
TABLE OF CONTENTS

Introduction
Preparing your Application
Using MallocDebug
Analyzing Malloc Usage
Performance Analysis
Examining Zone Usage
Damaged Nodes
Finding Memory Leaks
Measuring Memory Usage



Viewing Touched Nodes

Introduction

MallocDebug is a utility for measuring the dynamic memory usage of 
applications and for finding memory leaks.    You can use MallocDebug to 
measure and analyze all allocated memory in an application or to measure 
the memory allocated since a given point in time.    MallocDebug also 
contains a conservative garbage detector that can be used to detect memory 
leaks.

Preparing your Application



To run your application so that MallocDebug can measure its malloc usage, 
Command-Drag and release the application icon over the MallocDebug app 
icon.    MallocDebug will start the application, causing it to dynamically link 
against a special version of malloc() that enables debugging.    MallocDebug 
will only work with OPENSTEP applications.

To prepare your application for tracking which nodes are touched by various 
operations, use the mdbsetup command line program (see "Viewing 
Touched Nodes" below).

Using MallocDebug

To use MallocDebug, you must first select an application to monitor.    The 



Open menu item in the Application menu brings up the Select panel.    Only 
currently running applications which you own and which have been 
configured for use with MallocDebug will appear in the panel.    Select an 
application by double-clicking its icon, and MallocDebug's application 
window will appear.

When the All option is selected in the main window, MallocDebug displays a 
list of all currently allocated nodes in your application.    These nodes have 
been allocated by one of the standard C allocation functions (malloc, realloc, 
calloc, or valloc) or one of NeXT's zone allocation functions (NXZoneMalloc, 
NXZoneRealloc, NXZoneCalloc). 

Analyzing Malloc Usage



The browser in the main window displays the stacks that allocate memory in 
a hierarchical fashion, showing the uppermost procedure at the root of the 
browser, and methods and functions as children of their callers. Each 
element of the browser shows the amount of memory that has been allocated 
under that method or function, and you can switch between showing sizes in 
bytes and number of mallocs by clicking the Sizes check box. By decending 
the hierarchy in the browser, you can quickly determine where in your 
application the malloc usage is excessive. However, since your application 
may be quite large and be comprised of many subsystem, there are some 
further analysis tools provided in the Analyze submenu to help understand 
the malloc usage.

There is an option to invert the hierarchy by choosing the Invert command. 
This causes the leaves of the hierarchy to displayed in the first column of the 
browser, and as you click on a method , its parents are displayed in the 



column to the right. With the hierarchy inverted, you can find which methods 
and functions are allocating the bulk of your malloced memory.

There may be some methods and functions that occur in many places in the 
hierarchy, and you might want to know what is the sum of all the memory 
allocated by a particular method. You can collapse all the instances of a 
method into one browser item by use the Make Flat command. With this 
command, every method and function is displayed in a single list, sorted by 
malloc usage.    To undo the Make Flat command is the Make Tree command.

Sometimes when you are looking at the usage of a particular part of your 
application, there are mallocs that happen on behalf of a library that you use, 
or by the Objective-C runtime, in which you have no control over the memory 
usage of these subsystem that you use.    To ignore the memory usage under 
these subsystems, there are the Forget Selection, Forget Path, and Forget 



Zone commands that remove certain stacks from the browser.    The Forget 
Selection will remove all stacks that contain the method or function in the 
current selection of the browser. Thus if you want to remove everything 
allocated underneath the Objective-C caching mechanism, you could 
selected __cache_fill and then choose Forget Selection.    The Forget Path is 
like the Forget Selection command except it doesn't forget every instance of 
the method in the hierarchy, only the ones in the selected path.    The Forget 
Zone command will forget all mallocs allocated from a particular zone.    To 
choose the zone, use the Zone Inspector panel.

To get back the information forgotten by the various Forget commands is the 
Remember command, which brings back all the stacks from the last time you 
execute the Show command.

There is an operation, which is almost the inverse of the forgetting 



operations, the Filter operation.    Which you choose the Filter... command, 
the Find panel comes up, and you can type in some text to filter with and 
click the Filter button.    What this does it to find all the stacks that contain the 
string from the Find panel, and only include those stacks in the output. 
Furthermore, the hierarchies are rooted the methods and functions that 
match your input string, so that you don't have to search all over the 
hierarchy to find the method you just filtered with. To undo the effects of this 
command, use the Remember command.

Performance Analysis

When you're in the performance phase of your development, and you come 
to the realization that you need to reduce your memory usage, one of the 
questions you ask yourself is: "For a given operation, what is the memory 



usage by the various parts of my application"?    For example, when 
launching your application, it would be nice if you could generate the 
following analysis:

Launching Draw in version 1.5

DrawDocument 140K
DrawApp 20K
Objective-C 40K
AppKit 30K
Defaults 8K

Total 228K

With this analysis, you can discover where the memory problems lie, and 



attack the largest offenders of excess memory usage.    Furthermore, as you 
make progress on your memory diet, you want to regenerate the analysis so 
that you can (hopefully) chart the progress over time.

MallocDebug provides a way to categorize the mallocs in your application. 
The Mapper panel and the Mapper submenu provides the user interface for 
both specifying which mallocs are assigned to which category.    In the 
example above, the categories would be DrawDocument, DrawApp, 
Objective-C, AppKit, and Defaults.

The Mapper panel is an editor for a document that specifies which mallocs 
are to be assigned to which categories. 

Creating a new mapping



There are 3 ways to map a set of mallocs to a category: by zone, by path, or 
by text.    To map mallocs by zone, you specify in the Mapper panel    the zone 
option in the radio button , enter the zone name in the Arg: field (or choose a 
zone in the Zone Inspector panel, and then choose the Enter Zone 
command), enter the name of the category in the Category: field, then click 
the Add button.    This moves all the outstanding mallocs that came from the 
specified zone into the specified category.    To map mallocs by path, you 
select a path in the main window browser, and click Enter Path in the Mapper 
submenu, provide a category name, and click the Add button. This moves all 
the mallocs under the currently selected subtree in the browser to the 
specified category.      To map mallocs by text, you can either type a string into 
the Arg: field, or use the Enter Text command to enter the currently selected 
method in the browser, specify a category name, and then click the Add 
button. This moves all the mallocs that have this specified text as part of its 
call stack into the specified category.



As you add each mapping, a new line appears in the bottom browser of the 
Mapper panel, which the type of category, the category name, and the 
argument, which is the zone, path, or text depending on the type of category. 
In this browser, items can be cut, copied, or pasted via the standard Cut, 
Copy, and Paste commands in the Edit menu.    The order of the mapping is 
very importance, since each of the mapping commands are executed in 
order.

After you've specified your mappings, you click the Apply button to apply the 
mappings to the current malloc information.    In the upper browser of the 
Mapper panel, the categories are displayed. Clicking on an item in the 
Categories browser will cause the main window to display the mallocs that 
belong this the clicked-on category. To undo this operation in the main 
window, choose the Remember command from the Analyze menu.



You can save the mappings with the Save or Save As commands in the 
Mapper submenu into ".mapping" documents.    These document can be 
opened via the Open... command in the same submenu. 

Finally, a report can be generated via the Report... command, which provides 
tab separated tables that can be imported into a spreadsheet or charting 
application.

Examining Zone Usage

The Zone Inspector panel (under the Tools submenu) provides either the size 
in bytes of the number of malloc nodes for each zone in your application.



Damaged Nodes

MallocDebug also detects nodes that have been written to incorrectly.    If 
your application has written past the end of a node, a right arrow (`>') 
appears by the node.    Similarly, if your application has written before the 
start of a node, a left arrow (`<') appears by the node.    Many of these errors 
are the result of using the result of strlen(s) as the argument to malloc for a 
string instead of strlen (s) + 1.    Damaged nodes are listed first in all sorting 
modes.

Finding Memory Leaks

To detect memory leaks, MallocDebug contains a conservative garbage 



detector.
When the Leaks button is pressed, MallocDebug searches through your 
program's memory for pointers to each node.    Any node that cannot be 
referenced is displayed as a memory leak.    Since the garbage detector 
cannot know which words in memory are pointers, it is possible that an 
integer has the same value as a pointer to a given node.    In this case that 
node doesn't show up as a leak, even though it really is.    This is why the 
garbage detector is called conservative.    In practice, this problem is very 
rare.

The second caveat is that the garbage detector only searches for references 
to the beginning of each node.    If your program doesn't retain a pointer to 
the start of a node, but instead retains a pointer into the middle of it, that 
node will show up as a leak even though it really isn't one.



Measuring Memory Usage

MallocDebug can show you the memory usage of a given portion of your 
program.    To begin measuring, press the Mark button.    After exercising a 
portion of your program, press the New button to see the nodes allocated 
since the mark.    Note that MallocDebug always shows you the nodes that 
are still currently allocated, so you will see only those nodes allocated since 
the mark that haven't been freed.

Viewing Touched Nodes

MallocDebug can show you which nodes are accessed (read or written) by 
your application.    Knowing which nodes are touched by your application is 
most useful for tuning the use of different allocation zones, thus improving 



your program's data locality and minimizing its working set.    To learn more 
about using zones, look in 
/NextLibrary/Documentation/NextDev/Concepts/Performance.

To record which nodes are touched, MallocDebug must place each allocated 
node from the relevant zones on its own virtual memory page.    Because of 
this additional memory requirement, you have control over which zones have 
this per-node monitoring enabled.    After you link your application with 
libMallocDebug.a (see above), you must run the mdbsetup program on 
your application to enable per-node monitoring for various zones.    The 
command

mdbsetup MyApp.app/Myapp -protectable <zone list>

enables the viewing of touched nodes within the zones listed in <zone list>.    



The strings "ALL" or "NONE" may also be specified instead of a specific list 
of zones.

The command

mdbsetup MyApp.app/Myapp -unprotectable <zone list>

enables the viewing of touched nodes within all zones except those listed in 
<zone list>.    For examples, specifying "-unprotectable default ObjC" will 
allow you to see nodes touched in all zones besides the default and 
Objective-C zones.

The command

mdbsetup MyApp.app/Myapp -print



shows what zones within the application are enabled for touched node 
viewing.

After applying mdbsetup to your application, run the application and select it 
in    MallocDebug as described above.    To learn what nodes are touched for 
a given operation of your application, first press the Protect button.    Then 
perform the operation in your application.    While you are using the 
application, MallocDebug records which nodes are touched.    To see this list, 
press the Touched button.    To see what nodes have not been touched, press 
the Untouched button.    To stop the recording of touched nodes, press the 
Unprotect button.    Pressing Protect again cleans the slate of recorded 
nodes.

When touched nodes are being displayed, some new types of nodes are 



listed.    Nodes marked with a '+' were allocated since the Protect button was 
pressed.    Nodes marked with a '-' were allocated and freed since the Protect 
button was pressed.


