
X Through the Firewall, and Other Application

Relays

G. Win�eld Treese Alec Wolman

Digital Equipment Corporation

Cambridge Research Lab

CRL 93/10 3 May 1993

d

Digital Equipment Corporation has four research facilities: the Systems Research Center and the

Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in

Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,

near MIT. CRL engages in computing research to extend the state of the computing art in areas

likely to be important to Digital and its customers in future years. CRL’s main focus is applica­

tions technology; that is, the creation of knowledge and tools useful for the preparation of impor­

tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes­

sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS

On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is

granted for non­profit educational and research purposes provided all such copies include a notice that such copy­

ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the

authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory

One Kendall Square

Cambridge, Massachusetts 02139

dT

X Through the Firewall, and Other Application

Relays

G. Win�eld Treese

1

Alec Wolman

2

Digital Equipment Corporation

Cambridge Research Lab

CRL 93/10 3 May 1993

Abstract

Organizations often impose an administrative security policy when they

connect to other organizations on a public network such as the Internet.

Many applications have their own notions of security, or they simply rely

on the security of the underlying protocols. Using the X Window System as

a case study, we describe some techniques for building application-speci�c

\relays" that allow the use of applications across organizational boundaries.

In particular, we focus on analyzing administrative and application-speci�c

security policies to construct solutions that satisfy the security requirements

while providing the necessary functions of the applications.

This is a preprint of a paper to appear in the Proceedings of the USENIX

Summer Conference, June, 1993.

c

USENIX Association 1993. Permission to copy without fee all or part of

this material is granted, provided that the copies are not made or distributed

for commercial advantage, the USENIX Association copyright notice and the

title and date of publication appear, and that notice is given that copying is

by permission of the USENIX Association. To copy or republish otherwise

requires speci�c permission from the USENIX Association.

1

Also with the MIT Laboratory for Computer Science.

2

Currently at the University of Washington, on leave from Digital Equipment

Corporation Cambridge Research Lab.

1 INTRODUCTION 1

1 Introduction

This paper presents some general techniques for making network applica-

tions available through secure gateways, based on experience from man-

aging an Internet gateway at Digital Equipment Corporation's Cambridge

Research Laboratory (CRL). Like many organizations, Digital operates �re-

walls at its Internet gateways to isolate the internal network from the rest

of the Internet. This isolation is only partial, because communication is the

goal of the connection in the �rst place. Unfortunately, the Internet is not

always a safe place, and some form of protection is necessary.

A �rewall (sometimes called a \gateway"), such as those described by

Cheswick [2], Ranum [11], or Schauer and Wolfhugel [13], is a collection of

computers intended to protect an organization connected to a public net-

work. The fundamental premise in the design of �rewalls is that it is easier

to secure a small number of systems rather than hundreds or thousands.

A �rewall isolates insecure systems inside the organization from the public

network. We discuss the design of traditional �rewalls in more detail below.

At CRL, we began with a traditional �rewall system. CRL operates

one of Digital's connections to the Internet, and the �rewall has been in

place since that connection was established. At the outset, each person who

needed access to the Internet also needed an account on a trusted �rewall

system. The only exceptions to this rule were those users who only needed to

use electronic mail and USENET news, which were forwarded appropriately

by a trusted gateway operated as part of the �rewall system. Assigning user

accounts does not scale very well, however; the administrative costs alone

can be prohibitive. Because of this, only a small number of people were

allowed to have accounts.

In order to provide some limited Internet access to more people, we began

implementing \relays" for various applications, such as FTP, Telnet, and X.

A \relay" is an intermediary program, speci�c to a given application, that

permits users on the inside of the �rewall to use services available on the

public network. The relays run on trusted �rewall systems.

The design of application relays is not merely a technical problem. An

organization may have an \administrative security policy" that makes some

statements about what is allowed and what is not. Relays must respect

these policies. The challenge is designing a relay that both provides the

needed application functions and satis�es the requirements of the security

policy.

In this paper, we discuss some general principles for attacking the prob-

2 DEFINITIONS 2

lem of designing relays to satisfy both technical and policy requirements. We

use our experience with constructing a relay for the X Window System [14]

as a case study.

After some brief de�nitions, we begin with discussions of traditional

�rewall design and administrative security policies. Next we describe our

approach to building the relay for X. This is followed by short descriptions

of some other example applications. We compare this approach to some

others from the research community and conclude with an evaluation of our

experiences and some discussion of possible future work.

2 De�nitions

In the sections that follow, an \internal" network is one inside an organiza-

tion connected to the Internet, and an \external" network is the Internet.

Note that \secure" as used here means some reasonable level of security, not

an absolute high level. The goal of our work has been to extend services

without sacri�cing a signi�cant portion of the security that already exists,

whatever that might be for a given application.

We use the term \router" to refer to a device that operates on packets

at the network layer. A \gateway" operates at the application layer (which

may encompass the OSI [18] session, presentation, and application layers).

3 Traditional Firewall Design

A typical �rewall con�guration may consist of several computer systems.

These include routers used to separate the internal and external networks

as well as secure hosts that may be used for interactive use. A diagram of a

typical �rewall con�guration is shown in Figure 1.

The routers used in the �rewall are often capable of \screening" pack-

ets to select desired ones and discard undesired ones. Screening routers

can be used to permit direct access between internal machines and exter-

nal ones. One screening router implementation for UNIX systems is de-

scribed by Mogul [7] (although not all of these have the
exibility of the one

Mogul describes). Similar capabilities are now available in many commer-

cial routers. Such systems allow a system manager to select packets based

on some combination of protocol, source and destination IP address, and

source and destination port numbers.

Some uses of screening routers include:

3 TRADITIONAL FIREWALL DESIGN 3

Interactive Use Gateway

Mail Gateway

Rest of the Internet

Screening Router

External Network Internal Network

Internal Hosts

Other Internal Networks

Figure 1: Typical Firewall Con�guration

4 ADMINISTRATIVE POLICIES 4

� Protecting �rewall systems. Even though a system is part of the �re-

wall, we may wish to prevent it from exchanging certain kinds of pack-

ets with external machines. For example, a dedicated mail relay may

not need to allow telnet access from external machines. Putting it

behind the screening router adds an extra layer of protection.

� Limiting interaction between �rewall systems and internal systems. A

�rewall system probably does not need full access to all internal sys-

tems; its access should be limited to the functions that are required.

Such a restriction limits the possible actions of an intruder who com-

promises the �rewall system.

� Allowing widespread access for certain services. There may be a few

services that are deemed su�ciently safe for all internal systems to use.

Such services may include, for example, the FTP and WHOIS services

operated by the Network Information Center (NIC). If we believe that

the NIC is unlikely to be compromised, then there is little risk posed

by allowing such access.

Screening routers can provide substantial protection, but there are many

applications that are di�cult to support using only screening routers. To

circumvent this problem, �rewall con�gurations often include a few privi-

leged hosts that have broader access to the Internet (although their access

may not be complete). Rather than allowing direct communication between

internal and external machines for applications such as electronic mail and

USENET news, the privileged machines accept mail or news messages and

deliver them appropriately on the other side of the �rewall. An application

such as remote login requires a di�erent solution | rather than allowing

remote logins between all internal and external machines, a typical con-

�guration would require all users to login to the privileged machine as an

intermediate step. These user accounts add some administrative overhead

to managing the gateway. This overhead is an important factor in how large

the gateway can grow.

Firewall con�gurations of this nature are currently available from several

vendors and consulting services.

4 Administrative Policies

Most organizations connected to the Internet have some sort of policy con-

cerned with the security aspects of the connection. In many cases, common

4 ADMINISTRATIVE POLICIES 5

to universities, the policy is that no security should be assumed. Other

organizations, such as companies or government agencies, frequently have

detailed policies that limit use of the network. We will refer to such policies

as \administrative policies." Some examples of issues covered by adminis-

trative policies include:

� Who can use the connection. Typically only employees or those indi-

viduals otherwise associated with the organization may use the con-

nection. Many organizations further limit the set to those who have

authorized user accounts on certain computers associated with the

connection.

� What kind of data
ow can occur. Many organizations are concerned

about potential
ow of private information outside the organization

(for example, the source code to a critical product). Others are con-

cerned with the
ow of data into the organization (for example, em-

ployees retrieving proprietary data from another company).

� Which applications can be used. Policies frequently limit the set of

applications that can be used with a connection. These limits may

be based on lack of a demonstrated need for the application, a belief

that the application is unsafe (whether because of known problems,

a guess, or a history of security problems), or expected violations of

other aspects of security policy. For example, an outgoing �le transfer

utility may violate the policies surrounding the kinds of data
ow that

are permitted.

To the technically-oriented reader, such policies (or variations on them)

may seem silly, excessive, or ine�ective. In some cases, they are. In other

cases, the issues may be more subtle. For example, information can
ow

out of a company in many ways, especially in the hands of a disgruntled

employee, so restricting outbound data transfer may not seem reasonable.

On the other hand, consider a thief who breaks into a corporate computers

system using a 1200 baud modem. He cannot download a large quantity of

source code quickly over such a connection, but he might be able to take

advantage of a high-speed network connection to move the code out to some

other machine on the network. In this case, restrictions on data transfer

serves to limit the damage the thief can cause.

In any case, we are not concerned here with de�ning or defending partic-

ular choices of administrative policies. Given a policy, we want to analyze it

4 ADMINISTRATIVE POLICIES 6

in the contexts of particular applications in order to construct an appropri-

ate gateway. These policies are not stated in a formal fashion; part of the

problem is constructing a real system that satis�es a vague policy statement

(and its issuers).

4.1 Example Administrative Policy

For our case study, we consider the following policy:

� Access is limited to those with authorized user accounts.

� Unauthorized individuals must not be allowed to gain access to internal

machines or information.

� It must not be possible for individuals to transfer large amounts of

information out of the organization at high speed. Individuals with

authorized user accounts are trusted not to abuse their privilege to

send out proprietary information.

� The gateway machines should keep reasonable logs about their use.

Like most administrative policies, these policies are general statements

and do not prescribe speci�c details for implementation. Often it is impor-

tant to understand the intent of the policy as well as its statement in order

to construct a system that satis�es the makers of the policy. The policy

described above, for example, may be understood to permit electronic mail,

even though mail allows some outbound transfer of information. Mail is

usually not high bandwidth, and some information about each message is

usually logged.

In Section 7 we describe some other applications and variations of the

administrative security policy.

4.2 Scope of Protection

In this paper we are primarily concerned with protecting applications. We

do not address issues such as spying on individual packets on the Internet,

the abuse of protocols to create covert channels for signaling, forging source

or destination IP addresses, or \hijacking" a TCP connection by inserting

packets with proper sequence numbers into the connection. Many of these

potential problems with TCP/IP are discussed by Bellovin [1]. Although we

do not consider them here, these potential problems should be considered

when designing a real �rewall system.

5 A RELAY FOR THE X WINDOW SYSTEM 7

5 A Relay for the X Window System

Some applications are di�cult to operate securely with traditional �rewall

con�gurations. In our case, the critical ones were applications using the

X Window System. After implementing a solution to the X problem, we

began to investigate other applications where we could apply some of the

same general techniques.

In the X Window System, the basic security model allows a user to

control the set of hosts allowed to make connections to the X server. This

control only a�ects new connections, not existing ones. Many users disable

the access control entirely for personal convenience when using a more than

a few hosts.

Researchers at CRL often collaborate with researchers at universities,

and they want to run applications on the university machines with the X

display on a workstation at CRL. Because of X's weak security model, simply

allowing all X tra�c to pass through the screening routers would not meet

our security requirements.

Since we had no technical way of enforcing the use of access controls,

we had to assume that the internal users would not use the existing access

control mechanism carefully. There are also hooks in the X protocol for

passing other authentication data to the server; we explain below why that

mechanism is not su�cient.

One approach might be to modify the screening routers as necessary to

allow connections between speci�c machines. The main problem with this

approach is the management overhead. To keep the screen up to date would

require a system manager to take action whenever a new connection was

needed or when an old one was no longer necessary. A privileged application

to do this would require substantial access controls and authorization for the

users.

For quite some time, if a researcher asked for this capability, the answer

was that it was simply unavailable. Fortunately, researchers don't like to

take \no" for an answer, especially when it has to do with getting their

work done, so we began thinking about how to provide this capability. We

realized that we needed to solve the following problems:

� Limiting which systems could connect to an internal display. Since the

address of the client host is the best information we have about the

client, we can use it to restrict which hosts can connect.

� Ensuring that there were no unauthorized connections. Limiting con-

5 A RELAY FOR THE X WINDOW SYSTEM 8

Figure 2: Dialog box for xforward

nections to a small set of systems does not eliminate all problems. A

hostile user on an allowed system might try to connect to the display.

The X protocol allows a client to spy on the entire state of the screen

as well as the input stream, so a client can silently eavesdrop on other

applications.

� Not modifying any client or X server software. Since we have no

control over either the clients or the servers, we could not require any

modi�cations to the software. This ruled out modifying clients and

servers to use a strong authentication system such as Kerberos [16] or

SPX [17].

The �rst problem means that we are limited at best to a solution based

on IP addresses, not authenticated individuals. That immediately led us

to the second problem, of ensuring that no unauthorized connections were

made by other users of the remote machines.

Our solution is a modi�ed TCP protocol forwarder called xforward, which

is run by a user on a privileged gateway machine. A TCP forwarder is a

program that listens for data on a port and forwards anything it receives to

another system. The screening router is con�gured to only allow X tra�c

between the internal hosts and the privileged gateway. xforward allows the

user to specify a list of hosts that are allowed to connect to the X server. It

establishes a relay between a pseudo-display number on the gatewaymachine

and the user's workstation.

Foreign X clients attempt to establish connections to the pseudo-display

on the gateway machine, where the list of allowed hosts is checked. When

that check is successful, the connection must then be explicitly approved

6 EXAMPLE APPLICATIONS 9

by the user through a dialog box created by xforward. The dialog box is

shown in Figure 2. This makes the establishment of each connection an

intrusive action and ensures that the user is aware of all connections created

to the display from the outside, so an intruder cannot spy on the X server.

In addition, the list of allowed hosts is speci�ed at relay startup time, and

there is no way to disable this mechanism or to specify wildcards. If there

is no activity on any connection for a certain period of time, all connections

are closed and the relay terminates. For reference, the xforward manual page

is shown in Appendix A.

This solution may seem rather simple. Indeed, it is not a matter of deep

thought. The interesting principle here, however, is that we can use speci�c

knowledge about an application to create a relay that provides the required

functions of the application while preserving a desired security policy. In the

next section, we describe several examples in which the application semantics

di�er enough that xforward itself would not work, but the general principle

of analysis applies.

6 Example Applications

Other applications that we have used in this way include FTP, Telnet,

WHOIS, and sup (a software distribution program developed by the Mach

project at Carnegie Mellon). In each case, we used a similar process of

analyzing the application's security policies and the administrative policies

to develop a relay that provided the necessary functions while meeting the

administrative policies. For comparison, the section concludes with analyses

of electronic mail and USENET news in the same framework.

6.1 FTP

The File Transfer Protocol (FTP) [10] is widely used on the Internet for

copying �les. We may wish to allow many people on internal systems to

copy �les to and from external systems. With the policies we are currently

considering, that is not possible without giving everyone an authorized user

account on gateway machines. Suppose, however, that we relax the admin-

istrative policy slightly:

� Any employee can copy �les from systems on the Internet to internal

machines.

6 EXAMPLE APPLICATIONS 10

This rule does not di�er much from the general intent of our original

example. It does, however, give us some additional freedom to implement a

gateway mechanism. There are two challenges here: one a technical problem

and one caused by the administrative policy. The technical challenge is that

FTP uses separate control and data connections, so a simple TCP relay

is insu�cient. The administrative challenge is that this policy does not

permit copying �les from internal machines to external machines, so even a

simple FTP relay that can manage the data and control connections is not

su�cient.

The solution in this case is an FTP relay that checks each FTP command

before passing it through. Requests to store �les are denied, and other

requests are passed through. In addition, of course, the FTP relay limits

access to internal machines. Such a relay has been implemented; a sample

interaction with it is shown in Figure 3.

Given an FTP relay, however, we may be able to expand the o�ered

service with an additional relaxation of the policy:

� An employee may transfer �les out if the identity of the employee can

be determined and recorded.

Authorized user accounts satisfy this requirement. We can also sat-

isfy the requirement by using a strong authentication system, such as Ker-

beros [16], SPX [17], or \smart cards." In fact, a system has been imple-

mented based on the the SecureNet SNK-004 from Digital Pathways, Inc.

An individual with a registered key is allowed to transfer �les after authen-

tication. Figure 4 gives a sample dialog with this service.

Hence, with an understanding of both the administrative policy require-

ments and the details of the FTP implementation, we can devise a functional

relay. If we understood the policy and had only a vague understanding of

how FTP works, we might conclude that such a relay is not possible. If, on

the other hand, we understood the FTP implementation and did not fully

understand the policy, we might conclude that such a relay is not permissi-

ble.

6.2 Telnet

Telnet [9] is widely used on the Internet for remote logins. General telnet

access between internal and external machines can serve many purposes,

supporting cooperative work projects, customer support, and traveling em-

ployees who need to read their electronic mail. The relaxed version of the

6 EXAMPLE APPLICATIONS 11

% ftp ftp-gw

Connected to ftp-gw.

220-FTP passthrough server

220-To connect to a remote FTP server give your login as:

220-user@server.serverdomain (EG: anonymous@host.cs.mumble.edu)

220-

220-NOTE: All file transfers are logged by the relay, and are

220- most likely also logged by the system at the other end

220 of the connection.

Name (ftp-gw:): anonymous@gatekeeper.dec.com

331 Guest login ok, send ident as password.

Password:

230 Guest login ok, access restrictions apply.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for file list.

...

README.nfs

...

226 Transfer complete.

448 bytes received in 0.18 seconds (2.4 Kbytes/s)

ftp> get README.nfs

200 PORT command successful.

150 Opening ASCII mode data connection for README.nfs (2799 bytes).

226 Transfer complete.

local: README.nfs remote: README.nfs

2853 bytes received in 0.54 seconds (5.2 Kbytes/s)

ftp> put README.nfs

200 PORT command successful.

530 Operation denied by FTP gateway

ftp> quit

221 Goodbye.

Figure 3: Sample interaction with FTP relay.

6 EXAMPLE APPLICATIONS 12

% ftp ftp-gw

Connected to ftp-gw

220-FTP passthrough server

220-To connect to a remote FTP server give your login as:

220-user@server.serverdomain (EG: anonymous@host.cs.mumble.edu)

220-

220-NOTE: All file transfers are logged by the relay, and are

220- most likely also logged by the system at the other end

220 of the connection.

Name (ftp-gw:): treese@somewhere.edu

331 Guest login ok, send ident as password.

Password:

230 Guest login ok, access restrictions apply.

ftp> ftp> put fubar

200 PORT command successful.

530 Operation denied by FTP gateway

ftp> quote authorize treese

331 Enter response code for 88146:

ftp> quote response 35233348

230 Accepted and authorized, 305336

ftp> put fubar

200 PORT command successful.

150 Opening data connection for fubar (192.58.206.2,3441).

226 Transfer complete.

local: fubar remote: fubar

20929 bytes sent in 0.035 seconds (5.8e+02 Kbytes/s)

ftp> quit

221 Goodbye.

Figure 4: Sample interaction with FTP relay using authentication.

6 EXAMPLE APPLICATIONS 13

policy described for FTP is su�cient to permit a telnet relay implementa-

tion using a simple TCP relay and dialog to set up the connection, given

some kind of strong authentication mechanism.

With \outbound" telnet (from an internal machine to an external one)

we can take an extra precaution, however. In the abstract, we are supporting

interactive remote terminal service, not arbitrary data connections. Hence,

it may be reasonable to limit the data rate on the outbound connection to

(say) 9600 bits per second. This is surely fast enough to handle a person

typing; we are not interested in anything more.

6.3 WHOIS

WHOIS [6] is a TCP-based query/response service, often used as a directory

service. The Internet Network Information Center (NIC) has historically

maintained a name lookup service for individuals on the Internet (although

the Internet is now so large as to make maintaining a centralized directory

impossible).

Given the somewhat relaxed policy described for FTP and telnet above,

we consider access to the NIC WHOIS server. For this application, access to

the NIC is su�cient because it holds the directory of interest. Widespread

access to WHOIS servers throughout the network is a di�erent issue. In

this case, the protocol itself is not a means of data transfer, and we wish to

provide the service for all internal users.

A simple TCP relay that only connects to the NIC su�ces for WHOIS.

It should limit access to internal systems, but no access control beyond that

is necessary. It does not transfer signi�cant data, and an intruder would

need to compromise both the NIC and an internal machine to hijack the

relay.

6.4 Sup

sup [15] is a software distribution program developed by the Mach project

at Carnegie Mellon University. It is used to distribute updates to the Mach

software to interested parties who are cooperating with CMU. Suppose we

are interested in receiving updates to Mach on an internal system. sup is

clearly designed for data transfer, so we cannot provide widespread and

unauthenticated access. Since only one internal group needs to use sup, we

can use a TCP relay that admits connections only from their machine and

7 OTHER APPROACHES 14

connects only to a designated machine at CMU. An intruder must compro-

mise both ends of the connection to move data through the relay.

6.5 Electronic Mail and USENET News

Relays are nothing new to electronic mail and USENET news; \store-and-

forward" systems have been relaying mail through organizational boundaries

for years. We believe that these applications �t well into our framework. The

security policy is relaxed to allow use by anyone for inbound or outbound

messages. Messages \touch down" on a gateway machine, where sender

and destination can be logged. The applications are not high in bandwidth

because of the usual processing overhead.

7 Other Approaches

Application relays are not the only possible means to secure connected but

distrustful networks. In this section we discuss some alternatives that op-

erate at the network layer, concluding with a comparison to our work at

the application layer. The approaches described here all interact with the

routing of a packet through the network.

Routing determines the path a packet will take through a network. The

path may traverse several networks and routers. Each router decides what

action to take for each packet. This action may be to forward it to the

ultimate destination, forward it to another router, or reject the packet for

some reason (possibly with a noti�cation to the sender). Most routers today

try to select a route that minimizes some metric of the path, such as delay

or number of routers traversed. Routers could use other considerations in

making these decisions. For example, the router might permit only certain

senders, or it may forward packets of certain users over higher-speed links.

The alternative approaches discussed here vary primarily in what informa-

tion is used to make routing decisions.

7.1 Screening Routers

As we have discussed, a screening router can be an important component

of a �rewall system. A screening router permits an organization to imple-

ment a variety of security policies [8]. Unfortunately, a screening router

alone cannot always satisfy the administrative policy for a given applica-

7 OTHER APPROACHES 15

tion. Because it has no real knowledge of the application, it cannot perform

application-speci�c actions such as those we use for xforward.

7.2 Policy Routing

Policy routing, such as the architecture described by Clark [3], enables

routers to make decisions based on resource policies, including security as

well as other considerations such as link speed or cost. Clark proposes an

architecture in which policy routes are synthesized by the source host and

its administrative domain. The routers along the path are responsible for

enforcing the selected policy.

In practice, the main problem is that it requires wide deployment of both

end systems and routers capable of creating and enforcing policy routes.

Therefore we could not build a system based on policy routing.

7.3 Visa Protocols

Visa protocols [5] are another approach to managing the
ow of packets

between organizations. A \visa" is an unforgeable cryptographic stamp at-

tached to a packet. In the same way that a passport visa grants permission

to visit a country, a packet's visa grants it permission to enter or leave an

organization. Routers at organizational boundaries can check the visa of

a packet before forwarding it to verify that it has the appropriate permis-

sions. Visas are issued by trusted access control servers in the source and

destination organizations.

Visa protocols solve many of the problems we have considered so far.

However, the routers still cannot take action based on the application, which

is required for some of the policies we have considered. For example, a router

would not be able to create the xforward prompt for a new connection, since

it has no knowledge of the protocols it is routing.

7.4 Why the Application Layer?

Estrin and Tsudik [4] argue that the network layer is the appropriate place

for inter-organizational access controls. This conclusion is based on the

design principle of the end-to-end argument [12]. The basic end-to-end ar-

gument is that controls should be placed at the highest layer of the network

at the actual endpoints of the communication, since only the highest layer

will actually be able to ensure properties such as reliability and security.

8 CONCLUSIONS AND FUTURE WORK 16

Estrin and Tsudik note that one may consider entire organizations as end-

points in their own right, because the network resources of the organization

must be protected as well as the end systems within the organization.

Because the network layer is the highest normally handled by an orga-

nization's border routers, the end-to-end argument places responsibility for

security at that layer. We have gone a step beyond, however, using applica-

tion relays on border gateways. Given the application relays, the end-to-end

argument moves the responsibility for security to the relays.

Application relays give us the additional
exibility to perform application-

speci�c functions | xforward can interactively request approval for a con-

nection, for example.

8 Conclusions and Future Work

Building secure and useful inter-organizational networks is a complex chal-

lenge. By building application-speci�c relays to satisfy particular adminis-

trative policies, we have been able to expand the services available to users

lacking full access to the Internet. These services preserve the desired secu-

rity of the internal network as well. Not every application is suitable for this

kind of relay, but the techniques work in a surprising variety of situations.

In addition to the security issues, these techniques can be useful when

routing issues would normally prevent access between networks. For exam-

ple, if an organization uses a single network number for its internal network,

it is limited to a single primary route from the Internet into the organiza-

tion's network, even if it has several points of connection. The application

relays hide this problem from the end systems.

As the range of services available on the Internet grows, we hope to

be able to make many new services available on protected networks by ap-

plying these techniques. Although the implementation often varies from

application to application, making it di�cult to reuse source code, each new

application is easier to construct because it builds upon the cumulative ex-

perience. Much work remains to be done, however, in making this process

more straightforward and automatic.

Although the telnet and ftp relays do eliminate the need for user ac-

counts on the gateway, the current version of xforward does not. In order to

eliminate the need for user accounts, we need a method for users to invoke

the X relay remotely, without having a user account on the �rewall. We

might accomplish this in two ways: �rst, we can build a listener that will

9 ACKNOWLEDGEMENTS 17

accept xforward invocation requests from internal machines, on the theory

that anyone on an internal machine should have authorization to use the

X relay. If this does not meet the administrative security requirements, in

addition we can make use of \smart cards", to verify that the requester is

in fact authorized to remotely invoke the X relay.

All of the relays we have implemented use TCP. For TCP applications,

the relevant security decisions can usually be made at connection creation

time. Application-speci�c relays can also be built for applications that use

UDP. For UDP applications, the relay's decision whether or not to forward

would have to be made packet by packet, rather than per connection. This

would require detailed information about the application speci�c protocol

layered on UDP. This is similar in spirit to what the FTP relay does when

it checks each FTP command before passing it through.

On a more practical note, we are planning to extend xforward to support

compression of the X protocol for use over low-bandwidth network connec-

tions. We also plan to add an interactive control panel that will display

status information and allow users to modify the access lists during execu-

tion.

9 Acknowledgements

The authors would like to thank John Kohl for implementing the original

TCP forwarding code now used in xforward; it had no particular security

features. Brian Reid forced us to carefully work through the security issues

surrounding xforward. Marcus Ranum designed and implemented the FTP

and Telnet relays and has provided much helpful discussion on these issues.

Victor Vyssotsky gave us the freedom to experiment carefully with the In-

ternet gateway at Digital's Cambridge Research Lab. Neil Fishman and Ted

Wojcik assisted with our experiments at CRL's gateway. We would like to

thank Murray Mazer, Larry Stewart, Jim Miller, and the USENIX referees

for helpful comments on this paper.

REFERENCES 18

References

[1] S. M. Bellovin. Security problems in the TCP/IP protocol suite. Com-

puter Communications Review, 9(2):32{48, April 1989.

[2] Bill Cheswick. The design of a secure internet gateway. In Proceedings

of the USENIX Summer Conference, 1990.

[3] David D. Clark. Policy routing in internetworks. Internetworking: Re-

search and Experience, 1:35{52, 1990.

[4] D. Estrin and G. Tsudik. An end-to-end argument for network layer,

inter-domain access controls. Internetworking: Research and Experi-

ence, pages 71{86, June 1991.

[5] Deborah Estrin, Je�rey C. Mogul, and Gene Tsudik. Visa protocols for

controlling inter-organization datagram
ow. IEEE Journal on Selected

Areas in Communication, 1989.

[6] K. Harrenstien, M. K. Stahl, and E. J. Feinler. NICNAME/WHOIS.

RFC 954, Network Information Center, October 1985.

[7] Je�rey C. Mogul. Simple and
exible datagram access controls for

UNIX-based gateways. In Proceedings of the USENIX Summer Con-

ference, pages 203{221, Baltimore, MD, June 1989.

[8] Je�rey C. Mogul. Using screend to implement IP/TCP security policies.

Technical Note TN-2, Digital Equipment Corporation Network Systems

Lab, 1991.

[9] J. B. Postel and J. K. Reynolds. Telnet protocol speci�cation. RFC

854, Network Information Center, 1983.

[10] J. B. Postel and J. K. Reynolds. File transfer protocol. RFC 959,

Network Information Center, 1985.

[11] Marcus J. Ranum. A network �rewall. In Proceedings of the World

Conference on System Administration and Security, Washington, D.C.,

July 1992.

[12] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2:195{206, 1984.

REFERENCES 19

[13] Herv�e Schauer and Christophe Wolfhugel. An Internet gatekeeper.

In UNIX Security Symposium III Proceedings, pages 49{61. USENIX,

1992.

[14] Robert W. Schei
er and James Gettys. X Window System. Digital

Press, Bedford, MA, 3rd edition, 1991.

[15] Steven Shafer and Mary Thompson. The

SUP software upgrade protocol. Available by anonymous FTP from

mach.cs.cmu.edu:/pub/sup/sup.doc.

[16] Jennifer G. Steiner, Cli�ord Neuman, and Je�rey I. Schiller. Kerberos:

An authentication system for open network systems. In Proceedings of

the USENIX Winter Conference, pages 191{202, January 1988.

[17] J. Tardo and K. Alagappan. SPX: Global authentication using public

key certi�cates. In Proceedings of the IEEE Computer Society Sym-

posium on Research in Security and Privacy, pages 232{244, Oakland,

CA, May 1991.

[18] Hubert Zimmermann. OSI reference model | the ISO model of ar-

chitecture for open systems interconnection. IEEE Transactions on

Communications, Com-28(4):425{432, April 1980.

A XFORWARD MANUAL PAGE 20

A xforward Manual Page

xforward (local) UNIX Programmer’s Manual xforward (local)

NAME

xforward − provide user-level X forwarding service

SYNOPSIS

xforward [options]

OVERVIEW

xforward provides a user-level X11 forwarding service which can be useful if there are IP network topolo-

gies which provide non-transitive routing (e.g. routers which implement policy packet screening).

OPTIONS

−display display

Specifies the destination display where the user wants applications to appear. Without this argu-

ment, xforward will use the DISPLAY environment variable.

−allow allowed-host1 [allowed-host2 ... allowed-host16]

Only connections from allowed-hosts are permitted. At least one allowed-host must be specified,

and at most sixteen are allowed.

DESCRIPTION

xforward will choose an unused port for the local display, and listen for connections on the local host at

that port. xforward informs the user which port to use as the local display, when xforward is first invoked.

When it receives a connection, it will create a confirmation pop-up on the destination. If the user confirms

the connection request, it will create a separate socket and connect it to the destination, and then commence

data piping between the two connections. xforward can handle multiple simultaneous connections.

If there is no activity on a connection for 90 minutes, the connection is closed. If the X server at the desti-

nation does not have access control enabled, then xforward will report an error.

If a connection is closed by either end, any buffered data is drained to its destination before xforward will

close the corresponding socket on the other end.

SEE ALSO

accept(2), bind(2), connect(2), listen(2), select(2), socket(2)

BUGS

Out-of-band data is ignored/thrown away.

If the initial connection to the destination fails for some reason, the client who connected to the local-

display will get an open and immediately closed TCP connection, which may cause some difficulty for pro-

grams that expect some sort of server response or an error code indicating failure to connect.

AUTHORS

John Kohl, MIT Project Athena and Digital Equipment Corporation

Modifications for X by Win Treese and Alec Wolman

