
ReportSmith Glossary
Click on the individual terms to view their definitions.

A
alias
application event
argument
Avery codes

B
BDE

C
calculated field
call by reference
call by value
client disk option
client memory option
column
Column Editing mode
columnar report
comma delimited files
comment
connection
crosstab

D
data field
derived field
display event
Draft mode
Dynamic Data Access
Dynamic Data Exchange

E
event

F
field
field label
Field Editing mode
form report
function

G
global macro

grid
group

I
IDAPI

J
join

K
key column

L
label
link

M
macro
macro-derived field
master/detail report
metacommands
method
mode

N
name (ReportBasic)
named connection
null password

O
On server mode

P
parameter
point size
Presentation mode
property

Q
query

R
report
report event
report macro
report variable
ReportBasic

row

S
SBL
self-join
SQL
SQL-derived field
string value
subprogram
summary field
summary-only report
system field

T
table
Text mode
type character

U
units

V
value label
vartype
visual link

alias
A substitute name for a field, table, or column. For tables, an alias is used when you use the same table
in a report more than once. For fields, tables, or columns, use an alias to substitute a more easily
recognizable, or shorter, name.

application event
An application event can occur globally, each time you run ReportSmith, and/or each time you run any
report.

argument
Used to pass information from one macro to another, and then in turn, pass information back from the
second macro to the first. This older term is interchangeable with the term “parameter”; the two terms
mean exactly the same thing.

Avery codes
Avery label codes corresponding to the Avery label styles found in the Label Type and Dimensions list of
the Page Setup dialog box. (Choose File | Page Setup.) Codes match those displayed on the Avery
label box.

BDE (Borland Database Engine)
The Borland Database Engine provides a fast, safe, and easy-to-use means of connecting ReportSmith
to Borland database products such as Visual dBASE and Paradox.

calculated field
A field created by modifying one or more existing fields that contain stored data values.

call by reference
Arguments passed by reference to a procedure may be modified by the procedure.    Procedures written
in BASIC are defined to receive their arguments by reference.    If you call such a procedure and pass it
a variable, and if the procedure modifies its corresponding formal parameter, it will modify the variable.   
Passing an expression by reference is legal in BASIC; if the called procedure modifies its corresponding
parameter, a temporary value will be modified, with no apparent effect on the caller.

call by value
When an arguments is passed by value to a procedure, the called procedure receives a copy of the
argument.    If the called procedure modifies its corresponding formal parameter, it will have no effect on
the caller.    Procedures written in other languages such as C may receive their arguments by value.

client disk option
Tells ReportSmith to load data onto the client disk (as opposed to local memory, or on a server) each
time you run ReportSmith.

client memory option
Tells ReportSmith to load data into client memory (as oposed to local memory, or on a server) each time
you run ReportSmith.

column
Columns are vertical visual divisions of data, usually representing different categories or means of
classifying that data. Columns in a report contain fields from tables or files.

Column Editing mode
Used to move columns and their labels horizontally across the report page. Compare Form Editing
mode.

columnar report
Displays similarly classified or categorized fields in vertical columns across the report page.

comma-delimited files
Text files containing    fields separated by commas, and using the file extension .CSV.

comment
A comment is text which documents the program.    Comments have no effect on the program (except
for metacommands).    In BASIC, a comment begins with a single quote, and continues to the end of the
line.    If the first character in a comment is a dollar sign ($), the comment will be interpreted as a
metacommand.    Lines beginning with the keyword Rem are also interpreted as comments.

connection
Attaches ReportSmith to a server or particular folder/file structure on local computers, and points to the
location(s) of files and tables used in a report.

crosstab
A summary report that displays data in a spreadsheet-like format. It can consist of rows, columns, row
labels, column labels, and values. Fields can be calculated to show sums, averages, or counts.

data field
A single record of information contained in a table—for example, a place for a customer name in a
column containing customer last names.

derived field
A field that is created and derived by concatenating, calculating, or otherwise modifying other existing
fields. For example, a field called FULLNAME, derived by combining the F_NAME and L_NAME fields.

display event
An event linked to the display of a particular instance of a field in a report.

draft mode
Use draft mode to page through a report quickly, displaying graphics as light gray outlines, and "DRAFT"
in the report background. Draft mode is intended to speed up viewing and working with reports; use
presentation mode to check the appearance of a report as it will be printed.

Dynamic Data Access (DDA)
Controls which resources ReportSmith uses to store data, to recognize the size of data, and to
determine the best strategy for transferring it into a report.

Dynamic Data Exchange (DDE)
A protocol for Windows-compatible applications, which enables two applications to communicate with
each other, exchanging and dynamically updating data within each application.

event
Any action in ReportSmith that triggers the execution of a macro to which it is linked. Many events can
occur at either the report-specific level or the application level, while other events may be unique to a
particular level. For example, the After Report Open event occurs after you open a particular report (in
which you have created the macro linked to this event), while the On SQL Error event is generated by
an SQL error, and triggered only when an SQL error occurs.

field
A field contains a data value within a column.

field label
A column heading. By default, ReportSmith applies the field name from the source table as the field
label within a report. However, you can change a ReportSmith field label by typing over it on the report
surface, or by creating an alias for it.

Field Editing mode
Used to move individual fields (not entire columns) freely around the report page (horizontally and
vertically). Use this mode to place values into headers and footers. When you move values in Field
Editing mode, column labels do not automatically move along with their respective columns. Compare
Column Editing mode.

form report
Displays data in free-form across the report page. Compare columnar report.

function
A procedure which returns a value.    In BASIC, the return value is specified by assigning a value to the
name of the function, as if the function were a variable.

global macro
A macro linked to the ReportSmith application that runs each time you run ReportSmith. Used to
automate global tasks, or to customize ReportSmith.

grid
A series of row and column coordinates used as a visual reference when placing objects.

group
A number of fields and values consolidated by user-specified criteria and presented together or
considered as a unit. Recurrences of a group in a report are suppressed if duplicated.

IDAPI
An alternative (older) name for the Borland Database Engine.

join
To add more than one table to a report, you must join or link them. A successful join or link (the terms
are used interchangeably within ReportSmith) consists of a field which both tables share in common.
Typically, the common field shares the same name.

key column
The column or columns in a table that contains a unique value for every record.

label
A label identifies a position in the program at which to continue execution, usually as a result of
executing a GoTo statement.    To be recognized as a label, a name must begin in the first column, and
must be immediately followed by a colon (":").    Reserved words are not valid labels.

link
To add more than one table to a report, you must join or link them. A successful join or link (the terms
are used interchangeably within ReportSmith) consists of a field which both tables share in common.
Typically, the common field shares the same name.

macro
An operator that causes the generation of a sequence of instructions to accomplish one or more tasks.
For example, you can write a macro to open, run, print, and close a daily report. A macro is a user-
defined "mini-program" which you build using the ReportBasic programming language. You can create
and store a custom macro, or load macros provided by ReportSmith in the RPTSMITH\MACROS
directory. You can also save macros as *.MAC files, so that they are then available for use in any report,
or globally in all reports.
Macros can be stored locally, with a report, or stored globally and used with all reports.

macro-derived field
A derived field created using the ReportBasic language.

master/detail report
A report using more than one query. Generally, the master report contains one record per key value,
while the detail report contains many records per key value. The report breaks data into groups, so that
for each record in the "A" table, matching records in the "B" table print beneath it, followed by matching
records in the "C' table. Each query in the report can come from a different data source.

metacommand
A metacommand is a command which gives the compiler instructions on how to build the program.    In
BASIC, metacommands are specified in comments which begin with a dollar sign ($).

method
A function or statement which performs actions on the DataSet object.

mode
A term applied to an operating condition that is one of two or more such conditions. For example, in
ReportSmith you can activate Form Editing mode or Column Editing mode, and draft mode or
presentation mode. Modes are mutually exclusive; you cannot operate two similar modes (such as Form
Editing mode and Column Editing mode) at once.

name (ReportBasic)
A BASIC name must start with a letter (A through Z).    The remaining part of a name can also contain
numeric digits (0 through 9) or an underscore character (_).    A name cannot be longer than 40
characters in length.    Type characters are not considered part of a name.

named connection
A permanent connection you set up, name, and save, that lets you quickly access frequently-used
databases and tables.

null password
A password with no value, which can be ignored in the interpretation of data.

on server mode
Allows ReportSmith to store a limited number of records (generally 100) on the client disk, while
maintaining a temporary area on the server disk to store other records.

parameter
Used to pass information from one macro to another, and then in turn, pass information back from the
second macro to the first. This newer term is interchangeable with the term “argument”; the two terms
mean exactly the same thing.

point size
A measurement of the size of the text characters used in a report. There are 72 points per inch, 12
points per pica.

presentation mode
Used to view the final copy of a report. All components that will print on a report are displayed in the
actual size and position used on the printed copy. Compare draft mode.

property
A data value similar to BASIC variables, that can have any of the BASIC variable types. Used with
DataSet object.

query
A request for specific data from one or more tables.

report
A collection of data filtered and formatted according to unique and specific data-viewing requirements.
Also, a ReportSmith file saved with the extension .RPT. It can contain objects, tables, links, and other
information.

report event
An action in ReportSmith that triggers the execution of a macro linked to a specific report. An example of
a report event is the Keystroke event, Ctrl+P. Each time a selected report macro encounters the
keystroke Ctrl+P, the macro to which the report is linked is triggered.

report macro
A macro linked to a specific report which becomes part of that report. A report macro differs from a
global macro in that a report macro applies only to a certain report, while a global macro runs each time
a user starts ReportSmith.

ReportBasic
ReportSmith has licensed the Softbridge Basic Language (SBL) from Mystic River Software, Inc. to
provide ReportSmith users with a complete high-level programming language. SBL contains similar
commands to the Visual Basic programming language. ReportSmith has added specific reporting
commands to SBL to assist you in creating reports. This combined command set is called ReportBasic,
a complete programming language designed specifically for report creation.
Click here to view macro-language Help.

report variable
A report variable is a dialog box which prompts a user for specific information that changes the contents
of the report to which it is linked. Based on the values that the user specifies the report then executes
and displays the corresponding data.

row
A set of values from within each column that constitute a "set" of information.

SBL
The acronym for the Softbridge Basic Language (SBL), which forms the basis of the ReportBasic macro
language, is pronounced as "Sybil".

self-join (self-link)
Linking a table or file to itself.

SQL
An acronym for Structured Query Language, an industry-standard means of creating queries to filter,
sort, and extract data. When you use ReportSmith features to select the tables and fields that will make
up your report, the necessary SQL query is generated "behind the scenes," but you can also choose to
directly enter and maintain the SQL queries that make up your report.
Note: SQL is pronounced either "sequel" or "S-Q-L." ReportSmith documentation assumes the latter

pronunciation.

SQL-derived field
A derived field (a new report field    that does not exist in the original data sources, constructed by
performing calculations upon existing report fields) created using Structured Query Language (SQL) to
define the calculations performed.

string value
Any set of characters entered to stand for a numeric value.

subprogram
A procedure which does not return a value.

summary field
A calculated field such as a subtotal or count, summarizing values of other fields.

summary-only report
A report that presents only summarized values, omitting the details used to arrive at those values.

system field
A field that has been automatically created by ReportSmith for your use, such as text, date, time, page
number, or report name. System fields do not originate with your database application.

table
An arrangement of words, numbers, or signs (usually in parallel columns) displaying a set of facts or
relations in a compact or comprehensive form.

text mode
The application state in which ReportSmith accepts the placement of text.

type character
A special character used as a suffix to a name of a function, variable, or constant. The character defines
the data type of the variable or function.    The characters are:

Dynamic String $
Integer %
Long integer &
Single single precision floating point !
Double double precision floating point #
Currency exact fixed point @

unit
An item in a scale of measurement. Can be inches or centimeters.

value label
Data field names automatically inserted into a crosstab report in addition to the defined row and column
values. May be used or suppressed.

vartype
The internal tag used to identify the type of value currently assigned to a variant.    One of the following:

Empty 0
Null 1
Integer 2
Long 3
Single 4
Double 5
Currency 6
Date 7
String 8

visual link
Linking objects by matching common fields.

ReportBasic Commands Reference
ReportSmith supports two types of macro commands:

ReportBasic commands, written specifically for ReportSmith.
Core Basic commands, common to the Basic language.

This Help system lists and describes both ReportBasic and core BASIC commands. You can select the
command name in the Help Index (choose the Index button at the top of the Help window), then choose
Display to view the topic. If you know the task you want to accomplish but are unsure of which macro
command would be best suited, use the Find command: choose the Index button at the top of the Help
window, then choose the Find tab and follow the instructions provided.
Note: Regardless of whether you use the Index or the Find command, Help will search only those topics

pertaining to ReportBasic Macro Language Help. General ReportSmith Help topics can be found
in ReportSmith 3.0 Help. (Check the title bar to quickly determine whether you are viewing Macro
Help or ReportSmith 3.0 Help.) A thorough discussion of macro concepts and techniques can be
found in Creating Reports.

ActiveTitle$() function

Syntax
ActiveTitle$()
Definition
With the ActiveTitle$() function you can get the window title of the currently active report.

Parameters
Not applicable.

Returns
Not applicable.

Comments
For saved reports, the title will contain the path name and the file name of the report file.

Example
ActiveReport$=ActiveTitle$()
Msgbox "Your report is called" + ActiveReport$

AddMenu Statement

Syntax
AddMenu MenuText$, Macro$, AfterMenu$, HelpText$
Definition
The AddMenu Statement allows you to add your own commands to the ReportSmith Main Menu to
execute a macro when the command is chosen.

Parameters
Argument Description
MenuText$ A string that specifies the text of the new menu item.
Macro$ A string that specifies which macro should be run when the menu item is selected

by a user.
AfterMenu$ A string that specifies which existing menu item the new menu item should be

placed after. You specify this menu name in the following format (omitting
accelerator characters, underlines, and so forth):
(MenuName / SubMenuName)

HelpText$ A string that specifies the text of a help line on the status bar.

Returns
Not applicable.

Comments
You can have ReportSmith execute an active report macro or global macro by specifying a macro name.
(The name that appears in the active macro list in the Macro dialog box.) You can also have
ReportSmith execute a .MAC file by passing a string with a path and file name of the .mac file you wish
to run.
When a macro that modifies the menu is executed, the current menu is modified. That menu is either
the active ReportSpecific menu or the NoReport menu.
A special character in the first position of the AfterMenu parameter indicates that a menu other than the
current menu will be modified. If the flag is a "!" (exclamation mark), the DefaultReport menu — and
thus every ReportSpecific menu subsequently created — will be modified. The current menu will not be
affected. If the flag is an "*" (asterisk), then the NoReport menu is modified. If this represents the current
menu, it is redrawn.
Note: If one of these commands was entered in a global macro that was tied to the Startup of the

application, then the menu would be customized each time ReportSmith is brought up.

Examples
AddMenu "Open Sales Reports", "LoadSales","!File | Open", "Opens all sales
reports for the previous quarter"

AddMenu "Open Sales Reports","C:\INDIGO\MACRO\LSALES.MAC","File/Open", ""

CloseReport

Syntax
CloseReport Conditional%
Definition
The CloseReport command lets you close the active report.

Parameters
Argument Description
conditional% If the integer argument is 0 (FALSE), then the report closes unconditionally. If

CloseReport is called with a non-zero value, then reports that were modified
since last opened will prompt the user to save the report before closing it and
allow the user to cancel the close.

Returns
This function returns 0 if the active report was closed successfully. It will return 1 if there is no active
report, or -1 if the user canceled a conditional close.

Comments
When you use this command as a function (rather than a statement), it requires the return value, and
you must enclose its arguments within parentheses.

Example
CloseReport 1

CloseRS

Syntax
CloseRS Conditional%
Definition
The CloseRS command closes ReportSmith.

Parameters
Argument Description
conditional% If the argument "Conditional%" is TRUE (non-zero), then ReportSmith brings up

dialog boxes prompting the user to do certain tasks, such as save unsaved files.
If the argument is FALSE (zero), then ReportSmith closes without bringing up
dialog boxes or allowing the user to cancel the process.

Returns
This function returns non-zero if a conditional close was canceled.

Comments
When you use this command as a function (rather than a statement), it requires the return value, and
you must enclose its arguments within parentheses.

Example
If User_Response$ = 'No'
CloseRS 0
End if

Connect Statement

Syntax
Connect Type, Server$, UserId$, Password$, Database$
Definition
The Connect statement opens a connection to a database server.

Parameters
Argument Description
Type$ The Type parameter can take on the following values:

              0                        Named Connection
              1                        Reserved
              2                        DBASE
              3                        EXCEL
              4                        PARADOX
              5                        ASCII
              6                        SQLSRVR
              7                        ORACLE
              8                        DB2
            10                      SYBASE
            11                      BTRIEVE
            12                      GUPTA
            13                      INGRES
            16                      TERADATA
            17                      DB2/GUPTA
            19                      UNIFY
            40                      DBASE (via ODBC)
            41                      EXCEL (via ODBC)
            42                      PARADOX (via ODBC)
            48                      BTRIEVE (via ODBC)
            55                      Generic ODBC driver (use this for most ODBC connections)
            61                      PARADOX (via IDAPI)
            62                      DBASE (via IDAPI)
            67                      INTERBASE (via IDAPI)

Server$ Identifies the server that will be used to make the connection.
UserId$ Identifies the user to make the connection under.
Password$ The password of the user to make the connection under.
Database$ The name of the database to connect to or the filename of a local database.

Returns
Not applicable.

Comments
For local databases (such as dBASE), Server$, UserId$, and Password$ should be set to an empty
string. If any of these parameters are not valid for your connection type, use a null string.

Example
Connect 6, "sqlsvr","myuser","mypassword","mydb"

CreateDDEItem Statement

Syntax
CreateDdeItem TopicName$, ItemName$, RequestMacro$, Pokemacro$
Definition
The CreateDDEItem statement allows the user to create a new Dynamic Data Exchange item in
ReportSmith's DDE server.

Parameters
Argument Description
TopicName$ The name of a user-defined DDE topic.
ItemName$ The name of a user-defined DDE item.
RequestMacro$ The name of a macro to call before a DDE request on this topic is serviced.
Pokemacro$ The name of a macro to call after a DDE poke to this topic is serviced.

Returns
Not applicable.

Comments
The user can optionally specify the name of a macro to execute before data is requested from this item.
The user can also optionally specify another name of a macro to be executed after data is poked into
this item. Those macros could use other commands to retrieve or change the data in the DDE item. A
Topic that matches the TopicName$ parameter must already exist for this function to execute
successfully.
This function will allow you to make duplicate item names. In this case only the first item of a given
name can be accessed. At this time a DDE item remains in effect as long as ReportSmith is executing.
Eventually, functions will be added to get a list of available DDE items and to remove existing items.

Example
CreateDdeItem "MyTopic","MyItem","RequestProc", "PokeProc"

CreateDDETopic Statement

Syntax
CreateDdeTopic TopicName$
Definition
The CreateDDETopic Statement allows you to create a new Dynamic Data Exchange topic in the
ReportSmith DDE server. After a topic is created, DDE items can be added to it.

Parameters
Argument Description
TopicName$ The name of a user defined DDE topic.

Returns
Not applicable.

Comments
This function will allow you to make duplicate topic names. In this case only the first topic of a given
name can be accessed. At this time a DDE topic remains in effect as long as ReportSmith is executing.
Eventually, functions will be added to get a list of available DDE topics and to remove existing topics.

Example
CreateDdeTopic "MyTopic"

Current

Syntax
Current()
Definition
The Current function returns the record number to which the data set (belonging to the active report) is
pointing. In other words, it tells you what record number the Field$ function will return when executed.

Parameters
Not applicable.

Returns
This function returns the record number to which the data set of the currently active report is pointing.

Comments
None.

Example
If Current = 1 then
MsgBox "At the beginning"
EndIf

CurrentPage() function

Syntax
CurrentPage()
Definition
The CurrentPage function returns the page number that is displayed in the currently active report.

Parameters
Not applicable.

Returns
This function returns the displayed page number.

Comments
This function is useful in changing the active report for functions that work on the currently active report.

Example
MsgBox "The active report is on page: " + str$ (CurrentPage())

DateField() function

Syntax
DateField (Field$, Code%)
Definition
The DateField command gives you date values.

Parameters
Argument Description
Field$ A date DateField in your report.
Code% The number from the table in the Comments section below that indicates the

portion of the date you want returned.

Returns
Not applicable.

Comments
To use this command, grab a date field from the Data Fields list box in the Edit Macro dialog box and
add one of the following numbers. The number specifies the type of information you want about the
date:

Number Information
1 Gets the number of days since the date field (based on a Julian date)
2 Gets the month of the date as a number
3 Gets the day of the month
4 Gets the year
5 Gets the day of the week
6 Gets the day of the year out of 365 days
Note: Any other value returns a zero and indicates an error.

Example
Year_Hired = DateField ("Hire_Date",4)

DDEAppReturnCode Function
Returns a code received from an application on an open dynamic data exchange (DDE) channel.

Syntax DDEAppReturnCode()
Comments To open a DDE channel, use DDEInitiate. Use DDEAppReturnCode to check for error

return codes from the server application after using DDEExecute, DDEPoke or
DDERequest.

DDEExecute

Syntax
DDEExecute Service$, Topic$, Command$
Definition
The DDEExecute command lets you send a DDE execute command to a DDE server application.

Parameters
Argument Description
Service$ A string that specifies the DDE service to which you send the Execute command.

(This is usually the name of the application that receives the command.)
Topic$ A string that identifies the DDE Topic to which you send the command. (Most

applications accept DDE Execute messages that are sent to their SYSTEM
topics.)

Command$ A string that identifies the DDE Command itself. See the documentation of the
application to which you're sending the DDE command for details of the DDE
Execute commands it accepts.

Returns
This command returns 0 if the command is sent successfully, or nonzero on error.

Comments
When you use this command as a function (rather than a statement), you must enclose its arguments
within parentheses.

Example
The following line of code will send a DDEExecute command to cause Excel to beep.
Success = DdeExecute("Excel","System","[Beep(0)]")

DDEInitiate Function
Opens a dynamic-data exchange (DDE) channel and returns the DDE channel number (1,2, etc.).

Syntax DDEInitiate(appname$, topic$)
where: is:
appname$ A string or expression for the name of the DDE
application to talk to.

topic$ A string or expression for the name of a topic recognized by appname$.

Comments If DDEInitiate is unable to open a channel, it returns zero (0).

Appname$ is usually the name of the application's .EXE file without the .EXE filename
extension. If the application is not running, DDEInitiate cannot open a channel and
returns an error. Use Shell to start an application.

Topic$ is usually an open filename. If appname$ doesn't recognize topic$, DDEInitiate
generates an error. Many applications that support DDE recognize a topic named
System, which is always available and can be used to find out which other topics are
available. For more information on the System topic, see DDERequest.
The maximum number of channels that can be open simultaneously is determined by the
operating system and your system's memory and resources. If you aren't using an open
channel, you should conserve resources by closing it using DDETerminate.

DDEPoke

Syntax
DDEPoke Service$, Topic$, Item$, Data$

Definition
The DDEPoke command lets you poke a string to a DDE server application.

Parameters
Argument Description
Service$ A string that specifies the DDE service to which you're going to poke. (This is

usually the name of the application receiving the command.)
Topic$ A string that identifies the DDE Topic to which you send the command. (Most

applications use the topic to identify the document into which you want to poke
the data.)

Item$ A string that identifies the DDE Item into which you want to poke data.
Data$ A string, which is actually the data poked into the other application. See the

documentation of the application to which you're sending the DDE poke
command for details on the accepted DDE poke commands.

Returns
This command returns 0 if the command is sent successfully, or nonzero on error.

Comments
When you use this command as a function (rather than a statement), you must enclose its arguments
within parentheses.

Example
The following line of code puts the string "My Data" in the first cell of a default Excel spreadsheet.
Success = DDEPoke("Excel","Sheet1","R1C1","My Data")

DDERequest

Syntax
DDERequest(Service$, Topic$, Item$)

Definition
The DDERequest command gets data from a DDE Server application as a string.

Parameters
Argument Description
Service$ A string that specifies the DDE service to which you're going to Poke. (This is

usually the name of the application that receives the command.)
Topic$ A string that identifies the DDE Topic to which you're going to send the command.

(Most applications use the topic to identify the document into which you want to
poke the data.

Item$ A string that identifies the DDE Item into which you want to poke data.

Returns
This command returns a string that has the requested data, or the string "<ERROR>" if the operation is
not performed successfully.

Comments
See the documentation of the application to which you're sending the DDE poke command for details on
the accepted DDE poke commands.

Example
The following line of code puts the data in the first cell of a default Excel spreadsheet into a string
variable called Data$.
Data$ = DDERequest("Excel","Sheet1","R1C1")

DDETerminate Statement
Closes the specified dynamic data exchange (DDE) channel.

Syntax DDETerminate channel%

where: is:
channel% An integer or expression for the open DDE channel
number.

Comments To free system resources, you should close channels you aren't using. If
channel% doesn't correspond to an open channel, an error occurs.

DerivedField

Syntax
DerivedField Value$
Definition
The DerivedField command sets the value of a derived field.

Parameters
Argument Description
Value$ A quoted value or variable.

Returns
Not applicable.

Comments
The DerivedField command only affects macros you use as derived fields. It takes a string that is used
for the derived field. If the value for the derived field is a number, you need to convert it to a string using
the STR$ function.

Example
DerivedField "Bill Smith"

DoEvents() function

Syntax
DoEvents
Definition
The DoEvents function allows other Windows applications to process messages.

Parameters
Not applicable.

Returns
Not applicable.

Comments
Use this function when you want your Basic code to yield processor time to allow other applications to
process messages.

Example
DoEvents

EnableIcon() function

Syntax
EnableIcon GroupNo, ItemNo, EnableFlag
Definition
The EnableIcon function enables and disables icons and combo boxes on the toolbar and ribbon.

Parameters
Argument Description
GroupNo Index of the icon group that the icon or combo box belongs to. (See illustration in

example.)
ItemNo Index of the item within the group. (See illustration in example.)
EnableFlag 0 is to disable, 1 is to enable.

Returns
Not applicable.

Comments
None.

Example
Below command disables the Italic button so that it is not available.
EnableIcon 14,2,0

EnableMenu

Syntax
EnableMenu Menu$, EnableCode%
Definition
The EnableMenu command enables or disables a menu command.

Parameters
Argument Description
Menu$ The Menu name and menu subname you want to be affected.
EnableCode% Specify 1 to enable, 0 to disable.

Returns
This command returns a 0 if a menu was removed successfully , and -1 if a menu of the given name
was not found when used as a function.

Comments
It takes a string that specifies a menu item or a submenu item. The string uses this format:
"MenuName|SubMenuName"
The names must match our menu commands, not including keyboard accelerators and "..." characters.
If you omit the pipe and submenu name, the routine assumes you're working with a top level menu. If a
top level menu is disabled, all of its submenu items are also disabled.
When you use this command as a function (rather than a statement), it requires the return value, and
you must enclose its arguments within parentheses.

Example
The following line of code disables the ReportSmith File | New menu Item.
Success = EnableMenu("File|New", 0)

EnableRMenu

Syntax
EnableRMenu ObjectType, EnableFlag
Definition
Enables or disables right mouse menus by object type.

Parameters
Argument Description
ObjectType A code that specifies the object type to disable right mouse menu items for.

              1  Character
              2  Border
              3  Field Format
              4  Text Alignment
              5  Display as Picture
              6  Column Width
              7  Field Height
              8  Section Criteria
              9  Translate

EnableFlag 0 disables the menu; non-zero enables the menu.

Returns
Not applicable.

Comments
This command can be used to check the state of the menu that will be used for new reports by default
by placing an "!" before the menu name. This can be done whether the menu item is specified by
command or relative location.

Example
The following example will disable the right mouse abilities for text fields.
EnableRMenu 1,0

ExecuteMenu

Syntax
ExecuteMenu Menu$
Definition
The ExecuteMenu command lets you simulate a user clicking one of the ReportSmith menu items.

Parameters
Argument Description
Menu$ The menu name and/or submenu name that you want to execute.

Returns
This function returns a 0 if a menu was executed successfully, and -1 if a menu of the given name
wasn't found.

Comments
It takes a string that specifies a menu item or a sum menu item. The string uses this format:
"MenuName|SubMenuName"
The names must match our menu commands, not including keyboard accelerators and "..." characters.
If you omit the pipe and submenu name, the routine assumes you're working with a top level menu.
When you use this command as a function (rather than a statement), it requires the return value, and
you must enclose its arguments within parentheses.
Note: This command can be used to check the state of the menu that will be used by new reports by

default by placing an "!" before the menu name. This can be done whether the menu item is
specified by command or relative location.

Example
Execute Menu "View|Zoom"

ExportTable
The ExportTable command enables you to use 32-bit ODBC 2.0 drivers (dBASE, Paradox, Excel,
Oracle, or any other supported ODBC driver type) to create tables

Syntax
[Object].ExportTable [TblPath],[Type],[DataSource],[UserId],[Password],
[Database]

Parameters
TblPath—Path to the new table, for PC-based tables, or fully qualified table name for server-based
tables.
Type—Integer value representing the type of table to be exported:

0—Reserved for named connections
1—Reserved
2—dBASE
3—Excel
4—Paradox
5—ASCII
6—SQLSrvr
7—Oracle
8—DB2 (MDI Gateway)
9—NetSQL
10—Sybase 4.x
11—Btrieve
12—SQLBase
13—Ingres
15—Ocelot
16—Teradata
17—DB2Gupta
21—Delphi 2.0
22—Sybase System 10 or later
55—Special (See “Data Source” parameter)
61—Paradox BDE connection
62—dBASE BDE connection
67—InterBase BDE connection
70—Informix BDE connection

DataSource—This parameter comes into play only when “55” is used as the value of the Type
parameter. For example, if you specify “2” as the value of the Type parameter, ReportSmith will use
the first dBASE ODBC driver it encounters, regardless of the number of such drivers you may have
installed. By specifying “55” as the value of the Type parameter, then specifying the exact (including
matching upper- and lowercase) name of the driver you want to use, you can force ReportSmith to
use only the intended ODBC driver. (If you receive error message #9025 while exporting a table to
Type 55, it usually means that you have misspelled or mismatched case on the DataSource
parameter.)
UserId, Password—Used only for server-based databases (use null strings for PC-based tables).
UserId represents your user identification, while Password represents your user password.
DataBase—Specifies the database for server-based databases. Because this is specified in the
TblName parameter for those connections requiring it, you can usually specify a null string for this
parameter’s value.

Returns
0 (zero) on success, or –1 on failure.

Comments

The DataSource parameter is case-sensitive, so you must exactly match both the spelling and the case
of the ODBC driver you intend to use.

Examples
In the examples that follow, each ExportTable command line should be written on a single line.
Sub TheExporter()
Dim ds As DataSet
ds.SetFromActive
ds.ExportTable "X:\MyTable", 55, "Btrieve 6","","",""
ds.ExportTable "X:\MYTABLE", 55, "RS_dBase","","",""
ds.ExportTable "SCOTT.VIDEO_EMPLOYEE", 55, "Oracle7 ODBC",
"SCOTT","TIGER",""
ds.ExportTable "indigo.dbo.video_Employee", 55,
"SQLServer_ODBC","sa", "secretpw", ""
ds.ExportTable "SYSADM.DEDUCTIONS", 55, "SQLBase", "SYSADM", "", ""
End Sub

This macro uses a named connection to determine the directory in which to create the new table:
Windows API function declaration
Declare Function GetPrivateProfileString Lib "Kernel" (ByVal

lpApplicationName As String, ByVal lpKeyName As String, ByVal lpDefault
As String, ByVal lpReturnedString As String, ByVal nSize As Integer, ByVal
lpFileName As String) As Integer
Sub Export()
Dim ThePath As String
ThePath = Space(256)
'Replace "MyNamedConnection" with yours.
Length = GetPrivateProfileString ("MyNamedConnection", "DataFilePath", "",
ThePath, Len(ThePath), "RPTSMITH.CON")
ThePath = Left(ThePath, Length) 'Remove last garbage character
'Add backslash if not there.
If Right(ThePath, 1) <> "\" Then ThePath = ThePath + "\"
'Replace the "MyTable" table name with yours.
ThePath = ThePath + "MyTable"
dim ds As DataSet
ds.SetFromActive
ds.ExportTable ThePath, 55, "RS_Paradox", "", "", ""
End Sub

Field$() Function

Syntax
Field$(FieldName$)
Definition
The Field$ command retrieves the value of the specified field for the record number to which the data
set of the currently active report is pointing. This statement is always used as a function.

Parameters
Argument Description
FieldName$ A field in your report that you want the value of.

Returns
This function will return the value of the specified field as a string regardless of the retrieved field's data
type. If necessary, you can use the Val command to convert these strings to numbers. If the specified
field is not found, this function will return "N\A" or "<ERROR>'".

Comments
The name of the field should exactly match the database column name.
You can link two tables together that have one or more column names in common. In this case, it's
necessary to use the fully-qualified field name to insure that you're getting the correct field. The fully-
qualified field name includes the table name followed by a "." followed by the field name. You can also
use a field or table alias. An easy way to get the fully-qualified field name is to drag the field you want
from the list box that appears on the left of the Edit Macro dialog box.
Note: Local database tables (such as dBASE and Excel) use the path to the local database file as a

table name. If you use the Fix Report feature to run a report from a different table, you must
change the path information in the macro code as well.

Example
NextId$ = Field$("Employee_Id")

FieldFont

Syntax
FieldFont Facename$, PointSize, Style, ForColor, BackColor
Definition
The FieldFont command changes the font type, style attribute, point size, or color of a field in your
report. This command is usually used in a macro that is linked to the display event of a field.

Parameters
Argument Description
Facename$ The font name.
PointSize The point size.
Style The style:

            1                      Text Fields
            2                      Sections
            3                      Draw Windows
            4                      Crosstabs
            5                      Crosstab Cells
            6                      General
            7                      Reserved

ForColor The foreground text color.
BackColor The background text color.

Returns
Not applicable.

Comments
Add the style codes to combine attributes. For example, a 3 designates bold italic. (Using the codes on
the previous page, 1 + 2 = 3). For the fourth and fifth arguments, use a color value for the last two color
arguments.
You can specify one of 16 million colors using the Rgb command. Windows substitutes the closest color
to the one you select.
Use a negative one (-1) if you don't want to change the attribute, point size, or color.

Example
The following example would change the font to red, italic, 14 point Arial.
Field Font "Arial", 14, 2, RGB(255,0,0), -1

FieldText

Syntax
FieldText Text$
Definition
The FieldText command applies to macro fields that are linked to the display event of a data field object.
It changes the text of the field.

Parameters
Argument Description
Text The text used to replace the data within a field.

Returns
Not applicable.

Comments
None.

Example
For example, suppose you wanted a field that has a person's name. And suppose you wanted to use
their nickname instead. In this case, you would use the FieldText command similar to this one:
If field$ ("FirstName") = "James" then
FieldText "Jim"
End If

GetDDEItem() function

Syntax
GetDDEItem$(TopicName$, Item$, RequestMacro$, PokeMacro$)
Definition
The GetDDEItem$ function allows you to retrieve the data that a DDE client application would receive in
response to a DDE request to ReportSmith.

Parameters
Argument Description
TopicName$ The name of a user defined DDE topic.
ItemName$ The name of a user defined DDE item.
RequestMacro$
PokeMacro$

Returns
This function returns data in the DDE item.

Comments
A macro that is named as the poke response macro for a user defined DDE item can use this function to
get the data that a DDE client has poked into the item. You can use this technique to create a DDE Item
that will load a report when a DDE client application pokes the filename of that report into the item.

Example
TheData$=GetDDEItem("MyTopic","MyItem","MyData")

GetFieldName() function

Syntax
GetFieldName()
Definition
The GetFieldName function is a global filter, returning the column name of the data field that the filter
macro is being called for.

Parameters
Not applicable.

Returns
The name of the field that a global data filter or conditional formatting macro was called for.

Comments
See also SetDataFilter.

Example
CurrentValue$=Field$(GetFieldName$0)

GetIncludepath$() Function

Syntax
GetIncludePath$()
Definition
The GetIncludePath$ command gets the default directory for macro include files.

Parameters
Not applicable.

Returns
This command returns a string that is the default path for macro include fields.

Comments
None.

Example
MsgBox"Looking for include files in"+GetIncludePath$()

GetNext

Syntax
GetNext
Definition
The GetNext Command causes the data set in an active report to point to the record that comes
immediately after the record to which it is currently pointing.

Parameters
Not applicable.

Returns
Not applicable.

Comments
None.

Example
This example steps through the entire report counting the employees with the first name "John."
Get Random (1)
For x = 1 to RecordCount()
If Field$("First_Name") ="John" then
Count=Count+1
Get Next()

Next X

GetPrevious

Syntax
GetPrevious
Definition
The GetPrevious Command causes the data set in an active report to point to the record that comes
immediately before the record to which it is currently pointing.

Parameters
Not applicable.

Returns
Not applicable.

Comments
The GetPrevious command can be used to change the current record of a dataset. The current record
determines what data the Field$, SumField$ and DateField$ functions will retrieve. This function could
be used in a macro defined summary field. When a macro defined summary field is dropped in a group
footer the current record will be the last record in that group. For this reason a macro derived field can
step backwards through the group performing custom summary operations. See also GetNext,
GetRandom, Field$, SumField$, DateField$, Current, TotalRecords.

Example
`Position to the 3rd record
GetRandom 3
`Now go to 2
GetPrevious

GetRandom

Syntax
GetRandom RecordNumber%
Definition
The GetRandom command causes the data set in an active report to point to the record specified by the
RecordNumber%, if that record number exists.

Parameters
Argument Description

RecordNumber% The number of the record in the data you want to navigate to.

Returns
Not applicable.

Comments
See also GetPrevious, GetNext, Field$, SumField$, DateField$, Current, and Total Records.

Example
`Point to the 23rd record in a set of data
GetRandom 23

GetRecordLimit() function

Syntax
GetRecordLimit()
Definition
The GetRecordLimit function will get the total number of records that ReportSmith will download for any
loaded or created report.

Parameters
Not applicable.

Returns
Not applicable.

Comments
This limit is set with the function SetRecordLimit.

Example
TheLimit=GetRecordLimit()

GetRepVar() Function

Syntax
GetRepVar(VariableName$)
Definition
The GetRepVar command retrieves the value of a report variable in the active report. This command is
only used as a function.

Parameters
Argument Description
VariableName$ The name of a report variable in your report.

Returns
This function returns the value of the specified report variable as a string. It returns "<ERROR>" if a
report variable of the specified name cannot be found in the active report.

Comments
This command takes a string argument that specifies the name of the report variable being retrieved.
See also SetRepVar.

Example
Var_name$=GetRepVar("Rep_var_name")

GetSQL() function

Syntax
GetSQL()
Definition
The GetSQL function will return a string that is the text of the last SQL statement that ReportSmith
executed.

Parameters
Not applicable.

Returns
Not applicable.

Comments
This function can be used along with the SetSQL statement in a macro that is linked to the "Before SQL
is Executed" to change the SWL string "On the Fly."

Example
The following stores the last generated SQL statement in a variable called The_SQL$.
The_SQL$ = GetSQL$()

hWin_Active() function

Syntax
hWin_Active()
Definition
The hWin_Active() function to get the window handle of the currently active report.

Parameters
Not applicable.

Returns
Not applicable.

Comments
This function can be used along with windows API functions that you make available to ReportBasic
through the use of the declare function.

Example
`Force the active report to an Icon
Result=ShowWindow(hWin_Active(),2)
Declare function ShowWindow Lib "User"(ByVal hWnd As Integer, ByVal nCmdShow
As Integer) As Integer

hWin_RS() function

Syntax
hWin_RS()
Definition
The hWin_RS() function allows you to get the ReportSmith main window handle.

Parameters
Not applicable.

Returns
Not applicable.

Comments
You can use this function along with windows API functions. You make the API functions available to
ReportBasic through the use of the declare function.

Example
RS_Handle=hWin_RS()

IsMenuChecked

Syntax
IsMenuChecked (Menu$)
Definition
The IsMenuChecked command lets you determine if a given menu item has a check mark next to it.
This command is only used as a function.

Parameters
Argument Description
Menu$ The menu name and/or submenu name that you are interested in.

Returns
This function returns 1 if the menu is checked, 0 if it isn't checked, and 1 if a menu of the given name
was not found.

Comments
It takes a string that specifies a menu item or a sum menu item. The string is of the form "MenuName |
SubMenuName." The names must match our menu commands, not including keyboard accelerators
and "..." characters. If you omit the pipe and submenu names, the routine assumes you're working with
a top level menu.
Note: This function will not correctly return the state of a menu item if it is called before the menu is

visible as in the case of a macro linked to the `Application Startup' event.
This command can be used to check the state of the menu that will be used for new reports by default
by placing an "!" before the menu name. This can be done whether the menu item is specified by
command or relative location. See second example. See also EnableMenu, KillMenu, AddMenu,
ExecuteMenu and IsMenuEnabled.

Examples
Success = IsMenuChecked ("View|Boundaries")

If IsMenuChecked ("!View|Boundaries") = 1 Then
ExecuteMenu "View|Boundaries"
End if
If IsMenuChecked ("!3,8") = 1 Then
ExecuteMenu "View|Boundaries"
End if

IsMenuEnabled

Syntax
IsMenuEnabled (Menu$)
Definitions
The IsMenuEnabled Command lets you determine if a given menu item is enabled or grayed. This
command is only used as a function.

Parameters
Argument Description
Menu$ The menu name and/or submenu name that you are interested in.

Returns
This function returns 1 if the menu is enabled, 0 if it is disabled , and 1 if a menu of the given name was
not found.

Comments
It takes a string that specifies a menu item or a sum menu item. The string uses this format:
"MenuName|SubMenuName"
The names must match our menu commands, not including keyboard accelerators and "..." characters.
If you omit the pipe and submenu name, then the routine assumes you're working with a top level menu.
Note: This command can be used to check the state of the menu that will be used for new reports by

default by placing an "!" before the menu name. This can be done whether the menu item is
specified by command or relative location. See second example. See also IsMenuChecked,
EnableMenu, KillMenu, AddMenu and ExecuteMenu.

Examples
Success = IsMenuEnabled ("Edit|Cut")

`Check if the tables Menu is enabled
If IsMenuEnabled ("Tools|Tables") = 1 Then MsgBox
"Tables Menu Enables"

KillMenu

Syntax
KillMenu Menu$
Definition
The KillMenu Command removes one of the ReportSmith menu items.

Parameters
Argument Description
Menu$ The menu name and/or submenu name that you are interested in.

Returns
This function returns a value of 0 if a menu was removed successfully, and -1 if a menu of the given
name was not found.

Comments
It takes a string that specifies a menu item or a sum menu item. The string uses this format:
"MenuName | SubMenuName"
The names must match our menu commands, not including keyboard accelerators and "..." characters.
If you omit the pipe and submenu name, the routine assumes you're working with a top level menu.
This command can be used to change the state of the menu that will be used for new reports by default
by placing an "!" before the menu name. This can be done whether the menu item is specified by
command or relative location. "!" removes the menu item for all future reports for this session of
ReportSmith, instead of just the active report.
When you use this command as a function (rather than a statement), it requires the return value, and
you must enclose its arguments within parentheses.

Example
The following code fragment will remove the File | New menu Item from ReportSmith.
Success = KillMenu("File|New")

LastLoaded$() function

Syntax
LastLoaded$()
Definition
The LastLoaded$() function allows you to get the file name and path of the last .RPT file that was
loaded into ReportSmith.

Parameters
Not applicable.

Returns
Not applicable.

Comments
None.

Example
MsgBox"The last report Loaded was:"+LastLoaded$

ListRepVar$() Function

Syntax
ListRepVar$(Index%)
Definition
ListRepVar returns the name of the report variable at the specified index in the active report. If no report
variable exists at the given index then the command returns a NULL string. If    this command is
executed in a macro linked to the “Before Report Open” event of the Report Object, or the After Data
Read event of the application object, the command will return the report variable names for the loading
report. ListRepVar can be used to get the list of variables in a report and initialize them before they are
prompted.

Parameters
Argument Description
Index% Index% specifies the report variable name. If there is no report variable at this

index then the function will return a null string.

Example
‘ Put the names of the report variables in an array
dim Variables$(20)
‘ allow for a maximum of 20 report variables
while ListRepVar(CurrentVar)<> ""

 Variables$(CurrentVar) = ListRepVar(CurrentVar)
 CurrentVar = CurrentVar + 1
 wend

LoadMacro

Syntax
LoadMacro (FileName$,[MacroType%])
Definition
The LoadMacro command allows you to load a macro into the active macro list from a .MAC file. If only
the filename parameter is provided, the macro will be loaded into the active report. If no reports are
loaded then the macro will be loaded as a global macro. If the macro type parameter is equal to 1 then
the macro will be loaded to into the global collection regardless of any open reports.

Parameters
Argument Description
FileName$ The name of the macro file to load. If the extension is omitted then the default

extension of .MAC will be used.
MacroType% Specifies the what collection the macro will be loaded into. If the parameter is 0

or not specified the macro will be loaded into the currently active report. If no
report is loaded then the macro will be loaded as a global. If the parameter is 1
then the macro will be loaded as a global only. The following error codes apply:
1 Invalid File Name
2 A macro with the same name is already in the active list and must be
removed before this macro may be loaded

LoadReport

Syntax
LoadReport Filespec$, InitString$
Definitions
The LoadReport Command loads a report.

Parameters
Argument Description
Filespec$ The directory path and name of the report (.rpt file) you would like to run
InitString$ You can use the InitString argument to set report variables before SQL is

executed. Report variables set in this manner will not prompt the user to enter
their values.

This is the format for the InitString$ argument:
@Report_Variable1=<Value1>,@ReportVariable2=<Value2>, ...
Returns
This function returns non-zero on error.

Comments
Enter the full path name to the .rpt file in which you want the macro to load, and then make it the active
report.
When you use this command as a function (rather than a statement), it requires the return value, and
you must enclose its arguments within parentheses.

Example
LoadReport "c:\rptsmith\video\
summary.rpt","@Repvar1=<40>,@Repvar2=<'Smith'>"

PrintReport

Syntax
PrintReport [StartingPage%], [EndingPage%], [Printer$], [Port$], [Driver$],
[Copies%]

Definitions
The PrintReport command prints the specified pages of the active report to the specified printer.

Parameters
Argument Description
StartingPage% The page number of the report that you want to start the print job.
EndingPage% The page number of the report that you want to end the print job.
Printer$ The name of the printer you would like to use.
Port$ The correct port specification.
Driver$ The correct drive specification.
Copies% The number of copies to print.

Returns
This function returns non-zero on error.

Comments
To print all report pages, use 0 for the start and end page parameters. To use the default printer, use null
strings for the Printer$, Port$, and Driver$ arguments. To specify a printer, see the Devices section of
your win.ini file. You'll see printers in this listed format:
Printer=Driver, Port1, Port2
When you use this command as a function (rather than a statement), it requires the return value, and
you must enclose its arguments within parentheses.
This initial string cannot be used to initialize variables that belong to detail sections in master/detail
reports.

Example
PrintReport 1,5, "HPLaserJet 4/4M","HPPCL5E","LPT3"

Recalc Statement

Syntax
Recalc
Definition
The Recalc Statement re-executes the currently active report so that the report surface will reflect
changes made to report variables or changes made with an associated dataset control object. When this
command is linked to the NewReportDialog Control, it affects only the report to which it is linked.

Parameters
Not applicable.

Returns
Not applicable.

Comments
None.

Example
The Following sets the starting date report variable to today and recalculates.
SetRepVar("StartDate",Date$)
Recalc

RecordCount

Syntax
RecordCount()
Definitions
The RecordCount command gives the total number of records in the data set that belongs to the
currently active report.

Parameters
Not applicable.

Returns
This function returns the number of records in the currently active report or 0 if no active report exists.

Comments
It's useful when writing macros that step through data in a report.

Example
The following code fragment counts all of the customers from the city of Palo Alto in a customer
database and display the result.
GetRandom 1
For X = 1 to RecordCount()
If Field$("CITY") = "Palo Alto" then Count =Count + 1
GetNext
Next X
MsgBox " The total number of customers located in Palo Alto are: " + Str$
(Count)

ResumeEvent

Syntax
ResumeEvent ResumeCode%
Definition
The ResumeEvent command lets a macro which is linked to an event determine whether the event
should be executed or aborted.

Parameters
Argument Description
ResumeCode% Event                    Meaning

        0  Abort the event to which this macro is linked.
        1  Perform the event as usual (default).

Returns
Not applicable.

Comments
This only applies to certain events. For most events, 0 means abort and 1 means proceed.

Example
The following stops an event.
Resume Event 0

Rgb

Syntax
Rgb (Red%, Blue%, Green%)
Definition
The Rgb command returns a value for the color that the FieldFont command uses for its color
assignment.

Parameters
Argument Description

Red%, Blue%, Green%The intensity of red in color, blue in color, or green in color.

Returns
An integer representing the color you've specified.

Comments
This command uses three numbers from 0 to 255. The first number designates the intensity of red, the
second number of blue, and the third of green. It provides 16.5 million color combinations. Windows
then chooses the closest match to that color.

Example
For example, this tells the FieldFont command to use the color red.
Dim Red as Integer
Red = Rgb (255, 0, 0)
Tip: Use the Custom Color option in the Windows Control Panel to select a color. Take note of the Rgb

settings for the color you select. Then use these values in the Rgb function to get the color you
need.

RunMacro

Syntax
RunMacro Macro$, Arguments$
Definition
The RunMacro command lets you execute a macro from another macro.

Parameters
Argument Description
Macro$ Specifies the macro being run.
Arguments$ The arguments defined in your macro if they exist. If your macro contains no

arguments, just use ""

Returns
This function returns 0 if a macro is found and successfully executed.

Comments
The macro language first looks for an active global macro that matches the name and then searches for
active macros that belong to the active report. You can also specify the filename of a .mac file. To be
safe and to make sure the correct .mac file is executed, specify the full path of the .mac file.
When you use this command as a function (rather than a statement), you must enclose its arguments
within parentheses.

Examples
RunMacro "c:\rptsmith\macros\greeting.mac",""

RunMacro "two_arguments,","1,2"

SetDataFilter Statement

Syntax
SetDataFilter MacroName$
Definition
This statement allows you to specify a macro that will be executed before any data field column value is
calculated. The specified macro can then use the FieldText and FieldFont functions to change either the
text or the appearance of the data.

Parameters
Argument Description
MacroName$ The path and file name of a .mac file or name of an actual global macro to be

used as the macro data filter.

Returns
Not applicable.

Comments
This function can be costly in performance under some circumstances as the specified macro is
executed once for each field visible on the report surface. The filter function can be disabled by calling
this function with a null macro name.

Example
SetDataFilter "FilterMacro"

SaveReport

Syntax
SaveReport ([FileName$],[ExportType%])
Definition
This command allows you to save the active report under its last saved name, save it as a new name
and path, or export it to one of several export field types.

Parameters
Argument Description
FileName$ The name of the file to save the report under.      If this Argument is omitted then

the function will attempt to save the file under the same name it was last saved
under. If the file has never been saved and no filename is provided the function
will return an error. You may not save a report with one of ReportSmith's default
names (REPORT1.RPT, REPORT2.RPT).

ExportType% Specifies the type of file that ReportSmith will save. If it is omitted, ReportSmith
will save in its default file format. The valid Codes are:
Code File Type Default Extension
0 Standard ReportSmith Report        .RPT
1 Report Query File .RQF
2 Excel    Spread Sheet .XLS
3 Text File .TXT
4 Lotus Spread Sheet .WKS
5 Comma Delimited Text .CSV
7                      Data Interchange Format .DIF
8      Quattro Pro .WKQ

error codes:

1 No Active report to save
2 Cannot save unnamed file
3 General Error Saving file
4 Invalid File name
5 Cannot overwrite exported file
6 Invalid    Export Code
4002 File not found
4003 Path not found
4004 Too many open files
4005 Access denied
4008 Not enough memory
4010 Bad environment
4011 Bad format
4012 Invalid access

4013 Invalid data
4014 Invalid drive
4018 No more files
4019 Write protect error
4026 Not MS-DOS disk
4031 General failure
4032 Sharing violation

SelectReport Statement

Syntax
SelectReport ReportTitle$
Definition
This statement allows you to set the input focus to the report that has the indicated title.

Parameters
Argument Description
ReportTitle$ The title of the report to set focus to.

Returns
Not applicable.

Comments
This statement is useful in changing the active report for functions that work on the currently active
report.

Example
SelectReport"c:\rptsmith\sales.rpt"

SetDDEItem Statement

Syntax
SetDDEItem TopicName$, ItemName$, Data$
Definition
This statement allows you to set or change the data in one of the ReportSmith DDE items. This could be
done in response to a DDE request to the specified item.
See Also CreateDDETopic and CreateDDEITem

Parameters
Argument Description
TopicName$ The name of a user defined DDE topic.
ItemName$ The name of a user defined DDE item.
Data$ The data to set into a DDE item.

Returns
Not applicable.

Comments
A macro that is named as the request response macro for a user defined DDE item can use this function
to set the data that a DDE client will receive in response to a DDE request. This technique could be
used to create a DDE item that would report the name of the currently active report or other information
that might be useful to a DDE client application.

Example
SetDDEItem "MyTopic","MyItem","Mydata"

SetIncludePath

Syntax
SetIncludePath Path$
Definition
This command sets the default directory for macro include files.

Parameters
Argument Description
Path$ The path where RS_BASIC expects to find include files.

Returns
This function returns a nonzero on error.

Comments
The macro compiler will first look in this directory for include files, then it will look in the standard search
path. The beginning value is the default macro path in the rptsmith.ini file.

Example
SetIncludePath "c:\macros\include"

SetRecordLimit Statement

Syntax
SetRecordLimit Limit
Definition
The SetRecordLimit Statement will set the total number of records that ReportSmith will download for
any loaded or created report. The limit can be removed by calling the function with a value of 0.

Parameters
Argument Description
Limit The maximum number of records that ReportSmith will download for a single

report.

Returns
Not applicable.

Comments
This statement is helpful for implementing a draft mode where you can work with a subset of a large
report until you are ready to work with the entire report. Some operations will continue to work against
the entire result set, such as selections, sorting, and summary fields, so that for these operations
performance will not change.

Example
SetRecordLimit 100

SetRepVar

Syntax
SetRepVar ReportVariable$, Value$
Definition
The SetRepVar Command stores a value in a report variable in the active report.

Returns
This function returns non-zero on error.

Parameters
Argument Description

ReportVariable$ A string argument that specifies the name of the report variable being set.
Value$ A string argument that specifies what value to set the report value to.

Returns
This function returns non-zero on error.

Comments
When you use this command as a function (rather than a statement), and you must enclose its
arguments within parentheses.

Example
SetRepVar "Repvar1", "Smith"

SetSQL Statement

Syntax
SetSQL SQL$
Definition
The SetSQL statement replaces the SQL string that would normally be generated by ReportSmith.

Parameters
Argument Description
SQL$ A quoted, valid SQL statement.

Returns
Not applicable.

Comments
The SetSQL statement is only valid in a macro that is linked to the "Before SQL is Executed" event.
Care should be used when executing this function as the string is not verified before it is executed. This
statement can be used along with the GetSQL function in a macro that is linked to the "Before SQL is
Executed" event to change the SQL string "On the Fly."

Example
SetSQL "Select ENAME, EMP_ID from SCOTT.EMP"

ShowRS

Syntax
ShowRS Code%
Definition
The ShowRS command lets you hide, show, minimize, and maximize ReportSmith.

Parameters
Argument Description
Code% A list of the valid values of code and the effect each value has when you send it

with a ShowRS command.

Value Effect
0 Hides ReportSmith and passes activation to another window
1 Activates and displays ReportSmith. If ReportSmith is minimized or maximized,

Windows restores it to its original size and position.
2 Activates ReportSmith and displays it as an icon.
3 Activates ReportSmith and displays it maximized.
4 Displays ReportSmith in its most recent size and position. The window that is

currently active remains active.
5 Activates ReportSmith and displays it in its current size and position.
6 Minimizes ReportSmith activates the top-level window in the system's list.
7 Displays ReportSmith as an icon. The window that's currently active remains so.
8 Displays ReportSmith in its current state. The window that's currently active

remains so.
9 Activates and displays ReportSmith. If ReportSmith is minimized or maximized,

Windows restores it to its original size and position.

Returns
If ShowRS is called with a value of 0, ReportSmith becomes invisible.

Comments
There are some things you should be aware of. If a user minimizes ReportSmith after it opens a modal
dialog box, the user won't be able to do anything with ReportSmith until it's brought back to normal size.
This may only be possible by sending another ShowRS command from DDE.
It will be impossible for the user to switch to it or execute any of its commands except through macros
and DDE. This may be desirable to many users. ReportSmith can still bring up dialog boxes and do any
other activity, but because it's not visible, these actions can only be started by DDE commands or
macros which are already running.

Example
' Force ReportSmith to be an icon
ShowRS 2

SumField

Syntax
SumField$ (Field$, Table$, GroupLevel, Operation$)
Definition
The SumField command gives you the value of a summary field.

Parameters
Argument Description
Field$ The name of the field being summed.
Table$ The name of the table being summed.
GroupLevel The group in the report at which the summary is reset.
Operation$ Summary operation performed on the Field.

Returns
Not applicable.

Comments
You can drag and drop this command from the list box. The best way to use it is to choose Summary
Fields from the first Listbox and then double click on your Summary Field. ReportSmith will use the
SumField$ command and fill in the parameters for you. This is how a Summary Field should be
referenced in macros.

Example
my_var$ = SumField$(QTY_FIELD","OWNER.TABLE_NAME",0,"Count")

TotalPages() function

Syntax
TotalPages
Definition
This function returns the number of pages in the curently active report. This command can also be a
property when used with the Report Control.

Parameters
Not applicable.

Returns
Not applicable.

Comments
This function is useful in changing the active report for functions that work on the currently active report.

Example
MsgBox "There are" + str$(Totalpages()) + "in the current report"

TotalRecords statement
Returns the total number of records in the active report.

Syntax
TotalRecords
Example
r = TotalRecords()

—or—
r = TotalRecords

SetDirtyFlag statement
This command is used to mark a report as modified, or “dirty.”

Syntax
SetDirtyFlag Conditional%
Parameters
Conditional%—When set to zero (FALSE), the report is marked as “clean” (unmodified), and the
Save Report dialog box will not appear when the report is closed.    If Conditional% is non-zero (TRUE),
the report is marked as "dirty" (modified), and the Save Report dialog box appears when the report is
closed, prompting the report user to save changes.

Example
The following code will prompting the user to save changes to the report before closing it, whether or not
the report has been modified.
SetDirtyFlag 1

SetFieldLabel
Changes the label that appears over the given field.

Syntax
SetFieldLabel FIELD$, NEWLABEL$
Parameters
FIELD$—A text string specifying a field from a table used in the report.
NEWLABEL$—The label to display in place of the default field label.

Example
The following code refers to a table field called EMPYEE_ID, and sets its label (within the report) to
“The Employee ID” (without the quotes).
SetFieldLabel “EMPLYEE_ID”, “The Employee ID”

Macro Events
You can link a macros to an event. An event is an action in ReportSmith that can trigger the execution of
a macro.
Note: You link macros to events and objects using the Macro Links dialog box.
This list describes ReportSmith events, categorized according to objects to which they can be linked.

Application Events
Report Events
Data Field Events
Header/Footer Events

Application Events
You can link a macro to an action, such as the keystroke event, CTRL+R, or to an event which coincides
with report loading. You cannot link application macros to report events.
To link macros to specific reports, see Report Events.
The following list describes application events and shows you how to use them to solve reporting
problems:

KeyStroke
Before New Report
After New Report
Application Start Up
Before Executing SQL
Before Report Print
Before Report Load
After Report Load
Before Report Save
After Report Save
Before Application Close
On SQL Error
New File Icon Click
SQL Icon Click
After Report Connects
Before Report Close
After Report Close

KeyStroke (Application event)

A macro linked to the KeyStroke event runs when you press the key or key combination you specify.
Note: If the active report has a report macro linked to the same keystroke, the report macro is executed

first. If the report macro is intended to replace the application macro (which is also linked to the
same keystroke), then the report macro should call the ResumeEvent command passing a value
of zero (false). In effect, the ResumeEvent code tells ReportSmith it should not execute other
processes normally tied to that event.

As an example, suppose you want to link a macro to CTRL + R to load a report you use often. Also,
suppose that the report already has a macro linked to CTRL + R, which tells ReportSmith to print the
report.
In this example, the report macro (which prints the report) should call the ResumeEvent command with
a value of zero (false), so that the macro (which loads the report) will not load another copy of the same
report. This is an example of a report macro overriding the application macro. When you close the
report, the global macro that loads the report responds again to the CTRL + R keystroke.

Before New Report (Application event)

A macro linked to this event runs after you choose File | New . This event allows you perform tasks,
such as verifying that a user has permission to create reports.
For example, a global macro can display a dialog box that prompts for a password. If the password is
correct, the user can continue. If the password is incorrect, an error message appears and the operation
is canceled.
You can also use this event to keep track of users attempting to create new reports. For example, a
macro may execute a DDE command to notify Visual Basic when users select File | New
A macro linked to this event can abort the creation of a report by calling ResumeEvent 0.

After New Report (Application event)

A macro linked to this event runs when you choose File | New, after ReportSmith executes the report
query. You can link to this event to change the default configuration for new reports. For example, you
can specify the display mode (draft or presentation), turn the report boundaries on or off, and turn the
grid on or off.
You can also link to this event to send DDE commands to another Windows application. For example,
you can link a global macro to this event and send a DDE message to PowerBuilder informing it to save
all new reports using the filenames it generates.

Application Start Up (Application event)

A macro linked to this event runs when you click the ReportSmith icon to open the application, after
ReportSmith displays the splash screen. You can link a macro to this event to set the default
ReportSmith environment: add new menu items, disable or remove existing menu items, load daily
reports, or execute a menu command, such as File | New or File | Open .
You can also launch other Windows applications simultaneously, such as Visual Basic, Excel, and
PowerBuilder.
A macro linked to this event can call ResumeEvent 0 to cancel the start up of the application.

Before Executing SQL (Application event)

This event occurs each time ReportSmith generates an SQL statement, before that statement executes.
You can use it to allow a macro to obtain a copy of the ReportSmith SQL statement each time it
changes.
Note: You can retrieve the last SQL statement using the GetSQL function.
In rare cases you might find it necessary to modify the ReportSmith SQL statement. To do this you can
use the macro command, SetSQL, to replace the string generated by ReportSmith.

Important: Do not modify the query in the Before Executing SQL event. Instead, we recommend you
use the DataSet Control methods (such as SetUserSQL, AddTable, IncludeFields). Changes
made during the Before Executing SQL event are lost the next time you generate an SQL
statement. Use the SetSQL command with caution. Use it to make small changes to the
SQL statement to support servers which have unusual or non-standard SQL requirements.

Before Report Print (Application event)

A macro linked to this event runs after you select the File | Print , before the report is sent to the printer.
You can link a macro to this event to perform print-related tasks.
For example, a macro can display a dialog box identifying the printer or display an interactive dialog box
that lets the user enter printer parameters, such as margin specifications, number of copies, page
orientation, and paper size.
You can also link a macro to this event to warn users when a report is large, using the macro to display
a dialog box that gives them the opportunity to cancel the print.

Before Report Load (Application event)

A macro linked to this event runs after you select File | Open , after you select a report from the Open
Report dialog box. It runs before ReportSmith actually opens and displays the corresponding report. Use
this event to determine if the report can actually open.
For example, to insure that a user has only one report open at a given time, you can create a global
macro and link it to this event. This saves and closes all active reports before allowing a new report to
be opened.

After Report Load (Application event)

A macro linked to this event runs when you select a report using File | Open, after ReportSmith actually
opens and displays the report.
For example, display all reports in Draft mode by creating a macro that activates Draft mode each time
you open a report.
You can also log all of the report files opened by a certain end user. A macro linked to this event could
use the last loaded commands, write the title and the time opened to an ASCII file.

Before Report Save (Application event)

A macro linked to this event runs after you select File | Save or File | Save As, before ReportSmith
actually saves the active report. If this is the fist save or if you are saving an existing report under a
different name, the macro runs before the dialog box prompts you for a filename.
By linking a macro to this event, you can prevent a user from overriding certain files that you do not want
modified. For example, to prevent users from modifying all reports created in the month of May, have the
macro display a message indicating that the report can not be modified, and cancel the File | Save or
File | Save As operation. Similarly, you can use this event to verify sufficient disk space, and then display
a warning message if disk space is unavailable.

After Report Save (Application event)

A macro linked to this event runs after you select File | Save or File | Save As, after ReportSmith saves
the active report. When you link a macro to this event, you can close reports immediately after
ReportSmith saves them. You can also use this event to automatically create backup copies of saved
reports in a backup directory.

Before Application Close (Application event)

A macro linked to this event runs after you select File | Exit, before ReportSmith actually closes. You can
link a macro to this event to prevent ReportSmith from closing under certain circumstances.
For example, you might not want ReportSmith to close if a driving application, such as PowerBuilder, is
still open. In this case, you can have a macro cancel the close, and display a message informing the
user to close the driving application first.
You can also use this event to keep a running log of the dates and times ReportSmith closes, and the
names of the users attempting the close. For example, you can have a macro execute a DDE command
to notify Visual Basic when a user selects File | Close .
Suppose the ReportSmith users in your company work on several reports simultaneously. You can link a
macro to this event to automatically save all open reports before ReportSmith closes, instead of
requiring ReportSmith to prompt the user to save each open report individually.

On SQL Error (Application event)

Each time an SQL execution error occurs, the On SQL Error event is triggered. A macro linked to this
event can execute the LastError function to retrieve error text (usually from an ODBC driver). It can
attempt to fix the error by changing the report query from which it originated. If that macro executes a
ResumeEvent command with an argument of 0, the FixReport Dialog box will not appear and the SQL
will re-execute.
Note: If the macro does not correct the error in FixReport, this event is called again. Use caution when

using ResumeEvent 0 to avoid being caught in an endless loop.

New File Icon Click (Application event)

This event is called when the user presses the New Report button on the toolbar. A macro linked to this
event can call ResumeEvent command passing a 0 (FALSE) value which would cause the regular new
report processing to be aborted. This might be done to replace the standard new report behavior with
custom behavior, defined by a macro.

SQL Icon Click (Application event)

This event is called when the user presses the SQL button on the toolbar. A macro linked to this event
can call ResumeEvent command passing a 0 (FALSE) value which would cause the regular SQL
processing to be aborted. This might be done to replace the standard SQL viewing/editing behavior with
custom behavior defined by a macro.

After Report Connects (Application event)

This event is called after a report connects, before ReportSmith executes the report query. It is the
application level version of the report event, "Before Report Open." This event is handy for macros
whose purpose it to modify a report query before running the report. A control object could be associated
with a loading report using the .setfrom loading command.

Before Report Close (Application event)

This event is called before a report closes.

After Report Close (Application event)

This event is called after a report closes.

Report Events
A report macro is linked to a specific report and becomes a part of that report. You link report macros to
report events.
This list describes report events and shows you how to use them in common reports. Click on an item in
the list to see a description.

KeyStroke
Before Report Open
After Report Open
Before SQL Execution
Before Print
Before Report Save
Before Report Close
On SQL Error
Selecting a Menu Item

KeyStroke (Report event)

You can link a macro to a key or key combination on your keyboard. A macro linked to the KeyStroke
event runs when you press the key or key combination you specify in the active report.
A KeyStroke event linked to a report macro overrides one that is linked to a global macro.
Note: For more detailed information and for examples of how you can use the KeyStroke event, see the

Application Event KeyStroke

Before Report Open (Report event)

A macro linked to this event runs after you open a specific report, before ReportSmith executes the
report query. You can use this event to automatically set report variables for the selection criteria.
Note: If the macro linked to this event calls the Set report variable command, it sets the report variables

for the report being loaded, instead of the active report.

After Report Open (Report event)

A macro linked to this event runs after you open the specific report to which the macro is linked, after
ReportSmith runs the query and displays the report. You can use this event to trigger an action
immediately after the report opens. For example, you can automatically send a specific report to the
printer after it opens or require the opening of a specific report to trigger the loading of additional, related
reports.
Use this event to force a certain report to appear in a different display mode than all other reports in your
company. For example, suppose all reports are set up to appear in Presentation mode, and you want a
specific report to appear in Draft mode instead. You can create a report macro and link it to this event so
that only the specific report appears in Draft mode when you open it.

Before SQL Execution (Report event)

This event is the same as the application level event, except that it only applies to the report to which
the macro is linked.

Before Print (Report event)

A macro linked to this event runs after you select File | Print , before ReportSmith actually prints the
specific report to which the macro is linked.
For example, if you have a specific report that is particularly large and you do not want to tie up the
printer, you can link a macro to this event to automatically send that report to another printer.
You can also use this event to warn users that the specific report is particularly large, giving them the
opportunity to cancel the print operation.

Before Report Save (Report event)

A macro linked to this event runs after you attempt to save a specific report to which the macro is linked,
before ReportSmith actually saves it. If this is the first save, the macro runs before the dialog box
prompts you for a filename.
Link a macro to this event to prevent a user from overriding a specific report that you do not want
modified. The macro can display a message indicating that the report cannot be modified, and then
cancel the save operation. You can also use this event to send a DDE command to through your
company e-mail to notify other users that a new version of the report is available.

Before Report Close (Report event)

A macro linked to this event runs after you select File | Close, before ReportSmith actually closes a
report. You can link a macro to this event to restore options set by a macro linked to the After Opening
the Report event.
For example, suppose the macro that runs after you open a report changed the display mode from
Presentation to Draft. You can link another macro to this event to restore the display mode to
Presentation.

On SQL Error (Report event)

Each time an SQL execution error occurs, the On SQL Error event is triggered. A macro linked to this
event can execute the LastError function to retrieve error text (usually from an ODBC driver). It can
attempt to fix the error by changing the report query from which it originated. If that macro executes a
ResumeEvent command with an argument of 0, the FixReport Dialog box will not appear and the SQL
will re-execute.
This event applies only to the report to which the macro is linked.
Note: If the macro does not correct the error in FixReport, this event is called again. Use caution when

using ResumeEvent 0 to avoid being caught in an endless loop.

Selecting a Menu Item (Report event)

This event lets you link to specific menu items.
A macro linked to this event runs when you select the menu item to which the macro is linked, before the
menu item task occurs. Use the ResumeEvent command to determine if the corresponding action is
executed.
Suppose you have a help file for a specific report. You can link a macro to this event to replace the
ReportSmith help file with the new help file, only for the specific report.

Data Field Events (Report events)

A macro linked to data field events runs when ReportSmith generates a value for the data field object to
which the macro is linked.
The primary purpose of the Display event is to allow conditional formatting. To perform conditional
formatting, it must be based on criteria to which values in report columns can correspond.
When creating a conditional formatting macro, use the FieldFont and FieldText macro commands to tell
the macro how to format the values that fulfill the criteria.
Note: If more than one macro is linked to a particular data field, only the last macro linked will be run.

Macro arguments are not valid for this link.

Header/Footer Events (Report events)

Macros can be linked to the Group Header or Group Footer objects. These objects currently have one
event, the Creation Event.
When you link a macro to the Header/Footer Event you must choose the grouping level of the header or
footer to which you want to link. In the Items Listbox of the Macro Links Dialog Box,you can view a list of
the groups in the active report. For a macro to execute each time you create a Department group footer,
select the Group Footer object, and the Department group, and press the Link button.
A macro linked to the Header/Footer Event can call ResumeEvent, passing an argument of 0 (FALSE) to
suppress the creation of an individual group header or footer based on the data in the report. The
current record in the report is set to the first record of the group when the macro is called. The current
record of the dataset is the first record of the specified group. For example, if you group by department
and want to know what department header or footer is being called, execute Field$ ("Dept") to retrieve
the department name.

ReportBasic Programming Language
Introduction to Macros offers a brief tour of explanation of working with macros.
Overview of Creating Macros shows you how to create, load and link a simple macro, and how to save

a macro to a .MAC file.
Using Control Objects shows you how to use control objects in your ReportBasic macros.
Command Reference lists all topics available for the ReportBasic Programming Language.
Macro Events lists all topics available for Macro Events.
What is ReportBasic? defines the ReportBasic programming language.
When to use ReportBasic lists common uses for ReportBasic.
Note: If you use the Index button at the top of this window (or the Find command within the Index), Help

will search only those topics pertaining to ReportBasic Macro Language Help. General
ReportSmith Help topics can be found in ReportSmith 3.0 Help. (Check the title bar to quickly
determine whether you are viewing Macro Help or ReportSmith 3.0 Help.) A thorough discussion
of macro concepts and techniques can be found in Creating Reports.

Using Control Objects
See Also
ReportBasic control objects are used by employing their properties and methods. ReportBasic provides
three control objects:

DataSet Control Object
Report Control Object
NewReportDialog Object

You can use the commands in the macro facility either as functions that require a return value, or as
statements, which do not require a return value. You can use many command as both, but some can be
used only as a function or a statement. Use a control object for various tasks such as making a
connection, setting your selection criteria, or changing the current report page.
The Dataset Control Object allows you to define a description of report data. It is used by employing its
properties and methods to:

Make a connection
Set a list of tables
Set selection criteria
Obtain a list of available tables
Get a list of table owners
Create a default columnar report

You can use a Report Control Object to:
Check the total number of pages
Change the page displayed
Recalculate the report

You can use a NewReportDialog Control Object to:
Prompt a user to choose a report type
Grant users access to style editing

See Also
Creating a DataSet Control
Creating a Report Control Object
Creating a NewReportDialog Object
Properties and Methods

Creating a DataSet Control Object
You can create a control with Dim and Global statements.
For all subroutines in a macro to be able to use your control, place the Dim statement outside of all
subroutines. A macro declared thus has modular scope, and is destroyed when the macro ends.
To use the control in a single function, place the Dim statement inside that function. This gives the
control local scope. It will be created when the function is called, and destroyed when the function is
complete. You could then use the same name for the local DataSet controls of other functions.
You can use the Global statement to create a DataSet control that is known to all macros in
ReportSmith, called global scope. The Global statement must appear in all modules that refer to the
global DataSet. Before the object is used it must be outside all functions and subroutines.

Properties and Methods
ReportBasic controls are used by employing their properties and methods. Use the following references
to learn how to employ properties and methods.

DataSet Methods Reference
DataSet Properties Reference
Report Object Methods Reference
Report Object Properties Reference
NewReportDialog Methods Reference
NewReportDialog Properties Reference

Introduction to Macros
See Also

Macros allow you to save time, enhance productivity and add complex features to your reports. Macros
are programs that you build using ReportBasic to automatically perform tasks. You can link a macro to
an event which the macro can run.
For example, you can display a dialog box which prompts for options each time a user opens a report. In
this case, the dialog box is the result of the macro, while the user opening the report is the event.
You can write a macro to perform many tasks, including the following:

Automatically load and print reports.
Customize ReportSmith by creating a custom dialog box, hiding or disabling menu items.
Drive ReportSmith from PowerBuilder or VisualBasic.
Create derived fields.
Create customized prompts such as prompting a user for a password.
Schedule report printing.
Perform complex calculations.

Note: For more information, see the User's Guide.

 See Also
Global and Report Macros
Using Macros With Other Windows Applications
What is ReportBasic?

Overview of Creating , Linking, and Loading a Macro
This section shows you how to create a simple macro, link a macro to an event, save a macro to a .MAC
file, and load a macro.

Creating Macros
To create a macro:
1. Select Tools | Macro to open the Macro Commands dialog box.
2. Enter a name for your macro into the Macro Name text box and press New.
Note: The macro name cannot be the same as a Basic reserved word, or errors result.
3. In the Edit Macro dialog box, insert commands into the Macro Formula text box by dragging and

dropping them from the upper list boxes. Once you complete the formula, press the Test button.
4. After you receive a success message, press OK to return to the Macro Commands dialog box. Press

Run to see your macro.

Linking Macros
To link a macro to an event:
1. Select a macro in the Macro Commands dialog box and choose Links. Select an event to which to link

your macro, set necessary options (such as choosing a keystroke sequence if the event to which you
link it is a KeyStroke event).

2. If you like, you can link a macro to more than one event. Press the Link button each time you add an
event. The number of links appears in the Link Number list.

3. Press OK to return to the Macro Commands dialog box.

Saving Macros
To save a macro to a MAC file:
When you save a macro in a .MAC file, you save only the macro code itself. Links to events and objects
are not stored in the .MAC file since they might not be appropriate for other users.
1. In the Macro Commands dialog box, choose a macro from the list of active macros and choose Save

As.
2. Use the Drives and Directories boxes to specify the path where you want to store the macro, and

enter a name for your macro file into the File Name box, followed by the three character
extension .MAC. Press OK.

Loading Macros
To load a macro:
Tip: To successfully load a macro, a macro with the same name in the first line of its routine must not

appear in the Active Macros list box. If you attempt to do this, ReportSmith displays an error
message. You must first remove the macro from the active list.

1. Select Tools | Macro to display the Macro Commands dialog box, and choose Load.
2. In the Load Macro dialog box, double-click the macro you want. This becomes the active macro in the

Macro Commands dialog box.
3. To edit the macro, choose Edit to display the Edit Macro dialog box, make a valid change in the Macro

Formula text box and press OK.

Global and Report Macros
See Also

You can create two kinds of macros:
Global
Report.

A global macro belongs to the ReportSmith application. It appears in the active list each time your run
ReportSmith. A report macro belongs to a specific report. It becomes a part of that report. Global macros
let you automate global tasks, while report macros let you automate tasks specific to a given report.
You can create global macros to customize ReportSmith. For example, you can combine loading, printing
and closing a report into one step. To do this, create a global macro containing an argument string which
takes a series of report names, separated by commas. This same macro can also display a dialog box
that prompts for report names. When you run the macro, it opens, prints and closes each report specified
in the dialog box.
Report macros let you automate tasks that are specific to a given report. For example, you can create a
report macro that lets only a certain user access a confidential report. The macro can prompt for a
password, or verify the value of a DOS environment variable. For example, you might have this line in
your AUTOEXEC.BAT:
SET USER=John Doe
In this case, the macro opens the report only if the environment variable is set to John Doe.
' This code will abort the open event if the user is not John Doe
' Get the user name
USER$=ENVIRON$("USER")
IF USER$ <> "John Doe" THEN
RESUME EVENT 0
ENDIF

 See Also
Introduction to Macros
Using Macros With Other Windows Applications
Uses for Global Macros
Uses for Report Macros

Uses for Global Macros
Prompting for Passwords
Customizing ReportSmith

You can create a global macro that prompts for a password when a user opens ReportSmith. If the
password is correct, the macro opens ReportSmith and loads specific confidential reports. If the
password is incorrect, the macro denies access to those reports, and closes ReportSmith.
You can create a global macro that hides the toolbar, executes a certain menu command, or adds a
menu item that will open and print standard reports. Or, add a DDE topic that will open reports in
response to DDE pokes from another application.

Uses for Report Macros
Creating Derived Fields
Scheduling Events

You can create a report macro that steps through the fields in a report column and produces a summary
or derived field. For example, suppose the Sales Department might have a sophisticated commission
structure containing different multipliers for different quotas. You can write a macro that calculates
commissions based on the commission structure, and place that value in a report.
You can create a report macro which behaves dynamically according to the information it receives. For
example, for an unusually large report, you can create a macro that prevents a user from opening the
report during peak time, and then displays a brief explanation. In this case, the macro behaves
differently according to the time of day.

Using Macros with other Windows Applications
See Also

Report macros let you extend to other Windows applications. For example, suppose you have a report
with a column listing part numbers, and an Excel spreadsheet with a table listing these part numbers
and their corresponding part names. You can write a macro that changes the part number to the part
name in your report. To do this, link the macro to the Display event and use the FieldText command to
change the text of each record. You can then perform a DDE request to your Excel table to locate the
corresponding part name for each part number.
You can also add C functions from a Windows DLL (Dynamic Link Library) into a report macro. If you
have a Windows DLL containing functions that perform complicated financial computations, you can
create a report macro that uses those functions to calculate the data in your report.

See Also
Introduction to Macros
Global and Report Macros
Using Dynamic Data Exchange (DDE) with ReportSmith

What is ReportBasic?
See Also

ReportSmith has licensed the Softbridge Basic Language (SBL) from Mystic River Software, Inc. to
provide ReportSmith users with a complete high-level programming language. SBL contains similar
commands to Microsoft's Visual Basic programming language. ReportSmith has also added commands
to SBL that were designed with reporting in mind. This combined command set is called ReportBasic, a
complete programming language designed specifically for report manipulation.

See Also
Examples Using ReportBasic

When to use ReportBasic
Because it is a complete programming language, ReportBasic can be used for a variety of tasks. The
following is a list of the more common uses for ReportBasic:
Calculating Derived Fields With ReportBasic
Conditional Formatting With ReportBasic
Customizing User Interface With ReportBasic
Automatically Processing Reports With ReportBasic
Creating User-Defined Functions With ReportBasic
Using DDE With ReportBasic

Calculating Derived Fields with ReportBasic
With ReportBasic you can create derived fields that are not stored in the database, but are a by-product
of a calculation using the values stored in your database fields.

Conditional Formatting with ReportBasic
ReportBasic lets you highlight a value if it meets a certain criteria in a report. For example, you might
want to display all sales transactions in a report that are greater than a stated quota to print in a bolder,
larger font than those that fall below the quota. ReportBasic can also be used to warn a report reader
that invalid data exists in a database. Suppose a mailing list database contains a number of null values
in the state field. ReportBasic can print the value "NO STATE CODE" in place of the null state code
value.

Customizing User Interface with ReportBasic
You can use ReportBasic to create custom user interfaces such as dialog boxes that contain user entry
fields, command buttons and check boxes. A report user can build a complex SQL query with a few
mouse clicks, with the help of the report designer who is familiar with ReportBasic. ReportBasic can also
be used to disable ReportSmith menus, menu items and toolbar icons. A report designer may want to do
this to prevent a user from modifying a report, or to add specific menu items that run specific macros.

Automatically Processing Reports with ReportBasic
ReportBasic can be used to load a number of reports, send them to a printer and close those reports
once they have been printed. A user can cause such a macro to execute in response to a keystroke, or
another ReportSmith event. Or, a macro might be programmed to run reports at midnight, when user
traffic is low.
With ReportBasic, you can create your own DDE topics and items. Macros can be assigned to run in
response to a change in one of the items, or in response to a request for data from another application.

Creating User-defined Functions with ReportBasic
Advanced users can create ReportBasic functions that can be called by other ReportBasic scripts or a
ReportSmith event. Users can also call *.DLL functions, created in other development environments,
that can be used within ReportBasic.

Dynamic Data Exchange (DDE)
See Also
Dynamic data exchange (DDE) is a process by which two applications communicate and exchange
data. One application can be your Basic program. To "talk" to another application and send it data, you
need to open a connection, called a DDE channel, using the statement, DDEInitiate. The application
must already be running before you can open a DDE channel. To start an application, use the Shell
command.
DDEInitiate requires two arguments: the DDE application name and a topic name. The DDE application
name is usually the name of the .EXE file used to start the application, without the .EXE extension. For
example, the DDE name for Microsoft Word is "WINWORD". The topic name is usually a filename to get
or send data to, although there are some reserved DDE topic names, such as System. Refer to the
documentation for the application, to get a list of the available topic names.
After you have opened a channel to an application, you can get text and numbers (DDERequest), send
text and numbers (DDEPoke) or send commands (DDEExecute). When you have finished
communicating with the application, you should close the DDE channel using DDETerminate. Because
you have a limited number of channels available at once (depending on the operating system in use and
the amount of memory you have available), it is a good idea to close a channel as soon as you finish
using it.
The other DDE command available in ReportBasic is DDEAppReturnCode, which you use for error
checking purposes. After getting or sending text, or executing a command, you might want to use
DDEAppReturnCode to make sure the application performed the task as expected. If an error did
occur, your program can notify the user of the error.

See Also
DDEAppReturnCode

DDEInitiate

DDEExecute

DDEPoke

DDERequest

DDETerminate

Using DDE with ReportBasic
ReportSmith, along with ReportBasic, can serve as either a DDE server or client. A developer may want
to build a number of reports with ReportSmith and build DDE commands within the application that calls
ReportSmith or ReportSmith Runtime to print those reports when the user clicks a button or selects a
menu option. This can easily be done from within applications developed with Visual Basic or
PowerBuilder. You can perform DDE executes, pokes and requests and create your own DDE topics
and items.

DataSet Methods Reference
Methods are functions or statements that perform actions on the control.
The following list offers a brief description of each method. To view the syntax, definition and
parameters, and to see returns, comments and specific examples of a method, double-click on it.

Method Description
AddGroup Adds grouping criteria.
AddSort Adds a sorting criteria.
AddSummary Adds a summary field.
AddTable Adds a table.
Connect Replaces previous connection information with new information.
CreateReport Allows a DataSet control with a defined query to create one of four different

report types.
Disconnect Removes a connection previously set with the Connect Method.
Field$ Returns the value of the specified data field for the current method.
GetAllField$ Returns a list of fields available for the specified field in the specified table.
GetColumnAlias Returns the alias for the specified field in the specified table.
GetDataSources Returns a list of all available data sources.
GetFieldList$ Returns a list of fields in the given table.
GetGroup$ Returns a string providing information about grouping.
GetSort$ Returns a string indicating the sorting criteria at the given level.
GetSQL$ Returns the last SQL statement executed for the dataset control object.
GetSummary$ Returns a string providing information about a summary field.
GetTable$ Returns a string describing the table at the specified index.
GetTableAlias$ Returns the alias for the specified table.
GetTableLink$ Returns a string providing information about the table link.
Include Field$ Set the list of fields that should be included in a table.
LinkMacro Links a macro in an active list to the specified object, even and item.
Load Replaces connection information with that specified by the Filename$ parameter.
LoadMacro Allows a macro to be loaded into the active macro list from a .MAC file.
Recalc Execute the SQL for a DataSet.
RemoveGroup Removes a grouping criteria from a report.
RemoveSort Removes the sorting criteria at the given level.
RemoveSummary Removes a summary field from a report.
RemoveTable Removes a table at the specified index.
RemoveTableLink Removes the table link at the specified index from the dataset control object.
ReplaceTable Replaces one table in a report with another.
Save Store the object in a file.
SetColumnAlias Sets or changes the Alias for a column in a table.
SetFromActive Associates the object with the active report.
SetFromLoading Associates the dataset control object with a report being loaded.

SetTableAlias Sets or changes the Alias for a table in a report.
SetTableLink Sets a logical link between two tables that are part of this DataSet.
SetUserSQL Places the dataset control object into user entered SQL mode.
TestSelection$ Returns a string telling how many records would be selected with the current selection

criteria.

AddGroup Method

Syntax
[Object] .AddGroup Table$, DataBase$, Field$, Level, Type, NumRecs
Definition
The AddGroup Method adds grouping criteria at the specified level.

Parameters
Argument Description

Table$, DataBase$, Field$ The Table$, DataBase$ and Field$ serve to identify the field to be
grouped upon.

Level The level argument specifies the grouping level that you want information about.
If an invalid index is specified, a null string will be returned and the error$
property will be set to indicate the error.
The level argument specifies the grouping level that you want information
about where 0 is the entire report group, 1 is the primary grouping criteria, 2 is
the secondary grouping criteria, and so forth.
Valid levels are 1 to 1+ the current number of groups defined.

Type Type specifies the type of grouping:
              0                                    Same value
              1                                    Every n records (n is the NumRecs argument)
              2                                    Daily
              3                                    Monthly
              4                                    Weekly
              5                                    Annually
              6                                    Quarterly
              7                                    Hourly
              8                                    Every minute
              9                                    Every second
              10                                Second/10
              11                                Second/100
              12                                Second/100
Types 2-12 are only valid for date and/or time fields.

NumRecs When grouping by every n records, this specifies how many records per group.

Returns
This function will return a zero on success, a non-zero on error.

Comments
If a group exists at the given level then all groups at that level and higher are adjusted up one level to
accommodate the new group.

Example
'Group by DEPT_ID, break on same value
MyData.AddGroup "dbo.emp","hr", "DEPT_ID",1,0,0

AddSort Method

Syntax
[object].AddSort Table$, Database$, Column$, Ascending, Level
Definition
This AddSort Method adds a sorting criteria to the current dataset at the current level.

Parameters
Argument Description
Table$ The path and file name for local databases. For database servers it takes the

form:
Owner.TableName
Or for Local databases like DBase and Excel, the Table$ parameter is the File
Name of the local database file.

Database$ For local databases or servers that don't require that a database be specified, the
database$ parameter should be set to a null string.

Column$ The field that is being sorted.
Ascending The Ascending argument should be set to zero to sort from largest to smallest,

non-zero to sort from smallest to largest.
Level The level indicates its priority among other sorting criteria for this dataset. Valid

values for this argument are 1 to the number of current sorting criteria +1.

Returns
If an invalid index is specified the function will fail and return an error. This function will return a zero on
success, a non-zero on error.

Comments
Valid levels are 1 to 1+ the current number of sorting criteria.

Example
MyData.AddSort "dbo.emp","hr","DEPT_ID",1,1

AddSummary Method

Syntax
[object].AddSummary Table$, DataBase$, Field$, Level, Type
Definition
The AddSummary Method adds a summary field to the specified grouping level and index.

Parameters
Argument Description

Table$, DataBase$, Field$ These arguments identify the field to be summed.
Level The level argument specifies the grouping level for creating a summary field.

            0  Entire report group.
            1  Primary grouping criteria
            2  Secondary grouping criteria

Type Type specifies the type of summary:
              1  Sum
              2  Daily
              3  Count
              4  Minimum
              5  Maximum
              6  Average
              7  First
              8  Last
              9  Standard Deviation
              10  Variance

Returns
If an invalid index is specified, a null string will be returned and the error$ property will be set to indicate
the error.

Comments
Valid values for levels are zero to the number of groups defined.

Example
MyData.AddSummary"dbo.emo" ,"database" , "SALARY", 1, 1

AddTable Method

Syntax
[object].AddTable Table$, DBase$
Definition
The AddTable Method adds a table to a dataset control object.

Parameters
Argument Description
Table$ The Table$ parameter defines a string of the form: Owner.TableName. (For local

databases like DBase and Excel, the Table$ parameter is the File Name of the
local database file.)

DBase$ The DBase$ parameter is for data servers that require databases. For servers
that don't require a database, it should be set to a NULL string. In 2.0 + this
argument can now take the path to a local database file or both path and
filename can be combined in Table$ as before.

Returns
This function will return a zero on success and a non-zero on error.

Comments
Before you can add a table to a DataSet, you must establish a connection.

Example
'Add the EMP table from the PUBS database with ' the outer dbo
MyDataSet.AddTable "dbo.emp","PUBS"

Commit
Creates a default report based on the query specified in the dataset object. This command is a method
of the dataset object, which represents the data contained in the currently active report. To use the
command, preface it with the name of the dataset object and a period, followed by the command, as
shown in the following syntax example.

Syntax
[object].Commit
Returns
This function returns a 0 on success and a non-zero on error.

Comments

When you associate a dataset object with a report, using the SetFromActive method, changing one
dataset object changes another. The changes to the report appear on the report surface when the report
is reloaded or recalculated (with the report level Recalc command and not the dataset Recalc
command).

However, if you create a default report from a dataset control object using the Commit method, the
changes are not associated with the new report. If you want the changes to be associated with the new
report, simply use the SetFromActive method after the Commit method.

Example
MyData.Commit

Connect Method

Syntax
[object].Connect Type, Server$, UserId$, Pswrd$, DBase$
Definition
The Connect Method replaces any previous connection information in a DataSet control with the
supplied connection information.

Parameters
Argument Description
Type$ The Type parameter can take on the following values:

              0                        Named Connection
              1                        Reserved
              2                        DBASE
              3                        EXCEL
              4                        PARADOX
              5                        ASCII
              6                        SQLSRVR
              7                        ORACLE
              8                        DB2
            10                      SYBASE
            11                      BTRIEVE
            12                      GUPTA
            13                      INGRES
            16                      TERADATA
            17                      DB2/GUPTA
            19                      UNIFY
            40                      DBASE (via ODBC)
            41                      EXCEL (via ODBC)
            42                      PARADOX (via ODBC)
            48                      BTRIEVE (via ODBC)
            55                      Generic ODBC driver (use this for most ODBC connections)
            61                      PARADOX (via IDAPI)
            62                      DBASE (via IDAPI)
            67                      INTERBASE (via IDAPI)

Server$ Name of the data server or local data file name.
UserID$ Name of the user to make the connections that require a user id.
Pswrd$ The user's password.
DBase$ The database name for connections that require a database. (Null for Oracle.)

Returns
The return code for this function should be 0 on success. If it is not zero, then the Error$ property will
contain text that describes the error.

Comments
Note that for Oracle, DBase$ should be set to a Null String.
Using the connect function will clear any previously defined tables or table columns.

Example
MyDataSet.Connect (6,"SQLSRVR", "John_Doe" , "PW", "")

CreateReport Method

Syntax
CreateReport [Type%], [Style], [Crosstabstyle], [DraftModeRecLimit]
Definition
This command allows a DataSet control with a defined query to create one of four different report types:
columnar, crosstab, form, or label. It also takes style information and draft date.

Parameters
The Type% parameter is optional. If this argument is omitted then a columnar report will be created. If
the type parameter is specified one of the following reports will be created.
The Style parameter specifies the report style to be used on a columnar report. You can use either
system (supplied by ReportSmith) or custom report styles, but this parameter entry must exactly match
the style name, including upper- and lower-case characters.
The Crosstabstyle parameter is used only for crosstab reports, and functions in a manner similar to that
of the Style parameter.
DraftModeRecLimit is an integer value that represents the number of records you want ReportSmith to
display when you are using draft mode.

Report Creates
0 A columnar report as the old commit function did.
1 A label report (the insert field dialog will be brought up).
2 A crosstab report (the crosstab dialog will be brought up).
3 A form report (will use default form layout).

Returns
This Function returns 0 if a macro is found and successfully executed.

Disconnect Method

Syntax
[object].Disconnect
Definition
The Disconnect method allows you to remove a connection that was previously set with the Connect
method.

Parameters
Not applicable.

Returns
The function will return error if an active report is using the connection. The return code for this function
should be 0 on success. If it is not zero, then the Error$ property will contain text that describes the
error.

Comments
This function will only execute successfully if there are no other DataSet controls or reports using the
same connection.
Note: This command will return an error if any other report or active DataSet object is using the

connection that this object is trying to disconnect.

Example
The following example shows you how to:

Create a DataSet control
Add a table
Create a report
Print a report
Close a report
Disconnect the connection

In the following example, we are assuming that we have a server called X:ORASRV, a user called SCOTT
with a password of TIGER.
Sub MakeAReport()

Dim NewData as DataSet
NewData.Connect 7, "X:ORASRV","SCOTT","TIGER"," "

`Add a Table (DataBase is NULL for Oracle)
NewData.AddTableSBL "SCOTT.DEPARTMENT"," "

`Create the Report Object
NewData.Commit
PrintReport 0, 0" ", " "

CloseReport 0
NewData.Disconnect
End Sub

Field$ Method

Syntax
[object].Field$(FieldName$)
Definition
The Field$ Method returns the value of the specified data field for the current dataset record. You can
set the current record with the dataset record property.

Parameters
Argument Description
FieldName$ The name of the field to reference data for.

Returns
The Field$ Method returns the value of the specified data field for the current dataset record.

Comments
Before data can be retrieved from a dataset object a connection must be made; links must be set and a
commit or recalc must be successfully performed.

Example
MyData.record = 5
Salary = val(MyData.Field$("SALARY"))

GetAllField$ Method

Syntax
[object].GetAllField$(Table$,DBase$)
Definition
The GetAllField$ Method returns a list of all fields that are available in the given table.

Parameters
Argument Description
Table$ The Table$ parameter is the path and file name for local databases.
DBase$ The database that contains the table for connections that have databases.

Returns
The GetAllField$ Method returns a list of all fields that are available in the given table.

Comments
A connection must first be made and the table added to the dataset before its field list can be retrieved.
For database servers Table$ takes the form:
Owner.TableName

For local databases or servers that don't require that a database be specified, the DBase$ parameter
should be left blank.
See the GetField command to get an individual field out of the list of fields.

Example
AvailableField$=MyData.GetAllField$("dbo.emp", "hr")

GetColumnAlias$ Method

Syntax
[object].GetColumnAlias$(Table$, Database$, Column$)
Definition
The GetColumnAlias$ Method returns the alias for the specified field in the specified table.

Parameters
Argument Description
Table$ The Table$ parameter defines a string of the form:

Owner. TableName
Or, for local databases like DBase and Excel, the Table$ parameter is the File
Name of the local database file.

Database$ The name of the database that contains the table for connections that have
databases.

Column$ The column to set an alias for.

Returns
The GetColumnAlias$ Method returns the alias for the specified field in the specified table.

Comments
For database servers Table$ takes the form:
Owner.TableName

For local databases or servers that don't require that a database be specified, the Database$ parameter
should be set to a null string.

Example
ColumnAlias$=MyData.GetColumnAlias$("dbo.emp", "hr","DEPT_ID")

GetDataSources$ Method

Syntax
[object].GetDataSources
Definition
The GetDataSources$ Method returns a list of all of the datasources available to ReportSmith, including
ODBC Sources, separated by commas.

Parameters
Not applicable.

Returns
The GetDataSources$ Method returns a list of all of the datasources available to ReportSmith.

Comments
None.

Example
DataSourcesAvailable$=MyData.GetDataSources$

GetFieldList$ Method

Syntax
[object].GetFieldList$(Table$,Dbase$)
Definition
The GetFieldList$ Method returns a list of all fields that have been included in the given table.

Parameters
Argument Description
Table$ The Table$ parameter is the path and file name for local databases.
DBase$ The database that contains the table for connections that have databases.

Returns
The GetFieldList$ Method returns a list of all fields that have been included in the given table.

Comments
A connection must first be made and the table added to the dataset before its field list can be retrieved.
For database servers, Table$ takes the form:
Owner.TableName.

For local databases or servers that don't require that a database be specified, the DBase$ parameter
should be left blank.

Example
IncludedField$=MyData.GetFieldList$("dbo.emp", "hr")

GetGroup$ Method

Syntax
[object].GetGroup$(level)
Definition
The GetGroup$ Method returns a string that provides information about grouping at the specified level.

Parameters
Argument Description
level The level argument specifies the grouping level that you want information about

where 0 is the entire report group, 1 is the primary grouping criteria, 2 is the
secondary grouping criteria, and so forth.

Returns
The GetGroup$ Method returns a string that provides information about grouping at the specified level.

Comments
If an invalid index is specified, a null string will be returned and the Error$ property will be set to indicate
the error. Valid values for levels are zero to the number of groups defined.

Example
PrimaryGroup$=MyData.GetGroup(1)

GetSort$ Method

Syntax
[object].GetSort$(Level)
Definition
The GetSort$ Method returns a string that indicates the sorting criteria at the given level if one exists.

Parameters
Argument Description
level The level argument specifies the sorting level that you want information about

where 0 is the entire report, 1 is the primary sorting criterion, 2 is the secondary
sorting criterion, and so forth.

Returns
The GetSort$ Method returns a string that indicates the sorting criteria at the given level if one exists.

Comments
Valid values for the level argument are 1 to the number of current sorting criteria. If an invalid index is
specified, a null string will be returned and the Error$ property will be set to "Invalid Index."

Example
PrimarySort$=MyData.GetSort$(1)

GetSummary$ Method

Syntax
[object].GetSummary$(Level, Index)
Definition
The GetSummary$ Method returns a string that provides information about a summary field at the
specified grouping level and index.

Parameters
Argument Description
level The level argument specifies the grouping level that you want information about

where 0 is the entire report group, 1 is the primary grouping criteria, 2 is the
secondary grouping criteria, and so forth.

Index The Index matches the order in which the tables are originally added.

Returns
If an invalid index is specified a null string will be returned and the error$ property will be set to indicate
the error.

Comments
None.

Example
SecondSummary$=MyData.GetSummary(1,2)

GetSQL$ Method

Syntax
[object].GetSQL$()
Definition
The GetSQL$ Method returns the last SQL statement that was executed for this dataset control object.

Parameters
Not applicable.

Returns
The GetSQL$ Method returns the last SQL statement that was executed for this dataset control object.

Comments
None.

Example
MySQL$=MyData.GetSQL$()

GetTable$ Method

Syntax
[object].GetTable$(Index)
Definition
The GetTable$ Method returns a string that describes the table at the specified index if possible.

Parameters
Argument Description
Index The Index matches the order in which the tables are originally added.

Returns
The GetTable$ Method returns a string that describes the table the specified index if possible.

Comments
If an invalid index is given, this function will return a null string and the Error$ property will be set to an
appropriate error message.

Example
SecondTable$=MyData.GetTable$(2)

GetTableAlias$ Method

Syntax
[object].GetTableAlias$(Table$, DBase$)
Definition
The GetTableAlias$ Method returns the alias for the specified table.

Parameters
Argument Description
Table$ The Table$ parameter is the path and file name for local databases.
DBase$ The database that contains the table for connections that have databases.

Returns
The GetTableAlias$ Method returns the alias for the specified table.

Comments
For local databases or servers that don't require that a databases be specified, the Database parameter
should be set to a null string.

Example
TableAlias$=MyData.GetTableAlias$("dbo.emp","hr")

GetTableLink$

Syntax
[object].GetTableLink$(Index)
Definition
The GetTableLink$ Method returns a string that provides information about the table link at the given
index if one exists.

Parameters
Argument Description
Index The index of the link to retrieve information for.

Returns
The GetTableLink$ Method returns a string that provides information about the table link at the given
index if one exists.

Comments
If an invalid index is specified, a null string will be returned and the Error$ property will be set to indicate
the error.

Example
SecondTableLink$ = MyData.GetTableLink(2)

IncludeFields$ Method

Syntax
[object].IncludeFields$,Table$, DBase$, IncludeList$
Definition
The IncludeFields$ Method adds columns from a table to your dataset.

Parameters
Argument Description
Table$ The Table$ parameter defines a string of the form:

Owner. TableName
Or, for local databases like DBase and Excel, the Table$ parameter is the File
Name of the local database file.

DBase$ The database that contains the table for connections that have databases.
IncludeList$ A list of fields in a table to include as part of a table.

Returns
Not applicable.

Comments
The field list should be one string with the names of the fields to be included separated by commas. The
names should be provided exactly as they appear in our dialog boxes. It is case sensitive.

Example
MyData.IncludeField$ "dbo.emp","Pubs","First_Name,
Last_Name, Dept, Emp_Id"

LinkMacro Method

Syntax
[dataset].LinkMacro (MacroName$, Object% ,Event%, [Item$], [IgnoreDialog%])
Definition
The LinkMacro Method links a macro in an active list to the specified Object, Event, and Item. If you are
linking to an Application event then the macro must be in the list of active global macros. Otherwise, it
must appear in the list of macros for the report that the Dataset object is associated with.

Parameters
Argument Parameters
MacroName$ The MacroName$ parameter defines the name of a macro in the list of active

macros for which you want to define a link.
Object% A number that specifies the object to link the macro to.
Event % A number that specifies the event to link the macro to.
IgnoreDialog% If IgnoreDialog% is specified and is non-zero then the macro dialog will not be

updated by this method.
Item$ If you are linking to the keystroke event, Item$ must be a string that specifies a

link to a keystroke.
valid strings are “F1”- “F12” for function keys , “[CTRL] A”- “[CTRL] Z” or
“[SHIFT] [CTRL] A” “[SHIFT] [CTRL] Z” as support for other events are added
this string might represent a datafield, group header or footer name, or a menu
item. At this time all events other than the keystroke events expect the Item$
argument to be omitted or set to a NULL string.

Returns
Non-zero on error.

Argument Description
Object% Event%
0    - APPLICATION

0 - Keystroke
1 - Before New Report
2 - After New Report
3 - Application Startup
4 - Before Executing SQL
5 - Before Report Print
6 - Before Report Load
7 - After Report Load
8 - Before Report Save
9 - After Report Save
10 - Before Application Close
11 - On SQL Execution Error
12 - New File Icon Click
13 - SQL Icon Click
14 - After Report Connects

15 - Before Report Close
16 - After Report Close

1    - REPORT
0 - Keystroke
1 - Before Report Open
2 - After Report Open
3 - Before SqL Execution
4 - Before Print
5 - Before Report Save
6 - Before Report Close
7 - Not Used
8 - On SQL Error

Note: Some link Objects and events are not available using this command. This command currently
does not support the DataField, Header, or Footer Objects or the MenuItem Event. Under certain
circumstances, some function keys are trapped before the macro links can be executed. The F1
and F12 keys will fail to execute macros linked to them.

Example
ds.LinkMacro “ReportLoader”, 0,0,”[CTRL] L” ‘ links a macro called
“ReportLoader” the CTRL+L keystroke

Load Method

Syntax
[object].Load Filename$
Definition
The Load Method replaces any previous connection information in a DataSet control with information
from the file that is specified by the Filename$ parameter. Note that the file must have been created with
the save method and can have any extension.

Parameters
Argument Description
Filename$ The name of a file that the data set control object should be read from.

Returns
The return code for this function should be 0 on success. If it is not zero, then the Error$ property will
contain text that describes the error.

Comments
Note that the file must have been created with the Save method and can have any extension.

Example
MyData.Load("c:\RPTSMITH\MyData.DSC)

LoadMacro Method

Syntax
[dataset].LoadMacro (FileName$,[MacroType%], [IgnoreDialog%])
Definition
The LoadMacro command allows you to load a macro into the active macro list from a .MAC file. If only
the filename parameter is provided then the macro will be loaded into the dataset controls macro
collection. This means that if you have associated your dataset control with a report using the
SetFromActive command, then this method will load the macro into that report’s macro collection
regardless of weather it is the active report or not. If the MacroType argument is specified, and if it is 1,
then the macro will be loaded as a global macro. If the Macro Commands dialog box is up then the
macro will be loaded into the dialog box as if the load button were used. If the IgnoreDialog parameter is
specified, and if it is non-zero, then the modification will be made to the control object and the dialog will
not be updated.
Note: If the dialog box is editing the same list of macros that the dataset control is associated with then

the macro loaded may be unloaded when the Macro Commands dialog box is closed if the
IgnoreDialog parameter is non-zero.

Parameters
Argument Description
FileName$ Name of the macro file to load. If the extension is omitted then the default

extension of .MAC will be used.
MacroType% Specifies the what collection the macro will be loaded into. If the parameter is 0

or not specified the macro will be loaded into the currently active report. If no
report is loaded then the macro will be loaded as a global. If the parameter is 1
then the macro will be loaded as a global only.

IgnoreDialog% If this parameter is specified and is non-zero then the macro dialog will not be
updated by this method. Error codes are:
1 Invalid File Name
2 A macro with the same name is already in the active list and must be
removed before this macro may be loaded

Recalc Method

Syntax
[object].Recalc
Definition
The Recalc Method re-executes the SQL for this DataSet Control Object.

Parameters
Not applicable.

Returns
Not applicable.

Comments
Because this command is associated with a dataset control, any changes to the result will not be
reflected in associated reports until a report level recalc is performed. This command is generally used
with dataset control functions as stand alone queries that do not have associated reports.

Example
MyData.Recalc.

RemoveGroup Method

Syntax
[object].RemoveGroup level
Definition
The RemoveGroup Method removes a grouping criteria from a report.

Parameters
Argument Description
level The level argument specifies the grouping level that you want to remove where 0

is the entire report group. 1 is the primary grouping criteria, and so forth.

Returns
This function will return a zero on success, a non-zero on error.

Comments
If an invalid index is specified, a null string will be returned and the Error$ property will be set to indicate
the error.

Example
MyData.RemoveGroup 1

RemoveSort Method

Syntax
[object].RemoveSort Level
Definition
The RemoveSort Method removes the sorting criteria at the given level if one exists.

Parameters
Argument Description
level The level argument specifies the grouping level that you want to remove where 0

is the entire report group, 1 is the primary grouping criteria, 2 is the secondary
grouping criteria, and so forth.

Returns
If an invalid index is specified the function will return non-zero. This function will return a zero on
success, a non-zero on error.

Comments
Valid values for the level argument are 1 to the number of current sorting criteria.

Example
MyData.RemoveSort 1

RemoveSummary Method

Syntax
[object].RemoveSummary level, Index
Definition
The RemoveSummary Method returns a summary field from a report.

Parameters
Argument Description
level The level argument specifies the grouping level that you want information about

where 0 is the entire report group, 1 is the primary grouping criteria, 2 is the
secondary grouping criteria, and so forth.

index The Index matches the order in which the tables were originally added.

Returns
If an invalid index is specified a null string will be returned and the Error$ property will be set to indicate
the error.

Comments
None.

Example
MyData.RemoveSummary 1, 2

RemoveTable Method

Syntax
[object].RemoveTable Index
Definition
The RemoveTable Method removes the table at the specified index if possible.

Parameters
Argument Description
Index The Index matches the order in which the tables were originally added.

Returns
This function will return a zero on success, a non-zero on error.

Comments
The table at any given index can be determined using the GetTable function.

Example
MyData.RemoveTable 2

RemoveTableLink Method

Syntax
[object].RemoveTableLink level, Index
Definition
The RemoveTableLink Method removes the table link at the specified index from the dataset control
object.

Parameters
Argument Description
level The level argument specifies the grouping level that the summary is operating on

where 0 is the entire report group, 1 is the primary grouping criteria, 2 is the
secondary grouping criteria, and so forth.

Index The index of the link to retrieve information for.

Returns
Not applicable.

Comments
If an invalid index is specified, a null string will be returned and the Error$ property will be set to indicate
the error.

Example
MyData.RemoveTableLink 1, 2

ReplaceTable Method

Syntax
[object].ReplaceTable (Table$, Database$, NewTable$, NewDataBase$)
Definition
The ReplaceTable Method replaces one table in a report with another.

Parameters
Argument Description
Table$ The Table$ parameter is the path and file name for local databases.
Database$ The database that contains the old table.
NewTable$ The name of the replacement table.
NewDataBase$ The database that contains the replacement table.

Returns
This function will return a zero on success, a non-zero on error.

Comments
Any fields that don't have a direct match in the old table will be excluded from the report and those fields
on the report surface should be removed or show #ref.
For database servers this method takes the form:
OWNER.TABLENAME
For local databases or servers that don't require that a database be specified, the Database parameter
should be set to a null string.
Important: Database and table names must be entered entirely in upper-case characters.

Example
MyData.ReplaceTable "DBO.EMP","HR","DBO.EMP2", "NEW_HR"

Save Method

Syntax
[object].Save Filename$
Definition
The Save Method replaces any previous connection information in a DataSet control with information
from the file that is specified by the Filename$ parameter.

Parameters
Argument Description
Filename$ The file to save to.

Returns
The return code for this function should be 0 on success. If it is not zero, then the Error$ property will
contain text that describes the error.

Comments
None.

Example
MyData.Save "c:\MyData.Dat"

SetColumnAlias Method

Syntax
[object].SetColumnAlias Table$, Database$, Column$
Definition
The SetColumnAlias Method sets or changes the Alias for a column in a report's table.

Parameters
Argument Description
Table$ Path and file name for local databases.
Database$ Name of the database that contains the table
Column$ Name of the field to set an alias for.
Alias$ The new alias for the field.

Returns
This function will return a zero on success, a non-zero on error.

Comments
For database servers the Table$ parameter takes the form:
Owner.TableName
For local databases or servers that don't require that a database be specified the Database$ parameter
should be a set to a null string.

Example
MyData.SetColumnAlias"dbo.emp", "hr", "DEPT_ID", "Departments"

SetFromActive Method

Syntax
[object].SetFromActive
Definition
The SetFromActive Method replaces any previous connection information in a DataSet control with a
reference to the data description for the currently active report. When this command is used with the
NewReportDialog Control, it is associated with the report and not the query of the report.

Parameters
Not applicable

Returns
Not applicable.

Comments
The SetFromActive Method can be useful to change a currently active report. It can also be used to
save DataSet information for a report which could later be reloaded, changed and used to create other
reports.

Example
The following example uses the SetFromActive Method along with the Selection$ property to change the
selection criteria for the active report.
Sub ChangeActiveSelection()
`Create a DataSet named DS
dim DS as DataSet
DS.SetFromActive
DS.Selection$ = " Department = `Accounting' "
`Cause the report to update to reflect the change
Recalc

End Sub

SetFromLoading Method

Syntax
[object].SetFromLoading
Definition
The SetFromLoading Method associates the dataset control object with a report that is being loaded
(before the SQL is executed for this report).

Parameters
Not applicable.

Returns
This function will return a zero on success, a non-zero on error.

Comments
This function is only valid when used in the Before Opening the Report event.

Example
MyData.SetFromLoading

SetTableAlias Method

Syntax
[object].SetTableAlias Table$, Database$, Alias$
Definition
The SetTableAlias Method sets or changes the Alias for a table in a report.

Parameters
Argument Description
Table$ Path and file name for local databases.
Database$ Name of the database that contains the table.
Alias$ The new alias for the table.

Returns
This function will return a zero on success, a non-zero on error.

Comments
For database servers the Table$ parameter takes the form:
Owner.TableName
For local databases or servers that don't require that a database be specified the Database parameter
should be set to a NULL string.

Example
MyData.SetTableAlias "dbo.emp", "hr", "Employees"

SetTableLink Method

Syntax
[object].SetTableLink
Table1$,DBase1$,Field1$,Table2$,DBase2$,Field2$,Operation, JoinType

Definition
The SetTable Link Method defines a link between two tables.

Parameters
Argument Description
Table1$ The first table to link.
DBase1$ The database that contains Table 1.
Field1$ The field to link on.
Table2$ The second table to link.
DBase2$ The database that contains Table2.
Field2$ The field to link on.
Operation The relation between the linked fields.

                0  Field 1 = Field 2
                1  Field 1 < Field 2
                2  Field 1 <= Field 2
                3  Field 1> Field 2
                4  Field 1>= Field 2

JoinType The type of link.
            0  Inner Join
            1  Left Outer Join
            2  Right Outer Join
            3  Full Outer Join

Returns
Not applicable.

Comments
Before a table link can be defined both tables must be added to the DataSet control using the
AddTableSBL function.

Example
This example links the emp table to the dept table by the department id excluding all unmatched
records.
`The following needs to be one line in Basic"
SetTableLink "dbo.emp","Indigo","Dept_Id","dbo.dept","Indigo","Dept_Id",0,0

SetUserSQL Method

Syntax
[object].SetUserSQL$
Definition
The SetUserSQL Method places the DataSet control object into user entered SQL mode with the
provided SQL.

Parameters
Argument Description
SQL$ The complete SQL string to be used for this dataset's query.

Returns
This function will return a zero on success, a non-zero on error.

Comments
You must have a connection to the appropriate server (or local database that matches the SQL you
generate in order for the SetUserSQL Method to work properly.

Example
MyData.SetUserSQL"SELECT dbo.emp.First_Name,
dbo.emp.Last_Name FROM dbo.emp"

TestSelection$ Method

Syntax
[object].TestSelection$
Definition
The TestSelection$ Method returns a string that tells how many records would be selected or else an
error message about the selection criteria.

Parameters
Not applicable.

Returns
Not applicable.

Comments
In order to set and test a selection criteria, you must have a connection and at least one table.

Example
MyData.Selection$="Salary>40000"
Msgbox MyData.Test Selection$0

DataSet Properties Reference
Properties are variables that belong to an object. You can access these variables in the same way as
you access object methods, using the object name followed by the property name. Some properties are
read-only while others can be both read and written.
Some ways that a property may be used:
Use it as a function msgbox MyData.name$
Use it as an expressiontotal_recs=data1.recordcount+data2.recordcount
Assign values to it MyData Name$="My Name"
The following list briefly describes the function of each property. To see the syntax, definition, comments
and examples of a property, double-click on it.

Property Description
AllDataBases$ Returns all the databases available under the current connection.
AllOwners$ Returns all owners available under the current connection.
AllTables Returns a list of all owners for connections that have owners.
DataBases$ Returns the current database for the current connection.
Error$ Contains a string describing the error that occurred in the last dataset control

method executed.
Id Property Used to store an integer value.
Name$ Returns the current name for the current situation.
Owner$ Returns the current owner for the current situation.
Record Returns the current record in the dataset.
RecordCount Returns the total number of records in the dataset.
Selection$ Can be used to get or set the selection criteria for a dataset control object.
Tables Returns a list of tables included in a report.

AllDataBases$ Property

Syntax
[object].AllDataBases$
Definition
The AllDataBases$ Property returns all the databases available under the current connection, separated
by commas.

Comments
A connection must be made before the list of all databases can be retrieved from a dataset object.

Example
ListofDataBases$=AllDataBases$

AllOwners$ Property

Syntax
[object].AllOwners$
Definition
The AllOwners$ Property returns all owners available under the current connection, separated by
commas.

Comments
Before the list of all owners can be retrieved from a dataset object, a connection must be made.

Example
OwnerList$ = MyData.AllOwners$

AllTables$ Property

Syntax
[object].Selection$ [=stringexpression]
Definition
The AllTable$ Property returns a list of all tables, separated by commas, for a connection.

Comments
The Table in the String is separated by commas and access to individual tables can be achieved by
using the GetField command.

Example
Msgbox " All Tables: " + MyData.AllTables$

Databases$ Property

Syntax
[object].Database$
Definition
Database$ Property returns the current database for the current connection.

Comments
Before a current Database can be retrieved from a dataset object, a connection that has Databases
must be made.

Example
CurrentDatabase$=MyData.DataBase$

Error$ Property

Syntax
[object].Selection$ [=stringexpression]
Definition
The Error$ Property contains a string that describes the error that occurred in the last dataset control
method executed. This command may also be associated with the Report and NewReportDialog
controls.

Comments
Use MyData.PS or any other DataSet name but be consistent.

Example
X=DS.ADDTABLESBL("INVALID.TABLE","BOGUS")
If x<>0 then msgbox DS.ERROR$
End If

Id Property

Syntax
[object].Id [=integerexpression]
Definition
A property that can be used to store an integer value. This command is valid with the DataSet, Report
and NewReportDialog controls.

Comments
The Id Property function might be used to keep track of some information related to the DataSet, Report
or NewReportDialog controls. As with the Name$ property this value has no meaning to ReportBasic
and it is completely up to the Basic programmer how it is to be used. Read/write at run time.

Example
MyData.Id=127

Name$ Property

Syntax
[object].Name$ [=stringexpression]
Definition
The Name$ Property returns the current name for the current situation. This command is valid for the
DataSet, Report and NewReportDialog controls.

Comments
Read/Write at run time.

Example
MyData.Name$="Susan's Data"

Owner$

Syntax
[object].Owner$
Definition
The Owner$ Property returns the current owner for the current situation.

Comments
Before the current owner can be retrieved from a dataset object, a connection that has owners must be
made.

Example
CurrentOwner$=MyData.Owner$

Record Property

Syntax
[object].Record
Definition
The Record Property returns the current record in the dataset.

Comments
Before the number of records can be removed from a dataset object a connection must be made, links
must be set and a commit or recalc must be successfully performed.

Example
If MyData.Record = 1 then MsgBox "We are at the beginning"

RecordCount

Syntax
[object].RecordCount()
Definition
The RecordCount Property returns the total number of records in the dataset.

Comments
Before the number of records can be retrieved from a dataset object a connection must be made, links
must be set and a commit or recalc must be successfully performed.

Example
TotalRecords=MyData.RecordCount()

Selection$ Property

Syntax
[object].Selection$ [=stringexpression]
Definition
The Selection$ Property can be used to get or set the selection criteria for a DataSet Control Object.

Comments
A table must be added to the Data Set before the selection criteria may be written or read. A change in
Selection$ will not change the data until a commit method or a recalc command is executed. Read/write
at run time.
You can get the individual tables from the list by using the GetField$ Function.

Example
MyData.Selection$="Salary>40000"

Tables Property

Syntax
[object].Table$
Definition
The Table$ Property returns a list of tables included in a report separated by commas.

Comments
By using the GetField$ Function you can get the individual tables from the list.

Example
SecondTable$=GetField$(MyData.DataBase$, 2,",")

NewReportDialog Control Object
The NewReportDialog Control object is a ReportBasic object that allows you to bring up the
ReportSmith Create A New Report dialog box and pass the information it gathers to the ReportBasic
macro language. The Create Report Command will take this information and use it in creating new
reports.
You can create these objects in the same way that you create a DataSet control object.
‘ Local scope
Dim MyDialog as NewReportDialog
‘ Global Scope
Global MyDialog as NewReportDialog
MyDialog.RunDialog
SelectedStyle$ = MyDialog.Style $
TheType = MyDialog.ReportType
The following macro example shows you what information the object returns to BASIC in response to
the dialog that appears.
Sub Test_New_Object()

‘ Create a Dialog Control Object
dim MyDialog as NewReportdialog
MyDialog.rundialog
‘View information in the message boxes
msgbox MyDialog.error,0,"Error"
msgbox str$(MyDialog.ReportType),0,"ReportType"
msgbox MyDialog.style,0,"Style"
msgbox MyDialog.crosstabstyle,0,"Crosstab Style"
msgbox str$(MyDialog.DraftMode),0,"DraftMode"
msgbox str$(MyDialog.ReturnCode),0,"ReportType"

End Sub

NewReportDialog Methods
Methods are functions or statements that perform actions on the control.
RunDialog.

Run Dialog Method

Syntax
[object].RunDialog
Definition
This command executes the Create A New Report dialog box. (Not necessary if this appears in a
different color.)

Returns
This method returns 0 on success. Non-zero means that there was a problem displaying the dialog box.
This value should not be confused with the return code property which indicates how the end user
closed the dialog box.

Example
dim MyDialog as NewReportdialog
‘ Run The dialog
MyDialog.rundialog

NewReportDialog Properties
You can access the properties of a control by using the name of the control, followed by a period and the
name of the property. Properties are variables that belong to an object. You can access these variables
in the same way as you access object methods by using the object name followed by the property
name. You use this just like any other variable. Some properties are read-only while others can be both
read and written.

Properties Description
Name$ A string that can be used to hold a name for this object.
Id Property An integer that can be used to hold an ID for this object.
Error$ A string that indicates the last error generated by this object. This property is read

only.
ReportType Indicates the type of report selected. This property is read only.
Style$ The style name selected. May be a NULL string. This property is read only.
CrosstabStyle$ A string that holds the last crosstab style name selected. This property is read

only.
DraftMode A flag. If it is non-zero it indicates that the used checked the Draft Mode check-

box.
ReturnCode Indicates if the user selected OK or Cancel to exit the dialog. This property is

read only.

ReportType Property

Syntax
[object].ReportType
Definition
Indicates the type of report selected. This property is read only.

Returns
ReportType.

Number Type
0 columnar
1 label
2 crosstab
3 form

Example
Sub GetRepDatType()
dim MyDialog as NewReportdialog
MyDialog.rundialog
MsgBox Str(MyDialog.ReportType)
End Sub

Style$ Property

Syntax
[object].Style$
Definition
A string that holds the last report style name selected.

Returns
Returns the last selected style name chosen in the New Report dialog box.

Example
Sub GetTypeandStyle()
dim MyDialog as newReportDialog
xx.rundialog
MsgBox Str(MyDialog.ReportType)+ Chr$(13) + MyDialog.Style$
End Sub

CrosstabStyle$ Property

Syntax
[object].CrosstabStyle$
Definition
A string that holds the last crosstab style name selected. This property is read only.

Returns
Returns the last selected crosstab style name selected in the New Report Style dialog box.

Example
Sub GetTabStyle()
dim MyDialog as newReportDialog
MyDialog.rundialog
MsgBox Str(MyDialog.ReportType)+ Chr$(13) + MyDialog.CrosstabStyle$
End Sub

DraftMode Property

Syntax
[object].DraftMode
Definition
A flag. If it is non-zero it indicates that the used checked the Draft Mode check-box.

Returns
Returns a non-zero value if the Draft Mode button was checked.

Example
Sub IsDraftMode()
dim MyDialog as newReportDialog
xx.rundialog
MsgBox Str(MyDialog.ReportType)+ Chr$(13) + MyDialog.DraftMode
End Sub

ReturnCode Property

Syntax
[object].ReturnCode
Definition
Indicates if the user selected OK or Cancel to exit the Dialog. This property is read only.

Returns
ReturnCode.

Number Meaning
1 User Exited with OK
2 User Exited with Cancel

Example
Sub GetReturnCode()
dim MyDialog as newReportDialog
MyDialog.rundialog
MsgBox Str(MyDialog.ReportType)+ Chr$(13) + MyDialog.ReturnCode$
End Sub

Report Control Object
The Report Control object is used to control reports in the same manner that the DataSet Control object
is used to control a query. At this time the Report Control has only a limited number of methods and
properties.
Create a report control object in the same manner as a dataset control.
Sub ReportControlEx()
 ' Create a Report Control object with local scope
 dim MyReport as Report

 ' Associates the ReportObject we created with the active report
 MyReport.SetFromActive

 ' Get information about the report an put it into strings
 ActivePage$ = Str$(MyReport.Page)
 NumberOfPages$ = str$(MyReport.TotalPages)

 ' Use the object to return information about the Report
 Msgbox "You're on pg" + ActivePage$+ "In rpt with "+ NOP$ + " pages"

End Sub

Report Control Properties Reference
Properties Description
Name$ A string that identifies this object. Null by default.
Id A number that identifies the object. Null by default.
Page Gets or changes the current page of the report.
TotalPages Returns the total number of pages in the report (read only).
Error$ Last error returned by a method of this object.

Page Property

Syntax
[object].Page
Definition
Gets or sets the current report page.

Returns
Not applicable.

Example
Sub GetPageInfo()
dim MyReport as Report
MyReport.SetFromActive
ActivePage$ = Str$(MyReport.Page)
NumberOfPages$ = str$(MyReport.TotalPages)
End Sub

Report Control Methods Reference
Methods are functions or statements that perform actions on the control.

Methods Description
Recalc Identical to the general Recalc Command but only affects the associated Report.
SetFromActive Associates a Report Control Object with the currently active report.

Abs function
Syntax Abs(numeric-expression)
Returns The Abs function returns the absolute value of the specified numeric expression.

The return type matches the type of the numeric expression.    This includes variant
expressions which will return a result of the same vartype as input except vartype 8
(string) will be returned as vartype 5 (double) and vartype 0 (empty) will be returned as
vartype 3 (long).

AppActivate statement
Syntax AppActivate string-expression

Comments AppActivate statement is used to activate an application window.    String-expression is
the name in the title-bar of application window to activate.    String-expression must match
the name of the window character for character, but comparison is not case-sensitive.    If
there is more than one window with name matching string-expression, a window is
chosen by random.   
AppActivate changes the focus of the specified window but does not use change
whether the window is minimized or maximized. AppActivate can be used together with
SendKeys statement to send keys to another application.

Asc function
Syntax Asc(string-expression$)
Returns The Asc function returns an integer corresponding to the ANSI code of the first character

in the specified string.    See Chr$.

Assert statement
Syntax Assert condition

Comment The Assert statement triggers an error if the condition is FALSE.    An assertion error
cannot be trapped by the ON ERROR statement.
The Assert statement is intended to help ensure that a procedure is performing in the
expected manner.

Atn function
Syntax Atn(numeric-expression)
Returns The Atn function returns the angle (in radians) corresponding to the arc tangent of the

specified numeric expression.   

Comment The return value is single-precision for an integer, currency, or single-precision numeric
expression, double precision for a long, variant or double-precision numeric expression.

Beep statement
Syntax Beep
Comment The Beep statement produces a single short beeping tone through the computer speaker.

Begin Dialog ... End Dialog statement
Syntax Begin Dialog dialogName [x, y,] dx, dy

' dialog box definition statements
End Dialog

Comments The Begin Dialog statement is used to start the dialog-box declaration for a user-defined
dialog box.   
The x and y arguments give the coordinates that position the dialog box.    These
coordinates designate the position of the upper left corner of the dialog box, relative to
the upper left corner of the client area of the parent window.    The x argument is
measured in units that are 1/4 the average width of the system font.    The y argument is
measured in units 1/8 the height of the system font.    (E.g., to position a dialog box 20
characters in, and 15 characters down from the upper left hand corner, enter 80, 120 as
the x, y coordinates.)    If these arguments are omitted, the dialog box is centered in the
client area of the parent window.
The dx and dy arguments specify the width and height of the dialog box (relative to the x
and y coordinates).    The dx argument is measured in 1/4 system-font character-width
units.    The dy argument is measured in 1/8 system-font character-width units.    (I.e., to
create a dialog box 80 characters wide, and 15 characters in height,    enter 320, 120 as
the dx, dy coordinates.)
The Begin Dialog statement assumes that if only two arguments are given, they are the
dx (width) and dy (height) arguments.   
Unless the Begin Dialog statement is followed by at least one other dialog-box definition
statement and the End Dialog statement, an error will result.    The other definition
statement must include an OkButton, CancelButton or Button statement.    If this
statement is left out, there will be no way to close the dialog box, and the procedure will
be unable to continue executing.
To display the dialog box, you create a dialog record variable with the Dim statement, and
then display the dialog box using the Dialog statement. In the Dim statement,
dialogName is used to identify the dialog definition.

Button statement
Syntax Button x, y, dx, dy, text$

Comments The Button statement is used to define a custom push button.    (This allows the use of
push buttons other than OK and CANCEL.)    It is used in conjunction with the
ButtonGroup statement.
The Button statement    can only be used between a Begin Dialog and an End Dialog
statement.
The x and y arguments set the position of the button relative to the upper left corner of
the dialog box.    Dx and dy set the width and height of the button.    A dy value of 14
typically accommodates text in the system font.
The text$ field contains a message that will be contained in the push button.    If the width
of this string is greater than dx, trailing characters will be truncated.   

ButtonGroup statement
Syntax ButtonGroup    .field

Comments The ButtonGroup statement begins definition of the buttons when custom buttons are to
be used.    ButtonGroup establishes the dialog-record field that will contain the user's
selection.    If ButtonGroup is used, it must appear before any Button statement which
creates a pushbutton.    Only one ButtonGroup statement is allowed within a dialog box
definition.
The ButtonGroup statement    can only be used between a Begin Dialog and an End
Dialog statement.

Call statement
Syntax A Call subprogram-name [(argumentlist)]
Syntax B subprogram-name    argumentlist

Syntax C Call app-dialog (recordName)
Syntax D App-dialog { recordName | dotList }

Comments The Call statement is used to transfer control to a subprogram procedure or application-
defined dialog box.    The Call statement can be used to call a subprogram written in
BASIC or to call C procedures in a DLL.    These C procedures must be described in a
Declare statement or be implicit in the application.
The arguments to the subprogram must match the parameters as specified in the
definition of the subprogram.    The arguments may be either variables or expressions.   
Arguments are passed by reference to procedures written in BASIC.    If you pass a
variable to a procedure which modifies its corresponding formal parameter, and you do
not wish to have your variable modified, enclose the variable in parentheses in the Call
statement.    This will tell BASIC to pass a copy of the variable.    Note that this will be less
efficient, and should not be done unless necessary.
When a variable is passed to a procedure which expects its argument by reference, the
variable must match the exact type of the formal parameter of the function.    (This
restriction does not apply to expressions or variants.)
Similarly to subprogram invocation, functions associated with application-defined dialog
boxes can be invoked using Call syntaxes listed as C and D above.    In Syntax C, the
name inside the parentheses must be a variable previously Dim'ed as an application-
defined dialog record.    In Syntax D, the dialog box name can be followed by either a
dialog record variable or a comma-separated list of dialog box fields settings, e.g.:
SearchFind .SearchFor="abc", .Forward=1
When calling an external DLL procedure, arguments can be passed by value rather than
by reference.    This is specified either in the Declare statement, the Call itself, or both,
using the ByVal keyword.      If ByVal is specified in the declaration, then the ByVal
keyword is optional in the call; if present, it must precede the value.    If ByVal was not
specified in the declaration, it is illegal in the call unless the datatype specified in the
declaration was Any.    Specifying ByVal causes the parameter's value to be placed on
the stack, rather than a far reference to it.

CancelButton statement
Syntax CancelButton x, y, dx, dy

Comments The CancelButton statement determines the position and size of a cancel button.
The CancelButton statement can only be used between a Begin Dialog and an End
Dialog statement.
The x and y arguments set the position of the cancel button relative to the upper left
corner of the dialog box.    Dx and dy set the width and height of the button.    A dy value
of 14 can usually accommodate text in the system font.   
If the CancelButton is pushed at runtime, the dialog box will be removed from the screen
and an Error 102 will be triggered.

Caption statement
Syntax Caption text$

Comments The Caption statement defines the text to be used as the title of a dialog-box.
The Caption statement can only be used between a Begin Dialog and an End Dialog
statement.
If no Caption statement is specified for the dialog box, a default caption will be used.

CCur function
Syntax CCur(expression)
Returns The CCur function converts the value of expression to a currency.

Comments CCur accepts any type of expression.    Numbers that do not fit in a currency will result in
an "Overflow" error.    Strings that cannot be converted to a currency will result in a "Type
Mismatch" error.    Variants containing nulls will result in an "Illegal Use of Null" error.
To convert a value to a different data type, see CDbl, CInt, CLng, CSng, CStr, CVDate
and CVar.

CDbl function
Syntax CDbl(expression)
Returns The CDbl function converts an expression to a double-precision floating point.

Comments CDbl accepts any type of expression.    Strings that cannot be converted to a currency will
result in a "Type Mismatch" error.    Variants containing nulls will result in an "Illegal Use of
Null" error.
To convert a expression to a different data type, see CCur, CInt, CLng, CSng, CStr,
CVDate and CVar.

ChDir statement
Syntax ChDir pathname$

Comments The ChDir statement changes the default directory for the specified drive.    It does not
change the default drive.    (To change the default drive, use ChDrive.)
Pathname$ is a string expression identifying the new default directory.    The syntax for
pathname$ is:
[drive:] [\] directory [\directory]
The drive argument is optional.    If omitted, ChDir changes the default directory on the
current drive.

ChDrive statement
Syntax ChDrive drivename$

Comments The ChDrive statement changes the default drive.
Drivename$ is a string expression designating the new default drive.    This drive must
exist, and must be within the range specified in the CONFIG.SYS file.    If a null argument
(" ") is supplied, the default drive remains the same.    If the drivename$ argument is a
string, ChDrive uses the first letter only.    If the argument is omitted, an error message is
produced.    (To change the current directory on a drive, use ChDir.)

CheckBox statement
Syntax CheckBox x, y, dx, dy, text$, .field

Comments The CheckBox statement can only be used between a Begin Dialog and an End Dialog
statement.
The x and y arguments give the coordinates that position the check box.    These
coordinates designate the position of the upper left corner of the check box, relative to the
upper left corner of the dialog box.    The x argument is measured in 1/4 system-font
character-width units.    The y argument is measured in 1/8 system-font character-height
units. (See Begin Dialog.)
The dx argument is the combined width of the check box and the text$ field. Because
proportional spacing is used, the width will vary with the characters used. To approximate
the width, multiply the number of characters in the text$ field (including blanks and
punctuation) by 4 and add 12 for the checkbox.   
The dy argument is the height of the text$ field.    A dy value of 12 is standard, and should
cover typical default fonts.    If larger fonts are used, the value should be increased.    As
the dy number grows, the checkbox and the accompanying text will move downward
within the dialog box.
The text$ field contains the title shown to the right of the check box.    If the width of this
string is greater than dx, trailing characters will be truncated.    If you wish to include
underlined characters so that the check box selection can be made from the keyboard,
the character must be preceded with an ampersand (&).
The .field argument is the name of the dialog-record field that will hold the current check
box setting.    If its value is 0, the box is unchecked; if its value is -1 the box will be gray; if
its value is 1, the box will be checked.    SBL will treat any other value of .field the same
as a 1.

Chr$ function
Syntax Chr[$](numeric expression)
Returns The Chr$ function returns the one-character string corresponding to an ANSI code.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments Numeric expression must evaluate to an integer between 0 and 255.
See Asc.

CInt function
Syntax CInt(expression)
Returns The CInt function converts the value of expression to an integer by rounding.

Comments CInt accepts any type of expression.    After rounding, the resulting number must be
within the range of -32767 to 32767, or an error will occur.
Strings that cannot be converted to an integer will result in a "Type Mismatch" error.   
Variants containing nulls will result in an "Illegal Use of Null" error.
To convert a value to a different data type, see CCur, CDbl, CLng, CSng, CStr, CVDate
and CVar.

CLng function
Syntax CLng(expression)
Returns The CLng function converts the value of expression to a long by rounding.

Comments CLng accepts any type of expression.    After rounding, the resulting number must be
within the range of    -2,147,483,648 to 2,147,483,647, or an error will occur.
Strings that cannot be converted to a long will result in a "Type Mismatch" error.    Variants
containing nulls will result in an "Illegal Use of Null" error.
To convert a value to a different data type, see CCur, CDbl, CInt, CSng, CStr, CVDate
and CVar.

Close statement
Syntax Close [[#] filenumber% [, [#] filenumber% ...]]

Comments The Close statement closes a file, concluding input/output to that file.
Filenumber% is an integer expression identifying the file to close.    It is the number used
in the Open statement for the file.    If this argument is omitted, all open files    are closed. 
Once a Close statement is executed, the association of a file with filenumber% is ended,
and the file can be reopened with the same or different file number.
When the Close statement is used, the final output buffer is written to the operating
system buffer for that file.    Close frees all buffer space associated with the closed file.   
Use the Reset statement so that the operating system will flush its buffers to disk.

ComboBox statement
Syntax ComboBox x, y, dx, dy, text$, .field

Comments The ComboBox statement is used to create a combination text box and list box.     
The ComboBox statement can only be used between a Begin Dialog and an End
Dialog statement.
The x and y arguments give the coordinates that position the upper left corner of the list
box, relative to the upper left corner of the dialog box.    The x argument is measured in
1/4 system-font character-width units.    The y argument is measured in 1/8 system-font
character-width units. (See Begin Dialog.)
The dx and dy arguments specify the width and height of the combo box in which the
user enters or selects text.
The text$ field specifies the name of the string containing the list items.
The .field argument is the name of the dialog-record field that will hold the text string
entered in the text box or chosen from the list box.    The string in the text box will be
recorded in the field designated by the .field argument when the OK button (or any
pushbutton other than CANCEL) is pushed.

Command$ function
Syntax Command[$]

Returns The Command$ function returns a string containing the command line specified when
the MAIN subprogram was invoked.
The dollar sign,    "$", in the function name is optional.    If specified the return type is
string.    If omitted the function will return a variant of vartype 8 (string).

Comments After the MAIN subprogram returns, further calls to the Command$ function will yield an
empty string.    This function may not be supported in some implementations of SBL.

Const statement
Syntax [Global] Const constantName = expression [,constantName = expression]...
Comments You use the Const statement to declare symbolic constants for use in a BASIC program. 

BASIC is a strongly typed language.    The available data types for constants are numbers
and strings.
The type of the constant may be specified by using a type character as a suffix to the
constantName.    If no type character is specified, the type of the constantName will be
derived from the type of the expression.
If Global is specified, the constant is validated at module load time; if the constant has
already been added to the run-time global area, the constant's type and value are
compared to the previous definition, and the load will fail if a mismatch is found.    This is
useful as a mechanism for detecting version mismatches between modules.

Cos function
Syntax Cos(angle)
Returns The Cos function returns the cosine of an angle.    The return value will be between -1

and 1.    The return value is single-precision if the angle is an integer, currency, or single-
precision value, double precision for a long, variant or double-precision value.

Comments The angle is specified in radians, and can be either positive or negative.

CreateObject function
Syntax CreateObject(string expression)
Returns The CreateObject function will create a new Ole2 automation object.

Comments String expression should be the name of the application, a period, and the name of the
object to be used. Refer to the documentation provided with your Ole2 server applications
for correct application and object names.
Dim Ole2 As Object
Set Ole2 = CreateObject("spoly.cpoly")
Ole2.reset

CSng function
Syntax CSng(expression)
Returns The CSng function converts the value of expression to a single-precision floating point.

Comments CSng accepts any type of expression.    The expression must have a value within the
range allowed for the Single data type, or an error will occur.
Strings that cannot be converted to an integer will result in a "Type Mismatch" error.   
Variants containing nulls will result in an "Illegal Use of Null" error.
To convert a value to a different data type, see CCur, CDbl, CInt, CLng, CStr, CVDate
and CVar.

CStr function
Syntax CStr(expression)
Returns The CStr function converts the value of expression to a string.

Comments CStr accepts any type of expression.
To convert a value to a different data type, see CCur, CDbl, CInt, CLng, CSng, CVDate
and CVar.

$CStrings Metacommand
Syntax '$CSTRINGS
Comments The $CStrings Metacommand tells the compiler to treat a backslash character inside a

string (\) as an escape character.    This treatment is based on the 'C' language.
The supported special characters are:

Newline (Linefeed) \n
Horizontal Tab \t
Vertical Tab \v
Backspace \b
Carriage Return \r
Formfeed \f
Backslash \\
Single Quote \'
Double Quote \"
Null Character \0

The instruction "Hello\r World" is the equivalent of "Hello" + Chr$(13)+"World".

In addition, any character can be represented as a 3 digit octal code or a 3 digit
hexadecimal code:

Octal Code \ddd
Hexadecimal Code \xddd

For both hexadecimal and octal, fewer than 3 characters can be used to specify the code
as long as the subsequent character is not a valid (hex or octal) character.
To tell the compiler to return to the default string processing mode, where the backslash
character has no special meaning, use the $NoCStrings Metacommand.

CurDir$ function
Syntax CurDir[$] [(drivename$)]
Returns The CurDir$ function returns the path (including the drive letter) that is the current default

directory for the specified drive.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments Drivename$ is a string expression identifying the drive to return the default directory of.   
This drive must exist, and must be within the range specified in the CONFIG.SYS file.    If
a null argument (" ") is supplied, or if no drivename is indicated, the path for the default
drive is returned.
To change the current drive, use ChDrive;    to change the current directory, use ChDir.

CVar function
Syntax CVar(expression)
Returns The CVar function converts the value of expression to a variant.

Comments CVar accepts any type of expression.
CVar generates the same result as you would get by assigning the expression to a
Variant variable.    To convert a value to a different data type, see CCur, CDbl, CInt,
CLng and CSng.

CVDate function
Syntax CVDate(expression)
Returns The CVar function converts the value of expression to a variant date.

Comments The argument given is any expression.    It accepts both string and numeric values.
The CVDate function returns a variant of vartype 7 (date) that represents a date from
January 1, 100 through December 31, 9999.    A value of 2 represents January 1, 1900.   
Times are represented as fractional days.
To convert a value to a different data type, see CCur, CDbl, CInt, CLng, CSng, and
CStr.    To convert a value to a different variant type, see CVar.

Date$ function
Syntax Date[$]

Returns The Date$ function returns a string representing the current date.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments The Date$ function returns a ten character string.

Date$ statement
Syntax Date[$] = expression

Comments The Date$ statement is used to set the current system date.
When Date$ (with the dollar sign '$') is used, the expression must evaluate to a string of
one of the following forms:
mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy
where mm denotes a month (01-12), dd denotes a day (01-31), and yy or yyyy denotes a
year (1980-2099).
If the dollar sign '$' is omitted, expression can be a string containing a valid date, a
variant of vartype 7 (date), or a variant of vartype 8 (string).
If expression is not already a variant of vartype 7 (date), Date attempts to convert it to a
valid date from January, 1, 1980 through December, 31, 2099. Date uses Short Date
format in the International section of Windows Control Panel to recognize day, month,
and year if a string contains three numbers delimited by valid date separators. In addition,
Date recognizes month names in either full or abbreviated form.

DateSerial function
Syntax DateSerial(year%, month%, day%)
Returns The DateSerial function returns a date value for year, month, and day specified.

Comments The DateSerial function returns a variant of vartype 7 (date) that represents a date from
January 1, 100 through December 31, 9999, where January 1, 1900 is 2.
The range of numbers for each DateSerial argument should conform to the accepted
range of values for that unit.    You also can specify relative dates for each argument by
using a numeric expression representing the number of days, months, or years before or
after a certain date.

DateValue function
Syntax DateValue(string expression$)
Returns The DateValue function returns a date value for the string specified.

Comments The DateValue function returns a variant of Vartype 7 (date) that represents a date from
January 1, 100 through December 31, 9999, where January 1, 1900 is 2.
DateValue accepts several different string representations for a date.    It makes use of
the operating system's international settings for resolving purely numeric dates.

Day function
Syntax Day(expression)
Returns The Day function returns the day of the month component of a date-time value.

The return value is a variant of vartype 2 (integer).    If the value of expression is null a
variant of vartype 1 (null) is returned.

Comments The Day function returns an integer between 1 and 31, inclusive.
It accepts any type of expression including strings and will attempt to convert the input
value to a date value.

Declare statement
Syntax A Declare Sub name [libSpecification]    [(parameter [As type])]
Syntax B Declare function name [libSpecification]    [(parameter [As type])]

    [As functype]
Comments The Declare statement has two uses - forward declaration of a procedure whose

definition is to be found later in this module, and declaration of a procedure which is to be
found in an external Windows DLL or external BASIC module.   
If the libSpecification is of the format:

BasicLib libName [Alias "aliasname"]
the procedure is to be found in another BASIC module named libName.    The Alias
keyword specifies that    the procedure in libName is called aliasname. The other module
will be loaded on demand whenever the procedure is called.    SBL will not automatically
unload modules which are loaded in this fashion.    SBL will detect errors of mis-
declaration.
If the libSpecification is of the format:

Lib libName [Alias ["]ordinal["]]
or

Lib libName [Alias "aliasname"]
the procedure is to be found in a Dynamic Link Library (DLL) named libName.          The
ordinal argument specifies the ordinal number of the procedure within the external DLL.
Alternatively, aliasname specifies the name of the procedure within the external DLL. If
neither ordinal nor aliasname is    specified, the DLL function will be accessed by name. It
is recommended that the ordinal be used whenever possible, since accessing functions
by name may cause the module to load more slowly.
A forward declaration is needed only when a procedure in the current module is
referenced before it is used.    In this case, the BasicLib, Lib and Alias clauses are not
used.
A Sub procedure does not return a value.    function returns a value, and can be used in
an expression.    Either a function name can end with a type character or the As functype
clause can be supplied.    This provides the type of the return value for the function.    If no
type is provided, the function will default to type variant.    The name argument names the
Sub or function being declared.   
The parameters are specified as a comma-separated list of parameter names.    The data
type of a parameter may be specified by using a type character or by using the As
clause.    Record parameters are declared by using an As clause and a type which has
previously been defined using the Type statement.    Array parameters are indicated by
using empty parentheses after the parameter.    Array dimensions are not specified in the
Declare statement.
External DLL procedures are called with the PASCAL calling convention (the actual
arguments are pushed on the stack from left to right).    By default, the actual arguments
are passed by far reference.    For external DLL procedures, there are two additional
keywords, ByVal and Any, that can be used in the parameter list.   
When ByVal is used, it must be specified before the parameter it modifies.    When
applied to numeric data types, ByVal indicates that the parameter is passed by value, not
by reference.    When applied to string parameters, ByVal indicates that the string is
passed by far pointer to the string data.    By default, strings are passed by far pointer to a
string descriptor.
Any can be used as a type specification, and permits a call to the procedure to pass a
value of any datatype.    When Any is used, type checking on the actual argument used in
calls to the procedure is disabled (although other arguments not declared as type Any

are fully type-safe).    The actual argument is passed by far reference, unless ByVal is
specified, in which case the actual value is placed on the stack (or a pointer to the string
in the case of string data).    ByVal may also be used in the call.    It is the external DLL
procedure's responsibility to determine the type and size of the passed-in value.
SBL supports two different behaviors when an empty string ("") is passed ByVal to an
external procedure.    The implementor of SBL can specify which behavior by using the
SBL API function SblSetInstanceFlags.    In any specific implementation which uses
SBL, one of these two behaviors should be used consistently.    We recommend the
second behavior, which is compatible with Microsoft's VB Language.    The following two
paragraphs describe the two possible behaviors.    This paragraph, and one of the two
following paragraphs should be removed for the final documentation.
When an empty string ("") is passed ByVal to an external procedure,    the external
procedure will receive a NULL pointer.    If you wish to send a valid pointer to an empty
string, use Chr$(0).
When an empty string ("") is passed ByVal to an external procedure,    the external
procedure will receive a valid (non-NULL) pointer to a character of 0.    To send a NULL
pointer, Declare the procedure argument as ByVal As Any, and call the procedure with
an argument of 0&.

Deftype statement
Syntax DefCur varTypeLetters

DefInt varTypeLetters
DefLng varTypeLetters
DefSng varTypeLetters
DefDbl varTypeLetters
DefStr varTypeLetters
DefVar varTypeLetters

Comments The Deftype statement specifies the default data type of a variable which begins with one
of the letters specified in varTypeLetters.
The varTypeLetters are specified as a comma-separated list of letters; a range of letters
may also be specified.    For example, a-d indicates the letters a, b, c and d.
The case of the letters is not important, even in a letter range.    The letter range a-z is
treated as a special case - it denotes all alpha characters, including the international
characters.
The Deftype statement only affects the module in which it is specified.    It must precede
any variable definition within the module.
Variables defined using the Global or Dim may override the Deftype statement by using
an As clause or a type character.

Dialog statement
Syntax Dialog recordName

Comments The Dialog statement displays a dialog box.    The data for the controls of the dialog box
comes from the dialog box record recordName.
The dialog box recordName must have been declared using the Dim statement.    If the
user exits the dialog box by pushing the Cancel button, a run-time error will be triggered
which can be trapped using On Error.

Dim statement
Syntax Dim [Shared] variableName [As [New] type] [,variableName [As [New] type]] ...
Comments You use the Dim statement to declare variables for use in a BASIC program.    BASIC is a

strongly typed language.    The available data types are:      numbers, strings, variants,
records, arrays, dialog boxes and Application Data Types (ADTs).
If the As clause is not used,    the type of the variable may be specified by using a    type
character as a suffix to the variableName.    The two different type-specification methods
can be intermixed in a single Dim statement (although not on the same variable).

Numbers
Numeric variables can be declared using the As clause and one of the following numeric
types:    Currency, Integer, Long, Single, Double.    Numeric variables can also be
declared    by including a type character as a suffix to the name.

Strings
BASIC supports two types of strings, fixed-length and dynamic.    Fixed-length strings are
declared with a specific length (between 1 and 32767) and cannot be changed later.   
Use the following syntax to declare a fixed-length string:

Dim variableName As String*length
Dynamic strings have no declared length, and can vary in length from 0 to 32767.    The
initial length for a dynamic string is 0.    Use the following syntax to declare a dynamic
string:

Dim variableName$
or Dim variableName As String

Records
Record variables are declared by using an As clause and a typeName which has
previously been defined using the Type statement.    The syntax to use is:

Dim variableName As typeName
Records are made up of a collection of data elements called fields.    These fields may be
of any numeric, string, variant, or previously-defined record type.    See Type for details
on accessing fields within a record.
You can also use the Dim statement to declare a dialog record.    In this case type is
specified as [Dialog] dialogName, where dialogName matches a dialog box name
previously defined using Begin Dialog.      The dialog record variable can then be used in
a Dialog statement.
Dialog records have the same behavior as regular records - they differ only in the way
they are defined.    Some applications may provide a number of pre-defined dialog boxes.

Objects
Object variables are declared by using an As clause and a typeName of a class. Object
variables may be Set to refer to an object, and then used to access members and
methods of the object using dot notation.

Dim Ole2 As Object
Set Ole2 = CreateObject("spoly.cpoly")
Ole2.reset
An object may be declared as new for some classes. In such instances, the object

variable does not need to be Set , a new object will be allocated when    the variable is
used. Note: The class object does not support the new operator.

Dim variableName As New className
variableName.methodName
Object variables may be declared when the class name is a reserved Basic keyword by
enclosing the class name in square brackets.

Dim variableName As [For]

Arrays
The available data types for arrays are:    numbers, strings, variants, objects and records. 
Arrays of arrays, dialog box records, and ADTs are not supported.
Array variables are declared by including a subscript list    as part of the variableName.   
The syntax to use for variableName is:

Dim variable(    [subscriptRange, ...]   ) As typeName
or Dim variable_with_suffix([subscriptRange, ...])

where subscriptRange is of the format:

[startSubscript To] endSubscript
If startSubscript is not specified, 0 is used as the default.    The Option Base statement
can be used to change the default.
Both the startSubscript and the endSubscript are valid subscripts for the array.    The
maximum number of subscripts which may be specified in an array definition is 60.    The
maximum total size for an array is only limited by the amount of memory available.
If no subscriptRange is specified for an array, the array is declared as a dynamic array.   
In this case, the ReDim statement must be used to specify the dimensions of the array
before the array can be used.

A variable declared inside of a procedure has scope local to that procedure.    A variable
declared outside of a procedure has scope local to the module.    It is permissible for a
procedure to declare a variable with a name that matches a module variable.    When this
happens, the module variable is not accessible by the procedure.
Variables may be shared across modules.    See the Global statement for details.
The Shared keyword is included for backward compatibility with older versions of Basic.   
It is not allowed in Dim statements inside of a procedure.    It has no effect.
BASIC allows a variable to be automatically declared, without the use of a Dim
statement.    If a variable is first used with a type character as a suffix to its name, the
variable is automatically declared to be a local variable of the specified type.    If no type
character is specified, the variable is automatically declared to be a local variable of type
Variant.    It is considered good programming practice to declare all variables, and not
make use of this feature.    To force all variables to be explicitly declared use the Option
Explicit statement.    It is also recommended that you place all procedure-level Dim
statements at the beginning of the procedure.
Regardless of what mechanism you used to declare a variable, you may chose to use or
omit the type character when referring to the variable in the rest of your program.    The
type suffix is not considered part of the variable name.

Dir$ function
Syntax Dir[$] [(filespec$ [, attrib%])]
Returns The Dir$ function returns a filename that matches the specified pattern.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments Filespec$ is a string expression identifying a path or filename.    This argument may
include a drive specification.    It may also include the "wildcard" characters '?' and '*'.   
Dir$ will return the first filename that matches the filespec$ argument.    To retrieve
additional filenames that match the filespec$, call the Dir$ function again, omitting the
filespec$ and attrib% arguments. If no file is found, an empty string ("") is returned.
Attrib% is an integer expression specifying the filenames that need to be added to the list.
The default value for attrib% is 0. In this case, Dir$ returns only files without directory,
hidden, system, or volume label attributes set.
Here are the possible values for attrib%:

Value Meaning
          0 return normal files
          2 add hidden files
          4 add system files
          8 return volume label
      16 add directories

The values in the table can be combined by using addition. For example, to list hidden
and system files in addition to normal files set attrib% to 6 (6=2+4)   
If attrib% is set to 8, the Dir$ function returns the volume label of the drive specified in the
filespec$, or of the current drive if drive is not explicitly specified. If volume label attribute
is set, all other attributes are ignored.

Do...While statement
Syntax A Do [{ While | Until } condition]

[statementblock]
[Exit Do]
          [statementblock]
Loop

Syntax    B Do
[statementblock]
[Exit Do]
[statementblock]
Loop [{ While | Until } condition]

Comments Condition is any expression that BASIC can determine to be TRUE (nonzero) or FALSE
(0).    BASIC will repeat the program lines contained in the statementblock(s) as long as a
While condition is true or until an Until condition is true.   
When an Exit Do statement is executed, control is transferred to the statement which
follows the loop statement.    When used within a nested loop, an Exit Do statement
moves control out of the immediately enclosing loop.

DoEvents statement
Syntax DoEvents
Comments DoEvents statement is used to yield execution so that Windows can process events.    It

does not return until Windows has finished processing all events in the queue and all
keys sent by SendKeys statement.
DoEvents should not be used if other tasks can interact with the running program in
unforeseen ways.    Since BASIC yields control to the operating system at regular
intervals, DoEvents should only be used to force BASIC to allow other applications to run
at a known point in the program.

Environ$ function
Syntax A Environ[$](environment-string$)
Syntax B Environ[$](numeric expression%)
Returns The Environ$ function returns a string from the operating system's environment table.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments The argument of the Environ$ function may be either a string (environment-string$) or an
integer (numeric expression%).
Environment-string$ is the name of a keyword in the operating system environment.    If
this argument is given, it must be entered in uppercase, or it will return a null string.    The
value associated with the keyword will be returned.
Numeric expression% represents one of the strings from the operating system
environment parameters.    This may be any numeric expression, but it will be rounded to
a whole number by Environ$.    If this argument is used, Environ$ will return the nth
string from the environment table.    This string will be in the form "keyword = value."
A null string will be returned if the specified argument cannot be found.

Eof function
Syntax Eof(filenumber%)
Returns Eof returns a value indicating whether the end of a file has been reached.   

Comments The Eof function returns a (-1) if the end-of-file condition is true for the specified file.   
The filenumber% is the number used in the Open statement of the file.

Erase statement
Syntax Erase Array [, Array]

Comments The Erase statement reinitializes the contents of a fixed array and frees the storage
associated with a dynamic array.    The effect of using Erase on the elements of a fixed
array varies with the type of the element:

Element Type Erase Effect
numeric each element set to zero
variable length string each element set to zero length string   
fixed length string each element's string is filled with zeros
variant each element set to Empty.
user defined type members of each element are cleared as if the

members were array elements, i.e. numeric
members have their value set to zero, etc.

object each element is set to the special value
Nothing.

Erl function
Syntax Erl
Returns Erl returns the line number where an error was trapped.

Comments Using the Resume or On Error    statements will reset the Erl value to 0.    If you wish to
maintain the value of the line number returned by Erl, you should assign it to a variable.
The value of the Erl function can be set indirectly through the Error statement.

Err function
Syntax Err
Returns Err returns the run-time error code for the last error that was trapped.

Comments Using the Resume or On Error    statements will reset the Err value to 0.    If you wish to
maintain the value of the error code returned by Err, you should assign it to a variable.
The value of the Err function can be set directly through the Err statement, and indirectly
through the Error statement.
The Trappable Errors are listed in an appendix.

Err statement
Syntax Err =     n%

Comments The argument n% must be a 0 (indicating that no run-time error has been trapped) or an
integer expression indicating a run-time error code (having a value between 1 and
32,767).    The Err statement is used to send error information between    procedures.

Error statement
Syntax Error errorcode%

Comments Error errcode% simulates the occurrence of a SBL or user-defined error.    The errorcode
% argument, which represents the error code, must be an integer between 1 and 32,767. 
If an errcode% is one which SBL already uses, the Error statement will simulate an
occurrence of that error.   
User-defined error codes should employ values greater than those used for standard SBL
error codes.    To help ensure that non-SBL error codes are chosen, user-defined codes
should work down from 32,767.
If an Error statement is executed, and there is no error-handling routine enabled, SBL
produces an error message and halts program execution.    If an Error statement
specified an error code not used by SBL, the message "User-defined error" is displayed.

Error$ function
Syntax Error[$] [(errorcode%)]
Returns Error$ returns the error message that corresponds to the specified error code.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments The errorcode% argument, which represents the error code, must be an integer between
1 and 32,767.    If this argument is omitted, BASIC returns the error message for the run-
time error which has occurred most recently.   
If no error message is found to match the errorcode, "" is returned.
The Trappable Errors are listed in an appendix.

Exit statement
Syntax Exit {Do | For| function | Sub}

Comments Exit Do and Exit For terminate loop statements.    Exit Do can only be used within a
Do...Loop statement.    Exit For can only be used within a For...Next statement.    In both
cases, control is transferred to the statement which follows the loop statement.    When
used within a nested loop, an Exit statement moves control out of the immediately
enclosing loop.
The Exit function and Exit Sub statements transfer control from the current procedure
back to the original calling procedure.    Exit function must be used in a function
procedure.    Exit Sub can only be used to exit from a Sub procedure.

Exp function
Syntax Exp(numeric-expression)
Returns The Exp function returns the value e raised to the numeric-expression power.

Comment The return value is single-precision for an integer, currency or single-precision numeric
expression, double precision for a long, variant or double-precision numeric expression.

FileAttr function
Syntax FileAttr(filenumber%, attribute%)
Returns The FileAttr function returns information about an open file.    Depending on the attribute

chosen, this information is either the file mode or the operating system handle.

Comments The argument filenumber% is the number used in the Open statement to open the file.   
The argument attribute% is either a 1 or 2.    The following table lists the return values and
corresponding file modes if attribute% is 1:

Value Mode
          1 Input
          2 Output
          8 Append

 If attribute% is 2, FileAttr returns the operating system handle for the file.

FileCopy statement
Syntax FileCopy SourceFile$, DestFile$

Comments FileCopy makes a copy of SourceFile in DestFile.    Both SourceFile and DestFile are
String expressions that contain the file names with no wild cards.    SourceFile cannot be
copied if it is opened by BASIC for anything other than Read access.

FileDateTime function
Syntax FileDateTime(filename$)

Returns The FileDateTime function returns a string that indicates when filename was last
modified.

Comments The argument filename is a String expression that contains the name of the file to query. 
Wildcards are not allowed.    Filename can contain optional path and disk information.

FileLen function
Syntax FileLen(filename$)

Returns The FileLen function returns a Long that indicates the length of the specified file..

Comments The argument filename is a String expression that contains the name of the file to query. 
Wildcards are not allowed.    Filename can contain optional path and disk information.
If the specified file is open, FileLen returns the length of the file before it was opened.

Fix function
Syntax Fix (numeric-expression)
Returns Fix returns the integer part of a numeric-expression.

The return type matches the type of the numeric expression.    This includes variant
expressions which will return a result of the same vartype as input except vartype 8
(string) will be returned as vartype 5 (double) and vartype 0 (empty) will be returned as
vartype 3 (long).

Comments The argument given is any numeric-expression. For both positive and negative numeric-
expressions, Fix removes the fractional part of the expression and returns the integer
part only.    For example,    Fix (6.2) returns 6;    Fix (-6.2) returns -6.
See CInt and Int.

For...Next statement
Syntax For counter = start TO end [STEP increment]

[statementblock]
[Exit For]
[statementblock]
Next [counter]

Comments The For...Next statement repeats the statement block a fixed number of times,
determined by the values of start, end, and step.

Argument Description
counter Variable used as the loop counter.   
start Beginning value of the counter.
end Ending value of the counter.
increment The amount by which the counter is changed each time the loop

is run through.    (The default is one.)
statementblock BASIC functions, statements, or methods to be executed.

In order for a For...Next loop to execute, the start and end values must be consistent with
increment.    If end is greater than start, increment must be positive.    If end is less than
start, increment must be negative.      BASIC compares the sign of (end-start) with the
sign of Step.    If the signs are the same, and end does not equal start, the For...Next
loop is entered.    If not, the loop is omitted in its entirety.
With a For...Next loop, the program lines following the For statement are executed until
the Next statement is encountered.    At this point, the Step amount is added to the
counter and compared with the final value, end.    If the beginning and ending values are
the same, the loop executes once, regardless of the Step value.    Otherwise, the Step
value controls the loop as follows:

Step Value Loop Execution
Positive If counter is less than or equal to end, the Step value is added to

counter.    Control returns to the statement after the For
statement and the process repeats.    If counter is greater than
end, the loop is exited; execution resumes with the statement
following the Next statement.

Negative The loop repeats until counter is less than end.
Zero The loop repeats indefinitely.

Within the loop, the value of the counter should not be changed, as changing the counter
will make programs more difficult to maintain and debug.
For...Next loops can be nested within one another.    Each nested loop should be given a
unique variable name as its counter.    The Next statement for the inside loop must
appear before the Next statement for the outside loop. The Exit For statement may be
used as an alternative exit from For...Next loops.
If the variable is left out of a Next statement, the Next statement will match the most
recent For statement.    If a Next statement occurs prior to its corresponding For
statement, BASIC will return an error message.
Multiple consecutive Next statements can be merged together.    If this is done, the
counters must appear with the innermost counter first and the outermost counter last.   
For example:
For i = 1 To 10
[statementblock]
For j = 1 To 5

[statementblock]
Next j, i

Format$ function

Syntax Format[$](expression [, fmt])
Returns The Format$ function converts the value of expression to a string based upon the fmt

specified.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments Format$ will format expression as a number, date, time, or string depending upon the fmt
argument.
Expression specifies the value to be formatted.    It may be a number, variant, or string.
Fmt is any string expression.    It specifies how the output string is to be constructed.   
See below for a detailed description of format strings.

Formatting Numbers
Numeric values may be formatted as either numbers or date/times.    If a numeric
expression is supplied and the fmt argument is omitted or null, the number will be
converted to a string without any special formatting.

The following are predefined numeric formats with their meanings:

General Number Display the number without thousand separator.
Fixed Display the number with at least one digit to the left and at least

two digits to the right of the decimal separator.
Standard Display the number with thousand separator and two digits to the

right of decimal separator.
Scientific Display the number using standard scientific notation.
Currency Display the number using a currency symbol as defined in the

International section of the Control Panel. Use thousand separator
and display two digits to the right of decimal separator. Enclose
negative value in parentheses

Percent Multiply the number by 100 and display with a percent sign
appended to the right; display two digits to the right of decimal
separator

True/False Display False for 0, True for any other number
Yes/No Display No for 0, Yes for any other number
On/Off Display Off for 0, On for any other number

Here are the rules for creating user-defined numeric formats:

A simple numeric format consists of digit characters and optionally a decimal separator.   
Two format digit characters are provided: zero, "0", and number sign, "#".    A zero forces
a corresponding digit to appear in the output;    while a number sign causes a digit to
appear in the output if it is significant (in the middle of the number or non-zero).

Number Fmt Result
1234.56 # 1235
1234.56 #.## 1234.56

1234.56 #.# 1234.6
1234.56 ######.## 1234.56
1234.56 00000.000 01234.560
0.12345 #.## .12
0.12345 0.## 0.12

A comma placed between digit characters in a format will cause a comma to be placed
between every three digits to the left of the decimal separator.

Number Fmt Result
1234567.8901 #,#.## 1,234,567.89
1234567.8901 #,#.#### 1,234,567.8901

Note, while period, ".", is always used in the fmt to denote the decimal separator, the
output string will contain the appropriate character based upon the current international
settings for your machine.    Likewise, while comma is always used in the fmt
specification, the output will contain the appropriate separator from the current
international settings.
Numbers may be scaled either by inserting one or more commas before the decimal
separator or by including a percent sign in the fmt specification.    Each comma preceding
the decimal separator (or after all digits if no decimal separator is supplied) will scale
(divide) the number by 1000.    The commas will not appear in the output string.    The
percent sign will cause the number to be multiplied by 100.    The percent sign will appear
in the output string in the same position as it appears in fmt.

Number Fmt Result
1234567.8901 #,.## 1234.57
1234567.8901 #,,.#### 1.2346
1234567.8901 #,#,.## 1,234.57
0.1234 #0.00% 12.34%

Characters may be inserted into the output string by being included in the fmt
specification.    The following characters will be automatically inserted in the output string
in a location matching their position in the fmt specification:

-      +      $      (     )      space      :      /
Any set of characters may be inserted by enclosing them in double quotes.    Any single
character may be inserted by preceding it with a backslash, "\".

Number Fmt Result
1234567.89 $#,0.00 $1,234,567.89
1234567.89 "TOTAL:" $#,#.00 TOTAL: $1,234,567.89
1234 \=\>#,#\<\= =>1,234<=

You may wish to use the SBL $CSTRINGS metacommand or the Chr function if you need
to embed double quotation marks in a format specification.    The character code for
double quote is 34.
Numbers may be formatted in scientific notation by including one of the following
exponent strings in the fmt specification:

E-      E+      e-      e+
The exponent string should be preceded by one or more digit characters.    The number of
digit characters following the exponent string determines the number of exponent digits in
the output.    Fmt specifications containing an upper case E will result in an upper case E
in the output.    Those containing a lower case e will result in a lower case e in the output. 
A minus sign following the E will cause negative exponents in the output to be preceded
by a minus sign.    A plus sign in the fmt will cause a sign to always precede the exponent
in the output.

Number Fmt Result
1234567.89 ###.##E-00 123.46E04
1234567.89 ###.##e+# 123.46e+4
0.12345 0.00E-00 1.23E-01

A numeric fmt can have up to four sections, separated by semicolons.    If you use only
one section, it applies to all values.    If you use two sections, the first section applies to
positive values and zeros, the second to negative values.    If you use three sections, the
first applies to positive values, the second to negative values, and the third to zeros. If
you include semicolons with nothing between them, the undefined section is printed using
the format of the first section.    The fourth section applies to Null values.    If it is omitted
and the input expression results in a NULL value, Format$ will return an empty string.

Number Fmt Result
1234567.89 #,0.00;(#,0.00);"Zero";"NA" 1,234,567.89
-1234567.89 #,0.00;(#,0.00);"Zero";"NA" (1,234,567.89)
0.0 #,0.00;(#,0.00);"Zero";"NA#" Zero
0.0 #,0.00;(#,0.00);;"NA" 0.00
Null #,0.00;(#,0.00);"Zero";"NA" NA
Null "The value is: " 0.00

Formatting Date Times
Both numeric values and variants may be formatted as dates.    When formatting numeric
values as dates, the value is interpreted according the standard Basic date encoding
scheme.    The base date, December 30, 1899, is represented as zero, and other dates
are represented as the number of days from the base date.

As with numeric formats, there is a number of predefined formats for formatting dates and
times:

General Date If the number has both integer and real parts, display both date and
time. (e.g., 11/8/93    1:23:45 PM); if the number has only integer part,
display it as a date; if the number has only fractional part, display it
as time

Long Date Display a Long Date.    Long Date is defined in the International
section of the Control Panel

Medium Date Display the date using the month abbreviation and without the day of
the week. (e.g, 08-Nov-93)

Short Date Display a Short Date. Short Date is defined in the International
section of the Control Panel

Long Time Display Long Time.    Long Time is defined in the International section
of the Control Panel and includes hours, minutes, and seconds.

Medium Time Do not display seconds; display hours in 12-hour format and use the
AM/PM designator

Short Time Do not display seconds; use 24-hour format and no AM/PM
designator.

When using a user-defined format for a date, the fmt specification contains a series of
tokens.    Each token is replaced in the output string by its appropriate value.
A complete date may be output using the following tokens:

Token Output
c The date time as if the fmt was: "ddddd ttttt".    See the definitions below.
ddddd The date including the day, month, and year according to the machine's

current Short Date setting.    The default Short Date setting for the United
States is m/d/yy.

dddddd The date including the day, month, and year according to the machine's
current Long Date setting.    The default Long Date setting for the United
States is mmmm dd, yyyy.

ttttt The time including the hour, minute, and second using the machine's
current time settings    The default time format is h:mm:ss AM/PM.

Finer control over the output is available by including fmt tokens that deal with the
individual components of the date time.    These tokens are:
Token Output
d The day of the month as a one or two digit number (1-31).
dd The day of the month as a two digit number (01-31).
ddd The day of the week as a three letter abbreviation (Sun-Sat).
dddd The day of the week without abbreviation (Sunday-Saturday).
w The day of the week as a number (Sunday as 1, Saturday as 7).
ww The week of the year as a number (1-53).
m The month of the year or the minute of the hour as a one or two digit

number.    The minute will be output if the preceding token was an hour;   
otherwise, the month will be output.

mm The month or the year or the minute of the hour as a two digit number.   
The minute will be output if the preceding token was an hour;    otherwise,
the month will be output.

mmm The month of the year as a three letter abbreviation (Jan-Dec).
mmmm The month of the year without abbreviation(January-December).
q The quarter of the year as a number (1-4).
y The day of the year as a number (1-366).
yy The year as a two-digit number (00-99).
yyyy The year as a four-digit number (100-9999).
h The hour as a one or two digit number (0-23).
hh The hour as a two digit number (00-23).
n The minute as a one or two digit number (0-59).
nn The minute as a two digit number (00-59).
s The second as a one or two digit number (0-59).
ss The second as a two digit number (00-59).

By default, times will be displayed using a military (24-hour) clock.    Several tokens are
provided in date time fmt specifications to change this default.    They all cause a 12 hour
clock to be used.    These are:
Token Output
AM/PM An uppercase AM with any hour before noon; an uppercase PM with any

hour between noon and 11:59 PM.
am/pm A lowercase am with any hour before noon; a lowercase pm with any

hour between noon and 11:59 PM

A/P An uppercase A with any hour before noon; an uppercase P with any
hour between noon and 11:59 PM.

a/p A lowercase a with any hour before noon; a lowercase p with any hour
between noon and 11:59 PM.

AMPM The contents of the 1159 string (s1159) in the WIN.INI file with any hour
before noon; the contents of the 2359 string (s2359) with any hour
between noon and 11:59 PM.    Note, ampm is equivalent to AMPM.

Any set of characters may be inserted into the output by enclosing them in double quotes.
Any single character may be inserted by preceding it with a backslash, "\".    See number
formatting above for more details.

Formatting Strings
Strings are formatted by examining the fmt specification and transferring one character at
a time from the input expression to the output string.
By default, formatting will transfer characters working from left to right.    The exclamation
point, "!", format character may be used to change this default.    Its presence in the fmt
specification will cause characters to be transferred from right to left.
By default, characters being transferred will not be modified.    The less than, "<", and the
greater than, ">", characters may be used to force case conversion on the transferred
characters.    Less than forces output characters to be in lowercase.    Greater than forces
output characters to be in uppercase.
Character transfer is controlled by the at sign, "@", and ampersand, "&" characters in the
fmt specification.    These operate as follows:
Character Interpretation
@ Output a character or a space.    If there is a character in the string being

formatted in the position where the @ appears in the format string,
display it; otherwise, display a space in that position.

& Output a character or nothing.    If there is a character in the string being
formatted in the position where the & appears, display it; otherwise,
display nothing.

A fmt specification for strings can have one or two sections separated by a semicolon.    If
you use one section, the format applies to all string data.    If you use two sections, the
first section applies to string data, the second to Null values and zero-length strings.

FreeFile function
Syntax FreeFile
Returns The FreeFile function returns the lowest unused file number.

Comments The FreeFile function is used when you need to supply a file number, and want to make
sure that you are not choosing a file number which is already being used.
The value returned can be used in a subsequent Open statement.

function ... End function statement
Syntax [Static] [Private] function name [(parameter [As type] ...)]    [As functype]

name = expression
End function

Comments The function..End function structure defines a function procedure.    The purpose of a
function is to produce and return a single value of a specified type.    Recursion is
supported.
The parameters are specified as a comma-separated list of parameter names.    The data
type of a parameter may be specified by using a type character or by using the As
clause.    Record parameters are declared by using an As clause and a type which has
previously been defined using the Type statement.    Array parameters are indicated by
using empty parentheses after the parameter.    The array dimensions are not be
specified in the function statement.    All references to an array parameter within the body
of the function must have a consistent number of dimensions.
The Static keyword specifies that all the variables declared within the function will retain
their values as long as the program is running, regardless of the way the variables are
declared.
The Private keyword specifies that the function will not be accessible to functions and
subprograms from other modules.    Only procedures defined in the same module will
have access to a Private function.
In the function statement, the name of the function may end with a type character or the
As functype clause may be used to specify the type of value that the function will return.   
If neither a type character or a functype is provided the function will default to returning a
variant.    When calling the function, you need not specify the type character.
You specify the return value by assigning to the function name as if it were a variable or
parameter.    If no such assignment occurs, the value returned will be 0 for numeric
functions and the empty string ("") for string functions.    The function returns to the caller
when the End function statement is reached or when an Exit function statement is
executed.
BASIC procedures use the call by reference convention.    This means that if a procedure
assigns a value to a parameter, it will modify the variable passed by the caller.    This
feature should be used with great care.
Use Sub to define a procedure which has no return value.

Get statement
Syntax Get [#] filenumber%, [recordnumber&], variable

Comments Get is used to read a variable from a file opened in Random or Binary mode.
Filenumber% is an integer expression identifying an open file from which to read.    See
the Open statement for more details.
Recordnumber& is a Long expression containing the number of the record (for Random
mode) or the offset of the byte (for Binary mode) at which to start reading.   
Recordnumber is in the range 1 to 2,147,483,647.    If recordnumber is omitted, the next
record or byte is read.    Note that the commas are required, even if no recordnumber is
specified.
Variable is the name of the variable into which Get reads file data.    Variable can be any
variable except Object, Application Data Type or Array variables (single array elements
may be used).
For Random mode, the following apply:

Blocks of data are read from the file in chunks whose size is equal to the size
specified in the Len clause of the Open statement.    If the size of variable is smaller
than the record length, the additional data is discarded.    If the size of variable is
larger than the record length, an error occurs.
For variable length String variables, Get reads two bytes of data that indicate the
length of the string, then reads the data into the variable.
For Variant variables, Get reads two bytes of data that indicate the type of the variant,
then it reads the body of the variant into the variable.    Note that Variants containing
strings contain two bytes of type information followed by two bytes of length followed
by the body of the string.
User defined types are read as if each member were read separately, except no
padding occurs between elements.

Files opened in Binary mode behave similarly to those opened in Random mode except:
Get reads variables from the disk without record padding.
Variable length Strings that are not part of user defined types are not preceded by
the two byte string length.    Instead, the number of bytes read into a string variable is
equal to the length of the existing string variable.

GetAttr function
Syntax GetAttr(filename$)

Returns The GetAttr function returns the attributes of the file, directory or volume label indicated
by filename.
Here is a description of file attributes returned by GetAttr:
Value Meaning
0 Normal file
1 Read-only file
2 Hidden file
4 System file
8 Volume label
16 Directory
32 Archive - file has changed since last backup

Comments Filename is a String expression that indicates the name of the file whose attributes are
returned.    Filename may not contain wild cards.

GetCurValues statement
Syntax GetCurValues recordName

Returns The GetCurValues statement stores the current values for the application dialog box
associated with the specified record.

Comments RecordName must have been previously dimensioned as an application dialog box.

GetField$ function
Syntax GetField$(string$, field_number%, separator_chars$)
Returns The GetField$ function returns a substring from a source string.

Comments The source string is considered to be divided into fields by separator characters.   
Multiple separator characters may be specified.    The fields are numbered starting with
one.
If field_number is greater than the number of fields in the string, the empty string is
returned.

Global statement
Syntax Global variableName [As type] [,variableName [As type]] ...
Comments You use the Global statement to declare global variables for use in a BASIC program.   

BASIC is a strongly typed language.    The available data types are:      numbers, strings,
variants, records, arrays, dialog boxes and Application Data Types (ADTs).
Global data is shared across all loaded modules.    If an attempt is made to load a module
which has a global variable declared which has a different data type than an existing
global variable of the same name, the module load will fail.
If the As clause is not used, the type of the global variable may be specified by using a   
type character as a suffix to the variableName.    The two different type-specification
methods can be intermixed in a single Global statement (although not on the same
variable).
Regardless of which mechanism you use to declare a global variable, you may chose to
use or omit the type character when referring to the variable in the rest of your program.   
The type suffix is not considered part of the variable name.

Numbers
Numeric variables can be declared using the As clause and one of the following numeric
types:    Currency, Integer, Long, Single, Double.    Numeric variables can also be
declared by including a type character as a suffix to the name.

Strings
BASIC supports two types of strings, fixed-length and dynamic.    Fixed-length strings are
declared with a specific length (between 1 and 32767) and cannot be changed later.   
Use the following syntax to declare a fixed-length string:

Global variableName As String*length
Dynamic strings have no declared length, and can vary in length from 0 to 32767.    The
initial length for a dynamic string is 0.    Use the following syntax to declare a dynamic
string:

Global variableName$
or Global variableName As String

Records
Record variables are declared by using an As clause and a type which has previously
been defined using the Type statement.    The syntax to use is:

Global variableName As typeName
Records are made up of a collection of data elements called fields.    These fields may be
of any numeric, string, variant or previously-defined record type.    See Type for details on
accessing fields within a record.
You can not use the Global statement to declare a dialog record.

Arrays
The available data types for arrays are: numbers, strings,    variants and records.    Arrays
of arrays, dialog box records, and ADTs are not supported.
Array variables are declared by including a subscript list    as part of the variableName.   
The syntax to use for variableName is:

Global variable([subscriptRange, ...]) [As typeName]

where subscriptRange is of the format:

[startSubscript To] endSubscript
If startSubscript is not specified, 0 is used as the default.    The Option Base statement
can be used to change the default.
Both the startSubscript and the endSubscript are valid subscripts for the array.    The
maximum number of subscripts which may be specified in an array definition is 60.
If no subscriptRange is specified for an array, the array is declared as a dynamic array.   
In this case, the ReDim statement must be used to specify the dimensions of the array
before the array can be used.

GoTo statement
Syntax GoTo label

Comments GoTo sends control to a label.
A label has the same format as any other BASIC name.    To be recognized as a label, a
name must begin in the first column, and be followed immediately by a colon (":").   
Reserved words are not valid labels.
GoTo cannot be used to transfer control out of the current function or sub.

GroupBox statement
Syntax GroupBox x, y, dx, dy, text$

Comments The GroupBox statement is used to set up a box that encloses sets of items, such as
option boxes and check boxes that you wish to group together in a dialog box.   
The GroupBox statement can only be used between a Begin Dialog and an End Dialog
statement.
The x and y arguments set the position of the group box relative to the upper left corner
of the dialog box.    Dx and dy set the width and height of the box.
The text$ field contains a title that will be embedded in the top border of the group box.   
Trailing characters will be truncated in text$ is wider than dx.    If the text$ argument is an
empty string (""), the top border of the group box will be a solid line.

Hex$ function
Syntax Hex[$](numeric-expression)
Returns The Hex$ function returns a hexadecimal representation of a numeric-expression, as a

string.    If the numeric expression is an integer, the string will contain up to four
hexadecimal digits; otherwise, the expression will be converted to a long integer, and the
string may contain up to 8 hexadecimal digits.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Hour function
Syntax Hour(expression)
Returns The Hour function returns the hour of day component of a date-time value.

The return value is a variant of vartype 2 (integer).    If the value of expression is null a
variant of vartype 1 (null) is returned.

Comments The Hour function returns an integer between 0 and 23, inclusive.
It accepts any type of expression including strings and will attempt to convert the input
value to a date value.

If ... Then ... Else
Syntax A If condition Then then_statement [Else else_statement]
Syntax B If condition Then

statement_block
[ElseIf expression Then
statement_block]...
[Else
statement_block]
End If

Comments The If ... Then ... Else structure allows you to organize alternative actions into separate
blocks of code.    The resulting action depends on the logical value of one or more
conditions expressed in the structure.
The condition can be any expression which is evaluated as TRUE (non-zero) or FALSE
(zero).
In the single-line version of the If statement, the then_statement and else_statement can
be any valid single statement.    Multiple statements separated by colons (:) are not
allowed.    When multiple statements are required in either the Then or Else clauses, use
the block version of the If statement.
In the block version of the If statement, the statement_blocks can be made up of zero or
more statements, separated by colons (:) or on different lines.

$Include Metacommand
Syntax '$Include: "filename"
Comments Tells the compiler to include statements from another file.

Comments which include metacommands will only be recognized at the beginning of a
line.    For compatibility with other versions of BASIC, you may use single quotes (') to
enclose the filename.
A file extension of .SBH is suggested for SBL include files.    This is only a
recommendation, and any other valid file extension may be used.
If no directory or drive is specified, the compiler will search for filename on the source file
search path.

Input$ function
Syntax Input[$](numchars%, [#]filenumber%)
Returns The Input$ function returns a string containing the characters read.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments The numchars% argument contains the number of characters (bytes) to read from the
file.    The filenumber% argument is an integer expression identifying the open file to read
from.
The file pointer is advanced the number of characters read.    Unlike the Input #
statement, Input$ returns all characters it reads, including carriage returns, line feeds,
and leading spaces.

Input # statement
Syntax A Input [#] filenumber%, variable [, variable]...

Syntax B Input [prompt$,] variable [, variable]...

Comments The Input # statement reads data from a sequential file and assigns the data to variables.
The filenumber% argument is an integer expression identifying the open file to read from. 
This is the number used in the Open statement to open the file. Prompt$ is an optional
string that can be used to prompt for keyboard input.      The variable arguments list the
variables that are assigned the values read from the file. The list of variables is separated
by commas.
If filenumber is not specified, the user is prompted for keyboard input with a "?", unless
prompt$ is specified.

InputBox$ function
Syntax InputBox[$](prompt$ [,[title$] [,[default$] [,xpos%, ypos%]]])
Returns The InputBox$ function returns a string entered by the user.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments The InputBox$ function displays a dialog box containing a prompt.    Once the user has
entered text, or made the button choice being prompted for, the contents of the box are
returned.
The prompt$ argument is a string expression containing the text to be shown in the dialog
box.    The length of prompt$ is restricted to 255 characters.    This figure is approximate
and depends on the width of the characters used.    Note that a carriage return and a line-
feed character must be included in prompt$ if a multiple-line prompt is used.
The title$ argument is the caption that appears in the dialog box's title bar.    Default$ is
the string expression that will be shown in the edit box as the default response.    If either
of these arguments is omitted, nothing is displayed.
The xpos% and ypos% arguments are numeric expressions, specified in dialog box units,
that determine the position of the dialog box.    Xpos% determines the horizontal distance
between the left edge of the screen and the left border of the dialog box.      Ypos%
determines the horizontal distance from the top of the screen to the dialog box's upper
edge.    If these arguments are not entered, the dialog box is centered roughly one third of
the way down the screen.    A horizontal dialog box unit is 1/4 of the average character
width in the system font; a vertical dialog box unit is 1/8 of the height of a character in the
system font.    Note: if you wish to specify the dialog box's position, you must enter both of
these arguments.    If you enter one without the other, the default positioning is set.
Once the user presses Enter, or selects the OK button, InputBox$ returns the text
contained in the input box.    If the user selects Cancel, the InputBox$ function returns a
null string.

InStr function
Syntax A InStr([position%,] string$, substring$)
Syntax B InStr(position%, string$, substring$,[, comparetype%])
Returns The InStr function returns an integer representing the position of the first occurrence of a

substring within another string.   

Comments The position% argument indicates the index of the character within string$ where the
search should start.    If not specified, the search starts at the beginning of the string
(equivalent to a position% of 1).    String$ is the string being searched.    Substring$ is the
string being looked for.    These arguments may be of any type.    They will be converted
to strings.
If the position% argument is greater than the length of the substring; if the string$
argument is a null string; or if the substring$ cannot be located, InStr will return a zero.   
If the substring$ argument is a null string, then the position% argument will be returned.
The index of the first character in a string is 1.

The method of comparison is determined by comparetype%.    If comparetype% is 0, a
case sensitive comparison based on the ANSI character set sequence is performed.    If
comparetype% is 1, a case insensitive comparison is done based upon the relative order
of characters as determined by the country code setting for your system.    If omitted the
module level default, as specified with Option Compare will be used.

Instr returns a null variant if either string$ or substring$ is a null variant.

Int function
Syntax Int(numeric-expression)
Returns The Int function returns the integer part of a numeric-expression.

Comments The argument given is any numeric -expression. For positive numeric-expressions, Int
removes the fractional part of the expression and returns the integer part only.    For
negative numeric-expressions,    Int returns the largest integer less than or equal to the
expression.    For example,    Int (6.2) returns 6; Int(-6.2) returns -7.
The return type matches the type of the numeric expression.    This includes variant
expressions which will return a result of the same vartype as input except vartype 8
(string) will be returned as vartype 5 (double) and vartype 0 (empty) will be returned as
vartype 3 (long).
See CInt and Fix.

Is Operator
Syntax objectExpression Is objectExpression

Returns -1 (True) if the two object expressions refer to the same object, zero (False) if they do
not.

Comments Is checks if two object expressions refer to the same object. Is may also be used to test if
an object variable has been Set to Nothing

IsDate function
Syntax IsDate(expression)
Returns IsDate determines whether or not a value is a legal date.

Comments IsDate returns -1 (True) if the expression is of Vartype 7 (date) or a string that may be
interpreted as a date; otherwise it returns 0 (False).

IsEmpty function
Syntax IsEmpty(variant)
Returns The IsEmpty function returns a value that signifies whether or not a variant has been

initialized.

Comments IsEmpty returns -1 (True) if the variant is of Vartype 0 (empty); otherwise it returns 0
(False).    Any newly-defined Variant defaults to being of Empty type, to signify that it
contains no initialized data.    An Empty Variant converts to zero when used in a numeric
expression, or an empty string in a string expression.

IsNull function
Syntax IsNull(variant)
Returns The IsNull function returns a value that signifies whether or not an expression has

resulted in a null value.

Comments IsNull returns -1 (True) if the variant contains the Null value; otherwise it returns 0
(False).    Null variants have no associated data and serve only to represent invalid or
ambiguous results.    Null is not the same as Empty, which indicates that a variant has not
yet been initialized.

IsNumeric function
Syntax IsNumeric(variant)
Returns The IsNumeric function returns a value that signifies whether or not a variant is of a

numeric type.

Comments IsNumeric returns -1 (True) if the variant is of Vartypes 2-6 (numeric) or a string that may
be interpreted as a number; otherwise it returns 0 (False).

Kill statement
Syntax Kill filespec$

Comments Kill deletes files from disk.    The argument filespec$ is a string expression that specifies
a valid DOS file specification.    This specification can contain paths and wildcards.    Kill
deletes files only, not directories.    Use the RmDir function to delete directories.

LBound function
Syntax LBound(arrayVariable [, dimension])
Returns The LBound function returns the lower bound of the subscript range for the specified

dimension of the arrayVariable.   

Comments The dimensions of an array are numbered starting with 1.    If the dimension is not
specified, 1 is used as a default.   
LBound can be used with UBound to determine the length of an array.

LCase$ function
Syntax LCase[$](expression)
Returns The LCase$ function returns a copy of the source string, with all upper case letters

converted to lower case.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will typically return a variant of vartype 8 (string).    If the value of
expression is null a variant of vartype 1 (null) is returned

Comments The translation is based on the country specified in the Windows Control Panel.
LCase$ accepts expressions of type string.    LCase accepts any type of expression
including numeric values and will convert the input value to a string.

Left$ function
Syntax Left[$](expression, length%)
Returns The Left$ function returns a string of a specified length copied from the beginning of the

source string.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will typically return a variant of vartype 8 (string).    If the value of
expression is null a variant of vartype 1 (null) is returned

Comments If the length of string$ is less than length%, Left$ returns the whole string.
Left$ accepts expressions of type string.    Left accepts any type of expression including
numeric values and will convert the input value to a string.

Len function
Syntax A Len(string expression$)
Syntax B Len(variable)
Returns The Len function returns the length of the argument.    The argument can be of any type;

if the argument is a string, the number of characters in the string is returned.    If the
argument is a variant variable, Len returns the number of bytes required to represent its
value as a string;    otherwise, the length of the built-in datatype or user-defined type is
returned.
If the syntax B is used and variable is a variant containing a null, Len will return a null
variant.

Let (Assignment statement)
Syntax [Let] variable = expression

Comments An assignment statement stores a value in a BASIC variable.    The keyword Let is
optional.
The Let statement can be used to assign to a numeric, string, variant or record variable.   
You can also use the Let statement to assign to a record field or to an element of an
array.
When assigning a value to a numeric or string variable, standard conversion rules apply.

Like Operator
Syntax string LIKE pattern

Comments The Like operator returns true (-1) if the string matches pattern, and false (0) if it does
not.    string may be any string expression.    pattern may also be any string expression
where the following characters have special meaning:

Character Meaning
? match any single character
* match any set of zero or more characters
match any single digit character (0-9)
[chars] match any single character in chars
[!chars] match any single character not in chars
[schar-echar] match any single character in range schar to echar
[!schar-echar] match any single character not in range schar to echar

Both ranges and lists may appear within a single set of square brackets.    Ranges are
matched according to than ANSI values.    In a range, schar must be less than echar.
If either string or pattern is NULL then the result value is NULL.
The Like operator respects the current setting of Option Compare.

Line Input # statement
Syntax A Line Input [#] filenumber%, variable$

Syntax B Line Input [prompt$,] variable$

Comments The Line Input statement reads a line from a sequential file into a string variable.    The
filenumber% argument is an integer expression identifying the open file to read from.      If
specified, this is the number used in the Open statement to open the file. If filenumber%
is not provided, the line will be read from the keyboard.
Prompt$ is an optional string that can be used to prompt for keyboard input.      If not
provided, a prompt of "?" will be used.
The variable$ argument is a string variable into which the line is read.

ListBox statement
Syntax ListBox x, y, dx, dy, text$, .field

Comments The ListBox statement is used to create a list of choices.
The x and y arguments give the coordinates of the upper left corner of the list box,
relative to the upper left corner of the dialog box.    The x argument is measured in 1/4
system-font character-width units.    The y argument is measured in 1/8 system-font
character-width units. (See Begin Dialog.)
The ListBox statement can only be used between a Begin Dialog and an End Dialog
statement.
The dx and dy arguments specify the width and height of the list box.
The text$ argument is a string containing the selections for the list box.    This string must
be defined, using a Dim statement, before the Begin Dialog statement is executed.    The
arguments in the text$ string are entered as shown in this example:
dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)

+"listchoice"+Chr$(9)...
Where dimname is the name of a String variable defined in a Dim statement, listchoice is
the text that will appear as a selection in the list box, and Chr$(9) is the function call that
produces a tab character.    Note that multiple selections may be specified in text$ by
separating the listchoices with tab characters, as shown above.
The .field argument is the name of the dialog-record field that will hold the selection made
from the list box.    When the user selects OK (or selects the customized button created
using the Button statement), a number representing the selection's position in the text$
string is recorded in the    field designated by the .field argument.    The numbers begin at
0.    If no item is selected, it is -1.

Loc function
Syntax Loc(filenumber%)
Returns The Loc function returns the current offset within the open file specified by filenumber%.   

For files opened in Random mode, Loc returns the number of the last record read or
written.    For files opened in Append, Input, or Output mode, Loc returns the current
byte offset divided by 128.    For files opened in Binary mode, Loc returns the offset of
the last byte read or written.

Comments Filenumber% is an integer expression identifying the open file to query.    The filenumber
% is the number used in the Open statement of the file.

Lock, Unlock statements
Syntax Lock [#]filenumber% [, [start&] [To end&]]

Unlock [#]filenumber% [, { record& | [start&] To end& }]
Comments The Lock and Unlock statements are used to control access by other
process to some or all of an open file.
Filenumber% is an integer expression identifying the open file to Lock or Unlock.    The
filenumber% is the number used in the Open statement of the file.
Start is a Long integer that specifies the offset of the first record or byte to Lock or
Unlock.
End is a Long integer that specifies the offset of the last record or byte to Lock or
Unlock.
For Binary mode, start, and end are byte offsets.    For Random mode, start, and end are
record numbers.    If start is specified without end, then only the record or byte at start is
locked.    If To end is specified without start, then all records or bytes from record number
or offset 1 to end are locked.
For Input, Output and Append modes, start, and end are ignored and the whole file is
locked.
Lock and Unlock always occur in pairs with identical parameters.    All locks on open files
must be removed before closing the file or unpredictable results will occur.

Lof function
Syntax Lof(filenumber%)
Returns The Lof function returns the length in bytes of the file specified by filenumber%.

Comments Filenumber% is an integer expression identifying the open file from which the file length
will be read.    The filenumber% is the number used in the Open statement of the file.

Log function
Syntax Log(numeric-expression)
Returns The Log function returns the natural logarithm of numeric-expression.

Comment The return value is single-precision for an integer, currency or single-precision numeric
expression, double precision for a long, variant or double-precision numeric expression.

Lset statement
Syntax A Lset string$ = string-expression

Syntax B Lset variable1 = variable2

Comment If the first form of Lset statement is used and string$ is shorter than string-expression,
Lset copies leftmost character of string-expression into string$.    The number of
characters copied is equal to the length of string$.
If string is longer than string-expression, all characters of string-expression are copied
into string$ filling it from left to right. All leftover characters of string$ are replaced with
spaces.
The second form of Lset is used to assign one user-defined type variable to another. The
number of characters copied is equal to the length of the shorter of variable1 and
variable2.
Lset cannot be used to assign variables of different user-defined types if either contains a
variant or a variable-length string.

LTrim$ function
Syntax LTrim[$](expression)
Returns The LTrim$ function returns a copy of the source string, with all leading space characters

removed.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will typically return a variant of vartype 8 (string).    If the value of
expression is null a variant of vartype 1 (null) is returned.

Comment LTrim$ accepts expressions of type string.    LTrim accepts any type of expression
including numeric values and will convert the input value to a string.

Me
Syntax Me
Comment Some Basic modules are attached to application objects and Basic subroutines are

invoked when that application object encounters events. A good example is a user visible
button that triggers a Basic routine when the user clicks the mouse on the button.
Subroutines in such contexts, may use the variable Me to refer to the object which
triggered the event (I.e. which button was clicked). The programmer may use Me in all
the same ways as any other object variable except that Me may not be Set.

Mid statement
Syntax Mid (string$, position%[, length%]) = subst-string$

Returns The Mid$ statement replaces the specified substring in string$ with subst-string$.

Comment If the length% argument is omitted, or if there are fewer characters in a string than
specified in length%, then Mid$ will replace all the characters from the position% to the
end of the string.    If position% is larger than the number of characters in the indicated
string$, then Mid$ appends subst-string% to string$.
The index of the first character in a string is 1.

Mid$ function
Syntax Mid[$](expression, position%[, length%])
Returns The Mid$ function returns a substring of a specified length% from a source expression,

starting with the character at the specified position%.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will typically return a variant of vartype 8 (string).    If the value of
expression is null a variant of vartype 1 (null) is returned.

Comment If the length% argument is omitted, or if there are fewer characters in a string than
specified in length%, then Mid$ will return all the characters from the position% to the
end of the string.    If position% is larger than the number of characters in the indicated
expression, then Mid$ returns a null string.
The index of the first character in a string is 1.
Mid$ accepts expressions of type string.    Mid accepts any type of expression including
numeric values and will convert the input value to a string.
To modify a portion of a string value, see Mid statement

Minute function
Syntax Minute(expression)
Returns The Minute function returns the minute component of a date-time value.

The return value is a variant of vartype 2 (integer).    If the value of expression is null a
variant of vartype 1 (null) is returned.

Comments The Minute function returns an integer between 0 and 59, inclusive.
It accepts any type of expression including strings and will attempt to convert the input
value to a date value.

MkDir statement
Syntax MkDir pathname$
Comments The MkDir function makes a new directory.

Pathname$ is a string expression identifying the new default directory.    The syntax for
pathname$ is:
[drive:] [\] directory [\directory]
The drive argument is optional.    If drive is omitted, MkDir makes a new directory on the
current drive.    The directory argument is any directory name.

Month function
Syntax Month(expression)
Returns The Month function returns the month component of a date-time value.

The return value is a variant of vartype 2 (integer).    If the value of expression is null a
variant of vartype 1 (null) is returned.

Comments The Month function returns an integer between 1 and 12, inclusive.
It accepts any type of expression including strings and will attempt to convert the input
value to a date value.

Msgbox function
Syntax Msgbox(message$[,[type%][, caption$]])
Returns Msgbox returns an integer value indicating which button the user selected.

Comments The Msgbox function displays a message in a dialog box.(The message displayed must
be no more than 1024 characters long.    A message string greater than 255 characters
without intervening spaces will be truncated after the 255th character.)      Once the user
has selected a pushbutton, Msgbox returns a value indicating the user's choice.
The type% argument governs the icons and buttons that will be displayed in the dialog
box.    This argument is the sum of values describing the number and type of buttons
which will appear, the icon style, and the default button.    One selection should be made
from each group.

Value Description
Group 1           0 OK only
Buttons           1 OK, Cancel

          2 Abort, Retry, Ignore
          3 Yes, No, Cancel
          4 Yes, No
          5 Retry, Cancel

Group 2         16 Critical Message (STOP)
 Icons             32 Warning Query (?)

      48 Warning Message (!)
        64 Information Message    (i)

Group 3           0 First button
Defaults       256 Second button

      512 Third button
If type% is omitted, a single OK button will appear.
Caption% is a string expression that will appear in the dialog box's title bar.     
The return values for the Msgbox function are:

Value Button Pressed
1 OK
          2 Cancel
          3 Abort
          4 Retry
          5 Ignore
          6 Yes
          7 No

Msgbox statement
Syntax MsgBox message$[,[type%][, caption$]]

Comments The Msgbox statement displays a message in a dialog box.    A message can be no
longer than 1024 characters in length.    Messages longer than 255 characters which
contain no intervening spaces will be truncated after the 255th character.
The type% argument governs the icons and buttons that will be displayed in the dialog
box.    This argument is the sum of values describing the number and type of buttons
which will appear, the icon style, and the default button.    One selection should be made
from each group.

Value Description
Group 1           0 OK only
Buttons           1 OK, Cancel

          2 Abort, Retry, Ignore
          3 Yes, No, Cancel
          4 Yes, No
          5 Retry, Cancel

Group 2         16 Critical Message (STOP)
 Icons             32 Warning Query (?)

      48 Warning Message (!)
        64 Information Message    (i)

Group 3           0 First button
Defaults       256 Second button

      512 Third button
If type% is omitted, a single OK button will appear.
Caption% is a string expression that will appear in the dialog box's title bar.     

Name statement
Syntax Name oldfilename$ As newfilename$

Comments The Name statement renames a file.    It can also be used to move a file from one
directory to another.   
Oldfilename$ and newfilename$ are string expressions that designate, respectively, the
file to rename and the new name for that file.    A path may be part of the filename$.      If
the paths are different, the file is moved to the new directory.
A file must be closed in order to be renamed.    If the file oldfilename$ is open, BASIC
generates an error message.    If the file newfilename$ already exists, BASIC will also
generate an error message.

New Operator
Syntax Set objectVar = New className

Dim objectVar As New className

Comments In the Set statement, New allocates and initializes a new object of the named class.
In the Dim statement, New marks the object variable so that a new object will be
allocated and initialized when the object variable is first used. If the object variable is not
referenced, then no new object will be allocated.
Note: An object variable that was declared with New will allocate a second object if the
variable is Set to Nothing and referenced again.

$NoCStrings Metacommand
Syntax '$NOCSTRINGS
Comments The $NoCStrings metacommand tells the compiler to treat a backslash inside a string as

a normal character.    This is the default.
You can use the $CStrings metacommand to tell the compiler to treat a backslash
character inside of a string as an escape character.

Nothing function
Syntax Set variableName = Nothing
Returns An object value that doesn't refer to an object

Comments Nothing is the value object variables have when they do not refer to an object, either
because the have not been initialized yet or because they were explicitly Set to Nothing.

If Not objectVar Is Nothing then
objectVar.Close
Set objectVar = Nothing

End If

Now function
Syntax Now()
Returns The Now function returns the current date and time.

Comments The Now function returns a variant of vartype 7 (date) that represents the current date
and time according to the setting of the computer's system date and time.

Null function
Syntax Null
Comments Null returns a variant value set to the null value. Null is used to explicitly set a variant to

the null value
variableName = Null
Note that variants are initialized by Basic to the empty value, which is different from the
null value.
See also IsNull and IsEmpty.

Object Class
Syntax dim variableName As Object
Comments Object is a class that provides access to Ole2 automation objects. To create a new

Object, first dimension a variable, and then Set the variable to the return value of
CreateObject.
Dim Ole2 As Object
Set Ole2 = CreateObject("spoly.cpoly")
Ole2.reset

Oct$ function
Syntax Oct$(numeric-expression)
Returns The Oct$ function returns an octal representation of a numeric-expression, as a string.   

If the numeric expression is an integer, the string will contain up to six octal digits;
otherwise, the expression will be converted to a long, and the string may contain up to 11
octal digits.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

OkButton statement
Syntax OK x, y, dx, dy

Comments The OkButton statement determines the position and size of an OK button.
The OkButton statement can only be used between a Begin Dialog and an End Dialog
statement.
The x and y arguments set the position of the OK button relative to the upper left corner
of the dialog box.    Dx and dy set the width and height of the button.    A dy value of 14
typically accommodates text in the system font.

On Error statement
Syntax ON [Local] Error {GoTo label [Resume Next] GoTo 0}

Comments The On Error statement enables an error-handling routine, specifying the location of that
routine within procedure.    On Error can also be used to disable an error-handling
routine.    Unless an On Error statement is used, any run-time error will be fatal, i.e., SBL
will terminate the execution of the program.
An On Error statement is composed of the following parts:
Part Definition
Local Keyword allowed in error-handling routines at the procedure level.   

Used to ensure compatibility with other variants of BASIC.
GoTo label Enables the error-handling routine that starts at label.    If the

designated label is not in the same procedure as the On Error
statement, BASIC will generate an error message.

Resume Next This establishes that when a run-time error occurs, control is passed
to the statement which immediately follows the statement in which
the error occurred.    At this point, the Err function can be used to
retrieve the error-code of the run-time error.

GoTo 0 Disables any error handler that has been enabled.
When it is referenced by an On Error GoTo label statement, an error-handler is enabled. 
Once this enabling occurs, a run-time error will result in program control switching to the
error-handling routine and "activating" the error handler.    The error handler remains
active from the time the run-time error has been trapped until a Resume statement is
executed in the error handler.
If another error occurs while the error handler is active, SBL will search for an error
handler in the procedure which called the current procedure (if this fails, SBL will look for
a handler belonging to the caller's caller, ...).    If a handler is found, the current procedure
will terminate, and the error handler in the calling procedure will be activated.
It is an error (No Resume) to execute an End Sub or End function statement while an
error handler is active.    The Exit Sub or Exit function statement can be used to end the
error condition and exit the current procedure.

On Goto statement
Syntax ON numeric-expression GoTo label1 [,label2, ...]

Comments The On GoTo statement sends the control to any one of    the locations specified by
label1, label2, etc. depending on the value of numeric-expression. If numeric expression
evaluates to 1, the flow is transferred to label1. If the numeric-expression    evaluates to 2,
the flow is transferred to label2, and etc. If numeric expression evaluates to 0 or to a
number greater than the number of labels following GoTo, the program continues at the
next statement. If numeric-expression evaluates to a number less than 0 or greater than
255, an "Illegal function call" error is issued

Open statement
Syntax Open filename$ [For mode] [Access access] [lock] As [#] filenumber% [Len = reclen]

Comments The Open statement enables I/O to a file or a device.    A file must be opened before any
input/output operation can be performed on it.   
The argument filename$ is a string expression specifying the file to open.    If file does not
exist, it is created when opened in Append, Binary, Output or Random modes.
Mode is a keyword that specifies one of the following: Input (sequential input mode),
Output (sequential output mode), Append (sequential output mode), Random (random
access mode) or Binary (binary I/O mode).    If mode is not specified, it defaults to
Random.
Access is a keyword that indicates the operations that are permitted on the open file.    It
is one of Read, Write, or Read Write.    A value of Read Write for Access is only valid for
files opened for Random, Binary or Append. If Access is not specified for Random or
Binary modes, Access is attempted in the following order: Read Write, Write, Read.
Lock specifies the operations that other processes are allowed to perform when
accessing filename$.    Allowed values are Shared (any process can read or write the
file), Lock Read (other processes cannot perform read operations), Lock Write (other
processes cannot perform write operations on the file), Lock Read Write (other
processes cannot perform read or write operations on the file).    If lock is not specified,
filename$ can be opened by other processes that do not specify a lock, although that
process cannot perform any file operations on the file while the original process still has
the file open.
Filenumber% is an integer expression with a value between 1 and 255.    The FreeFile
function can be used to return the next available filenumber.
Reclen specifies the record length for files opened in Random mode.    It is ignored for all
other modes
See also: Get, Input$ function, Input statement, Loc, Print, Put, Seek function, Seek,
Width, Write.

Option Base statement
Syntax Option Base lowerBound%

Comments The Option Base statement specifies the default lower bound to be used for array
subscripts.    The lowerBound must be either 0 or 1.    If no Option Base statement is
specified, the default lower bound for array subscripts will be 0.   
The Option Base statement is not allowed inside a procedure, and must precede any
use of arrays in the module.    Only one Option Base statement is allowed per module.

OptionButton statement
Syntax OptionButton x, y, dx, dy, text$

Comments The OptionButton statements    --there must be at least two -- are used to define the
position and text associated with an option button.    They are used in conjunction with the
OptionGroup statement.
The OptionButton statement can only be used between a Begin Dialog and an End
Dialog statement.
The x and y arguments set the position of the button relative to the upper left corner of
the dialog box.    Dx and dy set the width and height of the button.    A dy value of 12
typically accommodates text in the system font.
The text$ field contains the caption that appears to the right of the option button icon.    If
the width of this string is greater than dx, trailing characters will be truncated.      If you
wish to include underlined characters so that the option selection can be made from the
keyboard, the character must be preceded with an ampersand (&).

Option Compare statement
Syntax Option Compare { Binary | Text }
Comments The Option Compare statement specifies the default method of string comparison.   

Binary comparisons are case sensitive.    Text comparisons are case insensitive.    Binary
comparisons compare strings based upon the ANSI character set.    Text comparison are
based upon the relative order of characters as determined by the country code setting for
your system.

Option Explicit statement
Syntax Option Explicit
Comments The Option Explicit statement specifies that all variables in a module must be explicitly

declared.    By default, BASIC will automatically declare any variables that do not appear
in a Dim, Global, Redim, or Static statement.    Option Explicit causes such variables to
produce a "Variable Not Declared" error.

OptionGroup statement
Syntax OptionGroup .field

Comments The OptionGroup statement is used in conjunction with OptionButton statements to set
up a series of related options.    The OptionGroup statement begins definition of the
option buttons and establishes the dialog-record field that will contain the current option
selection.    .Field will contain a value 0 when the choice associated with the first
OptionButton statement is selected, a value of 1 when the choice associated with the
second OptionButton statement is chosen, etc.
The OptionGroup statement can only be used between a Begin Dialog and an End
Dialog statement.

PasswordBox$ function
Syntax PasswordBox[$](prompt$ [,[title$] [,[default$] [,xpos%, ypos%]]])
Returns The PasswordBox$ function returns a string entered by the user.    The user's type-in will

not be echoed.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments The PasswordBox$ function displays a dialog box containing a prompt.    Once the user
has entered text, or made the button choice being prompted for, the contents of the box
are returned.
The prompt$ argument is a string expression containing the text to be shown in the dialog
box.    The length of prompt$ is restricted to 255 characters.    This figure is approximate
and depends on the width of the characters used.    Note that a carriage return and a line-
feed character must be included in prompt$ if a multiple-line prompt is used.
The title$ argument is the caption that appears in the dialog box's title bar.    Default$ is
the string expression that will be shown in the edit box as the default response.    If either
of these arguments is omitted, nothing is displayed.
The xpos% and ypos% arguments are numeric expressions, specified in dialog box units,
that determine the position of the dialog box.    Xpos% determines the horizontal distance
between the left edge of the screen and the left border of the dialog box.      Ypos%
determines the horizontal distance from the top of the screen to the dialog box's upper
edge.    If these arguments are not entered, the dialog box is centered roughly one third of
the way down the screen.    A horizontal dialog box unit is 1/4 of the average character
width in the system font; a vertical dialog box unit is 1/8 of the height of a character in the
system font.    Note: if you wish to specify the dialog box's position, you must enter both of
these arguments.    If you enter one without the other, the default positioning is set.
Once the user presses Enter, or selects the OK button, PasswordBox$ returns the text
contained in the input box.    If the user selects Cancel, the PasswordBox$ function
returns a null string.

Print statement
Syntax Print [# filenumber%,] expressionlist [{ ; | , }]

Comments The Print statement outputs data to the specified filenumber%.    If the expressionlist is
omitted, a blank line is written to the file.
Filenumber% is optional.    If this argument is omitted, the Print statement outputs data to
the screen.    If provided Filenumber% is an integer expression identifying the print
destination.    See the Open statement for more details.
Expressionlist is a list of values that are to be printed.    Expressionlist can contain
numeric, string, and variant expressions.    Expressions are separated by either a semi-
colon (";") or a comma (",") .    A semi-colon indicates that the next value should appear
immediately after the preceding one without intervening white space.    A comma indicates
that the next value should be positioned at the next print zone.    Print zones begin every
14 spaces.
The optional [{;|,}] argument at the end of the Print statement determines where output
for the next Print statement to the same output file should begin.    A semi-colon will place
output immediately after the output from this Print statement on the current line; a
comma will start output at the next print zone on the current line.    If neither separator is
specified, a CR-LF pair will be generated and the next Print statement will print to the
next line.
Special functions Spc and Tab can be used inside Print statement to insert a given
number of spaces and to move the print position to a desired column.
The Print statement supports only elementary BASIC data types.    See Input for more
information on parsing this statement.

Put statement
Syntax Put [#] filenumber%, [recordnumber&], variable

Comments Put is used to write a variable to a file opened in Random or Binary mode.
Filenumber% is an integer expression identifying an open file to which to write.    See the
Open statement for more details.
Recordnumber& is a Long expression containing the number of the record (for Random
mode) or the offset of the byte (for Binary mode) at which to start writing.   
Recordnumber is in the range 1 to 2,147,483,647.    If recordnumber is omitted, the next
record or byte is written.    Note that the commas are required, even if no recordnumber is
specified.
Variable is the name of the variable from which Get writes file data.    Variable can be any
variable except Object, Application Data Type or Array variables (single array elements
may be used).
For Random mode, the following apply:

Blocks of data are written to the file in chunks whose size is equal to the size
specified in the Len clause of the Open statement.    If the size of variable is smaller
than the record length, the record is padded to the correct record size.    If the size of
variable is larger than the record length, an error occurs.
For variable length Strings variables, Put writes two bytes of data that indicate the
length of the string, then writes the string data.
For Variant variables, Put writes two bytes of data that indicate the type of the
Variant, then it writes the body of the variant into the variable.    Note that Variants
containing strings contain two bytes of type information, followed by two bytes of
length, followed by the body of the string.
User defined types are written as if each member were written separately, except no
padding occurs between elements.

Files opened in Binary mode behave similarly to those opened in Random mode except:
Put writes variables to the disk without record padding.
Variable length Strings that are not part of user defined types are not preceded by
the two byte string length.

Randomize statement
Syntax Randomize    [numeric-expression%]

Comments The Randomize function seeds the random number generator.    The (optional) argument
numeric-expression% is an integer value between -32768 and 32767.    If no numeric-
expression% argument is given, BASIC uses the Timer function to initialize the random
number generator.

ReDim statement
Syntax ReDim [Preserve]    variableName (subscriptRange, ...) [As [New] type] , ...

Comments You use the ReDim statement to change the upper and lower bounds of a dynamic
array's dimensions.    Memory for the dynamic array will be reallocated to support the
specified dimensions, and the array elements may be reinitialized.    ReDim can not be
used at the module level - it must be used inside of a procedure.
The Preserve option is used to change the last dimension in the array while maintaining
its contents.    If Preserve is not specified the contents of the array will be reinitialized.   
Numbers will be set to zero.    Strings and variants will be set to empty.
A dynamic array is normally created by using Dim to declare an array without a specified
subscriptRange.    The maximum number of dimensions for a dynamic array created in
this fashion is 8.    If you need more than 8 dimensions, you may use the ReDim
statement inside of a procedure to declare an array which has not previously been
declared using Dim or Global.    In this case, the maximum number of dimensions
allowed is 60.
The available data types for arrays are:    numbers, strings, variants, records and objects. 
Arrays of arrays, dialog box records, and ADTs are not supported.
If the As clause is not used, the type of the variable may be specified by using a type
character as a suffix to the name.    The two different type-specification methods can be
intermixed in a single ReDim statement (although not on the same variable).
The ReDim statement cannot be used to change the number of dimensions of a dynamic
array once the array has been given dimensions.    It can only to change the upper and
lower bounds of the dimensions of the array.    The LBound and UBound functions can
be used to query the current bounds of an array variable's dimensions.
Care should be taken to avoid ReDim'ing an array in a procedure that has received a
reference to an element in the array in an argument; the result is unpredictable.
The subscriptRange is of the format:

[startSubscript To] endSubscript
If startSubscript is not specified, 0 is used as the default.    The Option Base statement
can be used to change the default.

Rem statement
Syntax Rem arbitrary text

Comment Rem is used by the BASIC programmer to insert a comment in a BASIC program.   
Everything from Rem to the end of the line is ignored.
The single quote (') can also be used to initiate a comment.    Metacommands (e.g.,
CSTRINGS) must be preceded by the single quote comment form.

Reset statement
Syntax Reset
Comments The Reset statement closes all disk files that are open, and writes any data still

remaining in the operating system buffers to disk.

Resume statement
Syntax A Resume Next
Syntax B Resume label

Syntax C Resume [0]
Comments The Resume statement halts an error-handling routine

When the Resume Next statement is used, control is passed to the statement which
immediately follows the statement in which the error occurred.   
When the Resume label statement is used, control is passed to the statement which
immediately follows the specified label.
When the Resume [0] statement is used, control is passed to the statement in which
the error occurred.
The location of the error handler which has caught the error determines where execution
will resume.    If an error is trapped in the same procedure as the error handler, program
execution will resume with the statement that caused the error.    If an error is located in a
different procedure from the error handler, program control reverts to the statement that
last called out the procedure containing the error handler.

Right$ function
Syntax Right[$](expression, length%)
Returns The Right$ function returns a string of a specified length copied from the rightmost length

characters from the string string$.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will typically return a variant of vartype 8 (string).    If the value of
expression is null a variant of vartype 1 (null) is returned

Comments If the length of expression is less than length%, Right$ returns the whole string.
Right$ accepts expressions of type string.    Right accepts any type of expression
including numeric values and will convert the input value to a string.

RmDir statement
Syntax RmDir pathname$
Comments RmDir removes a directory.

Pathname$ is a string expression identifying the directory to remove.    The syntax for
pathname$ is:
[drive:] [\] directory [\directory]
The drive argument is optional. The directory argument is a directory name.
The directory to be removed must be empty, except for the working (.) and parent (..)
directories.

Rnd function
Syntax Rnd [(number!)]
Returns The Rnd function returns a single precision random number between 0 and 1.

Comment The same sequence of random numbers is generated whenever the program is run,
unless the random number generator is re-initialized by the Randomize statement.

Rset statement
Syntax Rset string$ = string-expression

Comment Rset is used to right-align string-expression within string$. If string$ is longer than string-
expression, the left-most characters of string$ are replaced with spaces.
If string$ is shorter than string-expression, only the leftmost characters of string-
expression are copied.
Rset cannot be used to assign variables of different user-defined types.

RTrim$ function
Syntax RTrim[$](expression)
Returns The RTrim$ function returns a copy of the source expression, with all trailing space

characters removed.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will typically return a variant of vartype 8 (string).    If the value of
expression is null a variant of vartype 1 (null) is returned

Comments RTrim$ accepts expressions of type string.    RTrim accepts any type of expression
including numeric values and will convert the input value to a string.

Second function
Syntax Second(expression)
Returns The Second function returns the second component of a date-time value.

The return value is a variant of vartype 2 (integer).    If the value of expression is null a
variant of vartype 1 (null) is returned.

Comments The Second function returns an integer between 0 and 59, inclusive.
It accepts any type of expression including strings and will attempt to convert the input
value to a date value.

Seek function
Syntax Seek(filenumber%)
Returns The Seek function returns the current file position for the file specified by filenumber%.   

For files opened in Random mode, Seek returns the number of the next record to be
read or written.    For all other modes, Seek returns the file offset for the next operation.   
The first byte in the file is at offset 1, the second byte is at offset 2, etc.    The return value
is a Long.

Comments Filenumber% is an integer expression identifying an open file to query for position.    See
the Open statement for more details.

Seek statement
Syntax Seek [#] filenumber%, position&

Comments The Seek statement sets the position within a file for the next read or write.    If you write
to a file after seeking beyond the end of the file, the file's length is extended.    BASIC will
return an error message if a Seek operation is attempted which specifies a negative or
zero position.
Filenumber% is an integer expression identifying the open file to Seek in.    See the Open
statement for more details.
Position& is a numeric expression in the range 1 to 2,147,483,647 that indicates where
the next write or read will occur.    For files opened in Random mode, position is a record
number, for all other modes, position is a byte offset.    The first byte or record in the file is
at position 1, the second is at position 2, etc.

Select Case statement
Syntax    Select Case testexpression

[Case expressionlist
[statement_block]]
[Case expressionlist
[statement_block]]
.
.
[Case Else
[statement_block]]
End Select

Comments The Select Case statement is used to execute one of a series of statement blocks,
depending on the value of an expression.
The testexpression can be any numeric, string, or variant expression that you wish to
test.    Each statement_block can contain any number of statements on any number of
lines.
The expressionlist(s) may be a comma-separated list of expressions of the following
forms:
expression
expression To expression
Is comparison_operator expression
The type of each expression must be compatible with the type of testexpression.   
When there is a match between testexpression and one of the Case expressions, the
statement block following the Case clause is executed.    When the next Case clause is
reached, execution control passes to the statement which follows the End Select
statement.
Note that when the To keyword is used to specify a range of values, the smaller value
must appear first.    The comparison_operator used with the Is keyword is one of: <, >, =,
<=, >=, <>.   

SendKeys statement
Syntax SendKeys string-expression [, wait]

Comments The SendKeys statement is used to send keystrokes to the active application.
The keystrokes are represented by characters of string-expression. If the wait parameter
is True, SendKeys does not return until all keys are processed.    Otherwise, SendKeys
does not wait for an application to process the keys.    The default value for wait is False.
To specify an ordinary character, use this character in string-expression. For example, to
send character 'a' use "a" as string-expression. Several characters may be combined in
one string: string-expression "abc" means send 'a', 'b', and 'c'.
To specify that Shift, Alt, or Control keys should be pressed simultaneously with a
character, prefix the character with
+ to specify Shift
% to specify Alt
^ to specify Control.
Parentheses may be used to specify that Shift, Alt, or Control key should be pressed with
a group of characters. For example, "%(abc)" is equivalent to "%a%b%c".   
Since '+', '%', '^' ,'(' and ')' characters have special meaning to SendKeys, they must be
enclosed in braces if need to be sent with SendKeys. For example string-
expression"{%}" specifies a percent character '%'
The other characters that need to be enclosed in braces are '~'    which stands for a
newline or "Enter" if used by itself and braces themselves: use {{} to send '{' and {}} to
send '}'.    Brackets '[' and ']' do not have special meaning to SendKeys but    may have
special meaning in other applications, therefore, they need to be enclosed inside braces
as well.
To specify that a key needs to be sent several times, enclose the character in braces and
specify the number of keys sent after a space: for example, use {X 20} to send 20
characters 'X'.
To send one of the non-printable keys use a special keyword inside braces:

Key                  Keyword
Backspace {BACKSPACE} or {BKSP} or {BS}
Break                  {BREAK}
Caps Lock {CAPSLOCK}
Clear                {CLEAR}
Delete                {DELETE} or {DEL}
Down Arrow {DOWN}
End                        {END}
Enter                {ENTER}
Esc                        {ESCAPE} or {ESC}
Help                {HELP}
Home                {HOME}
Insert                {INSERT}
Left Arrow {LEFT}
Num Lock {NUMLOCK}
Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}
Tab                          {TAB}
Up Arrow {UP}

To send one of function keys F1-F15, simply enclose the name of the key inside braces.
For example, to send F5 use "{F5}"
Note that special keywords can be used in combination with +, %, and ^. For example: %
{TAB} means Alt-Tab. Also, you can send several special keys in the same way as you
would send several normal keys: {UP 25} sends 25 Up arrows
SendKeys can send keystrokes only to the currently active application. Therefore, you
have to use the AppActivate statement to activate application before sending keys
unless is already active.
SendKeys cannot be used to send keys to an application which was not designed to run
under Windows.

Set statement
Syntax Set variableName = expression

Comments variableName must be an object variable or a variant variable. Expression must be an
expression that evaluates to an object, typically a function, an object member or Nothing
Dim Ole2 As Object
Set Ole2 = CreateObject("spoly.cpoly")
Ole2.reset
Note: If you omit the keyword Set when assigning an object variable, Basic will try to copy
the default member of one object to the default member of another. This usually results in
a runtime error.
' Incorrect code - tries to copy default member!
Ole2 = CreateObject("spoly.cpoly")

SetAttr statement
Syntax SetAttr filename$, attributes%

Comments The SetAttr statement sets the attributes for a file.
Filename is a String expression containing the name of the file whose attributes are to be
modified.    Wildcards are not allowed.    It is an error to attempt to modify the attributes of
a file opened for other than Read access.
Attributes is an Integer containing the new attributes for the file.    Here is a description of
attributes that can be modified:
Value Meaning
0 Normal file
1 Read-only file
2 Hidden file
4 System file
32 Archive - file has changed since last backup

SetField$ function
Syntax SetField$(string$, field_number%, field$, separator_chars$)
Returns The SetField$ function returns a string created from a copy of the source string with a

substring replaced.   

Comments The source string is considered to be divided into fields by separator characters.   
Multiple separator characters may be specified.    The fields are numbered starting with
one.
If field_number is greater than the number of fields in the string, the returned string will be
extended with separator characters to produce a string with the proper number of fields.   
If more than one separator character was specified, the first one will be used as the
separator character.
It is legal for the new field value to be a different size than the old field value.

Sgn function
Syntax Sgn(numeric-expression)
Returns Sgn returns a value indicating the sign of the numeric-expression.

Comments The value that the Sgn function returns depends on the sign of the numeric-expression:
For numeric-expressions >    0, Sgn (numeric-expression) returns 1.
For numeric-expressions = 0, Sgn (numeric-expression) returns 0.
For numeric-expressions <    0, Sgn (numeric-expression) returns -1.

Shell function
Syntax Shell(commandstring$, [windowstyle%])
Returns The Shell function returns a Task ID, a unique number that identifies the running

program.

Comments The Shell function runs an executable program. Commandstring$ is the name of the
program to execute.    It may be the name of any valid .COM, .EXE., .BAT, or .PIF file.   
Arguments or command line switches can also be included.    If commandstring$ is not a
valid executable file name, or if Shell cannot start the program, an error message will be
generated.
Windowstyle% is the style of the window in which the program is to be executed.    It may
be one of the following:

Value Window Style
    1 Normal window with focus
    2 Minimized with focus
    3 Maximized with focus
    4 Normal window without focus
    7 Minimized without focus

If windowstyle% is not specified, the default of windowstyle% = 1 is assumed (normal
window with focus).

Sin function
Syntax Sin(angle)

Returns The Sin function returns the sine of an angle.    The return value will be between -1 and 1.
The return value is single-precision if the angle is an integer, currency or single-precision
value, double precision for a long, variant or double-precision value.

Comments The angle is specified in radians, and can be either positive or negative.

Space$ function
Syntax Space[$](numeric-expression)
Returns The Space$ function returns a string of spaces.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments The argument numeric-expression indicates the number of spaces which the returned
string will contain.    Any numeric data type can be used, but the number will be rounded
to an integer.    The numeric-expression must be between 0 and 32,767.

Spc function
Syntax Spc (numeric-expression)
Comments The Spc function can be used only inside Print statement.    Numeric-expression   

specifies the number of spaces that should be output.
When the Print # statement is used, the Spc function will use the following rules for
determining the number of spaces to output:
If the width of the output line is not set (the width of the line can be set with the Width
statement), SPC outputs the number of spaces equal to numeric-expression. Otherwise,
it outputs numeric-expression Mod width spaces, unless the difference between the width
of the line and the current print position is less than numeric-expression Mod width. In
this case, the Spc function skips to the beginning of the next line and outputs (numeric-
expression Mod width) - (width - current-position) spaces.

Sqr function
Syntax Sqr(numeric-expression)
Returns The Sqr function returns the square root of numeric-expression.

Comment The return value is single-precision for an integer, currency or single-precision numeric
expression, double precision for a long, variant or double-precision numeric expression.

Static statement
Syntax Static variableName [As type] [,variableName [As type]] ...
Comment Static is used inside procedures to declare variables and allocate storage space.

Variables declared with the Static statement retain their value as long as the program is
running. The syntax of Static is exactly the same as the syntax of the Dim statement
All variables of a procedure can be made static by using the Static keyword in definition
of that procedure (see function or Sub for the details).

Stop statement
Syntax Stop
Comments The Stop statement halts program execution.

Stop statements can be placed anywhere in a program to suspend its execution.    While
the Stop statement halts program execution, it does not close files or clear variables.   

Str$ function
Syntax Str[$](numeric-expression)
Returns The Str$ function returns a string representation of a numeric-expression.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comment The precision in the returned string is single-precision for an integer or single-precision
numeric expression, double precision for a long or double-precision numeric expression,
and currency precision for currency.    Variants return the precision of their underlying
vartype.

StrComp function
Syntax StrComp(string1$, string2$ [, comparetype%])
Returns The StrComp function compares two strings and returns -1 if the string1 is less than

string2, 0 if the two strings are identical, 1 if string1 is greater than string2, and null if
either string is NULL.

Comment The method of comparison is determined by comparetype%.    If comparetype% is 0, a
case sensitive comparison based on the ANSI character set sequence is performed.    If
comparetype% is 1, a case insensitive comparison is done based upon the relative order
of characters as determined by the country code setting for your system.    If omitted the
module level default, as specified with Option Compare will be used.
The string1 and string2 arguments are both passed as variants.    Therefore, any type of
expression is supported.    Numbers will be automatically converted to strings.

String$ function
Syntax A String[$](numeric-expression, charcode%)
Syntax B String[$] (numeric-expression, string-expression$)
Returns The String$ function returns a string consisting of a repeated character.

The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments Numeric-expression specifies the length of the string to be returned.    This number must
be between 0 and 32,767.
Charcode% is a decimal ANSI code of the character that will be used to create the string. 
It is a numeric expression that BASIC will evaluate as an integer between 0 and 255.
String-expression$ is a string argument, the first character of which becomes the
repeated character.

Sub ... End Sub statement
Syntax [Static] [Private] Sub name [(parameter [As type] , ...)]

End Sub
Comments The Sub..End Sub structure defines a subprogram procedure.    A call to a subprogram

stands alone as a separate statement.    (See the Call statement).    Recursion is
supported.
The parameters are specified as a comma-separated list of parameter names.    The data
type of a parameter may be specified by using a type character or by using the As
clause.    Record parameters are declared by using an As clause and a type which has
previously been defined using the Type statement.    Array parameters are indicated by
using empty parentheses after the parameter.    The array dimensions are not be
specified in the Sub statement.    All references to an array parameter within the body of
the subprogram must have a consistent number of dimensions.
The procedure returns to the caller when the End Sub statement is reached or when an
Exit Sub statement is executed.
The Static keyword specifies that all the variables declared within the subprogram will
retain their values as long as the program is running, regardless of the way the variables
are declared.
The Private keyword specifies that the procedures will not be accessible to functions and
subprograms from other modules.    Only procedures defined in the same module will
have access to a Private subprogram.
BASIC procedures use the call by reference convention.    This means that if a procedure
assigns a value to a parameter, it will modify the variable passed by the caller.
The MAIN subprogram has a special meaning.    In many implementations of BASIC,
MAIN will be called when the module is "run".    The MAIN subprogram is not allowed to
take arguments.
Use function to define a procedure which has a return value.

Tab function
Syntax Tab (numeric-expression)
Comments The Tab function can be used only inside Print statement.    It    moves the current print

position to the column specified by numeric-expression. The leftmost print position is
position number 1.
When the Print # statement is used, the Tab function will use the following rules for
determining the next print position:
If the width of the output line is not set (the width of the line can be set with the Width
statement), the    new print position equals to numeric-expression. Otherwise, the new
print position is equal to numeric-expression Mod width, unless the current print position
is greater than numeric-expression Mod width. In this case, Tab skips to the next line and
sets print position to numeric-expression Mod width.

Tan function
Syntax Tan(angle)

Returns The Tan function returns the tangent of an angle.    The return value is single-precision if
the angle is an integer, currency or single-precision value, double precision for a long,
variant or double-precision value.

Comments The angle is specified in radians, and can be either positive or negative.

Text statement
Syntax Text x, y, dx, dy, text$

Comments The Text statement is used to place line(s) of text in a dialog box.
The Text statement can only be used between a Begin Dialog and an End Dialog
statement.
The x and y arguments set the position of the upper left hand corner of the text area
relative to the upper left corner of the dialog box.    Dx and dy set the width and height of
the text area.   
The text$ field contains the text that will appear to the right of the position designated by
the x/y coordinates.    If the width of this string is greater than dx, the spillover characters
wrap to the next line.    This will continue as long as the height of the text area established
by dy is not exceeded.    Excess characters will be truncated.
By preceding an underlined character in text$ with an ampersand (&), you enable a user
to press the underlined character on the keyboard and position the cursor in the combo or
text box defined in the statement immediately following the Text statement.

TextBox statement
Syntax TextBox [NoEcho] x, y, dx, dy, .field

Comments The TextBox statement is used to create a box, within a dialog box, in which the user can
enter and edit text .
The TextBox statement can only be used between a Begin Dialog and an End Dialog
statement.
The NoEcho keyword is often used for passwords. It displays all characters entered as
asterisks.
The x and y arguments set    the position of the upper left hand corner of the text box
relative to the upper left corner of the dialog box.    Dx and dy set the width and height of
the text area.    A dy value of 12 will usually accommodate text in the system font.
The .field argument is the name of the dialog-record field that will hold the text entered in
the text box.    When the user selects the OK button, or any pushbutton other than cancel,
the text string entered in the text box will be recorded in the .field field.

Time$ function
Syntax Time[$]

Returns The Time$ function returns a string representing the current time.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will return a variant of vartype 8 (string).

Comments The Time$ function returns an eight character string.    The format of the string is
"hh:mm:ss" where hh is the hour, mm is the minutes and ss is the seconds.    The hour is
specified in military style, and ranges from 0 to 23.

Time$ statement
Syntax Time[$] = expression

Comments The Time$ statement is used to set the current system time.
When Time$ (with the dollar sign '$') is used, the expression must evaluate to a string of
one of the following forms:
hh                      Set the time to hh hours 0 minutes and 0 seconds
hh:mm                Set the time to hh hours mm minutes and 0 seconds.
hh:mm:ss Set the time to hh hours mm minutes and ss seconds
Time$ uses 24-hour clock. Thus, 6:00 P.M. must be entered as 18:00:00
If the dollar sign '$' is omitted, expression can be a string containing a valid date, a
variant of vartype 7 (date), or a variant of vartype 8 (string).
If expression is not already a variant of vartype 7 (date), Time attempts to convert it to a
valid time. It recognizes time separator defined in the International section of Windows
Control Panel. Both 12 and 24 hour clocks are accepted.

Timer function
Syntax Timer
Returns The Timer function returns the number of seconds that have elapsed since midnight.

Comments The Timer function can be used in conjunction with the Randomize statement to seed the
random number generator.

TimeSerial function
Syntax TimeSerial(hour%, minute%, second%)
Returns The TimeSerial function returns a variant of vartype 7 (date) that represents a time

specified by the hour%, minute%, and second% arguments..

Comments The range of numbers for each TimeSerial argument should conform to the accepted
range of values for that unit.    You also can specify relative times for each argument by
using a numeric expression representing the number of hours, minutes, or seconds
before or after a certain time.

TimeValue function
Syntax TimeValue(string expression$)
Returns The TimeValue function returns a time value for the string specified.

Comments The TimeValue function returns a variant of Vartype 7 (date/time) that represents a time
between 0:00:00 and 23:59:59, or 12:00:00 A.M. and 11:59:59 P.M., inclusive.

Trim$ function
Syntax Trim[$](expression)
Returns The Trim$ function returns a copy of the source expression, with all leading and trailing

space characters removed.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will typically return a variant of vartype 8 (string).    If the value of
expression is null a variant of vartype 1 (null) is returned

Comments Trim$ accepts expressions of type string.    Trim accepts any type of expression including
numeric values and will convert the input value to a string.

Type statement
Syntax Type userType

field1 As type1
field2 As type2
' ...
End Type

Comments The Type statement declares a user-defined type which can then be used in the DIM
statement to declare a record variable.    A user-defined type is sometimes referred to as
a record type or a structure type.
Between the Type and Type End you may define a number of elements known as fields. 
Each field may be of the following type:    string (either dynamic    or fixed),    number
(integer, long, single, double, or currency), variant, or a previously-defined record type.   
A field may not be an array.    However, arrays of records are allowed.
The Type statement is not valid inside of a procedure definition.
To access the fields of a record, use notation of the form:

recordName.fieldName.

To access the fields of an array of records, use notation of the form:

arrayName(index).fieldName

Typeof function
Syntax If Typeof objectVariable Is className then. . .
Returns -1 (True) if the objectVariable refers to an object of the given class, zero (False) otherwise

Comments Typeof may only be used in an If statement and may not be combined with other boolean
operators. I.e. Typeof may only be used exactly as shown in the syntax above.
To test if an object does not belong to a class, use the following code structure:
If Typeof objectVariable Is className Then
Else

Rem Perform some action.
End If

UBound function
Syntax UBound(arrayVariable [, dimension])
Returns The UBound function returns the upper bound of the subscript range for the specified

dimension of the arrayVariable.   

Comments The dimensions of an array are numbered starting with 1.    If the dimension is not
specified, 1 is used as a default.   
LBound can be used with UBound to determine the length of an array.

UCase$ function
Syntax UCase$(expression)
Returns The UCase$ function returns a copy of the source expression, with all lower case letters

converted to upper case.
The dollar sign, "$", in the function name is optional.    If specified the return type is string. 
If omitted the function will typically return a variant of vartype 8 (string).    If the value of
expression is null a variant of vartype 1 (null) is returned

Comments The translation is based on the country specified in the Windows Control Panel.
UCase$ accepts expressions of type string.    UCase accepts any type of expression
including numeric values and will convert the input value to a string.

Val function
Syntax Val(string expression$)
Returns The Val function returns a numeric value corresponding to the first number found in the

specified string.

Comments Spaces in the source string are ignored. If no number is found, or if the number is not in
the first position of the string, 0 is returned.

VarType function
Syntax VarType(variant)
Returns The VarType function returns the ordinal number representing the type of data currently

stored in the variant.

Comments The value returned by VarType is one of the following:
Ordinal Representation
    0 (Empty)
    1 Null
    2 Integer
    3 Long
    4 Single
    5 Double
    6 Currency
    7 Date
    8 String

Weekday function
Syntax Weekday(expression)
Returns The Weekday function returns the day of the week for the specified date-time value.

The return value is a variant of vartype 2 (integer).    If the value of expression is null a
variant of vartype 1 (null) is returned.

Comments The Weekday function returns an integer between 1 and 7, inclusive (1=Sunday,
7=Saturday).
It accepts any type of expression including strings and will attempt to convert the input
value to a date value.

While ... Wend
Syntax While condition

statementblock
Wend

Comments The While...Wend structure controls a repetitive action.    The condition is tested, and if
non-zero (True), the statementblock is executed      This process is repeated until
condition becomes 0 (False).
The While statement is included in SBL for compatibility with older versions of Basic.   
The Do statement is a more general and powerful flow control statement.

Width statement
Syntax Width # filenumber%, width%

Comments The width statement sets the output line width for an open file.
Filenumber% is an integer expression identifying an open file to query for position.    See
the Open statement for more details.
Width is an integer expression in the range 0 to 255 specifying the number of characters
on a line before a newline is started.    A value of zero (0) for width indicates there is no
line length limit.    The default width for a file is zero (0).

Write statement
Syntax Write [#] filenumber% [,expressionlist]

Comments The Write statement writes data to a sequential file.    The file must be opened in output
or append mode.    See the Open statement for more information.
The filenumber% is an integer expression identifying the open file to write to.   
Expressionlist specifies one or more values to be written to the file.    If the expressionlist
argument is omitted, the Write statement writes a blank line to the file.    (See Input for
more information.)

Year function
Syntax Year(expression)
Returns The Year function returns the year component of a date-time value.

The return value is a variant of vartype 2 (integer).    If the value of expression is null a
variant of vartype 1 (null) is returned.

Comments The Year function returns an integer between 100 and 9999, inclusive.

Year accepts any type of expression including strings and will attempt to convert the input
value to a date value.

Expressions
Expressions are evaluated according to precedence order.    Operators with higher precedence are
evaluated before operators with lower precedence.    Operators with equal precedence are evaluated
from left to right.    Parentheses can be used to override the default precedence.    The following table
lists the operator in precedence order from high to low.

^ Exponentiation
-,+ Unary minus and plus.
*, / Numeric multiplication or division.    For division, the result is a Double.
\ Integer division.    The operands can be Integer or Long.
Mod Modulus or Remainder. The operands can be Integer or Long.
-, + Numeric addition and subtraction.    The + operator is also used for string

concatenation.
>, <, =, <=, >=, <> Numeric or String comparison.    For numbers, the operands will be

widened to the least common type (Integer is preferred over Long,
which is preferred over Single, which is preferred over Double).    For
Strings, the comparison is case-sensitive, and based on the collating
sequence used by the language specified by the user using the Windows
Control Panel.    The result is 0 for FALSE and -1 for TRUE.

Not Unary Not - operand can be Integer or Long.    The operation is
performed bitwise (one's complement).

And And - operands can be Integer or Long.    The operation is performed
bitwise.

Or Inclusive Or - operands can be Integer or Long.    The operation is
performed bitwise.

Xor Exclusive Or - operands can be Integer or Long.    The operation is
performed bitwise.

Eqv Equivalence - operands can be Integer or Long.    The operation is
performed bitwise. (A Eqv B) is the same as (Not (A Xor B)).

Imp Implication - operands can be Integer or Long.    The operation is
performed bitwise.    (A Imp B) is the same as ((Not A) OR B).

. Record member - the left operand must be a record variable, and the
right operand must be the name of a field.

() Array element

Data Types and Type Conversion
BASIC is a strongly-typed language.    Variables can be declared implicitly on first reference by using a
type character; if no type character is present, the default type of Variant is assumed.    Alternatively, the
type of a variable can be declared explicitly with the Dim statement.    In either case, the variable can
only contain data of the declared type.    Variables of user-defined type must be explicitly declared.    SBL
supports standard Basic numeric, string, record and array data.    SBL also supports Dialog Box Records
and Application Data Types (which are defined by the application).

Numbers
The five numeric types are:

Integer from -32,768 to 32,767
Long from -2,147,483,648 to 2,147,483,647
Single from -3.402823e+38 to -1.401298e-45, 0.0, 1.401298e-45 to

3.402823466e+38
Double from -1.797693134862315d+308 to -4.94065645841247d-308, 0.0,

2.2250738585072014d-308 to 1.797693134862315d+308
Currency from -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Numeric values are always signed.
Basic has no true boolean variables.    BASIC considers 0 to be FALSE and any other numeric value to
be TRUE.    Only numeric values can be used as booleans.    Comparison operator expressions always
return 0 for FALSE and -1 for TRUE.
Integer constants can be expressed in decimal, octal, or hexadecimal notation.    Decimal constants are
expressed by simply using the decimal representation.    To represent an octal value, precede the
constant with "&O" or "&o" (e.g., &o177).    To represent a hexadecimal value, precede the constant with
"&H" or "&h" (e.g., &H8001).

Strings
BASIC strings can be either fixed or dynamic.    Fixed strings have a length specified when they are
defined, and the length cannot be changed.    Fixed strings cannot be of 0 length.    Dynamic strings have
no specified length. Any string can vary in length from 0 to 32,767 characters.    There are no restrictions
on the characters which can be included in a string.    For example, the character whose ANSI value is 0
can be embedded in strings.

Records
A record, or record variable, is a data structure containing one or more elements, each of which has a
value.    Before declaring a record variable, a Type must be defined.    Once the Type is defined, the
variable can be declared to be of that type.    The variable name should not have a type character suffix. 
Record elements are referenced using dot notation, e.g., varname.elementname.    Records can contain
elements which are themselves records.

Arrays
Arrays are created by specifying one or more subscripts at declaration or Redim time.    Subscripts
specifies the beginning and ending index for each dimension.    If only an ending index is specified, the
beginning index depends on the Option Base setting.    Array elements are referenced by enclosing the
proper number of index values in parentheses after the array name, e.g. arrayname(i,j,k).
See the Dim statement for more information.

Conversions
BASIC will automatically convert data between any two numeric types.    When converting from a larger
type to a smaller type (for example Long to Integer), a runtime numeric overflow may occur.    This
indicates that the number of the larger type is too large for the target data type.    Loss of precision is not
a runtime error (e.g., when converting from Double to Single, or from either float type to either integer
type).
BASIC will also automatically convert between fixed strings and dynamic strings.    When converting a
fixed string to dynamic, a dynamic string which has the same length and contents as the fixed string will
be created.    When converting from a dynamic string to a fixed string, some adjustment may be
required.    If the dynamic string is shorter than the fixed string, the resulting fixed string will be extended
with spaces.    If the dynamic string is longer than the fixed string, the resulting fixed string will be a
truncated version of the dynamic string.    No runtime errors are caused by string conversions.
BASIC will automatically convert between any data type and variants.    BASIC will convert variant
strings to numbers when required.    A type mismatch error will occur if the variant string does not contain
a valid representation of the required number.
No other implicit conversions are supported.    In particular, BASIC will not automatically convert
between numeric and string data.    Use the functions Val and Str$ for such conversions.

Application Data Types (ADTs)
Application Data Types are specific to each application that embeds SBL.    ADT variables have the
appearance of standard Basic records.    The main difference is that they can be dynamic; creating,
modifying or querying the ADT or its elements will cause application-specific actions to occur.    ADT
variables and arrays are declared just like any other variable, using the Dim or Global statements.

Variant Data Type
The variant data type may be used to define variables that contain any type of data.    A tag is stored with
the variant data to identify the type of data that it currently contains.    You may examine the tag by using
the VarType function.
A variant may contain a value of any of the following types:

Name Size of Data Range
0 (Empty) 0 N/A
1 Null 0 N/A
2 Integer 2 bytes (short) -32768 to 32767
3 Long 4 bytes (long) -2.147E9 to 2.147E9
4 Single 4 bytes (float) -3.402E38 to -1.401E-45 (negative)

1.401E-45 to 3.402E38 (positive)
5 Double 8 bytes (double) -1.797E308 to -4.94E-324 (negative)

4.94E-324 to 1.797E308 (positive)
6 Currency 8 bytes (fixed) -9.223E14 to 9.223E14
7 (Date) 8 bytes (double) January 1st, 0100 to

December 31st, 9999
8 String 0 to ~64kbytes 0 to ~64k characters

Any newly-defined Variant defaults to being of Empty type, to signify that it contains no initialized data.   
An Empty Variant converts to zero when used in a numeric expression, or an empty string in a string
expression.    You may test whether a variant is uninitialized (empty) with the IsEmpty function.

Null variants have no associated data and serve only to represent invalid or ambiguous results.    You
may test whether a variant contains a null value with the IsNull function.    Null is not the same as
Empty, which indicates that a variant has not yet been initialized.

Dialog Box Records
Dialog box records look like any other user-defined data type.    Elements are referenced using the same
recname.elementname syntax.    The difference is that each element is tied to an element of a dialog
box.    Some dialog boxes are defined by the application, others by the user.    See Begin Dialog
statement for more information.

Trappable Errors
The following table lists the runtime errors which SBL returns.    These errors can be trapped by
On Error .    The Err function can be used to query the error code, and the Error$ function can be used
to query the error text.

Error code Error Text
5 Illegal function call
6 Overflow
7 Out of memory
9 Subscript out of range
10 Duplicate definition
11 Division by zero
13 Type Mismatch
14 Out of string space
19 No Resume
20 Resume without error
28 Out of stack space
35 Sub or Function not defined
48 Error in loading DLL
52 Bad file name or number
53 File not found
54 Bad file mode
55 File already open
58 File already exists
61 Disk full
62 Input past end of file
63 Bad record number
64 Bad file name
68 Device unavailable
71 Disk not ready
74 Can't rename with different drive
75 Path/File access error
76 Path not found
94 Illegal use of NULL
102 Command failed
901 Input buffer would be larger than 64K
902 Operating system error
903 External procedure not found
904 Global variable type mismatch
905 User-defined type mismatch

906 External procedure interface mismatch
907 Pushbutton required
908 Module has no MAIN
910 Dialog box not declared

Class List
Following is a list of classes that may be used in a Dim statement, a Typeof expression or with the New
operator:
Object Provides access to Ole2 automation.

Objects
Objects provide access to software functionality outside of Basic. Object variables are always Dimed as
a particular class. One such class is named Object and provides access to Ole2 automation.
See also: Class List, Set , Nothing, Typeof , Is.

