
Contents

QCARDS
Introduction

USING QCARDS FOR FUN & PROFIT
Cards up your sleeves

Subroutines & Functions
Not All Smoke And Mirrors
Initialization Functions
Card drawing subs
Information Subs and Functions
Dragging Functions

Dragging it all out...
DRAGGING
Dragging a Block of Cards

Errata...

ABOUT QCARDS.DLL



Introduction

What is QCard.DLL?
QCARD.DLL is a dynamic link library that simplifies the creation 

of card games for the Windows 3.x environment. It grew out of 

the author's desire to write his own card games which were as good 

in quality as the Windows solitaire game. There were some other card

DLL's available, but they proved to be somewhat slow, and the

final result was not always that pretty.

 QCARD.DLL is fully compatible with the Visual Basic environment as 

well as C. If you are working in VB you might encounter slightly slower

execution speed but this is the nature of VB.    QCARD.DLL    gives you easy 

access to 40 card-game specific functions and procedures.    Creating a 

Windows card game has never been easier

I do this for fun, not for money!    Therefore the    QCARD.DLL is released to 

an unsuspecting world as FREEWARE and offers no ties or binds to it's author.

The other benefit of releasing this as FREEWARE is being able to avoid the

 thirteen paragraphs of legal mumbo-jumbo that would normally go right here.



CARDS UP YOUR SLEEVES
Writing Card Games
Using VB and QCard.DLL
QCard.DLL Card Properties



Writing Card Games
Writing a card game can be a frustrating process even when using

tools like this. QCARD.DLL will not write your card game for

you! You will need to do lots of work behind the scenes to

ensure that you are passing QCARD.DLL correct information in

the correct way. The process is eased by the amount of

fore-thought you bring to it. Like any other programming

project, the more time you spend designing and thinking about

what you want to do, the easier it is once you actually sit down

and start coding it. I am as guilty as the next person when it

comes to just sitting down and banging out wonderfully creative

code with no regard to where it is heading. I usually end up

paying the price, which is involves lengthy rewrites. A solid

plan is always a good idea before you start.



Using VB and QCard.DLL
You will need to declare all of QCARD.DLL's functions in your

Global Module. You can copy them from the VB demo program which

is included here. Without these declarations, your program

cannot access the routines in the DLL. When you are building

your program, you will need a copy of QCARD.DLL in your VB

directory so VB can access it. Once you have built your program,

and you are running it from it's own EXE, you will need a copy

of QCARD.DLL in that EXE's directory.    As an alternative, you

can put a copy in your Windows directory, in which case Windows

can locate it at design time and run time. If your program can't

find QCARD.DLL, make sure you have it located in the right

directory.    Once you have finished your project, and you are

ready to release it to the world, you will need to ship with it

a copy of QCARD.DLL.

In many of the sub and function calls to QCARD.DLL, you will

need to reference the handle of the window in which you are

working. In VB, this is the hWnd property of the form you are

drawing on, (for example, Form1.hWnd).    When drawing and

locating items, QCARD.DLL uses the MM_TEXT mapping mode. This

is a pixel-based coordinate system where the top-left corner of

your window is at x, y point 0, 0. Values increase as you move

to the right and down. You should set the ScaleMode property of

the form you will be working with to Pixel (3), and leave it's

ScaleTop and ScaleLeft properties at their defaults of 0. This

will ensure that both QCARD.DLL and your application will be

talking in the same terms when making reference to locations.

QCARD.DLL gives you two decks of cards to work with. If you

need any more decks than that in one game, then you will have to

improvise your own work-around. The cards are referenced by

their number. Numbers range from 1 to 104.    1 through 52 is a

complete deck and 53 to 104 is the other deck.    If you are using

just one deck in your game, you can ignore numbers 53 to 104.

They will remain unaffected. The easiest way to keep track of

what you are doing is to create a Deck array of your own, and

fill it with the numbers 1 through 52 (or 104 if you are using 2



decks). 

Global Deck (1 To 52) As Integer

Dim i As Integer

For i = 1 to 52

Deck(i) =    i

Next i

Then you can go ahead and shuffle the array, if thats what you

want.

Randomize Timer

For i = 1 To 10 

        For j = 1 To 52

                k = (Int(Rnd * 52) + 1)

                Temp = Deck(j)

                Deck(j) = Deck(k)

                Deck(k) = Temp

        Next j

Next i

You can now make calls to QCARD.DLL by referencing your array.

For example, 

DealCard    Form1.hWnd, Deck(1), xLoc, yLoc

This will deal the first card in your array on Form1 at location

xLoc, yLoc in pixel coordinates relative to the top-left corner

of your form.

You might want to declare a few Global Constants which will make

your job easier. These include the width of the cards and the

height of the cards. These values do not change. Another might

be an offset value for drawing cards in a row, solitaire

fashion, with their left sides aligned. If you want to utilize

any of QCARD.DLL Block dragging routines (dragging more than

one card at a time) you must use an offset of 16 pixels between

card tops. Any other value will not work. See the section on

dragging routines for more on this.

Global Const CARDWIDTH = 71

Global Const CARDHEIGHT = 96

Global Const OFFSET = 16



Global Const NUMCARDS = 52

Global Const FALSE = 0

Global Const TRUE = NOT FALSE

These will make it easier for you to place your cards where you

want them without remembering particular numbers.



QCard.DLL Card Properties
You can think of each card as having a set of properties, some

of which you can change and reference as your program executes.

The properties you have access to are as follows:

Related Topics:
1) Number
2) Color
3) Suit
4) Value
5) X
6) Y
7) IsVisible
8) IsBlocked
9) Disabled
10) BOOL      User1
11) int    User2, int    User3 & int    User4



1) Number

You reference a card by its number. The cards are numbered 1

through 104. Two decks worth. To reference a card in a fuction

call to QCARD.DLL, just call on its number. In the text that

follows , nCard refers to the number of the card you are

referencing, ie) GetCardSuit(nCard)



2) Color

You can determine a card's color by calling the function

GetCardColor(nCard). Black cards return a value of 1, Red cards

return a value of 2.



3) Suit

You can determine a card's suit by calling the function

GetCardSuit(nCard) passing it the number of the card you are

interested in. Clubs return 1, Diamonds return 2, Hearts return

3, Spades return 4. 



4) Value

You can determine a card's value by calling the function

GetCardValue(nCard). An ace returns 1, and a King returns 13.

The values in between are as you might expect.



5) X

You can determine a card's x location by calling

GetCardX(nCard). This will return it's current location from 0

on the left side of your Form. This value is originally set at

-72. When a card is dealt using the DealCard sub, this value is

updated automatically. This value can be set manually by calling

SetCardX(nCard, nLoc), giving the sub routine the card number

and new x location value.



6) Y

You can determine a card's y location by calling

GetCardY(nCard). The value is originally set at -97. When a card

is dealt using the DealCard sub, this value is updated

automatically. It can be set manually by calling SetCardY(nCard,

nLoc).



7) IsVisible

This is a Boolean value (TRUE or FALSE) which is initially set

to FALSE. When a card is displayed using the DealCard sub, it is

automatically set to TRUE. It's state can be determined using

the function IsCardVisible(nCard) which returns either TRUE or

FALSE. It can be set manually with the Sub SetCardVisible(nCard,

bValue). For example, SetCardVisible(5, TRUE) sets card 5's

visible property to TRUE.

This property comes in quite handy, especially when repainting a

window. You can simply call a loop which checks for this

property and paints in only those cards which are currently

visible:

For i = 1 to 52

nReturnValue = IsCardVisible(Deck(i))

If nReturnValue = TRUE Then

DrawCard Form1.hWnd, Deck(i), GetCardX(Deck(i)),

GetCardY(Deck(i))

End If

Next i



8) IsBlocked

The IsBlocked property is used when determining if a card is

free for dragging or not. When a card is dealt, and another is

moved on top of it by you or by the player, this value should be

set to TRUE for the lower card by calling AdjustCardBlocked

(nCard, TRUE). To put it simply, if you have a pile of cards,

only the topmost card should have an IsBlocked value of FALSE.

All the cards below it should have an IsBlocked value of TRUE.

This makes it possible for QCARD.DLL to carry out it's

hit-testing when initializing a drag event. The IsBlocked value

of a card is returned by a call to GetCardBlocked(nCard).



9) Disabled

If you want to remove a card from play, you can set it's

Disabled property to TRUE. Doing this will make it impossible

for the user to select the card for dragging with the mouse.

This can be done by calling SetCardDisabled(nCard, TRUE). The

card can be enabled again by calling SetCardDisabled(nCard,

FALSE).



10) BOOL      User1

This is a Boolean user defined property which you can use as you

see fit. You may want to use it to monitor some particular

attribute in your game. You can set this value by calling

SetUser1(nCard, bValue) where bValue is either TRUE or FALSE.

You can obtain it's present value by calling the GetUser1(nCard)

function.



11) int    User2, int    User3 & int    User4

User2, User3 and User4 are all integer types. You can set these

according to your needs. You set them by calling SetUser2(nCard,

nValue), SetUser3(nCard, nValue) and SetUser4(nCard, nValue)

where nValue is any integer. You can obtain their current values

by calling the GetUser2(nCard), GetUser3(nCard) and

GetUser4(nCard) functions.For example, your game might award a

player 8 points for placing an Ace in a certain pile. Before

shuffling, you could call:

For i = 1 To 40 Step 13

SetUser3(Deck(i), 8)

Next i

Then when the card is played and you are determining how many

points to award, you can call nNumPoints =

GetUser3(nCurrentCard) and retrieve it.



NOT ALL SMOKE AND MIRRORS

QCard.DLL Subs and Functions
Once you have included the sub and function declarations in your

Global Module, you can call QCARD.DLL functions just as if you

were calling any other function or sub in VB. The following

lists each function and sub and describes what it does. In this

documentation, any parameter which begins with n, such as nCard,

indicates that that value should be an integer. Any parameter

which begins with b, such as bValue, indicates that that value

should be a Boolean TRUE or FALSE. CALLING THESE SUBS AND

FUNCTIONS WITH VALUE TYPES OTHER THAN THOSE INDICATED IS A GOOD

WAY TO LOCK UP YOUR SYSTEM! Always save your work before you run

a routine to test it, especially the Block Dragging routines. If

you pass these routines an improper value, you will be dumped

out of VB and all your unsaved work will be lost. Not a big

deal, that's all part of the Windows programming experience!

Just remember to save your work first.



Initialization Functions
BOOL InitializeDeck    (hWnd)
SetCurrentBack(nIndex)
SetDefaultValues()



BOOL InitializeDeck    (hWnd)
A call to this function is required for QCARD.DLL to operate.

This sets up all the card pictures and values within the DLL.

You can make this call in your Form.Load event, passing it the

handle of the window in which you will be working. This function

returns TRUE if it is successful and FALSE if it fails. You

should always check the return value of this function and act

accordingly if it fails. For example:

nReturnValue = InitializeDeck(Form1.hWnd)

If nReturnValue = FALSE Then

MsgBox "Sorry. Another application is currently using

QCard.DLL"

End

End If

Generally, the InitializeDeck function will only return a FALSE

value if the DLL is already in use by another application. Only

one application can use QCARD.DLL at any given time. This

should not pose a problem unless a user tries to run two copies

of your game at the same time. It may be a good idea to mention

this fact in your game's documentation. When your application

ends, QCARD.DLL is released and unloaded by Windows. You may

find that if your application dies and ends prematurely when you

are designing and running it due to a General Protection Fault

on your part, Windows might not properly unload the DLL. You

will have to restart Windows again to clear the DLL out of

memory.



SetCurrentBack(nIndex)
In addition to the DrawBack sub which draws one of six card back

designs in your window, you can also use the regular card drawing

and dealing subs with card numbers 105 through 109 to draw card

backs.    Cards numbered 105 through 109 act just like other cards, but 

their picture is a card back design rather than a card front design. 

This allows manipulation of face down cards just like the manipulation 

you can do with face up cards.    The picture is the same for all five 

cards and is initially set at 1.    Call SetCurrentBack(nIndex) where 

(nIndex) is a number between 1 and 6.    You may call SetCurrentBack(nIndex) 

any number of times to change card backs, but remember to re-draw 

any previously dealt face-down cards to reflect the new choice.

You can also use cards 105 through 109 to display a pile of cards that 

goes down as as the user clicks on the pile, as in Windows Solitaire. 

To achieve this effect, first draw the "O" symbol on your form.    Then 

deal card 105 directly on top of it.    Then deal cards 106 through 108, 

each time offsetting their x and y by 2.    This creates a nice 3-D stack 

effect.    You will need to block all the cards except the top one 

(108 in this example).    As an example, part of your MouseDown 

Event might look like this:

Dim Shared nTopCard As Integer

nTopCard = 108

nSourceCard = InitDrag(Form1.hWnd, x, y)

If nsourceCard = nTopCard Then

RemoveCard nTopCard

SetCardDisabled nTopCard, TRUE

AdjustCardBlocked nTopCard - 1, FALSE

nTopCard = nTopCard - 1

End If

AbortDrag

This partial code sample is just to get you started.    To create a fully developed card pile, you will need to 
add much more functionality to the routine.



SetDefaultValues()
Use this sub to reset all card properties back to their default

values. A good time to use this is right before setting up a

fresh deal, so you can be sure all previous values are flushed

out. It has no parameters.



Card drawing subs
DrawCard (hWnd, nCard, nxLoc, nyLoc)
DealCard    (hWnd, nCard, nx, ny)
DrawSymbol (hWnd, nValue,    nx, ny)
DrawBack (hWnd, nValue, nx,    ny)
RemoveCard (hWnd, nCard)



DrawCard (hWnd, nCard, nxLoc, nyLoc)
This is the quickest and easiest way to draw a card onto your

window. Simply pass it your window handle, the number of the

card you want drawn, and the x, y location you want the card.

The DrawCard sub does not update any of the card's data members,

such as its x or y location, or it's IsVisible property. If your

application does not require any of this other information, this

may be the only drawing sub you need to use. You cannot

implement dragging operations if this is the only sub you use to

draw your cards, however. Again, this does not update any of the

card's data members. It just draws the card on the screen. It is

fast and simple. (This makes it good for redrawing items for

screen updates, as well).



DealCard    (hWnd, nCard, nx, ny)
The DealCard sub does many important things over and above the

DrawCard sub. It updates the card's IsVisible property to TRUE.

It updates the card's X and Y properties to the location you

deal the card. Most importantly, it grabs from the video display

that portion of the screen your card    will be covering over.

That is, it keeps a copy of the image which lies behind that

card. This is very crucial when you go to drag a card, because

whatever used to be behind the card has to be replaced on the

video display. If you are going to be doing any dragging, you

must place your cards on the screen using the DealCard sub. If

you try to drag a card that was originally drawn using the

DrawCard sub alone, you will end up with a video mess. 

Please note: the cards in QCARD.DLL adapt to any background

color your window may have. You can feel free to include an

option for the user to change window colors in your game knowing

that funny colored corners will not appear on the cards if the

background color changes. One warning, however. As has been

mentioned, each card carries with it a copy of the screen image

which lies behind the card, for dragging purposes. If you deal

the cards on a green background, and the user changes color to a

red background, your card's background images will still reflect

a green background. Not a pretty sight when he starts dragging!

When changing screen colors in midstream, you should: Remove

your cards from the screen; Repaint the window to the new color;

Use the DealCard sub to replace your active cards at their

present location. Doing this will ensure that their background

images correspond to the present background color.



DrawSymbol (hWnd, nValue,    nx, ny)
This sub draws the basic X, O and place holder symbols. It

requires the hWnd of your form, a symbol value and an x and y

position where you want the symbol drawn. Valid values are 1 for

an X, 2 for an O, and 3 for the place-holder. These symbols

feature a gray background rather than the usual black. They will

show up on any background color, including very dark colors. 



DrawBack (hWnd, nValue, nx,    ny)
This sub draws one of the six included cardback designs at the

location x, y. Valid values are 1 through 6 inclusive.



RemoveCard (hWnd, nCard)
This sub removes the card from the window display assuming two

things are true: First, the card must have been originally

placed on the window using the DealCard sub. Second, the card

must not be overlapped from above in any way. This sub actually

repaints the card's background image where it used to be. 



Information Subs and Functions
GetCardColor(nCard)
GetCardSuit(nCard)
GetCardValue(nCard)
IsCardVisible(nCard) AND SetCardVisible(nCard, bValue)
GetCardBlocked(nCard) AND AdjustCardBlocked(nCard, bValue)
IsCardDisabled(nCard), SetCardDisabled(nCard, bValue)
GetCardX(nCard), GetCardY(nCard), SetCardX(nCard, nValue), SetCardY(nCard, nValue)
GetUsern(nCard) & SetUsern(nCard, bValue),



GetCardColor(nCard)
This function returns the color of the card specified. Returns 1

for black, 2 for red.



GetCardSuit(nCard)
This function returns the suit of the card specified. Returns 1

for Clubs, 2 for Diamonds, 3 for Hearts, 4 for Spades.



GetCardValue(nCard)
This function returns the value of the requested card. Aces have

a value of 1, Twos have a value of 2, right up to King which has

a value of 13. For example:

nReturnValue = GetCardValue(nCard)

If nReturnValue = 11 Then

Text$ = "Jack"

End If



IsCardVisible(nCard) AND SetCardVisible(nCard, bValue)
This sub and function pair can be used to get and set    the

IsVisible value for the card. It is initially set to FALSE, and

is set to TRUE automatically when the card is dealt using the

DealCard sub. You may or may not find this value of use in your

application



GetCardBlocked(nCard) AND AdjustCardBlocked(nCard, bValue)
These get and set the IsBlocked value of a card. You will have

to pay particular attention to this property if you will be

doing any dragging. Imagine Windows Solitaire. When the user

presses the mouse button down over a card, the cursor may

actually be over many cards in a pile. A technique is required

which allows the application to determine which of those cards

should actually be selected. QCARD.DLL uses a method of putting

a block on all cards covered over by another card. This is your

responsibility to maintain. When initializing a drag event,

QCARD.DLL first checks for any unblocked cards under the mouse

cursor. If it finds one, it will return the number of that card.

This initiates a Single drag operation. If it doesn't find one,

it then determines if it is in the top 16 pixels of any other

card, including blocked cards. If it is, it returns the number

of that card. This initiates a Block drag operation. If you

maintain your cards in proper blocked and unblocked fashion, you

will have no trouble dragging single or group cards in the same

way as Windows Solitaire. When creating a row or pile of cards,

only the topmost card should have an IsBlocked value of FALSE.

Remove a block by calling AdjustCardBlocked(nCard, FALSE). Block

a card by calling AdjustCardBlocked(nCard, TRUE).



IsCardDisabled(nCard), SetCardDisabled(nCard, bValue)
You can set a card's Disabled property to TRUE so it can no

longer be selected by the mouse for drag operations. Again,

imagine Windows Solitaire. Even when cards are played to their

top, final locations, they can be dragged down again and

replaced on the lower piles. If you do not want "finished" cards

to be replayed like that in your game, you can set their

Disabled property to TRUE with SetCardDisabled(nCard, TRUE).

Then the user will no longer be able to drag them back down into

play.



GetCardX(nCard), GetCardY(nCard), SetCardX(nCard, nValue), 
SetCardY(nCard, nValue)
Use these subs and function to get and set their x and y

location properties. These are pixel coordinates based on 0, 0

in the top left corner of the screen. These are very useful for

drawing and relocating cards around your window. For example,

when the user drags a card onto a new pile and lets it go, you

will want to relocate it and snug it up below the previous card:

nDestCard = EndDrag Form1.hWnd, x, y

nNewX = GetCardX(nDestCard)

nNewY = GetCardY(nDestCard)

RemoveCard Form1.hWnd, nSourceCard

SetCardX nSourceCard, nNewx

' you must use 16 pixels as your offset for rows of cards

SetCardY nSourceCard, nNewY + 16

DealCard Form1.hWnd, nSourceCard, GetCardX(nSourceCard),

GetCardY(nSourceCard)



GetUsern(nCard) & SetUsern(nCard, bValue), 
Use these subs and functions to get and set values of your

choosing which you can associate with any of your cards. User1

is a Boolean TRUE and FALSE value, User2, User3 and User4 are

all Integer types. You can use these any way your application

requires. For example, you can call SetUser4 12, 1000 to set a

value of 1000 to card 12, and retrieve that value later by

calling nMyValue = GetUser4(12). These can come in handy in a

variety of ways. In the demo program, they are used them to keep

track of which array each card belongs to and it's position in

the array. This makes it easy to move cards from one pile

(array) to another as the game executes.



Dragging Functions
InitDrag(hWnd, nx, ny)
AbortDrag()
DoDrag(hWnd, nx, ny)
BlockDrag(hWnd, CardList(0), nNumCards, nx, ny)
EndDrag(hWnd, nx, ny)
EndBlockDrag(hWnd, CardList(0), nNumCards, nx, ny)
ReturnDrag(hWnd, nCard, nxLoc, nyLoc)
ReturnBlockDrag(hWnd, CardList(0), nNumCards, nxLoc, nyLoc)



InitDrag(hWnd, nx, ny)
Use this function in a MouseDown event to start a drag

operation. The function searches through all cards to determine

if the mouse cursor is over any card whose IsBlocked property is

FALSE. If it finds one, it returns the number of that card. If

it does not find one, it searches through all the cards in the

deck to see if the mouse lies in the top 16 pixels of any card,

blocked or not. If it does, it returns the number of that card.

By checking the IsBlocked property of this returned card, you

can tell if the user wants to carry out a single drag or a block

drag. If InitDrag returns a value of 0, the mouse is not

currently located over any card. The InitDrag function should

always be followed by either an AbortDrag, an EndDrag or an

EndBlockDrag call. nx and ny are the current mouse coordinates.



AbortDrag()
This sub ends any drag operation started by an InitDrag call.

AbortDrag releases the mouse which is captured by InitDrag.

Abort drag takes no other action.



DoDrag(hWnd, nx, ny)
Carries out the drag operation which was initiated by InitDrag

call. DoDrag moves the current Source Card to it's new location.

nx and ny are the current mouse coordinates.



BlockDrag(hWnd, CardList(0), nNumCards, nx, ny)
BlockDrag carries out a block drag operation which was initiated

by an InitDrag call. It requires a list of cards to be dragged

in the form of an array. The array can be passed to the sub

using the array's first element (0). The sub also requires the

number of cards to be dragged as well as the current mouse

coordinates.



EndDrag(hWnd, nx, ny)
EndDrag ends a single drag operation and returns the number of

the Destination card, if any. It searches the deck for any card

which overlaps the Source Card and whose IsBlocked property is

FALSE. If it finds one, it returns the number of that card. The

function also releases the mouse which was captured by the

InitDrag call.



EndBlockDrag(hWnd, CardList(0), nNumCards, nx, ny)
EndBlockDrag ends a block drag operation which was initiated by

an InitDrag. The function searches through

the deck for any card which overlaps the Source Card and whose

IsBlocked property is FALSE. If it finds one, it returns the

number of that card. The function also releases the mouse which

was captured by the InitDrag call. The function requires a list

of the cards being dragged in the form of an array. The array

can be passed to the function using the array's first element.

The function also requires the number of cards being dragged and

the current mouse position.



ReturnDrag(hWnd, nCard, nxLoc, nyLoc)
This sub drags the card nCard to the location nxLoc, nyLoc along

a straight line from it's current location. Return drag can be

used for returning cards to their original location after an

invalid drag operation.



ReturnBlockDrag(hWnd, CardList(0), nNumCards, nxLoc, nyLoc)
This sub drags a block of cards to the location nxLoc, nyLoc

along a straight line from their current location. 



DRAGGING
Although dragging is made easier using QCARD.DLL, it is still a

complex operation and one that will prove a little tough when

you first try to implement it. Still, if your application is

well organized and thought out, you will be able to include

dragging operations with no problems.

Related Topics:
A Simple Single Drag Example
Avoiding Problems



A Simple Single Drag Example
When dragging cards, you will need to provide code for three

events in relation to the Form you are working with. These are

the MouseDown, MouseMove and MouseUp events. In the MouseDown

event, you will initialize the drag operation. In the MouseMove

event, you will carry out the drag operation. In the MouseUp

event, you will end the drag operation. Of course, these events

are happening all the time as your application is run, so you

will need a switch to indicate whether a drag is in progress or

not. For this purpose, create a Shared Integer variable in your

General section which you can set to the Boolean values of TRUE

and FALSE as your application runs: DIm Shared bDragging.

Initially, in your Form's Load procedure, this should be set to

FALSE.

In this simple example, begin by dealing a single card on your

form: DealCard Form1.hWnd, 1, 10, 10. This will deal the Ace of

Clubs at location 10, 10 on your form. In response to the

MouseDown event, we need to determine if the mouse is currently

on the card or not. If it is, we can set the bDragging switch to

TRUE. If not, we need to cancel the drag operation by calling

the AbortDrag sub. The following code handles the MouseDown

event:

Dim nSourceCard as Integer

nSourceCard = InitDrag(Form1.hWnd, x, y)

if nSourceCard = 0 Then

AbortDrag

Else

bDragging = TRUE

End If

The InitDrag function does several things. First, it takes the

x, y mouse coordinates you pass it, and it looks through all the

cards in the deck to see if any card lies underneath that

location. If there is a card at that location and it's IsBlocked

and Disabled properties are both FALSE, it returns the number of

that card. We can assign this value to the nSourceCard variable.



In this case, this value will be 1, since that is the only card

we have dealt on our form. If the InitDrag function cannot find

a card at that mouse location, it will return a value of 0. In

this case, we will need to abort the drag operation. Always

follow up an InitDrag call with either an AbortDrag call or an

EndDrag call. One of the things that InitDrag does is capture

all mouse movements. You need to release the mouse capture by

calling either AbortDrag or EndDrag, otherwise your application

will effectively lock up your system since it is collecting all

mouse information and directing it only to itself. If no card is

selected, we can abort the drag right here. If one is selected,

we will release the mouse in the MouseUp event procedure.

In the MouseMove event procedure, we need to test whether or not

a drag is in progress. If it is, we will carry out the drag, if

not, we don't need to do anything. Here is the MouseMove

procedure:

If bDragging = TRUE Then

DoDrag Form1.hWnd, x, y

End If

The DoDrag sub moves the card to it's new location and updates

it's X and Y properties accordingly. The card which moves is the

one selected by the InitDrag function. If bDragging = FALSE,

nothing happens.

In the MouseUp event procedure, we need to end the drag if one

is in progress. Here is where we will call the EndDrag function,

thereby releasing the mouse capture:

Dim nDestCard As Integer

If bDragging    = TRUE Then

nDestCard = EndDrag(Form1.hWnd, x, y)

bDragging = FALSE

End If

The EndDrag function does several things. Most importantly, as

mentioned, it releases the mouse capture so mouse information

can once again go to other applications other than this one. It

also relocates the card to it's new location and updates it's X

and Y properties accordingly. Finally, it checks to see if any

other card lies beneath the card that has just been dragged and



dropped. If there is a card that you have just covered over and

that card's IsBlocked property is FALSE, the EndDrag function

will return the number of that card.    We assign that value here

to the nDestCard variable. If there is no such card beneath the

just dragged card, the function returns 0.

In this example, we declared the two variables nSourceCard and

nDestCard as local to their respective Subs. In a real

application, you would declare them as Shared or Global so you

could carry out some comparison and testing on them. Since we

now know the number of the Source card and the number of the

Destination card, we could test whether or not this is a valid

drag. In a game like Windows Solitaire, for example, where you

can place a card of one less value on top of a card of the

opposite color, some of the testing might look like this:

Dim nSourceColor As Integer

Dim nSourceValue As Integer

Dim nDestColor As Integer

Dim nDestValue As Integer

Dim bValidDrag As Integer

nSourceColor = GetCardColor(nSourceCard)

nDestColor = GetCardColor(nDestCard)

nSourceValue = GetCardValue(nSourceCard)

nDestValue = GetCardValue(nDestCard)

If nSourceColor <> nDestColor And nSourceValue = nDestValue - 1 Then

bValidDrag = TRUE

Else

bValidDrag = FALSE

End If

QCARD.DLL provides a nice little routine for handling invalid

drags. In your MouseDown event procedure, you can save the

original location of the Source Card before dragging it. Declare

two Shared or Global variables called OldX, and OldY, and assign

them as follows in your MouseDown procedure:

OldX = GetCardX(nSourceCard)

OldY = GetCardY(nSourceCard)

Then, in your MouseUp event procedure, if you determine through



comparison that this Source Card does not really belong on this

Destination Card, then you can send it back to where it came

from by calling:

ReturnDrag Form1.hWnd, nSourceCard, OldX, OldY

The ReturnDrag sub will automatically drag a card from it's

current location to the x, y location specified. It drags the

card along a nice straight line. You may also find the

ReturnDrag sub useful in other situations.



Avoiding Problems
To avoid problems, just think of the cards in your game as being

real cards in a three dimensional sense. At any given time, some

of the cards in your game will be standing alone in the open

while others will be blocked in a pile with other cards.

Problems arise when you allow the user to do a Single Drag

operation on    a card which is covered over by another card. This

produces some unsightly video results. Instead, you must think

in terms of "Last Card On, First Card Off". In doing this, you

must dynamically maintain the IsBlocked status of all the cards

in your game. Only free standing cards in the clear should have

an IsBlocked status of FALSE. All other cards should have an

IsBlocked status of TRUE. Although you do not have to use arrays

in your game, arrays representing piles of cards makes things

much easier to maintain.    As cards are dragged from one pile to

another, you can update the IsBlocked properties for the

affected cards in each array. For example, if dragging a single

card from the bottom of one row of cards to the bottom of

another row, you would unblock the last card which was freed up

in the original row, block the last card in the destination row

which is now covered by the new card, remove the card from the

original row's array of members, and add the new card to the

destination row's array of members. If you think the problem out

carefully, you can arrange the data in your game so this process

is handled automatically as your game executes. See the demo

program for an example of one way to do this.



Dragging a Block of Cards
QCARD.DLL allows your application to drag a block of cards from

one location to another. To carry out this operation, several

guidlines must be followed. First, the cards being block dragged

must all have the same x location. That is, their left sides

must be aligned in column fashion. Second, their y locations

must increase in multilples of 16 pixels from the first card in

the group being dragged to the last card in the group. When you

deal a row of cards, ensure that you offset each card down 16

pixels. Third, the last card in block drag operation is assumed

to be the bottom card in a row. If you try to pull the middle

three cards from a row and drag them, you will not get the

result you want. QCARD.DLL drags blocks of cards the same way

Windows Solitaire does.    When the user presses the mouse button

down on the top of a card, that card becomes the first card in

the block drag. The last card in the block drag in always the

last card in that row.

Related Topics:
Block Dragging Example
Avoiding Problems



Block Dragging Example
Like Single Dragging, Block Dragging requires you to provide

code for three event procedures for your form: MouseDown,

MouseMove and MouseUp. In the MouseDown event procedure, you

initialize the drag operation. In the MouseMove event procedure,

you carry out the drag operation. In the MouseUp event

procedure, you end the drag operation. 

Related Topics:
The MouseDown event procedure
The MouseMove event procedure
The MouseUp event procedure



The MouseDown event procedure

Begin the drag procedure by calling the function InitDrag. This

function searches through the deck to determine if any card

whose IsBlocked property is FALSE is currently located at the

mouse's x, y location. If it finds one, it returns the number of

that card. This would successfully initialize a single drag

operation. If it cannot find an unblocked card at that location,

it will determine if the mouse is in the top 16 pixels of any

other card, blocked or not. If it finds one, it returns the

number of that card. This would initialize a block drag. In the

MouseDown event procedure then, a little testing of the selected

card's IsBlocked status will tell us if we are about to do a

block drag or a single drag:

Dim nStatus As Integer

nSourceCard = InitDrag(Form1.hWnd)

If nSourceCard = 0 Then

' no card selected

AbortDrag 

Else

nStatus = GetCardBlocked(nSourceCard)

If nStatus = FALSE Then

bSingleDragging = TRUE

Else

bBlockDragging = TRUE

End If

End If



The MouseMove event procedure

To drag the block of cards in the MouseMove event you use the

sub BlockDrag. You must give this sub a list of the cards you

want to drag and the total number of cards in the list. The list

itself should be in the form of an array, and you can pass the

array to the DLL by referencing it's first element: BlockDrag

Form1.hWnd, CardList(0), nNumCards, x, y. By giving the DLL the

first element in the array, the DLL will have access to all the

elements in the array. If you declare a shared array for this

purpose, you can use the Redim statement to resize the array to

the correct size when you need it. Then just fill the array with

the numbers of the cards you want to drag, beginning with the

top card in the block (the Source Card) and ending with the

bottom card of the block. See the demo program for a better idea

of how this is done.



The MouseUp event procedure

The block drag operation is completed in the MouseUp event

procedure by calling the EndBlockDrag function. Again, you must

pass this function an array containing the numbers of the cards

being dragged and the total number of cards in the list. Since

this information does not change between the MouseMove event and

the MouseUp event, you can reuse the same array for both,

provided the array was declared as Shared:

nDestCard = EndBlockDrag(Form1.hWnd, CardList(0), nNumCards, x,y) 

The function returns the number of any card whose IsBlocked

property is FALSE which lies beneath the first (Source) card

being dragged in the block. You now know the SourceCard and the

Destination card and you can go ahead and make comparisons to

determine if the drag is valid or not. If it is, you will have

to relocate all the cards in your CardList array to their new

pile. See the demo program for a better idea of how this might

be done.



Avoiding Problems
Problems in block dragging can usually be traced to the array

you are trying to pass the BlockDrag sub. If the array is not

properly filled beginning with its first element (0), you will

end up with strange results. If you pass the sub the wrong

number of cards to drag you will also get strange results.

Ensure that you are using Redim and that you are filling the

array properly if you run into problems.

Another problem you might run into involves the EndBlockDrag

function. Let's say for example, you are dragging a block of

three cards, 7, 12, and 18. When the mouse button comes up, and

the block drag is ended, the EndBlockDrag function goes in

search of any unblocked card which overlaps the Source Card (in

this case, the Source Card would be card 7). One card that might

fit the bill is card 18, since it overlaps card 7 and it is not

blocked. To avoid getting this erroneous return value from

EndBlockDrag, you can temporarily set the IsBlocked property for

the last card in your block drag array to TRUE during your

MouseMove event, and remove the block in your MouseUp event

after you have ended the block drag operation. See the demo

program for an example. 



ABOUT QCARDS.DLL

QCARDS.DLL was authored by STEPHEN MURPHY.    If you have 
questions or comments regarding QCARDS.DLL, or if you have any 

suggestions for improvements for future releases, please contact the 
author via CompuServe at 70661,2461

Help File Created by: 

ANOTHER FINE MESS PRODUCTIONS

(AFMP is a division of Northwest Computer Solutions, Inc.)    WE CAN BE CONTACTED THROUGH 
DAVID M. SHANK ON COMPUSERVE AT: 70714,546




