statistics().

RETURN KERN_SUCCESS:    Memory written.

KERN_INVALID_ARGUMENT:    The address doesn't start on a page boundary, or the size isn't an integral number
of pages.

KERN_PROTECTION_FAILURE:    The address region in the target task is protected against writing.

KERN_INVALID_ADDRESS:    An illegal or nonallocated address was specified or the amount of allocated
memory starting at address was less than data_count.

SEE ALSO vm_copy(), vm_protect(), vm_read(), vm_statistics()

Bootstrap Server Functions

The Bootstrap Server, like the Network Name Server, lets tasks publish ports that other tasks can send messages to.
Unlike the Network Name Server, the Bootstrap Server is designed so that each server and its clients must be on the
same host.    The Bootstrap Server accomplishes this by using each task's bootstrap port (which is inherited from its
parent) to ensure that the task is a descendent of a local task.

When a task forks a child task that shouldn't have access to the same set of services as the parent, the parent task
must change its own bootstrap portÐperhaps only temporarilyÐso that its child inherits a subset port.    The parent
should then change the set of services available on the subset port to suit the child's requirements.

The Bootstrap Server was created by NeXT, so these functions aren't in other versions of Mach.    See
/NextDeveloper/Headers/servers/bootstrap.defs for more information of how the Bootstrap Server works.

Note:    If possible, you should use Distributed Objects instead of the Bootstrap Server.    The Distributed Objects
system is described in the NEXTSTEP General Reference.

bootstrap_check_in()

SUMMARY Get receive rights to a service port

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_check_in(port_t bootstrap_port, name_t service_name, port_all_t *service_port)

ARGUMENTS bootstrap_port:    A bootstrap port.    Usually, this should be the task's default bootstrap port, which is
returned by task_get_bootstrap_port().

service_name:    The string that names the service.

service_port:    Returns receive rights to the service port.

DESCRIPTION Use this function in a server to start providing a service.    The service must already be defined, either by
the appropriate line in /etc/bootstrap.conf or by a call to bootstrap_create_service().    Calling
bootstrap_check_in() makes the service active.

EXAMPLE /* Get receive rights for our service. */
result=bootstrap_check_in(bootstrap_port, MYNAME, &my_service_port);
if (result != BOOTSTRAP_SUCCESS)
 mach_error("Couldn't create service", result);

RETURN BOOTSTRAP_SUCCESS:    The call succeeded.

BOOTSTRAP_NOT_PRIVILEGED:    bootstrap_port is an unprivileged bootstrap port.

BOOTSTRAP_UNKNOWN_SERVICE:    The service doesn't exist.    It might be defined in a subset (see
bootstrap_subset()).

BOOTSTRAP_SERVICE_ACTIVE:    The service has already been registered or checked in and the server hasn't
died.

Returns appropriate kernel errors on RPC failure.

bootstrap_create_service()

SUMMARY Create a service and service port

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_create_service(port_t bootstrap_port, name_t service_name, port_t *service_port)

ARGUMENTS bootstrap_port:    A bootstrap port.    Usually, this should be the task's default bootstrap port, which is
returned by task_get_bootstrap_port().

service_name:    The string that specifies the service.

service_port:    Returns send rights for the service.

DESCRIPTION Creates a service named service_name and returns send rights to that port in service_port.    The port may
later be checked in as if this port were configured in the bootstrap configuration file.    (At that time
bootstrap_check_in() will return receive rights to service_port and will make the service active.)

This function is often used to create services that are available only to a subset of tasks (see bootstrap_subset()).   
Any task can call this functionÐit doesn't have to be the server.

EXAMPLE /* Tell the bootstrap server about a service. */
result=bootstrap_create_service(bootstrap_port, SERVICENAME,
 &service_port);
if (result!=BOOTSTRAP_SUCCESS)
 mach_error("Couldn't create service", result);

RETURN BOOTSTRAP_SUCCESS:    The call succeeded.

BOOTSTRAP_NOT_PRIVILEGED:    bootstrap_port is an unprivileged bootstrap port.

BOOTSTRAP_SERVICE_ACTIVE:    The service already exists.

Returns appropriate kernel errors on RPC failure.

bootstrap_info()

SUMMARY Get information about all known services

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_info(port_t bootstrap_port, name_array_t *service_names, unsigned int
*service_names_count, name_array_t *server_names, unsigned€int€*server_names_count, bool_array_t
*service_active, unsigned€int€*service_active_count)

ARGUMENTS bootstrap_port:    A bootstrap port.    Usually, this should be the task's default bootstrap port, which is
returned by task_get_bootstrap_port().

service_names:    Returns the names of all known services.

service_names_count:    Returns the number of service names.

server_names:    Returns the name, if known, of the server that provides the corresponding service.    Except for the
mach_init server, this name isn't known unless the bootstrap configuration file has a server line for this server.

server_names_count:    Returns the number of server names.

service_active:    Returns an array of booleans that correspond to the service_names array.    For each item, the
boolean value is true if the service is receiving messages sent to its port; otherwise, it's false.

service_active_count:    Returns the number of items in the service_active array.

DESCRIPTION This function returns information about all services that are known.    Note that it won't return
information on services that are defined only in subsets, unless the subset port is an ancestor of bootstrap_port.   
(See bootstrap_subset() for information on subsets.)

EXAMPLE result = bootstrap_info(bootstrap_port, &service_names, &service_cnt,
 &server_names, &server_cnt, &service_active, &service_active_cnt);
if (result != BOOTSTRAP_SUCCESS)
 printf("ERROR: info failed: %d", result);
else {
 for (i = 0; i < service_cnt; i++)
 printf("Name: %-15s Server: %-15s Active: %-4s",
 service_names[i],
 server_names[i][0] == '\0' ? "Unknown" : server_names[i],
 service_active[i] ? "Yes\n" : "No\n");
}

RETURN BOOTSTRAP_SUCCESS:    The call succeeded.

BOOTSTRAP_NO_MEMORY:    The Bootstrap Server couldn't allocate enough memory to return the information.

Returns appropriate kernel errors on RPC failure.

bootstrap_look_up()

SUMMARY Get the service port of a particular service

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_look_up(port_t bootstrap_port, name_t service_name, port_t€*service_port)

ARGUMENTS bootstrap_port:    A bootstrap port.    Usually, this should be the task's default bootstrap port, which is
returned by task_get_bootstrap_port().

service_name:    The string that identifies the service.

service_port:    Returns send rights for the service port.

DESCRIPTION Returns send rights for the service port of the specified service.    The service isn't guaranteed to be
active.    (To check whether the service is active, use bootstrap_status().)

EXAMPLE result=bootstrap_look_up(bootstrap_port, "FreeService2", &srvc_port);
if (result!=BOOTSTRAP_SUCCESS)
 printf("lookup failed: %d\n", result);
else {
 /* Access the service by sending messages to srvc_port. */
}

RETURN BOOTSTRAP_SUCCESS:    The call succeeded.

BOOTSTRAP_UNKNOWN_SERVICE:    The service doesn't exist.    It might be defined in a subset (see
bootstrap_subset()).

Returns appropriate kernel errors on RPC failure.

bootstrap_look_up_array()

SUMMARY Get the service ports for an array of services

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_look_up_array(port_t bootstrap_port, name_array_t€service_names, unsigned int
service_names_count, port_array_t€*service_ports, unsigned int *service_ports_count,
boolean_t€*all_services_known)

ARGUMENTS bootstrap_port:    A bootstrap port.        Usually, this should be the task's default bootstrap port, which is
returned by task_get_bootstrap_port().

service_names:    An array of service names.

service_names_count:    The number of service names.

service_ports:    Returns an array of service ports.

service_ports_count:    Returns the number of service ports.    This should be equal to service_names_count.

all_services_known:    Returns true if every service name was recognized; otherwise returns€false.

DESCRIPTION Returns port send rights in corresponding entries of the array service_ports for all services named in the
array service_names.    You should call vm_deallocate() on service_ports when you no longer need it.

Unknown service names have the corresponding service port set to PORT_NULL.    Note that these services might
be available in a subset (see bootstrap_subset()).

EXAMPLE kern_return_t result;
port_t my_bootstrap_port;
unsigned int port_cnt;
boolean_t all_known;
name_t name_array[2]={"Service", "NetMessage"};
port_array_t ports;

result = task_get_bootstrap_port(task_self(), &my_bootstrap_port);
if (result != KERN_SUCCESS) {
 mach_error("Couldn't get bootstrap port", result);
 exit(1);
}

result=bootstrap_look_up_array(my_bootstrap_port, name_array, 2,
 &ports, &port_cnt, &all_known);
if (result!=BOOTSTRAP_SUCCESS)
 mach_error("Lookup array failed", result);
else
 printf("Port count = %d, all known = %d\n", port_cnt, all_known);

/* . . . */
result=vm_deallocate(task_self(), (vm_address_t)ports,
 sizeof(ports)*port_cnt);
if (result != KERN_SUCCESS)
 mach_error("Trouble freeing ports", result);

RETURN BOOTSTRAP_SUCCESS:    The call succeeded.

BOOTSTRAP_BAD_COUNT:    service_names_count was too large (greater than
BOOTSTRAP_MAX_LOOKUP_COUNT, which is defined in the header file server/bootstrap_defs.h).

Returns appropriate kernel errors on RPC failure.

bootstrap_register()

SUMMARY Register send rights for a service port

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_register(port_t bootstrap_port, name_t service_name, port_t€service_port)

ARGUMENTS bootstrap_port:    A bootstrap port.    Usually, this should be the task's default bootstrap port, which is
returned by task_get_bootstrap_port().

service_name:    The string that identifies the service.

service_port:    The service port for the service.

DESCRIPTION You can use this function to create a server that hasn't been defined in the bootstrap configuration file.   
This function specifies to the Bootstrap Server exactly which port should be the service port.

You can't register a service if an active binding already exists.    However, you can register a service if the existing
binding is inactive (that is, the Bootstrap Server currently holds receive rights for the service port); in this case the
previous service port will be deallocated.

A service that is restarting can resume service for previous clients by setting service_port to the previous service
port.    You can get this port by calling bootstrap_check_in().

EXAMPLE /* Create a port to use as the service port. */
result=port_allocate(task_self(), &myport);
if (result != KERN_SUCCESS) {
 mach_error("Couldn't allocate a service port", result);
 exit(1);
}

/* Tell the bootstrap server about my service. */
result=bootstrap_register(bootstrap_port, MYNAME, myport);
if (result != BOOTSTRAP_SUCCESS)
 printf("Call to bootstrap_register failed: %d", result);

RETURN BOOTSTRAP_SUCCESS:    The call succeeded.

BOOTSTRAP_NOT_PRIVILEGED:    bootstrap_port is an unprivileged bootstrap port.

BOOTSTRAP_NAME_IN_USE:    The service is already active.

Returns appropriate kernel errors on RPC failure.

bootstrap_status()

SUMMARY Check whether a service is available

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_status(port_t bootstrap_port, name_t service_name, boolean_t€*service_active????)

ARGUMENTS bootstrap_port:    A bootstrap port.    Usually, this should be the task's default bootstrap port, which is
returned by task_get_bootstrap_port().

service_name:    The string that specifies a particular service.

service_active:    Returns true if the service is active; otherwise, returns false.

DESCRIPTION This function tells you whether a service is known to users of bootstrap_port, and whether it's active.    A
service is active if a server is able to receive messages on its service port.    If a service isn't active, the Bootstrap
Server holds receive rights for the service port.

EXAMPLE result=bootstrap_status(bootstrap_port, MYNAME, &service_active);
if (result!=BOOTSTRAP_SUCCESS)
 printf("status check failed\n");
else {
 if (service_active)
 printf("Server %s is active\n", MYNAME);
 else
 printf ("Server %s is NOT active\n", MYNAME);
}

RETURN BOOTSTRAP_SUCCESS:    The call succeeded.

BOOTSTRAP_UNKNOWN_SERVICE:    The service doesn't exist.    It might be defined in a subset (see

bootstrap_subset()).

Returns appropriate kernel errors on RPC failure.

bootstrap_subset()

SUMMARY Get a new port to use as a bootstrap port

SYNOPSIS #import <mach/mach.h>
#import <servers/bootstrap.h>

kern_return_t bootstrap_subset(port_t bootstrap_port, port_t requestor_port, port_t€*subset_port)

ARGUMENTS bootstrap_port:    A bootstrap port.    Usually, this should be the task's default bootstrap port, which is
returned by task_get_bootstrap_port().

requestor_port:    A port that determines the life span of the subset.

subset_port:    Returns the subset port.

DESCRIPTION Returns a new port to use as a bootstrap port.    This port behaves exactly like the
previous€bootstrap_port, with one exception:    When you register a port by calling bootstrap_register() using
subset_port as the bootstrap port, the registered port is available only to users of subset_port and its descendants.   
Lookups on the subset_port will€return ports registered specifically with this port, and will also return ports
registered with ancestors of this subset_port.    (The ancestors of subset_port are bootstrap_port and, if
bootstrap_port is itself a subset port, any ancestors of bootstrap_port.)

You can override a service already registered with an ancestor port by registering it with the subset port.    Any
thread that looks up the service using the subset port will see only the version of the service that's registered with the
subset port.    This is one way to transparently provide services such as monitor programs or individualized spelling
checkers, while the rest of the system still uses the default service.

When it's detected that requestor_port is destroyed, the subset port and its descendants are destroyed; the services
advertised by these ports are destroyed, as well.

/* Get and save the current bootstrap port for this task. */
r = task_get_bootstrap_port(task_self(), &old_bs_port);
if (r != KERN_SUCCESS) {
 mach_error("task_get_bootstrap_port", r);
 exit(1);
}
/* Get a subset port. */
r = bootstrap_subset(old_bs_port, task_self(), &subset_port);
if (r != BOOTSTRAP_SUCCESS) {
 mach_error("Couldn't get unpriv port", r);
 exit(1);
}

/* Set the bootstrap port */
r = task_set_bootstrap_port(task_self(), subset_port);
if (r != KERN_SUCCESS) {
 mach_error("task_set_bootstrap_port", r);
 exit(1);
}
bootstrap_port = subset_port;

RETURN BOOTSTRAP_SUCCESS:    The call succeeded.

BOOTSTRAP_NOT_PRIVILEGED:    bootstrap_port is an unprivileged bootstrap port.

Returns appropriate kernel errors on RPC failure.

Network Name Server Functions

If possible, you should use Distributed Objects instead of the Network Name Server€functions.    The Distributed
Objects system is described in the NEXTSTEP General€Reference.

netname_check_in()

SUMMARY Check a name into the local name space

SYNOPSIS #import <mach/mach.h>
#import <servers/netname.h>

kern_return_t netname_check_in(port_t server_port, netname_name_t port_name, port_t€signature, port_t port_id)

ARGUMENTS server_port:    The task's port to the Network Name Server.    To use the system Network Name Server,
this should be set to the global variable name_server_port.

port_name:    The name of the port to be checked in.

signature:    The port used to protect the right to remove a name.

port_id:    The port to be checked in.

DESCRIPTION The function netname_check_in() enters a port with the name port_name into the name space of the
local network server.    The signature argument is a port that's used to protect this name.    This same port must be
presented on a netname_check_out() call for that call to be able to remove the name from the name space.

RETURN NETNAME_SUCCESS:    The operation succeeded.

SEE ALSO netname_check_out(), netname_look_up()

netname_check_out()

SUMMARY Remove a name from the local name space

SYNOPSIS #import <mach/mach.h>
#import <servers/netname.h>

kern_return_t netname_check_out(port_t server_port, netname_name_t port_name, port_t signature)

ARGUMENTS server_port:    The task's port to the Network Name Server.    To use the system Network Name Server,
this should be set to name_server_port.

port_name:    The name of the port to be checked out.

signature:    The port used to protect the right to remove a name.

DESCRIPTION The function netname_check_out() removes a port with the name port_name from the name space of
the local network server.    The signature argument must be the same port as the signature port passed to
netname_check_in() when this name was checked in.

RETURN NETNAME_SUCCESS:    The operation succeeded.

NETNAME_NOT_YOURS:    The signature given to netname_check_out() did not match the signature with which
the port was checked in.

SEE ALSO netname_check_in(), netname_look_up()

netname_look_up()

SUMMARY Look up a name on a specific host

SYNOPSIS #import <mach/mach.h>
#import <servers/netname.h>

kern_return_t netname_look_up(port_t server_port, netname_name_t host_name, netname_name_t port_name,
port_t *port_id)

ARGUMENTS server_port:    The task's port to the Network Name Server.    To use the system Network Name Server,
this should be set to name_server_port.

host_name:    The name of the host to query.    This can't be a null pointer.

port_name:    The name of port to be looked up.

port_id:    The port that was looked up.

DESCRIPTION The function netname_look_up() returns the value of the port named by port_name by questioning the
host named by the host_name argument.    Thus this call is a directed name lookup.    The host_name may be any of
the host's official nicknames.    If it's an empty string, the local host is assumed.    If host_name is ª*º, a broadcast
lookup is performed.

Important:    Use NXPortNameLookup() instead of netname_look_up() in all NEXTSTEP applications.    (In the
future, Listener instances might register with a server other than the Network Name Server.)

RETURN NETNAME_SUCCESS:    The operation succeeded.

NETNAME_NOT_CHECKED_IN:    netname_look_up() could not find the name at the given host.

NETNAME_NO_SUCH_HOST:    The host_name argument to netname_look_up() does not name a valid host.

NETNAME_HOST_NOT_FOUND:    netname_look_up() could not reach the host named by host_name (for
instance, because it's down).

SEE ALSO netname_check_in(), netname_check_out()

