
FORWARD ORIGINS OF THE CLARION LANGUAGE

FFFFFORORORORORWWWWWARD - Origins of the ClarionARD - Origins of the ClarionARD - Origins of the ClarionARD - Origins of the ClarionARD - Origins of the Clarion
LanguageLanguageLanguageLanguageLanguage

by Bruce D. Barrington, CEO, TopSpeed Corporation

As so often happens, I was just trying to please myself. I bought the first PC
I ever saw and wanted to program it. That’s what I do. Pascal was a straight-
jacket and C wasn’t available yet. So I tried BASIC. All it needed were some
smart screen and keyboard routines. Right? Perhaps a little indexed
sequential. Right?

Wrong! I could make it work. But I couldn’t make it clean. I had just spent
10 years working with software development tools of my own design. I liked
them. Maybe it was time to share what I had learned. Maybe the world
really needed yet another computer language—a general-purpose, business
programming language. Designed especially for PCs.

It may sound contradictory to call a business language “general-purpose,”
but in the PC world there are many business “languages” that are anything
but general-purpose. Writing spreadsheet macros is programming, I suppose,
but the macros hardly comprise a general-purpose language. For that matter,
most database languages are not general-purpose languages. They are really
scripts to be executed by their database manager. The scripts define a role
the database manager plays while acting out your application. Even the
dBase language, which can be compiled and run on stand-alone basis, is not
really general-purpose.

According to my definition, a general-purpose language should be able to
exercise the entire repertoire of capability offered by the underlying
platform. That means a program should be able to read any section of any
file that is visible to the operating system. It should pass through all the
versatility available for the user interface. It should connect, in standard
ways, to other general-purpose languages and componentware. A general-
purpose language does not contaminate a program with its own “look and
feel.” It does not erect barriers to be surmounted. Rather, it grants wide
latitude within the constraints of its platform to solve a broad range of
programming problems with an extensive choice of styles.

But why restrict the new language to PCs? Other mainstream languages are
meticulously portable. I decided that  PCs deserve special treatment. Even in
1984, when I began designing Clarion in earnest, PCs already comprised a
substantial percentage of all the computers installed in the world. And PCs
were different than other computers. They were inherently single-user
devices with an integrated keyboard and monitor. The keyboard and monitor
could be accessed instantly, without modems and communications lines.



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

These machines begged for responsive, interactive application programs. I
wanted to exploit this functionality by building memory-mapped video into
my new language. If a Clarion program could “only” run on 40 or 50 million
computers, that was all right by me.

I was driven by the steadfast belief that programming should be simpler.
That programming languages should be easier to read and write. And that
the poor productivity associated with software development stemmed from
inadequate and poorly designed programming tools.

These feelings began as pet peeves: Why would anyone design an IF
statement like IF ...THEN BEGIN ;statements;END ELSE... (Pascal). What
possible value do the THEN, BEGIN , and END keywords serve in this
structure? Why use “:=” instead of “=” for an assignment statement (Pascal,
Modula-2, Ada). Didn’t the language designer know that assignments are the
most numerous statements in a program or that “:=” is a finger locking
combination of shifted and unshifted keys? How about a READ...AT END
(COBOL) clause that sets an end-of-file variable that is tested to terminate a
read loop? Why can’t the loop test for end-of-file?  Having declared a
variable, why must I remind the compiler to convert it in mixed expressions?
Can’t the compiler remember that for me?  Have you ever done lint
collection?  Did you ask why? And hex dumps. What about HEX DUMPS!
After twenty years of programming, I felt like the anchorman in the movie
Network who shouted out the window: “I’m mad as hell and I’m not going
to take it anymore.”

Setting the Style

So I set out to design a new computer language that was compact (easy to
write) and expressive (easy to read). I began at the back and worked toward
the front: First, I wrote lots of programs, experimenting with syntax and
semantics until the programs looked great. Then I wrote a small language
reference manual. When the manual was well along, the development team
started writing a compiler. The language was changing daily. Our old
development memos describe an energetic and interactive process. Many
ideas were proposed and rejected for reasons of art. Others for poor
technology. Some were simply insane. Like Darwin’s species, only the
strong survived.

I classify programming languages into three styles: token oriented, sentence
oriented, and statement oriented. Token oriented languages like Pascal and C
are compact but not particularly expressive. Such languages treat a program
as a set of tokens (keywords, data names, constants, punctuation, etc.)
separated by “white space” (spaces, CR/LFs, comments, and sometimes
commas). The compiler collects the tokens and ignores the white space.
Token oriented languages are one-dimensional, so programmers use white
space to add a second dimension to their programs:



FORWARD ORIGINS OF THE CLARION LANGUAGE

typedef struct {
  unsigned char  Type;   /*the type of structure*/
  unsigned       Vlen;   /*variable length*/
  unsigned char  Dplac;  /*decimal places if decimal*/
  void           *Use;   /*pointer to variable*/
}Usedef

This C programmer has done about everything possible to code a readable
type definition. But the left brace seems to “dangle” off the struct  keyword.
And Usedef dangles off the right brace. After all, braces aren’t very artistic
vertical delimiters.

Sentence oriented languages like COBOL and most database languages are
expressive but not very compact. Sometimes statements in sentence oriented
languages read like perfect English. This COBOL statement is certainly
expressive:

MULTIPLY PRINCIPAL BY RATE GIVING PAYMENT ROUNDED.

But no more so than:

Payment = Principal * Rate

I would argue that in the context of an entire program, the second statement
is easier to read than the first, which tends to melt into paragraphs full of
verbiage. Other sentence formats are not very English-like at all.  I found
this “beauty” in an xBase language reference manual:

EDIT [FIELDS <field list>] [<scope>][FOR <expL1>]
[WHILE <expL2>][FREEZE <field>]
[KEY<expr1> [,<expr2>]] [LAST] [LEDIT] [REDIT]
[LPARTITION] [NOAPPEND] [NOCLEAR] [NODELETE]
[NOEDIT | NOMODIFY] [NOLINK] [NOMENU] [NOOPTIMIZE]
[NORMAL][NOWAIT][PARTITION <expN1>][PREFERENCE <expC1>]
[SAVE][TIMEOUT <expN2>] [TITLE <expC2>]
[VALID [:F] <expL3> [ERROR <expC3>]] [WHEN <expL4>]
[WIDTH <expN3>] [[WINDOW <window name1>]
[IN [WINDOW] <window name2> | IN SCREEN]]
[COLOR SCHEME <expN4>] | COLOR <color pair list>]

Wow! These are certainly English words, but are they expressive? Could any
programmer understand an instance of this statement format without a
manual? Among many other questions I’d like to ask is: Who designed a
WHILE  clause and a WHEN  clause in the same statement? It makes me
want to scream out the window.

My experimental programs had become statement oriented—that old
fashioned style used by FORTRAN and BASIC. Statement oriented
languages exploit the fact that source programs are contained in ASCII
source files—every line of a program is a record in the file. So record
boundaries can be used to eliminate punctuation. I settled on a statement
format that proved to be compact, expressive, and versatile:

label STATEMENT[(parameters)] [,ATTRIBUTE[(parameters)]] ...

Attributes are only used to declare data. Executable statements use the
format of a standard procedure call. Of course, I defined different statement
formats for assignment statements (A = B) and (IF, CASE, etc.).



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

A statement label starts in column one (the first position of the record). A
statement without a label must not start in column one. A statement is
terminated by the end of the line unless it is continued by a vertical bar ( | ).
I adopted the semi-colon as an optional statement separator to allow more
than one statement per line. By adopting the Modula-2 concept of ignoring
empty statements, I eliminated the distinction between statement separators
and terminators that had confounded countless Pascal programmers.

This design eliminates the punctuation otherwise necessary to identify labels
and separate statements. Blocks of statements are initiated by a single
compound statement such as IF and are terminated by a statement separator
such as ELSE (which initiates another statement block) or by an END
statement (or period).  There are no “dangling” keywords.

Declaring Data

In its infancy, COBOL was said to be “self-documenting” because of its
explicit data division and its expressive statement syntax.. Every element
that a COBOL program processes must be declared in the data division:
variables, constants, files, records, indexes—even sort sequences and report
formats. I agreed that these declarations were essential for documenting
business programs. And I felt that our new statement format would greatly
improve their readability.

In the late 1960’s, IBM promoted PL/I as the successor to COBOL. The
language was a disappointment to many, but it did offer a few fresh ideas.
By condensing the data type keywords and introducing embedded comments
(/*comment*/), PL/I provided enough space to comment every declaration
statement. COBOL had been designed for long, descriptive data names. But
programmers didn’t use long data names. There were good reasons for this:
First of all, programmers like to columnarize programs to make them more
readable. Arranging the data division in columns restricts data names to an
arbitrary maximum length. Secondly, programmers don’t like long data
names in the procedure division. Long names create unwieldy expressions
and add to the writer’s cramp produced by an already verbose language. So
most COBOL programmers used short, cryptic labels and wrote programs
that weren’t nearly as self-documenting as they should have been.

PL/I programmers got around that problem by commenting their declaration
statements. If there was a question about the meaning of a data name, it
could be resolved by looking up its declaration. I had managed a large PL/I
project in the 60’s and became convinced that declaration statements
required three parts: a statement label, a data type, and a comment.

The new statement format was perfect. The statement label appeared on the
left where it would be most visible. Data type keywords were short (BYTE,
REAL, DIM, etc.) to maximize the space available for the comment. As a
final space saver, a single exclamation character ( ! ) was designated as a
comment initiator.



FORWARD ORIGINS OF THE CLARION LANGUAGE

COBOL and PL/I use “levels” to declare data structures. Every variable has
a level number.  A variable with a higher level number is “part of” a prior
variable with a lower level number. If a variable is not part of a data
structure, it is declared as an “01” or “77” level. I never liked using “levels”
and was surprised that they were carried over in PL/I. I considered them
arbitrary and a waste of space. (What does “77” mean and why do
unstructured variables need a level anyway?) I chose GROUP (named after
COBOL’s “group item”) as a compound statement to initiate data structures
(which we then called “groups”). This mechanism is similar to record...end
used in Pascal, Modula-2, and ADA; and struct{..} used in C.  Indenting
nested GROUP statements produces a very readable declaration:

Error GROUP,PRE(Err) !Error information
Date DATE !Date of error
Time TIME !Time of error
Device STRING(12) !Active device
Message GROUP !Error message
MsgCode STRING(@P###P) !Message Code

STRING(‘ - ‘)
MsgText STRING(32) !Message text

END
END

COBOL and PL/I permit the same data name to be used in different data
structures. Such data names are referenced by the data name qualified by the
structure name. This is a useful construct, since the same fields frequently
appear in more than one data structure (e.g. ACCT-NO IN OLD-VENDOR,
ACCT-NO IN CURRENT-PAYEE, etc.). But many programmers refuse to
use this feature because it creates such long references. Instead, they code
mnemonic prefixes on every field (e.g., VND-ACCT-NO). This takes extra
coding time and reduces the available name space.

To deal with this issue, I included an optional prefix attribute that could be
attached to any data structure (e.g. PRE(VND)). Elements of the structure
are qualified by placing the prefix and a colon in front of their data name
(e.g. VND:AcctNo, PAY:AcctNo).

To match the functionality of “MOVE CORRESPONDING” in COBOL and
“BY NAME” assignments in PL/I, a “deep” assignment statement was
added to move matching elements between groups:

DestinationGroup :=: SourceGroup

As a business language, Clarion needed a rich set of basic data types: All
sizes of integers and real numbers were included to provide compatibility
with external record layouts and parameter lists. Packed decimals were
included to solve rounding problems and reduce memory usage. (They can
be declared in a range of sizes.) Various string formats (fixed, Pascal, and
C), along with a complete set of string functions, were also included. And
finally, data types for dates and times were designed to support direct
arithmetic on these variables:

Tomorrow = Today + 1

But what about structured data types? In ALGOL-like languages such as



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Pascal, Modula-2, Ada, and C, groups and arrays are declared as types. You
declare the type, then you declare a group or array as an instance of the
predeclared type. I never have liked this syntax. In business programs, most
groups and arrays are only declared once. Thinking up a type name and
coding a TYPE statement is usually unnecessary busy-work. I have never
considered a group or an array to be a data type anyway. Groups and arrays
describe storage relationships, not data types.

So I made the type declaration optional. A Clarion declaration with a TYPE
attribute declares a data type that can be used for recurring structures or
structures that are passed as parameters. A declaration with no TYPE
attribute declares both a data type and a variable of the same name. I
adopted the PL/I LIKE  statement to declare a variable of predeclared type. I
felt that this design offered the best of both worlds:

Totals GROUP,PRE(QTR)
GrossPay DECIMAL(12,2)
Deductions DECIMAL(12,2)
NetPay DECIMAL(12,2)

END

YTD:Totals LIKE(Totals),PRE(YTD)

Painless Typing

A computer language is strongly typed if every data element has a single
data type and the language syntax makes it is impossible to view that
element as a different type. Many experts feel that strong typing increases
program reliability. Perhaps. But strongly typed programs are harder to
write, restricting the use of general purpose procedures, and requiring an
unnecessarily vigilant awareness of data types. Furthermore, I have never
heard a COBOL programmer accuse REDEFINES (used solely to defeat
strong typing) of causing reliability problems. (COBOL programmers, by
the way, are not uncritical of their language. The ALTER  statement fell into
disuse years ago because it produced unstable programs.)

I didn’t want our new language to be strongly typed. First of all, I wanted to
support re-declarations similar to REDEFINES or the union type in C.
Redeclarations are useful for implementing record types (variant records in
Pascal) and for handling special programming cases. I assigned the OVER
attribute to this purpose:

MonthNames STRING(‘JanFebMarAprMayJunJulAugSepOctNovDec’)
Month STRING(3),DIM(12),OVER(MonthNames)

Secondly, I wanted group structures to be treated like strings. This weakened
data typing because groups can contain data types other than strings. But
groups need functionality. They must be moved, passed as parameters, even
(carefully) compared. That’s the rub, of course. Most numeric data types
don’t collate as strings, so groups containing numeric elements usually
won’t collate properly. Negative integers collate higher than positive integers
and floating-point numbers collate somewhat randomly. Design involves
compromise (sigh) and I elected the functionality while accepting the risk.



FORWARD ORIGINS OF THE CLARION LANGUAGE

It was important for Clarion data types to permit simple construction of
general-purpose procedures. If a procedure expected a numeric parameter,
then any numeric data type should suffice. I thought it was ridiculous to
require different numeric functions to handle different numeric data types
like the ALGOL derivative languages. To go even further, I think
polymorphism, as implemented in C++, that requires separate functions for
each data type but permits them to be called by a single function name is a
notational sham.

In the original version of Clarion, parameters were not even prototyped.
Whatever appeared in the callers argument list was used by the procedure.
Clarion now requires parameter prototypes but permits the data type to be
unspecified. Clarion procedures have always been truly polymorphic for
unstructured data.

Clarion parameters are prototyped to be passed by value or by address.
Clarion does not support pointers. There are two reasons for this: First,
pointers don’t carry data type information with them and can be easily
misused. And second, pointer dereferences (syntax differentiating the pointer
from its target) needlessly complicate programs. It has been my experience
that pointer mishaps are involved in most C program bugs.

We chose reference variables, as implemented in C++, to support
indirection. A reference variable contains the data type as well as the identity
of its target. And a reference variable is automatically dereferenced when it
is used. There is no possibility of confusion between a reference variable
and its target. Consider the following:

CompanyA FILE
:

END
CompanyB FILE

:
END

Company &FILE !Company being processed
CODE
CASE CompanyLetter !Which company to process?
OF ‘A’
Company &= CompanyA !Point to Company A

OF ‘B’
Company &= CompanyB !Point to Company B

END
OPEN(Company) !Open selected company

The reference variable Company is set by a reference assignment statement
(&=). The compiler will object if the data types don’t match. Thereafter, a
reference variable can be used in any context its target is permitted.



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Intermediate V alues

Another important issue involved automatic type conversion. I felt strongly
that you declared a data type so that the compiler would know! And that an
obliging compiler would generate data type conversions as needed. I also
felt that a great compiler would probe expressions for meaning and supply
logical conversions.

For example, if I add a string to an integer, it is reasonable for the compiler
to assume that the string contains an ASCII number and to generate such a
conversion. Conversely, if I concatenate an integer to a string, I am asking
the compiler to convert the integer first. By selecting appropriate data types
for intermediate values, the compiler can safely convert data types in
expressions without losing information. If you divide two integers, a good
compiler will store the result in an intermediate value that will hold a
fraction. If you add an integer to a string, the compiler will also use a
fractional intermediate value because a string is capable of expressing a
fraction.

Information can be lost, of course, when a value is moved, for instance, by
an assignment statement or as a parameter of a procedure call. Moving a real
number to an integer truncates the fraction. Moving a real number to a
packed decimal rounds to the least significant decimal digit. Some
languages, such as Pascal, require that such data conversions be explicitly
called. I felt that by declaring a data type, a programmer was requesting the
compiler to implicitly restrict the data element to a given domain of value.

Earlier versions of Clarion used just two data types for numeric intermediate
values: 32 bit signed integer (LONG) and a 64 bit floating point (REAL). A
divide operation or any operation with one or more REAL operands would
produce a REAL intermediate value. This strategy provided sufficient
accuracy since a REAL could express the maximum numeric significance
(15 digits) supported by Clarion. Although they are accurate, floating point
values are not discreet. Two equivalent expressions such as 1 / 2 and 2 / 4
can produce floating point results that differ in the least significant bit. This
is usually a meaningless difference in computations.

But not in comparisons. A programmer expects one-half to equal two-
fourths. I may be willing to avoid comparing REALs but I expect a logical
expression such as this to work every time:

IF Hours > Normal * 1.5

Using a REAL to receive the expression on the right casts doubt on the
results of the comparison. We resolved this issue in Clarion for Windows by
implementing fixed-point intermediate values with 31 decimal digits on each
side of the decimal point. This change also increased our maximum numeric
significance to 31 digits.



FORWARD ORIGINS OF THE CLARION LANGUAGE

Control Structures

While the business languages, COBOL and PL/I, offered the preferred
model for declaring data, the ALGOL derivatives, especially Modula-2,
offered better control structures. I modified the Modula-2 IF  statement by
making the THEN keyword replaceable by a statement separator. This had
the effect of eliminating superfluous THENs from multi-line IF  structures.
By adopting Modula-2’s ELSIF, I eliminated the massive indenting and
multiple terminations caused by deeply nested IF structures:

IF Number < 0
Sign = -1

ELSIF Number > 0
Sign = +1

ELSE
Sign = 0

END

I also used Modula-2 as a guide for Clarion’s CASE statement. Modula-2’s
CASE supports enumerated case labels and case label ranges—very useful
features. But I didn’t like its punctuation. The OF keyword introduces the
first case label, but subsequent case labels are initiated by a vertical bar (“|”).
I felt this punctuation was ugly and not very intuitive. Instead, I used OF to
introduce all case labels. I invented the OROF keyword to enumerate case
labels and the TO keyword for case label ranges. These changes produced a
very friendly syntax:

CASE SUB(Name,1,1)
OF(‘A’) TO (‘M’) OROF(‘a’) TO (‘m’)
DO FirstHalf

OF(‘N’) TO (‘Z’) OROF(‘n’) TO (‘z’)
DO SecondHalf

ELSE
DO FirstHalf

END

Modula-2 was the first usage I had seen of the LOOP keyword in its proper
context. In Modula-2, LOOP...END executes an unconditional loop that is
terminated by executing an EXIT  statement. I augmented this concept by
adding a CYCLE  statement to recycle the loop from within. (I also changed
EXIT  to BREAK  because I was using EXIT  for another purpose.) I
implemented conditional loops by adding four optional clauses to the
LOOP statement:

LOOP I = 1 TO 100 BY 2
LOOP 10000 TIMES
LOOP WHILE Count > 0
LOOP UNTIL EndOfFile

I felt that good program organization required local subroutines. A local
subroutine is a block of statements that has been removed from the main
logic and is executed by a subroutine call statement. If the subroutine is
aptly named, the main logic becomes shorter without losing clarity. COBOL
and BASIC use PERFORM and GOSUB for this purpose. Local
procedures in Pascal and Modula-2 nearly fit the bill but they require a



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

prototype statement to declare the parameter types. I didn’t want to support
subroutine parameters because I wanted all the caller’s data to be visible to
the subroutine.  I designed the ROUTINE  statement to initiate a local
subroutine. ROUTINE s are placed at the end of a procedure or function and
are executed by a DO statement.

A number of languages support executing a single statement from a list of
statements as indicated by a statement selection integer. FORTRAN uses the
computed GOTO .  COBOL uses GOTO...DEPENDING ON. BASIC uses
ON...GOTO and ON...GOSUB. I wanted to implement a similar capability
that would execute any type of statement from a list of statements depending
on an integer expression. I named this structure EXECUTE  after the
common XEQ machine language instruction which executes the single
instruction addressed by its operand. This new structure is, I believe, unique
to the Clarion language, but has proven quite useful:

EXECUTE UpdateAction
ADD(Master)
PUT(Master)
DELETE(Master)

END

Taming the User Interface

In 1970, I was working for McDonnell Douglas Automation Company when
we purchased one of the first IV/70 computers built by Four Phase Systems,
Inc. It was a marvelous machine96K of solid-state memory, with a
footprint not much larger than a PC. What made this box so interesting was
its video support: 32 CRTs daisy-chained from 8 video ports that were
refreshed directly from memory. Before the IV/70, every CRT I had used
was a communications device. You could watch individual characters display
as they arrived at the terminal. With the IV/70, an entire new screen was
displayed every thirtieth of a second. It was the perfect platform for
interactive programs. But no one seemed to notice. Four Phase was selling
the system as a replacement for IBM’s clustered CRTs and as a multi-station
keypunch.

I had a higher use in mind. In 1973, I formed a company to develop a turn-
key hospital information system based on the IV/70 computer. I wrote a
multi-user operating system and a macro-language that exercised it. Then I
wrote a macro pre-processor and a small hospital information system. The
entire process took 9 months.

The macro language accessed the CRTs as if they were memory (that’s what
they were!) using move macros. The hospital application “painted” the
screen by moving literals to the video memory, then placed entry field
descriptions in a user field table and returned to the operating system for
processing. When a field completed or a special key was pressed, control
returned to the application.



FORWARD ORIGINS OF THE CLARION LANGUAGE

This strategy had a distinct operating system “centric” viewpoint. Function
keys were connected to screen procedures. Screen procedures created field
tables that were connected to field edit procedures. A program didn’t “run”
in a conventional sense. In fact, there was no such thing as a program—just
a set of procedures that responded to operating system events.  The
operating system was in control. It was up to the programmer to anticipate
its needs. Our programmers eventually became so proficient with this
approach that most hospital systems could be designed, implemented, and
fully tested before the hardware was cabled together.

But it was never intuitive. Every one of our programmers climbed a steep
learning curve. Event-driven programming is hard to grasp. Later, in one of
the most vivid flashes of insight I have ever experienced, it dawned on me
that an event-driven operating system could be controlled by a conventional
program. The user interface would be invoked by a single statement. For
Clarion, I called it ACCEPT. The leading edge of ACCEPT would return
control to the operating system and the trailing edge could serve as the entry
point for all event processing. A small set of functions would be crafted to
identify the event that occurred and the fields involved.

Event-driven systems had always seemed “inside-out” to me. I was inside,
chained to an oar, obeying the drummer, processing his events. I realized
that ACCEPT would make me the master again. Now the drum was mine! I
would call the operating system, not the other way around.

But how would Clarion depict a screen layout? Well, if screen literals are
data and screen fields are data, then a screen layout has to be a data
structure, doesn’t it? I unimaginatively called it a SCREEN structure.
OPEN(MyScreen) would display a screen. ACCEPT would enable the
keyboard and handles all of the behavior of operator entry. When the
operator completes a field or presses a “hot” key, the ACCEPT statement
would “fall through,” releasing control to the program.  CLOSE(MyScreen)
would restore the state of the monitor before “MyScreen” was opened.

Declaring screen layouts made them easy to process but even easier to
design. The development team integrated a screen painter into the Clarion
source code editor which could generate SCREEN structures. The screen
painter could also read SCREEN structures. Get the picture? Position the
cursor in a SCREEN structure and invoke the screen painter. The screen
painter interprets the source and displays the screen layout. Now “paint”
some changes on the screen and exit. The screen painter changes the source
code by replacing the old SCREEN structure with the updated version.
Interactive visual design like this is impossible without declared structures.

I designed a similar structure for report layouts.  REPORT structures
contain layouts for print lines, page headers and page footers. The PRINT
statement handles data formatting and page overflow automatically. And a
report painter is integrated with the source code editor to maintain
REPORT structures just like SCREEN structures.



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Opening Windows

As luck would have it, our user interface design was perfectly suited to
Microsoft Windows—an “inside out” operating system if I ever saw one.
Windows programmers were having a very difficult time—who could blame
them? The “Hello World” example shipped with a popular C++ product was
8 pages long! Windows was in desperate need of a simple messaging model
like the Clarion ACCEPT loop. We decided to provide just that.

We changed our SCREEN structures to WINDOW structures, introducing
the grammar necessary to declare and contain Windows objects and
properties. We added multi-threading to accommodate the multiple
document interface. We changed the grammar of REPORT structures to
depict WYSIWYG reports, background forms, and nested group headers,
footers, and sub-totals.

The ACCEPT statement became a structure defining the boundaries of an
event processing loop. We designed the compiler to cooperate with the run-
time library to hide the direction of the procedure calls used to process
window events.  A call to a run-time window processor is generated above
the ACCEPT loop. The loop itself is generated as an embedded accept
procedure.

The window processor creates the necessary objects, specifying a common
event processing procedure for every event produced by every object.  This
event processor handles “housekeeping” events such as redraws and calls the
embedded accept procedure to deal with other events. When the window
closes, the window processor returns control to the statement following the
ACCEPT loop.

To the Clarion programmer, it is all quite simple. Open a window, then fall
into an ACCEPT loop. The ACCEPT loop cycles for every event the
program needs to see. Close the window and fall out of the loop.

We defined a convenient set of functions to identify the events and objects
involved. The code necessary to process a typical dialog box looks like this:



FORWARD ORIGINS OF THE CLARION LANGUAGE

OPEN(Window) !Open the window
ACCEPT !Enable the window
CASE FIELD() !Which field needs attention?
OF ?OK ! ‘OK’ needs attention
CASE EVENT() !  Which event has occurred?
OF EVENT:Selected !   ‘OK’ is pressed down

: !    Process the OK button
CLOSE(Window) !    Close the window

END !  End CASE EVENT()
OF ?Cancel ! ‘Cancel’ needs attention
CASE EVENT() !  Which event has occurred?
OF EVENT:Selected !   ‘Cancel’ is pressed down

: !    Process ‘Cancel’ button
CLOSE(Window) !    Close the window

END !  End CASE EVENT()
ELSE ! Must be a non-field event
CASE EVENT() !  Which event has occurred?
OF EVENT:CloseWindow !   The window will be closed

: !    Process window close down
END !  End CASE EVENT()

END ! End CASE FIELD()
END !End ACCEPT
RETURN !Return to the caller

A by-product of our object-oriented run-time library corrected a serious
deficiency in the Clarion language—compiler invariants. Declaring screens,
reports, and files is very illuminating. But it can also be restrictive. Because
they are compiled in, you can’t change most declarations at run-time.  Many
of the language extensions requested by Clarion programmers involved
making declared attributes visible to and changeable by the program

In our Windows run-time library, these structures are objects. Objects have
properties. And properties can be changed. Anytime. Since we had already
overloaded the period as both a structure terminator and a decimal point, we
could not implement the standard object oriented notation of object.property.
So we elected to use “curly brackets” to enclose properties. With this
notation, any declared attribute, such as the text displayed on a button, can
be modified by a statement such as:

?Button{PROP:Text} = ‘My Button’

Designing a Database

I wanted to implement a simple database syntax that would support all three
standard file access methods, direct, sequential, and indexed. The underlying
file organization would also be simple: The file would contain a header
followed by fixed length data records. The header would describe the record
layout and associated keys and memos which would reside in separate files.
This arrangement is similar to that used by dBase—a record could be
accessed sequentially or directly by key or by its relative record number. I
designed a FILE  structure, similar to a COBOL FD, to declare files and
their components:



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Detail FILE,PRE(DTL),NAME(‘C:\LEDGER\DETAIL.DAT’)
AcctKey KEY(DTL:AcctNo,DTL:Period,DTL:Date)
BatchKey KEY(DTL:Batch,DTL:Period),DUP
Comment MEMO(4096)

RECORD !Detail record
AcctNo SHORT !Account number
Period BYTE !Accounting period
Date DATE !Transaction date
Batch STRING(12) !Batch ID
Amount DECIMAL(12,2) !Amount (+/- = debit/credit)

END
END

I implemented sequential processing using SET, NEXT , PREVIOUS, and
SKIP verbs. SET establishes the sequence (by key or relative record
number) and starting point for the other three verbs which read records
forward and backward, and skip over records. These verbs combine nicely
with the end-of-file function (EOF) in a read loop:

SET(Dtl:AcctKey) !Set account number sequence
LOOP UNTIL EOF(Detail) !Loop through every record
NEXT(Detail) !Read the next record

    :
END

The GET verb reads a record randomly by key or relative record number.
Importantly, GET does not interfere with sequential processing by resetting
the next record processed.  PUT and DELETE  process records accessed by
NEXT , PREVIOUS, or GET. ADD inserts a new record in the database.
This database access grammar proved to be efficient, robust and versatile—
an essential and popular component of our product.

As the Clarion language spread, however, it took on new responsibilities.
Clarion developers needed to access dBase files. So we added a dBase
procedure library (we called Clarion procedure libraries “Language
Extension Modules”—or LEMs). Then Novell came out with client-server
support for Btrieve (server-based indexing). Some large Clarion applications
needed Btrieve to improve their transaction throughput. So two of our third-
party developers came out with Btrieve LEMs.

That left DB2. And RDB. And Oracle. And SQL Server. And every other
variety of database that runs on or is accessed by PCs. We were planning to
support direct C function calls in the next version of the language, so any
database with a C language API could be accessed by a Clarion program.
But it was clear to me that this was not the answer. Surely a general-purpose
business language shouldn’t be using a different grammar for every database
format. Migrating a data file shouldn’t require a major program overhaul.
The Clarion language needed standardized, built-in support for all common
databases.

It was suggested that we adopt SQL as our database grammar. I took the
suggestion seriously and rewrote some typical Clarion programs using
embedded SQL. It wasn’t long before I realized this was a terrible idea.
When used as a programming language, SQL is extremely verbose and
inelegant.  The little four statement record loop illustrated earlier becomes



FORWARD ORIGINS OF THE CLARION LANGUAGE

this albatross under SQL:

DECLARE X CURSOR
  FOR SELECT     *
    FROM         Detail
    ORDER        BY Dtl:AcctNo,Dtl:Period,Dtl:Date
  END
END
OPEN X
LOOP
  FETCH X
  IF ReturnCode = 100 THEN BREAK.
    :
END
CLOSE X

Not only are SQL cursors inelegant, they are also nearly useless.  You can’t
make a cursor skip—for example, to re-display a prior page of records. And
you can’t make it relocate—for example, to jump to “Jones” while browsing
alphabetically. I concluded that if I were to replace the Clarion database
access syntax with SQL, I would have been tarred and feathered and run out
of town on a rail.

So we decided to implement replaceable database drivers. Clarion
programmers liked their database grammar, they just needed support for
other database formats. By building on the existing language structure, we
would be leveraging their knowledge as well as enhancing their current
applications. With our new database driver technology, we would make all
databases look alike—a non-trivial benefit.

A New View

To produce SQL database drivers, we map SQL syntax onto our own
database grammar. Our SET statement constructs an SQL SELECT
statement which is issued at the first instance of a NEXT  or PREVIOUS
operation. If you change directions (e.g. NEXT ...PREVIOUS), the driver
issues another SELECT  with a different ORDER BY clause. Our GET
issues a SELECT ...FETCH . ADD issues an INSERT; GET...DELETE
issues a DELETE ; and GET...PUT issues an UPDATE . A few features,
such as relative record access, are not supported for SQL databases, but
otherwise, the implementation is quite complete.

However, our database grammar was unable to exercise some very important
SQL features. Clarion programs implement record filters by reading and
throwing out unwanted records:

LOOP UNTIL EOF(Part)
NEXT(Part)
IF Prt:OnHand > 0 THEN CYCLE

    :
END

An SQL database can filter records on the server and save a lot of time.
Clarion programs join files by reading the primary record to prime a key in



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

order to read the secondary record. An SQL database returns the primary and
secondary records with a single access. And Clarion programs read every
field in every record on every access. SQL returns only the fields you need.

Of course, an SQL database cannot read minds. You have to tell it what you
want it to do. So we designed a VIEW structure for this purpose:

View VIEW(Part),FILTER(‘PRT:OnHand = 0’)
PROJECT(PRT:Number,PRT:Name,PRT:OnHand,PRT:Usage)
JOIN(Vendor,PRT:Vendor,VND:Number)
PROJECT(VND:Name,VND:Address,VND:CityStateZip)

END
END

This VIEW structure consolidates the intentions of a Clarion program so that
the database driver can utilize any services offered by its underlying
database engine. The database driver either performs filter (record selection),
join (record lookup), and project (field selection) operations or requests the
database server to do so. In either case, performance is optimized.

There was also a problem implementing optimistic concurrency under SQL.
To update a shared file, a Clarion program reads and saves a record. Then,
before it is updated, the record is locked, reread, and compared to the saved
copy. If they are the same, the changes are written to the database.
Otherwise, the record has been changed by another workstation and the
operator is so advised. This process is called “optimistic concurrency” and is
based on the expectation that records are usually unchanged.

SQL implements optimistic concurrency with a WHERE clause that requires
that all fields to be updated continue to have the same value. If one or more
fields have changed, SQL returns an appropriate error. Since Clarion had no
syntax to make such a request, we added a WATCH statement for this
purpose. WATCH is issued before a GET, NEXT, or PREVIOUS to initiate
optimistic concurrency. When the record is accessed, the driver saves a copy.
In response to the PUT statement, the driver either rereads the record for
comparison or issues an UPDATE...WHERE. to an SQL database. If the
record has changed, PUT returns an error.

Our First Compiler

We shipped version 1.0 of Clarion in May of 1986 with both a compiler and
an interpreter. The Clarion Compiler produced intermediate code that was
then interpreted by the Clarion Processor. The intermediate code was so
compact, that large Clarion applications would run on the small memory
sizes (256K) that characterized PCs of that era. The compiler produced such
tight code by generating a binary description of every declaration statement.
Then the data was addressed by a two-byte pointer to the binary description.
So it took five bytes to add an integer to a string and format the result
according to a picture (one byte for the add operation and four bytes for the
pointers to the integer and picture string descriptions).  For every operation,



FORWARD ORIGINS OF THE CLARION LANGUAGE

the Processor examined the data types of the elements involved and
performed any necessary conversions.

But tight intermediate code wasn’t the primary reason for this design. By
interpreting the output from the compiler, the Processor could execute a
Clarion application without requiring a link step. This was no small
consideration. In 1985 and for a long time thereafter, linking was a time-
consuming process. Our customers appreciated quick testing, but they also
let us know that “real” programming languages produced .EXE files! Early
the next year, we released the Clarion Translator that converted Clarion
intermediate code into .OBJ files by replacing the operation codes with
procedure calls. The pointers were passed as parameters. This strategy
served us well for six years but also posed some problems:

       • We had trouble with external libraries. .OBJ files could
be linked into a Clarion .EXE, but they could not be
executed directly by the Processor. We designed a
process that converted a suitable .OBJ into a special
binary format (LEM) that could be executed by the
processor and changed back into an .OBJ by the Transla-
tor. But the process was complicated and was only used
by sophisticated developers.

       • Simple Clarion programs produced big .EXEs. The run-
time decision making referenced library procedures that
were included in the .EXE but never called.  That made a
“Hello World” program take 141K.

       • Clarion applications ran slower than C, Pascal, and
Modula-2 programs because Clarion programs examined
data types at run-time while the other languages did so
at compile time.

       • It was no longer necessary to avoid linking in the test
cycle. New linkers that supported run-time libraries
could link a program for testing as fast as we could load
the Processor.

Most importantly, we needed technology that would provide a development
path to Windows, protected mode, OS/2, UNIX, 32-bit, and non-Intel
architectures.

A New Partner

In May of 1990, we solved those problems and many others by licensing the
TopSpeed technology from Jensen & Partners International (JPI), a British
company. JPI was formed in 1988 when Niels Jensen, founder of Borland
International, and his language development team left that company as a
group. They purchased their work in progress and produced the TopSpeed
product line, the top-rated compiler technology in the industry. JPI had



COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

developed C, C++, Pascal, and Modula-2 compilers that shared the same
optimizing code generator and project system. JPI called the compilers
“front-ends” and the code generator the “back-end.”

We started immediately writing a Clarion front-end. As usual, it was harder
than we thought. The language required more changes than we expected.
The project took longer and used more resources than we thought it would.
But we were thrilled with the results.

We knew the TopSpeed back-end was good, but we were astonished when a
Clarion “Sieve of Eratosthenes” (an algorithm for finding prime numbers)
ran twice as fast as the same program written with Borland’s Turbo C++. We
had also licensed TopSpeed linking technology, but I hadn’t realized just
how good it was. TopSpeed’s unique ”Smart Linking” produced perfect
granularity by eliminating all unreferenced procedures and static data
elements from an .EXE. Better yet, while we were working on our front-
end, JPI had developed an automatic overlay loader, DOS DLLs, a royalty-
free DOS extender, and had announced 32-bit support. With this state-of-the-
art technology, we had finally removed the performance penalty that had
always been associated with high-level business languages.

In September of 1991, we announced our new product at the first Clarion
Developers Conference. New features and the Clarion/TopSpeed connection
drew rave reviews. Caught up in the festivity of the occasion, Niels Jensen,
and I started talking about merging our companies. It made a great deal of
sense. TopSpeed products would gain a US presence and access to a much
larger programming market. Clarion products would own their core
technology. We would be the first to apply leading edge compiler technology
to business software development tools. After a lengthy negotiation, the
merger was concluded in April of 1992. Two and a half years later, after the
companies had completely homogenized their operations and product lines,
the successor company was renamed TopSpeed Corporation. In October of
1994, TopSpeed Corporation released Clarion for Windows, the first product
developed in its entirety by the merged companies.

Where We Stand Now

These remarks originally comprised the introduction to the Programmer’s
Guide that accompanied Clarion Database Developer Version 3.0, released in
April of 1993. Extensive additions and revisions have been necessary for the
Windows version of Clarion. Such is progress. I think of software
development as the process of gently rocking a Chinese checker board until
all the marbles fall into holes. I believe in the notion of a final, correct
design. Until Clarion for Windows, I felt that we were a long way from our
goal. Now I am not so sure. There are very few marbles rolling.



CHAPTER 1 INTRODUCTION 1-1

IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

The Language Reference Manual

Clarion for Windows is an integrated environment for writing data
processing applications and management information systems for
microcomputers using the Windows operating environment. Clarion’s
programming language is the foundation of this environment. In this
manual, the language is concisely documented in a modular fashion.
Although this is not a text book, you should consult this manual first when
you want to know the precise syntax required to implement any declaration,
statement, or function.

As far as possible, real-world example code is provided for each item.

Chapter Organization

CHAPTER 1 - Introduction  provides an introduction to the Clarion
Language Reference. It provides a brief overview of the contents of each
chapter, and a guide to help the reader understand the documentation
conventions used throughout the book.

CHAPTER 2 - Program Source Code Format provides the general layout
of a Clarion Windows program. Punctuation, special characters, reserved
words, and a detailed description of the “building blocks” required to create
modular, structured Clarion source code are documented here.

CHAPTER 3 -  Declaring Variables describes the data types and attributes
used to declare variables in a Clarion program. In addition, formatting
masks, called “picture tokens,” are defined and illustrated.

CHAPTER 4 - Expressions and Assignments defines the syntax required
to combine variables, functions, and constants into numeric, string, or
logical expressions. It also defines how the value of an expression is
assigned to variables.

CHAPTER 5 - Control Statements describes compound executable
statements that control program flow and operation.

CHAPTER 6 - Window Structures describes the APPLICATION and
WINDOW data structures and all their components and attributes.

CHAPTER 7 - Window Commmands describes the executable statements
and functions that are specific to APPLICATION and WINDOW structures.

CHAPTER 8 - Reports describes the REPORT data structure and all its



1-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

components and attributes. The executable statements and functions that are
specific to using a REPORT structure are also covered here.

CHAPTER 9 - Graphics Commands describes executable statements and
functions that draw graphical figures in APPLICATION, WINDOW, and
REPORT structures.

CHAPTER 10 - Data Files describes the FILE structure. This chapter
covers the declarations, statements, and functions which access data files.
The statements and functions required for multi-user and transaction
processing systems are also documented here.

CHAPTER 11 - File Views describes the VIEW structure. This chapter
covers the declarations, statements, and functions which access data files
through the VIEW structure.

CHAPTER 12 - Memory Queues describes the QUEUE data structure,
which is used to rapidly process information in random access memory.
Along with all its components and attributes, the executable statements and
functions that are specific to using a memory QUEUE are also covered here.

CHAPTER 13 - Miscellaneous Procedures and Functions documents the
statements and functions that do not specifically apply to the subjects
covered in chapters 1 through 12.

APPENDIX A - DDE Library Reference documents the statements and
functions that perform Dynamic Data Exchange with other concurrently
executing Windows programs.

Reference Item Format

Each Clarion programming language element referenced in this manual is
printed in UPPER CASE letters. Components of the language are
documented with a syntax diagram, a detailed description, and source code
examples.

Items are documented in logical groupings, dependent upon their
hierarchical relationships. Therefore, the table of contents for this book is
not listed in alphabetical order. In general, data types and structures occur at
the beginning of a chapter, followed by their attributes, and executable
statements and functions at the end.

The documentation format used in this book is illustrated in the syntax
diagram on the following page.



CHAPTER 1 INTRODUCTION 1-3

KEYWORD (short description of intended use)

[label] KEYWORD( | parameter1 | [ parameter2 ] ) [ATTRIBUTE1( ) ] [ATTRIBUTE2( ) ]
| alternate |
| parameter |
| list |

KEYWORD A brief statement of what the KEYWORD does.

parameter1 A complete description of parameter1, along with how it
relates to parameter2 and the KEYWORD.

parameter2 A complete description of parameter2, along with how it
relates to parameter1 and the KEYWORD. Because it is
enclosed in brackets, [ ], it is optional, and may be
omitted.

alternate parameter list
A complete description of alternates to parameter1,
along with how they relate to parameter2 and the KEY-
WORD.

ATTRIBUTE1 A sentence describing the relation of ATTRIBUTE1 to
the KEYWORD.

ATTRIBUTE2 A sentence describing the relation of ATTRIBUTE2 to
the KEYWORD.

A concise description of what the KEYWORD  does. In many cases the
KEYWORD will be an attribute of a keyword that was described in the
preceding text. Sometimes a KEYWORD has no parameters and/or
attributes.

Events Generated: If the KEYWORD generates events, they are listed here.

Return Data Type: The data type returned if KEYWORD is a function.

Errors Posted: If KEYWORD posts errors which may be trapped by the ERROR and
ERRORCODE functions, they are listed here.

Example:

FieldOne = FieldTwo + FieldThree !This is a source code example
FieldThree = KEYWORD(FieldOne,FieldTwo) !Comments follow the “!” character

See Also: Other pertinent keywords and topics



1-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Conventions and Symbols

Symbols are used in the syntax diagrams as follows:

 Symbol Meaning

     [ ] Brackets enclose an optional (not required) attribute or
parameter.

     ( ) Parentheses enclose a parameter list.

     | | Vertical lines enclose parameters, where one, but only
one, of the parameters is allowed.

Coding example conventions used throughout this manual:

CLARION KEYWORDS All caps

DataNames Mixed case with caps used for readability

Comments Predominantly lower case

The purpose of these conventions is to make the code examples readable and
clear.



CHAPTER  2 PROGRAM SOURCE CODE FORMAT 2-1

Statement FStatement FStatement FStatement FStatement Formatormatormatormatormat
Clarion is a “statement oriented” language. A statement oriented language
makes use of the fact that its source code is contained in ASCII text files so
every line of code is a separate record in the file. Therefore, the Carriage
Return/Line Feed record delimiter can be used to eliminate punctuation.

In general, the Clarion statement format is:

label STATEMENT[(parameters)] [,ATTRIBUTE[(parameters)]] ...

Attributes specify the properties of the item and are only used on data
declarations. Executable statements take the form of a standard procedure
call, except assignment statements (A = B) and control structures (such as
IF, CASE, and LOOP).

A statement’s label must begin in column one (1) of the source code. A
statement without a label must not start in column one. A statement is
terminated by the end of the line. A statement too long to fit on one line can
be continued by a vertical bar ( | ). The semi-colon is an optional statement
separator that allows you to place more than one statement on a line.

Being a statement oriented language eliminates from Clarion much of the
punctuation required in other languages to identify labels and separate
statements. Blocks of statements are initiated by a single compound
statement, and are terminated by an END statement (or period).

Declaration and Statement Labels

The language statements in a source module can be divided into two general
categories: data declarations and executable statements, or simply “data” and
“code.”

During program execution, data declarations reserve memory storage areas
that are manipulated by executable statements. A label is required for the
data to be referenced in executable code. All variables, data structures,
PROCEDUREs, FUNCTIONs, and ROUTINEs are referenced by labels.

A label defines a specific location in a PROGRAM. Any code statement may
be identified and referenced by a label. This allows it to be used as the target
of a GOTO statement. Each label on an executable statement adds ten bytes
to the executable code size, even if not referenced.

The label on a PROCEDURE or FUNCTION statement is the procedure or
function’s name. Using the label of a PROCEDURE in an executable
statement executes the procedure. The label of a FUNCTION is used in
expressions, or parameter lists of other functions, to assign the value
returned by the function.



2-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The rules for valid Clarion labels are:

     • A label MUST begin in column one (1) of the source
code.

     • A label may contain letters (upper or lower case),
numerals 0 through 9, the underscore character (_), and
colon (:).

     • The first character must be a letter or the underscore
character.

     • Labels are not case sensitive (i.e. CurRent and CUR-
RENT are the same).

     • A label may not be a reserved word.

Structure Termination

Compound data structures are created when data declarations are nested
within other data declarations. There are many compound data structures
within the Clarion language: APPLICATION, WINDOW, REPORT, FILE,
RECORD, GROUP, VIEW, QUEUE, etc. These compound data structures
must be terminated by a period (.) or the keyword END.

IF, CASE, EXECUTE, LOOP, BEGIN, and ACCEPT are all executable
control structures. They must also be terminated with a period or the END
statement.



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-3

Field Qualification

Variables declared as members of complex data structures (GROUP,
QUEUE, FILE, RECORD, etc.) may have duplicate labels, as long as the
duplicates are not contained within the same structure. To explicitly
reference fields with duplicate labels in separate structures, you may use the
PRE attribute on the structures just as it is documented (Prefix:FieldLabel)
to provide unique names for each field. However, the PRE attribute is not
required for this purpose and may be omitted.

Any field of any complex structure can be explicitly referenced by
prepending the label of the structure containing the field to the field label,
separated by a colon (StructureName:FieldLabel). You must use this Field
Qualification syntax to reference any field in a complex structure that does
not have a PRE attribute.

If the field is within nested complex data structures, you must prepend each
successive level’s structure label to the field label to explicitly reference the
field (if the nested structure has a label). If any nested structure does not
have a label, then that part is omitted from the qualification sequence. This
is similar to anonymous unions in C++. This means that, in the case of a
FILE structure (without a PRE attribute) in which the RECORD structure
has a label, the individual fields in the file must be referenced as
FileLabel:RecordLabel:FieldLabel. If the FILE’s RECORD structure does
not have a label, the individual fields are referenced as FileLabel:FieldLabel.

Example:

MasterFile FILE,DRIVER(‘TopSpeed’)
Record RECORD
AcctNumber LONG !Referenced as Masterfile:Record:AcctNumber

. .
Detail FILE,DRIVER(‘TopSpeed’)

RECORD
AcctNumber LONG !Referenced as Detail:AcctNumber

. .
Memory GROUP,PRE(Mem)
Message STRING(30) !May be referenced as Mem:Message or Memory:Message

END
SaveQueue QUEUE
Field1 LONG !Referenced as SaveQueue:Field1
Field2 STRING !Referenced as SaveQueue:Field2

END

OuterGroup GROUP
Field1 LONG !Referenced as OuterGroup:Field1
Field2 STRING !Referenced as OuterGroup:Field2
InnerGroup GROUP
Field1 LONG !Referenced as OuterGroup:InnerGroup:Field1
Field2 STRING !Referenced as OuterGroup:InnerGroup:Field2

END
END

See Also: PRE



2-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Reserved Words

The following keywords are reserved and may not be used as labels for any
purpose:

ACCEPT AND BEGIN BREAK
BY CASE COMPILE CYCLE
DO EJECT ELSE ELSIF
END EXECUTE EXIT FUNCTION
GOTO IF INCLUDE LOOP
MEMBER NOT OF OMIT
OR OROF PROCEDURE PROGRAM
RETURN ROUTINE SECTION THEN
TIMES TO UNTIL WHILE
XOR

The following keywords may be used as labels of data structures or
executable statements. They may not be used as labels of PROCEDURE or
FUNCTION statements:

APPLICATION CODE DETAIL FILE
FOOTER FORM GROUP HEADER
ITEM JOIN MAP MENU
MENUBAR MODULE OPTION QUEUE
RECORD REPORT ROW SHEET
SUBTITLE TAB TABLE TITLE
TOOLBAR VIEW WINDOW



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-5

Special Characters

Initiators:   ! Exclamation point begins a source code comment.
  ? Question mark begins a field equate label.
  @ “At” sign begins a picture token.
  * Asterisk begins a parameter passed by address in a MAP prototype.

Terminators:   ; Semi-colon is an executable statement separator.
 CR/LF Carriage-return/Line-feed is an executable statement separator.
  . Period terminates a data or code structure (a substitute for END).
  | Vertical bar is the source code line continuation character.
  # Pound sign declares an implicit LONG variable.
  $ Dollar sign declares an implicit REAL variable.
  ” Double quote declares an implicit STRING variable.

Delimiters:   ( ) Parentheses enclose a parameter list.
  [ ] Brackets enclose an array subscript list.
  ’ ‘ Single quotes enclose a string constant.
  { } Curly braces enclose a repeat count in a string constant, or a

property parameter in an assignment statement.
  < > Angle brackets enclose an ASCII code in a string constant, or

indicate a  parameter in a MAP prototype which may be omitted.
  : Colon separates the start and stop positions of a string “slice.”

Connecters:   . Period is a decimal point used in numeric constants.
  , Comma connects parameters in a parameter list.
  : Colon connects a prefix to a label, or a complex structure label

to the label of one of its members.
  $ Dollar sign connects the window to a field equate label in a control

property assignment statement.

Operators:   + Plus sign indicates addition.
  - Minus sign indicates subtraction.
  * Asterisk indicates multiplication.
  / Slash indicates division.
  % Percent sign indicates modulus division.
  ^ Carat indicates exponentiation.
  < Left angle bracket indicates less than.
  > Right angle bracket indicates greater than.
  = Equal sign indicates assignment or equivalence.
  ~ Tilde indicates the logical “NOT” operator.
  & Ampersand indicates concatenation.



2-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PPPPPrrrrrogram Fogram Fogram Fogram Fogram Formatormatormatormatormat

PROGRAM (declare a program)

PROGRAM
[MAP

prototypes
    [MODULE( )

  prototypes
     END ]
 END ]
global data
    CODE
    statements
    [RETURN]
procedures or functions

PROGRAM The first declaration in a Clarion program source mod-
ule. Required.

MAP Global procedure and function declarations. Required.

MODULE Declare member source modules.

prototypes PROCEDURE and/or FUNCTION declarations.

global data Declare Global data which may be referenced by all
procedures and functions.

CODE Begin executable statements.

statements Executable program instructions.

RETURN Terminate program execution. Return to operating
system control.

procedures or functions
Source code for the procedures and functions in the
PROGRAM module.

The PROGRAM  statement is required to be the first declaration in a
Clarion program source module. It may only be preceded by source code
comments or a TITLE or SUBTITLE compiler directive. The PROGRAM
source file name is used as the object (.OBJ) and executable (.EXE) file
name, when compiled. The PROGRAM statement may have a label, but the
label is ignored by the compiler.

A PROGRAM with PROCEDUREs and/or FUNCTIONs must have a MAP
structure. The MAP declares the PROCEDURE and/or FUNCTION
prototypes. Any PROCEDURE or FUNCTION contained in a separate
source file must be declared in a MODULE structure within the MAP.

Data declared in the PROGRAM module, between the keywords
PROGRAM and CODE, is Global data that may be accessed by any



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-7

PROCEDURE or FUNCTION in the PROGRAM. Its memory allocation is
Static.

Example:

PROGRAM !Sample program declaration
INCLUDE(‘EQUATES.CLW’) !Include standard equates
MAP
CalcTemp !Procedure Prototype

END
CODE
CalcTemp !Call procedure

CalcTemp PROCEDURE
Fahrenheit REAL(0) !Global data declarations
Centigrade REAL(0)
Window WINDOW(‘Temperature Conversion’),CENTER,SYSTEM

STRING(‘Enter Fahrenheit Temperature: ‘),AT(34,50,101,10)
ENTRY(@N-04),AT(138,49,60,12),USE(Fahrenheit)
STRING(‘Centigrade Temperature:’),AT(34,71,80,10),LEFT
ENTRY(@N-04),AT(138,70,60,12),USE(Centigrade),SKIP
BUTTON(‘Another’),AT(34,92,32,16),USE(?Another)
BUTTON(‘Exit’),AT(138,92,32,16),USE(?Exit)

END
CODE  !Begin executable code section
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Fahrenheit
Centigrade = (Fahrenheit - 32) / 1.8
DISPLAY(?Centigrade)

OF ?Another
Fahrenheit = 0
Centigrade = 0
 DISPLAY
SELECT(?Fahrenheit)

OF ?Exit
BREAK

END
END
CLOSE(Window)
RETURN

See Also: MAP, MODULE, PROCEDURE, FUNCTION, Data Declarations and
Memory Allocation



2-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MEMBER (identify member source file)

MEMBER(program)
[MAP
    prototypes
 END ]

[label] local data
procedures or functions

MEMBER The first statement in a source module that is not a
PROGRAM source file. Required.

program A string constant containing the filename (without
extension) of a PROGRAM source file. This parameter
is required.

MAP Local procedure and function declarations. Any proce-
dures or functions declared here may be referenced only
by the procedures or functions in the MEMBER module.

prototypes PROCEDURE and/or FUNCTION declarations.

local data Declare Local Static data which may be referenced only
by the procedures and functions whose source code is in
the MEMBER module.

procedures or functions
Source code for the procedures and functions in the
MEMBER module.

MEMBER  is the first statement required to be in a source module that is
not a PROGRAM source file. It may only be preceded by source code
comments or a TITLE or SUBTITLE compiler directive. It is required at the
beginning of any source file that contains PROCEDUREs or FUNCTIONs
that are used by a PROGRAM. The MEMBER statement identifies the
program to which the source MODULE belongs.

A MEMBER module may have a local MAP structure. Procedures and
functions declared in this MAP are visible only to the other procedures and
functions in the MEMBER module. The source code for the procedures and
functions declared in this MEMBER MAP may be contained in the
MEMBER source file, or another file.

If the source code for the PROCEDURE or FUNCTION declared in a
MEMBER MAP is contained in a separate file, the PROCEDURE or
FUNCTION’s prototype must be declared in a MODULE structure within
the MEMBER MAP. That separate source file MEMBER MODULE must
also contain its own MAP which declares the same prototype for that
PROCEDURE or FUNCTION. Any PROCEDURE or FUNCTION not
declared in the Global (PROGRAM) MAP must be declared in a local MAP
in the MEMBER MODULE which contains its source code.

Data declared in the MEMBER module, after the keyword MEMBER and



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-9

before the first PROCEDURE or FUNCTION statement, is Member Local
data that may only be accessed by PROCEDUREs or FUNCTIONs within
the module (unless passed as a parameter). Its memory allocation is Static.

Example:

!Source1 module contains:
MEMBER(‘OrderSys’) !Module belongs to the OrderSys program
MAP !Declare local procedures
Func1(STRING),STRING !Func1 is known only in both module
MODULE(‘Source2.clw’)
HistOrd2 !HistOrd2 is known only in both modules

END
END

LocalData STRING(10) !Declare data local to MEMBER module

HistOrd PROCEDURE !Declare order history procedure
HistData STRING(10) !Declare data local to PROCEDURE
CODE
LocalData = Func1(HistData)

Func1 FUNCTION(RecField) !Declare local function
CODE
!Executable code statements

!Source2 module contains:
MEMBER(‘OrderSys’) !Module belongs to the OrderSys program
MAP !Declare local procedures
HistOrd2 !HistOrd2 is known only in both modules
MODULE(‘Source1.clw’)
Func1(STRING),STRING !Func1 is known only in both modules

END
END

LocalData STRING(10) !Declare data local to MEMBER module

HistOrd2 PROCEDURE !Declare second order history procedure
CODE
LocalData = Func1(LocalData)

See Also: MODULE, PROCEDURE, FUNCTION, Data Declarations and Memory
Allocation



2-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MAP (declare PROCEDURE and/or FUNCTION prototypes)

MAP
  prototypes
  [MODULE( )
    prototypes
   END ]
END

MAP Contains the prototypes which declare the functions,
procedures and external source modules used in a
PROGRAM or MEMBER module.

prototypes Declare a PROCEDURE or FUNCTION.

MODULE Declare a member source module.

A MAP  structure contains the prototypes which declare the functions,
procedures and external source modules used in a PROGRAM or MEMBER
module. A MAP declared in the PROGRAM source module declares
PROCEDUREs or FUNCTIONs that are available throughout the program.
A MAP in a MEMBER module declares PROCEDUREs or FUNCTIONs
that are available in that MEMBER module only.

A MAP structure is mandatory for any Clarion program because the
BUILTINS.CLW file is automatically included in your PROGRAM’s MAP
structure by the compiler. This file contains prototypes of most of the
procedures and functions in the Clarion internal library that are available as
part of the Clarion language. This file is required because the compiler does
not have these prototypes built into it (making it more efficient).Since the
prototypes in the BUILTINS.CLW file use some constant EQUATEs that are
defined in the EQUATES.CLW file, this file is also automatically included
by the compiler in every Clarion program.

Example:

!One file contains:
PROGRAM !Sample program in sample.cla
MAP !Begin map declaration
LoadIt ! LoadIt procedure

END !End of map

!A separate file contains:
 MEMBER(‘Sample’) !Declare MEMBER module
 MAP !Begin local map declaration
ComputeIt ! compute it procedure

 END !End of map

See Also: PROGRAM, MEMBER, MODULE, FUNCTION and PROCEDURE
Prototypes



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-11

MODULE (specify MEMBER source file)

MODULE(sourcefile)
  procedure prototype
  function prototype
END

MODULE Names a MEMBER module or external library file.

sourcefile A string constant. If the sourcefile contains Clarion
language source code, this specifies the filename (with-
out extension) of the source file which contains the
PROCEDUREs and/or FUNCTIONs. If the sourcefile is
an external library, this string may contain any unique
identifier.

procedure prototypeThe prototype of a PROCEDURE contained in the
sourcefile.

function prototype The prototype of a FUNCTION contained in the
sourcefile .

A MODULE  structure names a MEMBER module or external library file. It
contains the prototypes for the PROCEDUREs and FUNCTIONs contained
in the sourcefile. A MODULE structure can only be declared within a MAP
structure.

Example:

!The “sample.cla” file contains:
PROGRAM !Sample program in sample.cla
MAP !Begin map declaration
 MODULE(‘Loadit’) ! source module loadit.cla
 LoadIt ! load it procedure
END ! end module

 MODULE(‘Compute’) ! source module compute.cla
 ComputeIt ! compute it procedure
END ! end module

END !End map

!The “loadit.cla” file contains:
MEMBER(‘Sample’) !Declare MEMBER module
MAP !Begin local map declaration
 MODULE(‘Process’) ! source module process.cla
 ProcessIt ! process it procedure
END ! end module

END !End map

See Also: MEMBER, MAP, FUNCTION and PROCEDURE Prototypes



2-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROCEDURE (declare a procedure)

label PROCEDURE [(parameter list)]
local data
CODE

statements
[RETURN]

PROCEDURE Begins a section of source code that can be executed
from within a PROGRAM.

label Names the PROCEDURE.

parameter list An optional list of variables which pass values to the
PROCEDURE. This list defines the name of each
parameter as used within the PROCEDURE’s source
code. Each parameter is separated by a comma. The data
type of each parameter is specified in the procedure’s
prototype in the MAP structure.

local data Declare Local data which may be referenced only by this
procedure.

CODE Begin executable statements.

statements Executable program instructions.

RETURN Terminate procedure execution. Return to the point from
which the procedure was called.

PROCEDURE begins a section of source code that can be executed from
within a PROGRAM. It is called by naming the PROCEDURE label (with
its parameter list, if any) as an executable statement in the code section of a
PROGRAM, PROCEDURE, or FUNCTION.

A PROCEDURE terminates and returns to its caller when a RETURN
statement is executed. An implicit RETURN occurs at the end of the
executable code. The end of executable code for the PROCEDURE is
defined as the end of the source file, or the first encounter of a FUNCTION,
ROUTINE, or another PROCEDURE.

Data declared within a PROCEDURE, between the keywords PROCEDURE
and CODE, is Procedure Local data that can only be accessed by that
PROCEDURE (unless passed as a parameter to another PROCEDURE or
FUNCTION). This data is allocated memory upon entering the procedure,
and de-allocated when it terminates. If the data is smaller than the stack
threshold (5K is the default) it is placed on the stack, otherwise it is
allocated from the heap.

A PROCEDURE must be declared in the MAP of a PROGRAM or
MEMBER module. If declared in the PROGRAM MAP, it is available to
any other procedure or function in the program. If declared in a MEMBER
MAP, it is only available to other procedures or functions in that MEMBER
module.



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-13

Example:

PROGRAM !Example program code
MAP
 OpenFile(FILE) !Procedure prototype with parameter
 ShoTime !Procedure prototype without parameter
END
CODE
OpenFile(FileOne) !Call procedure to open file
ShoTime !Call ShoTime procedure
 !More executable statements

OpenFile PROCEDURE(AnyFile) !Open any file
CODE !Begin code section
OPEN(AnyFile) !Open the file
IF ERRORCODE() = 2 !If file not found
CREATE(AnyFile) ! create it

END
RETURN !Return to caller

ShoTime PROCEDURE !Show time
Time LONG !Local variable
Window WINDOW,CENTER

STRING(@T3),USE(Time),AT(34,70)
BUTTON(‘Exit’),AT(138,92,32,16),USE(?Exit)

END
CODE !Begin executable code section
Time = CLOCK() !Get time from system
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Exit
BREAK

END
END
RETURN !Return to caller

See Also: FUNCTION and PROCEDURE Prototypes, Data Declarations and Memory
Allocation



2-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FUNCTION (declare a function)

label FUNCTION [(parameter list)]
local data
CODE

statements
RETURN(value)

FUNCTION Begins a section of source code that can be executed
from within a PROGRAM.

label Names the FUNCTION.

parameter list An optional list of variables which pass values to the
FUNCTION. This list defines the name of each param-
eter as used within the FUNCTION’s source code. Each
parameter is separated by a comma. The data type of
each parameter is specified in the procedure’s prototype
in the MAP structure.

local data Declare Local data which may be referenced only by this
function.

CODE Begin executable statements.

statements Executable program instructions.

RETURN Terminate function execution and return the value to the
expression in which the function was used.

value A numeric or string constant or variable which specifies
the result of the function call.

FUNCTION  begins a section of source code that can be executed by
naming the FUNCTION label with its parameter list (empty parentheses are
required if no parameters are passed). FUNCTION execution is terminated
by a RETURN statement in its CODE section (required).

A function can be used as an expression component, or a parameter of a
PROCEDURE or another FUNCTION. A FUNCTION may also be called in
the same manner as a PROCEDURE, if the program logic does not require
the RETURN value. In this case, the compiler will generate a warning
(unless its prototype has the PROC attribute) which may be safely ignored.

Data declared within a FUNCTION, between the keywords FUNCTION and
CODE, is Procedure Local data that can only be accessed by that
FUNCTION (unless passed as a parameter to another PROCEDURE or
FUNCTION). This data is allocated memory on the stack upon entering the
function, and de-allocated when it terminates.

A FUNCTION must be declared in the MAP of a PROGRAM or MEMBER
module. If declared in the PROGRAM MAP, it is available to any other
procedure or function in the program. If declared in a MEMBER MAP, it is
only available to other procedures or functions in the MEMBER module.



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-15

Example:

PROGRAM
MAP
FullName(STRING,STRING,STRING),STRING !Function prototype with parameters
DayString,STRING !Function prototype without parameters

END
TodayString STRING(9)
CODE
TodayString = DayString() !Function call without parameters

! the () is required for a function
!Global executable statements

START(NewThread) !Clarion START function called as a
! procedure -- generates compiler warning
! but executes correctly

FullName FUNCTION(Last,First,Init) !Full name function
CODE !Begin executable code section
IF Init = ‘’ !If no middle initial
RETURN(CLIP(First) & ‘ ‘ & Last) ! return full name

ELSE !Otherwise
RETURN(CLIP(First) & ‘ ‘ & Init & ‘. ‘ & Last)

! return full name
END

DayString FUNCTION !Day string function
CODE !Begin executable code section
Day# = (TODAY() % 7) + 1 !Find day of week from system date
EXECUTE Day# !Execute, return day string
RETURN(‘Sunday’)
RETURN(‘Monday’)
RETURN(‘Tuesday’)
RETURN(‘Wednesday’)
RETURN(‘Thursday’)
RETURN(‘Friday’)
RETURN(‘Saturday’)

END

See Also: FUNCTION and PROCEDURE Prototypes



2-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CODE (begin executable statements)

CODE

The CODE statement separates the data declaration section from the
executable statement section within a PROGRAM, PROCEDURE, or
FUNCTION. The first statement executed in a PROGRAM, PROCEDURE
or FUNCTION is the statement following CODE.

Example:

OrdList PROCEDURE !Declare a procedure
!Data declarations go here
CODE !This is the beginning of the “code” section
!Executable statements go here

See Also: PROGRAM, PROCEDURE, FUNCTION



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-17

ROUTINE (declare local subroutine)

label ROUTINE

ROUTINE Declares the beginning of a local subroutine of execut-
able statements.

label The name of the ROUTINE.

ROUTINE  declares the beginning of a local subroutine of executable
statements. It is local to the PROCEDURE or FUNCTION in which it is
written and must be at the end of the CODE section of the PROCEDURE or
FUNCTION to which it belongs. All variables visible to the PROCEDURE
or FUNCTION are available in the ROUTINE. This includes all Procedure
Local, Module Local, and Global data.

A ROUTINE is called by the DO statement followed by the label of the
ROUTINE. Program control following execution of a ROUTINE is returned
to the statement following the calling DO statement. A ROUTINE is
terminated by the end of the source module, or by another ROUTINE,
PROCEDURE, or FUNCTION. The EXIT statement can also be used to
terminate execution of a ROUTINE’s code (similar to RETURN in a
PROCEDURE).

A ROUTINE is internally implemented by the compiler as a local procedure.
Therefore, there are some efficiency issues that are not immediately obvious:

          • DO and EXIT statements are very efficient.

          • Accessing the PROCEDURE’s local data is less efficent
than accessing module data.

          • Implicit variables used only within the ROUTINE are
less efficient than using local variables.

          • Each RETURN statement within a ROUTINE incurs a
40-byte overhead.

Example:

SomeProc PROCEDURE
CODE
!Code statements
DO Tally !Call the routine
!More code statements

Tally ROUTINE !Begin routine, end procedure
IF CountVar < 55 !If less than 55
CountVar += 1 ! increment counter

ELSE ! otherwise
CountVar = 0 ! reset the counter
EXIT ! and exit the routine

END !End if

See Also: EXIT, DO



2-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

END (terminate a structure)

END

END terminates a data declaration structure or a compound executable
statement. It is functionally equivalent to a period (.).

Example:

Customer FILE,DRIVER(‘Clarion’) !Declare a file
RECORD ! begin record declaration

Name STRING(20)
Number LONG

END ! end record declaration
END !End file declaration

CODE

IF Number <> SavNumber !Begin if structure
DO GetNumber

END !End if structure

CASE Action !Begin case structure
OF 1
DO AddRec

OF 2
DO ChgRec

OF 3
DO DelRec

END !End case structure



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-19

Statement Execution Sequence

In the CODE section of a Clarion program, statements are normally
executed line-by-line, in the sequence in which they appear in the source
module. Control statements, procedure calls, and function calls are used to
modify this execution sequence.

PROCEDURE calls modify the execution sequence by branching to the
called procedure and executing the code contained in it. Control returns to
the executable statement following the procedure call when a RETURN
statement is executed in the called procedure, or there are no more
statements in the called procedure to execute.

FUNCTION calls modify the execution sequence by branching to the called
function and executing the code contained in it. Control returns to the
executable statement containing the function call when a RETURN
statement is executed in the called function, returning the value of the
function.

Control structures—IF, CASE, LOOP, and EXECUTE—change the
execution sequence by evaluating expressions. When the expression is
evaluated, the control structure conditionally executes statements contained
within the structure.

Branching also occurs with the GOTO, DO, CYCLE, BREAK, EXIT, and
RETURN statements. These statements immediately and unconditionally
alter the normal execution sequence.

The START function begins a new execution thread, unconditionally
branching to that thread. However, the user may choose to activate another
thread by clicking the mouse on the other thread’s active window.

Example:

PROGRAM

MAP
 ComputeTime(*GROUP) !Passing a group parameter
 MatchMaster !Passing no parameters
END

ParmGroup GROUP !Declare a group
FieldOne STRING(10)
FieldTwo LONG

END
CODE !Begin executable code
FieldTwo = CLOCK() !Executes 1st
ComputeTime(ParmGroup) !Executes 2nd, passes control to procedure
MatchMaster !Executes after procedure executes fully



2-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROCEDURE and FUNCTION Calls

procname[(parameters)]
return = funcname[(parameters)]

procname The name of the PROCEDURE as declared in the
procedure’s prototype in the MAP. If this is not the label
of a PROCEDURE statement, compiler errors are
issued.

parameters An optional parameter list passed to the PROCEDURE
or FUNCTION. A parameter list may be one or more
variable labels or expressions. The parameters are
separated by commas and are declared in the prototype
in the MAP.

return The label of a variable to receive the value returned by
the FUNCTION.

funcname The name of the FUNCTION as declared in the
procedure’s prototype in the MAP. If this is not the label
of a FUNCTION statement, compiler errors are issued.

A PROCEDURE is called by its label (including any parameter list) as a
statement in the CODE section of a PROGRAM, PROCEDURE, or
FUNCTION. The parameter list must match the parameter list declared in
the procedure’s prototype in the MAP. Procedures cannot be called in
expressions.

A FUNCTION is called by its label (including any parameter list) as a
component of an expression or parameter list passed to another
PROCEDURE or FUNCTION. The parameter list must match the parameter
list declared in the function’s prototype in the MAP. A FUNCTION may
also be called by its label (including any parameter list), in the same manner
as a PROCEDURE, if its return value is not needed. This will generate a
compiler warning that can be safely ignored.

Example:

PROGRAM
MAP
 ComputeTime(*GROUP) !Passing a group parameter
 MatchMaster(),BYTE !FUNCTION passing no parameters
END

ParmGroup GROUP !Declare a group
FieldOne STRING(10)
FieldTwo LONG

END
CODE
FieldTwo = CLOCK() !Built-in function called as expression
ComputeTime(ParmGroup) !Call the compute time procedure
MatchMaster() !Call the function as a procedure

See Also: FUNCTION and PROCEDURE Prototypes



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-21

PPPPPrrrrrocedurocedurocedurocedurocedure Pe Pe Pe Pe Prrrrrototototototototototypingypingypingypingyping

FUNCTION and PROCEDURE Prototypes

name[(parameter list)] [,return type] [,calling convention] [, RAW] [, NAME( ) ] [, TYPE] [, DLL ]
[, PROC][, PRIVATE ]

name The label of a PROCEDURE or FUNCTION statement.

parameter list The data types of the parameters. Each parameter’s data
type may be followed by a label used to document the
parameter (only). Each parameter may also include an
assignment of the default value (a constant) to pass if the
parameter is omitted.

return type The data type the FUNCTION will RETURN.

calling convention Specify the C or PASCAL stack-based parameter calling
convention.

RAW Specifies that STRING or GROUP parameters pass only
the memory address (without passing the length of the
passed string). It also alters the behaviour of ? and *?
parameters. This attribute is only for C compatability
and is not valid on a Clarion language procedure.

NAME Specify an alternate, “external” name for the PROCE-
DURE or FUNCTION. This attribute is only for other
language compatability and is not valid on a Clarion
language procedure.

TYPE Specify the prototype is a type definition for procedures
passed as parameters.

DLL Specify the PROCEDURE or FUNCTION is in a .DLL.

PROC Specify the FUNCTION may be called as a PROCE-
DURE without generating a compiler warning.

PRIVATE Specify the PROCEDURE or FUNCTION may be
called only from another PROCEDURE or FUNCTION
within the same MODULE.

All PROCEDUREs and FUNCTIONs in a PROGRAM must be declared as
a prototype in a MAP. A prototype is defined as the name of the
PROCEDURE or FUNCTION, an optional parameter list, and the data
return type (if prototyping a FUNCTION). You may specify the parameter
calling convention, if you are linking in objects that require stack-based
parameter passing (such as objects that were not compiled with a Clarion
TopSpeed compiler).

The optional parameter list is a list of the data types that are passed to the
PROCEDURE or FUNCTION. Each passed parameter in the parameter list



2-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

is delimited by commas, and the entire parameter list is enclosed in the
parentheses following the name.

In the parameter list, each parameter’s data type may be followed by a valid
Clarion label which is completely ignored by the compiler (used only to
document the purpose of the parameter). Each numeric value parameter’s
(passed by value) definition may also include the assignment of a constant
value to the data type (or the documentary label, if present) that defines the
default value to pass if the parameter is omitted.

Any parameter that may be omitted when the PROCEDURE or FUNCTION
is called must be included in the prototype’s parameter list and enclosed in
angle brackets ( < > ) unless a default value is defined for the parameter. The
OMITTED function allows you to test for unpassed paramters at runtime
(except those parameters which have a default value defined).

You can optionally specify the C (right to left) or PASCAL (left to right and
compatible with Windows for both 16-bit and 32-bit) stack-based parameter
calling convention for your PROCEDURE or FUNCTION. This provides
compatibility with third-party libraries written in other languages (if they
were not compiled with a TopSpeed compiler). If you do not specify a
calling convention, the default is the internal, register-based parameter
passing convention used by all the TopSpeed compilers.

The RAW attribute allows you to pass just the memory address of a *?,
STRING, or GROUP parameter (whether passed by value or by reference) to
a non-Clarion language procedure or function. Normally, STRING or
GROUP parameters pass both the address and the length of the string. The
RAW attribute eliminates the length portion. This is provided for
compatibility with external library functions which expect only the address
of the string.

The NAME attribute provides the linker an external name for the
PROCEDURE or FUNCTION. This is also provided for compatibility with
libraries written in other languages. For example: in some C language
compilers, with the C calling convention specified, the compiler adds a
leading underscore to the function name. The NAME attribute allows the
linker to resolve the name of the function correctly.

The TYPE attribute indicates the prototype does not reference a specific
PROCEDURE or FUNCTION. Instead, it defines a prototype name used in
other prototypes to indicate the type of procedure passed to another
PROCEDURE or FUNCTION as a parameter.

The DLL attribute specifies that the PROCEDURE or FUNCTION for
prototype on which it is placed is in a .DLL. The DLL attribute is required
for 32-bit applications because .DLLs are relocatable in a 32-bit flat address
space, which requires one extra dereference by the compiler to address the
procedure.



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-23

The PRIVATE attribute specifies that only another PROCEDURE or
FUNCTION that is in the same MODULE may call it. This would most
commonly be used on a prototype in a module’s MAP structure, but may
also be used in the global MAP.

When the name of a prototype is used in the parameter list of another
prototype, it indicates the procedure being prototyped will receive the label
of a PROCEDURE or FUNCTION that receives the same parameter list
(and has the same return type, if it is a FUNCTION). A prototype with the
TYPE attribute may not also have the NAME attribute.

Example:

MAP
MODULE(‘Test’) !’test.clw’ contains these procedure and functions
MyProc1(LONG) !LONG value-parameter
MyProc2(<*LONG>) !Omittable LONG variable-parameter
MyProc3(LONG=23) !Passes 23 if omitted
MyProc4(LONG Count, REAL Sum) !LONG passing a Count and REAL passing a Sum
MyProc5(LONG Count=1, REAL Sum=0) !Count defaults to 1 and Sum to 0
MyFunc1(*SREAL),REAL,C !SREAL variable-parameter, REAL return, C call conv
MyFunc2(FILE),STRING !FILE entity-parameter, returning a STRING
ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING

!ProcType procedure-parameter, returning a STRING,
! must be passed a procedure that takes a FILE
! as a parameter

MyFunc4(FILE),STRING,PROC !May be called as a procedure without warnings
MyProc6(FILE),PRIVATE !May only be called by other procs in TEST.CLW

END
MODULE(‘Party3.Obj’) !A third-party library
Func46(*CSTRING),REAL,C,RAW

!Pass CSTRING address-only to C function
Func47(*CSTRING),*CSTRING,C,RAW

!Returns pointer to a CSTRING
Func48(REAL),REAL,PASCAL

!PASCAL calling convention
Func49(SREAL),REAL,C,NAME(‘_func49’)

!C convention and external function name
END
MODULE(‘STDFuncs.DLL’) !A standard functions .DLL
Func50(SREAL),REAL,PASCAL,DLL

END
END

See Also: MAP, MEMBER, MODULE, NAME, PROCEDURE, FUNCTION,
RETURN, Passing Parameters



2-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FUNCTION Return Types

A FUNCTION must RETURN a value. The data type to be returned is
listed, separated by a comma, after the optional parameter list. Valid
RETURN types are:

  BYTE  SHORT  USHORT  LONG  ULONG  SREAL  REAL  DATE
  TIME  STRING  CSTRING  *BYTE  *SHORT  *USHORT  *LONG
  *ULONG  *SREAL  *REAL  *DATE  *TIME
   Untyped value-parameter return value (?)

An untyped value-parameter return value (?) indicates the data type of the
value returned by the FUNCTION is not known. This functions in exactly
the same manner as an untyped value-parameter. When the value is returned
from the FUNCTION, standard Clarion Data Conversion Rules apply, no
matter what data type is returned.

Functions which return pointers (the address of some data) should be
prototyped with an asterisk prepended to the return data type (except
CSTRING). This is provided just for compatibility with external library
functions (written in another language) which return only the address of
data. The compiler automatically handles the returned pointer at runtime.
Functions prototyped this way act just like a variable defined in the
program—when the function is used in Clarion code, the data referenced by
the returned pointer is automatically used. This data can be assigned to other
variables, passed as parameters to procedures or functions, or the ADDRESS
function may return the address of the data.

CSTRING is an exception because all the others are fixed length datums,
and a CSTRING is not. So, any C function that returns a pointer to a
CSTRING can be prototyped as “char *” at the C end, but the compiler
thunks the procedure and copies the datum onto the stack. Therefore, just
like the other pointer return values, when the function is used in Clarion
code the data referenced by the returned pointer is automatically used (the
pointer is dereferenced).

As an example of this, assume that the XYZ() function returns a pointer to a
CSTRING, CStringVar is a CSTRING variable, and LongVar is a LONG
variable. The simple Clarion assignment statement, CStringVar = XYZ(),
places the data referenced by the XYZ() function’s returned pointer, in the
CStringVar variable. The assignment, LongVar = ADDRESS(XYZ()), places
the memory address of that data in the LongVar variable.



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-25

Example:

 MAP
 MODULE(‘Party3.Obj’) !A third-party library
Func46(*CSTRING),REAL,C,RAW

!Pass CSTRING address-only to C function, return REAL
Func47(*CSTRING),CSTRING,C,RAW

!Returns pointer to a CSTRING
Func48(REAL),REAL,PASCAL

!PASCAL calling convention, return REAL
Func49(SREAL),REAL,C,NAME(‘_func49’)

!C convention and external function name, return REAL
 END

 END

See Also: MAP, MEMBER, MODULE, NAME, FUNCTION, RETURN



2-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

C, PASCAL (parameter passing conventions)

C
PASCAL

The C and PASCAL attributes of a PROCEDURE or FUNCTION prototype
specifies that parameters are always passed on the stack. The C convention
passes the parameters from right to left as they appear in the parameter list,
while the PASCAL convention passes them from left to right.  PASCAL is
also completely compatible with the Windows API calling convention for
both 16-bit and 32-bit compiled applications, it gives the operating system’s
default calling convention. These calling conventions provide compatibility
with third-party libraries written in other languages (if they were not
compiled with a TopSpeed compiler). If you do not specify a calling
convention in the prototype, the default calling convention is the internal,
register-based parameter passing convention used by all the TopSpeed
compilers.

Example:

 MAP
 MODULE(‘Party3.Obj’) !A third-party library
Func46(*CSTRING),REAL,C,RAW

!Pass CSTRING address-only to C function
 END

 END

See Also: FUNCTION and PROCEDURE Prototypes,  Passing Parameters

RAW (pass address only)

RAW

The RAW attribute of a PROCEDURE or FUNCTION prototype specifies
that STRING or GROUP parameters pass the memory address only. This
allows you to pass just the memory address of a *?, STRING, or GROUP
parameter, whether passed by value or by reference, to a non-Clarion
language procedure or function. Normally, STRING or GROUP parameters
pass the address and the length of the string. The RAW attribute eliminates
the length portion. For a prototype with a ? parameter, the parameter is taken
as a LONG but passed as a “void *” which just eliminates linker warnings.
This is provided for compatibility with external library functions which
expect only the address of the string.

Example:

MAP
MODULE(‘Party3.Obj’) !A third-party library
Func46(*CSTRING),REAL,C,RAW !Pass CSTRING address-only to C function

. .

See Also: FUNCTION and PROCEDURE Prototypes,  Passing Parameters



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-27

NAME (set prototype’s external name)

NAME( constant )

NAME Specifies an “external” name for the linker.

constant A string constant. This is case sensitive.

The NAME  attribute specifies an “external” name for the linker. The NAME
attribute may be placed on a FUNCTION or PROCEDURE Prototype. The
constant supplies the external name used by the linker to identify the
procedure or function from an external library.

Example:

PROGRAM
MAP
 MODULE(‘External.Obj’)
AddCount(LONG),LONG,C,NAME(‘_AddCount’) !C function named ‘_AddCount’

. .

See Also: FUNCTION and PROCEDURE Prototypes

TYPE (specify procedure or function type defintion)

TYPE

The TYPE attribute specifies a prototype that does not reference an actual
PROCEDURE or FUNCTION. Instead, it defines a prototype name to use in
other prototypes to indicate the type of procedure passed to another
PROCEDURE or FUNCTION as a parameter.

When the name of the TYPEd prototype is used in the parameter list of
another prototype, the procedure being prototyped will receive, as a passed
parameter, the label of a PROCEDURE or FUNCTION that has the same
type of parameter list (and has the same return type, if it is a FUNCTION).

Example:

 MAP
ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING

!ProcType procedure-parameter, returning a STRING,
! must be passed the label of a procedure that takes
! a FILE as a required parameter

 END

See Also: FUNCTION and PROCEDURE Prototypes, Passing Parameters



2-28 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DLL (set procedure defined externally in .DLL)

DLL( [ flag ] )

DLL Declares a PROCEDURE or FUNCTION defined
externally in a .DLL.

flag A numeric constant, equate, or Project system define
which specifies the attribute as active or not. If the flag
is zero, the attribute is not active, just as if it were not
present. If the flag is any value other than zero, the
attribute is active. Uniquely, it may be an undefined
label, in which case the attribute is active.

The DLL  attribute specifies that the PROCEDURE or FUNCTION on
whose prototype it is placed is defined in a .DLL. The DLL attribute is
required for 32-bit applications because .DLLs are relocatable in a 32-bit flat
address space, which requires one extra dereference by the compiler to
address the procedure.

Example:

MAP
MODULE(‘STDFuncs.DLL’) !A standard functions .DLL
Func50(SREAL),REAL,PASCAL,DLL

END
END



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-29

PROC (set function called as  procedure without warnings)

PROC

The PROC attribute specifies that the FUNCTION on whose prototype it is
placed may be called as a PROCEDURE without generating compiler
warnings. This allows you to use a FUNCTION as a PROCEDURE in those
instances in which you do not need the return value from the FUNCTION.

Example:

MAP
MODULE(‘STDFuncs.DLL’) !A standard functions .DLL
Func50(SREAL),REAL,PASCAL,PROC

END
END

PRIVATE (set procedure private to a single module)

PRIVATE

The PRIVATE  attribute specifies that the PROCEDURE or FUNCTION on
whose prototype it is placed may be called only from a PROCEDURE or
FUNCTION within the same source MODULE. This encapsulates it from
other modules.

Example:

MAP
MODULE(‘STDFuncs.DLL’) !A standard functions .DLL
Func49(SREAL),REAL,PASCAL,PROC
Proc50(SREAL),PRIVATE !Callable only from Func49

END
END



2-30 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PPPPParamearamearamearamearameter Pter Pter Pter Pter Passingassingassingassingassing

Parameter Types

There are four types of parameters that may be passed to a PROCEDURE or
FUNCTION:  value-parameters, variable-parameters, entity-
parameters, and procedure-parameters.

Value-parameters are “passed by value.”  A copy of the variable passed in
the parameter list of the “calling” PROCEDURE or FUNCTION is used in
the “called” PROCEDURE or FUNCTION. The “called” PROCEDURE or
FUNCTION cannot change the value of the variable passed to it by the
“caller.”  Value-parameters are listed by data type in the PROCEDURE or
FUNCTION prototype in the MAP. Valid value-parameters are:

   BYTE  SHORT  USHORT  LONG  ULONG  SREAL  REAL  DATE
   TIME  STRING

Variable-parameters are “passed by address.”  A variable passed by address
has only one memory address. Changing the value of the variable in the
“called” PROCEDURE or FUNCTION also changes its value in the “caller.”
Variable-parameters are listed by data type with a leading asterisk (*) in the
PROCEDURE or FUNCTION prototype in the MAP. Valid variable-
parameters are:

   *BYTE  *SHORT  *USHORT  *LONG  *ULONG  *SREAL  *REAL
   *BFLOAT4  *BFLOAT8  *DECIMAL  *PDECIMAL  *DATE  *TIME
   *STRING   *PSTRING  *CSTRING *GROUP

Entity-parameters pass the name of a data structure to the “called”
PROCEDURE or FUNCTION. Passing the entity allows the “called”
PROCEDURE or FUNCTION to use those Clarion commands that require
the label of the structure as a parameter. Entity-parameters are listed by
entity type in the PROCEDURE or FUNCTION prototype in the MAP.
Entity-parameters are always “passed by address.”  Valid entity-parameters
are:

   FILE  VIEW  KEY  INDEX  QUEUE  APPLICATION  WINDOW
   REPORT  BLOB

Procedure-parameters pass the name of another PROCEDURE or
FUNCTION to the “called” PROCEDURE or FUNCTION. Procedure-
parameters are listed by the name of a preceding prototype of the same type
in the PROCEDURE or FUNCTION prototype in the MAP (which may or
may not have the TYPE attribute). When called in executable code, the
“called” PROCEDURE or FUNCTION must be passed the name of a
PROCEDURE or FUNCTION whose prototype is exactly the same as the



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-31

procedure named in the “called” procedure’s prototype.

Each parameter in the list may be followed by a valid Clarion label which is
completely ignored by the compiler. This label is used only to document the
the parameter to make the prototype more readable.

Each passed parameter’s definition may also include the assignment of a
constant value to the data type (or the documentary label, if present) that
defines the default value to pass if the parameter is omitted.

Example:

 MAP
MODULE(‘Test’) !’test.clw’ contains these procedure and functions
MyProc1(LONG) !LONG value-parameter
MyProc2(<*LONG>) !Omittable LONG variable-parameter
MyProc3(LONG=23) !Passes 23 if omitted
MyProc4(LONG Count, REAL Sum) !LONG passing a Count and REAL passing a Sum
MyProc5(LONG Count=1, REAL Sum=0) !Count defaults to 1 and Sum to 0
MyFunc1(*SREAL),REAL,C !SREAL variable-parameter, REAL return, C call conv
MyFunc2(FILE),STRING !FILE entity-parameter, returning a STRING
ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING

!ProcType procedure-parameter, returning a STRING,
! must be passed a procedure that takes a FILE
! as a parameter

 END
 MODULE(‘Party3.Obj’) !A third-party library
Func46(*CSTRING),REAL,C,RAW

!Pass CSTRING address-only to C function
Func47(*CSTRING),*CSTRING,C,RAW

!Returns pointer to a CSTRING
Func48(REAL),REAL,PASCAL

!PASCAL calling convention
Func49(SREAL),REAL,C,NAME(‘_func49’)

!C convention and external function name
 END

 END

See Also: MAP, MEMBER, MODULE, NAME, PROCEDURE, FUNCTION,
RETURN



2-32 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Passing Parameters of Unspecified Data Type

The desire to write general purpose functions which perform some operation
on a passed parameter, where the exact data type of the parameter may vary
from one call to the next, is fairly common. Therefore, the function’s
prototype must indicate that the data type of the parameter is unknown at
compile time. The Clarion language allows for this with untyped value-
parameters and untyped variable-parameters. These are polymorphic
parameters; they may become any other data type depending upon the data
type passed to the procedure or function.

Untyped value-parameters are represented in the PROCEDURE or
FUNCTION prototype with a question mark (?). When the procedure
executes, the parameter is dynamically typed and acts as a data object of the
base type (LONG, STRING, or REAL) of the passed variable, or the base
type of whatever it was last assigned. This means that the “assumed” data
type of the parameter can change within the PROCEDURE or FUNCTION,
allowing it to be treated as any data type.

An untyped value-parameter is “passed by value” to the PROCEDURE or
FUNCTION and its assumed data type is handled by Clarion’s automatic
Data Conversion Rules. Any changes made to the passed parameter within
the PROCEDURE or FUNCTION do not affect the variable which was
passed in.

Data types which may be passed as untyped value-parameters:

  BYTE  SHORT  USHORT  LONG  ULONG  SREAL  REAL  BFLOAT4
  BFLOAT8  DECIMAL  PDECIMAL  DATE  TIME   STRING  PSTRING
  CSTRING    GROUP (treated as a  STRING)  Untyped value-parameter (?)
  Untyped Variable-parameter (*?)

The RAW attribute can be specified if the untyped value-parameter (?) is
being passed to external library functions written in other languages than
Clarion. This converts the data to a LONG then passes the data as a C or
C++ “void *” parameter (which eliminates “type inconsistency” warnings).

Untyped variable-parameters are represented in the PROCEDURE or
FUNCTION prototype with an asterisk and a question mark (*?). Inside the
procedure, the parameter acts as a data object of the type of the variable
passed in at runtime. This means the data type of the parameter is fixed
during the execution of the PROCEDURE or FUNCTION.

An untyped variable-parameter is “passed by address” to the PROCEDURE
or FUNCTION. Therefore, any changes made to the passed parameter
within the PROCEDURE or FUNCTION are made directly to the variable
which was passed in. This allows you to write polymorphic functions.



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-33

Within a PROCEDURE or FUNCTION which receives an untyped variable-
parameter, it is not safe to make any assumptions about the data type coming
in. The danger of making assumptions is the possiblity of assigning an out-
of-range value which the variable’s actual data type cannot handle. If this
happens, the result may be disastrously different from that expected.

Data types which may be passed as untyped variable-parameters:

  BYTE  SHORT  USHORT  LONG  ULONG  SREAL  REAL  BFLOAT4
  BFLOAT8  DECIMAL  PDECIMAL DATE  TIME   STRING  PSTRING
  CSTRING   Untyped variable-parameter (*?)

The RAW attribute can be specified if the untyped variable-parameter (*?) is
being passed to external library functions written in other languages than
Clarion. This has the same effect as passing a C or C++ “void *” parameter.

Arrays may not be passed as either kind of untyped parameter.



2-34 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

PROGRAM
MAP
 Proc1(?) !Untyped value-parameter
 Proc2(*?) !Untyped variable-parameter
 Proc3(*?) !Untyped variable-parameter (set to crash)
 Max(?,?),? !Function returning Untyped value-parameter
END

GlobalVar1 BYTE(3) !BYTE initialized to 3
GlobalVar2 DECIMAL(8,2,3)
GlobalVar3 DECIMAL(8,1,3)
MaxInteger LONG
MaxString STRING(255)
MaxFloat  REAL
CODE
Proc1(GlobalVar1) !Pass in a BYTE, value is 3
Proc2(GlobalVar2) !Pass it a DECIMAL(8,2), value is 3.00 - it prints 3.33
Proc2(GlobalVar3) !Pass it a DECIMAL(8,1), value is 3.0 - it prints 3.3
Proc3(GlobalVar1) !Pass it a BYTE and watch it crash
MaxInteger = Max(1,5) !Max function returns the 5
MaxString = Max(‘Z’,’A’) !Max function returns the ‘Z’
MaxFloat = Max(1.3,1.25) !Max function returns the 1.3

Proc1 PROCEDURE(ValueParm)
CODE ! ValueParm starts at 3 and is a LONG
ValueParm = ValueParm & ValueParm !Now Contains ‘33’ and is a STRING
ValueParm = ValueParm / 10 !Now Contains 3.3 and is a REAL

Proc2 PROCEDURE(VariableParm)
CODE
VariableParm = 10 / 3 !Assign 3.33333333... to passed variable

Proc3 PROCEDURE(VariableParm)
CODE
LOOP
IF VariableParm > 250 THEN BREAK. !If passed a BYTE, BREAK will never happen
VariableParm += 10

END
Max FUNCTION(Val1,Val1) !Find the larger of two passed values
CODE
IF Val1 > Val2 !Check first value against second
RETURN(Val1) ! return first, if largest

ELSE !otherwise
RETURN(Val2) ! return the second

END

See Also: FUNCTION and PROCEDURE Prototypes, Passing Parameters, Data
Conversion Rules



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-35

Passing GROUPs and QUEUEs as Parameters

Passing a GROUP or a QUEUE to a PROCEDURE or FUNCTION which
has been prototyped with GROUP or QUEUE types in its parameter list
does not allow you to reference the component fields within the structure in
the receiving PROCEDURE or FUNCTION. However, you can place the
label of a GROUP or QUEUE in the prototype’s parameter list to pass it by
address and allow references to the component fields.

The GROUP or QUEUE named in the parameter list does not need the
TYPE attribute, and does not have to be declared before the MAP structure,
but it must be declared before the PROCEDURE or FUNCTION that will
receive the parameter is called.  This is the only case in the Clarion language
that allows such a “forward reference.”

The PROCEDURE or FUNCTION statement for the prototype may declare
the local name of the passed group with a prefix to prevent name clashes,
however this is unnecessary as long as you use the Field Qualification
syntax to reference members of the passed group. The passed group can be a
“superset” of the named paremeter, as long as the first fields in the
“superset” group are the same as the named group.

Example:

PROGRAM
MAP
MyProc1(PassGroup,NameQue)

!Receives a GROUP defined the same as PassGroup and a QUEUE
! defined the same as NameQue

END
PassGroup GROUP,TYPE !Type definition: GROUP with 2 STRING(20) fields
F1 STRING(20)
F2 STRING(20)

END
NameGroup GROUP !Name group
First STRING(20) ! first name
Last STRING(20) ! last name
Company STRING(30)

END
NameQue QUEUE !Name Queue
First STRING(20) ! first name
Last STRING(20) ! last name

END
CODE
MyProc1(NameGroup,NameQue) !Pass NameGroup and NameQue as parameters

MyProc1 PROCEDURE(PassedGroup,PassedQue)
CODE
PassedQue:First = PassedGroup:F1 !Assign NameGroup:First to NameQue:First
PassedQue:Last  = PassedGroup:F2 !Assign NameGroup:Last to NameQue:Last
ADD(PassedQue) !Add an entry into NameQue

See Also: FUNCTION and PROCEDURE Prototypes, GROUP, QUEUE, Field
Qualification



2-36 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Passing Arrays as Parameters

An array may be passed to a PROCEDURE or FUNCTION. The prototype
in the MAP structure must declare the array’s data type as a variable-
parameter (“passed by address”) with an empty subscript list. If the array is
more than one dimension, commas must be used as position holders to
indicate the number of dimensions in the array.

The calling statement should pass the entire array to the PROCEDURE or
FUNCTION, not just one element.

Example:

PROGRAM
MAP
MainProc

 AddCount(*LONG[,],*LONG[,]) !Passing two two-dimensional long arrays
END
CODE
MainProc !Call first procedure

MainProc PROCEDURE
TotalCount LONG,DIM(10,10)
CurrentCnt LONG,DIM(10,10)
CODE
AddCount(TotalCount,CurrentCnt) !Call the procedure passing the arrays

AddCount PROCEDURE(Tot,Cur) !Procedure expects two arrays
CODE
LOOP I# = 1 TO MAXIMUM(Tot,1) !Loop through first subscript
LOOP J# = 1 TO MAXIMUM(Tot,2) !Loop through second subscript
Tot[I#,J#] += Cur[I#,J#] ! increment TotalCount from CurrentCnt

END
END
CLEAR(Cur) !Clear CurrentCnt array
RETURN

See Also: DIM, FUNCTION and PROCEDURE Prototypes, MAXIMUM



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-37

PPPPPrrrrrogram Structurogram Structurogram Structurogram Structurogram Structure Compiler Dire Compiler Dire Compiler Dire Compiler Dire Compiler Directivesectivesectivesectivesectives
Compiler Directives are statements that tell the compiler to take some action
at compile time. These statements are not included in the executable
program object code which the compiler generates. Therefore, there is no
run-time overhead associated with their use.

BEGIN (define code structure)

BEGIN
  statements
END

BEGIN Declares a single code statement structure.

statements Executable program instructions.

The BEGIN  compiler directive tells the compiler to treat the statements as a
single structure. The BEGIN structure must be terminated by a period or the
END statement.

BEGIN is used in an EXECUTE control structure to allow several lines of
code to be treated as one.

Example:

EXECUTE Value
Proc1 !Execute if Value = 1
BEGIN !Execute if Value = 2
Value += 1
Proc2

END
Proc3 !Execute if Value = 3

END

See Also: EXECUTE



2-38 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

COMPILE (specify source to be compiled)

COMPILE(terminator [,expression])

COMPILE Specifies a block of source code lines to be included in
the compilation.

terminator A string constant that marks the last line of a block of
source code.

expression An expression allowing conditional execution of the
COMPILE. The expression is: EQUATE = integer.

The COMPILE  directive specifies a block of source code lines to be
included in the compilation. The included block begins with the COMPILE
directive and ends with the line that contains the same string constant as the
terminator. The entire terminating line is included in the COMPILE block.

The optional expression parameter permits conditional COMPILE. The form
of the expression is fixed. It is the label of an EQUATE statement, or a
Conditional Switch set in the Project System, followed by an equal sign ( =
), followed by an integer constant. The code between COMPILE and the
terminator is compiled only if the expression is true. Although the
expression is not required, COMPILE without an expression parameter is
not necessary because all source code is compiled unless explicitly omitted.
COMPILE and OMIT are opposites and may not be nested within each
other, or themselves.

Example:

Demo EQUATE(1) !Specify the Demo EQUATE value
CODE
COMPILE(‘EndDemoChk’,Demo = 1) !COMPILE only if Demo equate is turned on
DO DemoCheck !Check for demo limits passed

EndDemoChk !End of conditional COMPILE code

See Also: OMIT, EQUATE



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-39

EJECT (start new listing page)

EJECT([module subtitle])

EJECT Starts a new page in a Clarion listing.

module subtitle A string constant containing the subtitle to be printed.
On the next page of the listing, the module subtitle is
printed in the first column of the third line.

The EJECT directive starts a new page and an optional new module subtitle
in a Clarion listing. If the module subtitle parameter is omitted, the subtitle
set by a previous SUBTITLE or EJECT directive will be used on the next
page.

Example:

EJECT(‘File Declarations’) !Start new page, new subtitle

INCLUDE (compile code in another file)

INCLUDE(filename [,section])

INCLUDE Specifies source code to be compiled which exists in a
separate file which is not a MEMBER module.

filename A string constant that contains the DOS file specification
for a source file. If the extension is omitted, .CLW is
assumed.

section A string constant which is the string parameter of the
SECTION directive marking the beginning of the source
code to be included.

The INCLUDE  directive specifies source code to be compiled which exists
in a separate file which is not a MEMBER module. Starting on the line of
the INCLUDE directive, the source file, or the specified section of that file,
is compiled as if it appeared in sequence within the source module being
compiled. You can nest INCLUDEs up to 3 deep, so you can INCLUDE a
file that includes a file that includes a file but that latter file must not include
anything....

The compiler uses the Redirection file (CW15.RED) to find the file,
searching the path specified for that type of filename (usually by extension).
This makes it unnecessary to provide a complete path in the filename to be
included. A discussion of the Redirection file is in the User’s Guide.

Example:

GenLedger PROCEDURE !Declare procedure
INCLUDE(‘filedefs.clw’) !Include file definitions here
 CODE !Begin code section
INCLUDE(‘Setups’,’ChkErr’) !Include error check from setups.clw



2-40 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

OMIT (specify source not to be compiled)

OMIT(terminator [,expression])

OMIT Specifies a block of source code lines to be omitted from
the compilation.

terminator A string constant that marks the last line of a block of
source code.

expression An expression allowing conditional execution of the
OMIT. The expression must be: EQUATE = integer.

The OMIT  directive specifies a block of source code lines to be omitted
from the compilation. These lines may contain source code comments or a
section of code that has been “stubbed out” for testing purposes. The
omitted block begins with the OMIT directive and ends with the line that
contains the same string constant as the terminator. The entire terminating
line is included in the OMIT block.

The optional expression parameter permits conditional OMIT. The form of
the expression is fixed. It is the label of an EQUATE statement, or a
Conditional Switch set in the Project System, followed by an equal sign ( =
), followed by an integer constant. The OMIT directive executes only if the
expression is true.

COMPILE and OMIT are opposites and may not be nested within each
other, or themselves.

Example:

OMIT(‘**END**’) !Unconditional OMIT
*************************************************
*
* Main Program Loop
*
*************************************************
**END**
Demo EQUATE(0) !Specify the Demo EQUATE value
CODE
OMIT(‘EndDemoChk’,Demo = 0) !OMIT only if Demo is turned off
DO DemoCheck !Check for demo limits passed

EndDemoChk !End of omitted code

See Also: COMPILE, EQUATE



CHAPTER 2 PROGRAM SOURCE CODE FORMAT 2-41

SECTION (specify source code section)

SECTION(string)

SECTION Identifies the beginning of a block of executable source
code or data declarations.

string A string constant which names the SECTION.

The SECTION compiler directive identifies the beginning of a block of
executable source code or data declarations which may be INCLUDEd in
source code in another file. The SECTION’s string parameter is used as an
optional parameter of the INCLUDE directive to include a specific block of
source code. A SECTION is terminated by the next SECTION or the end of
the file.

Example:

 SECTION(‘FirstSection’) !Begin section

FieldOne STRING(20)
FieldTwo LONG

 SECTION(‘SecondSection’) !End previous section, begin new section

IF Number <> SavNumber
DO GetNumber

END

 SECTION(‘ThirdSection’) !End previous section, begin new section

CASE Action
OF 1
DO AddRec

OF 2
DO ChgRec

OF 3
DO DelRec

END !Third section ends at end of file

See Also: INCLUDE



2-42 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SUBTITLE (print MODULE subtitle)

SUBTITLE(module subtitle)

SUBTITLE Declares a listing subtitle printed in the first column of
the third line of a Clarion listing.

module subtitle A string constant containing the subtitle to be printed.

A SUBTITLE  is printed in the first column of the third line of a Clarion
listing. The SUBTITLE directive does not print in the listing. The
SUBTITLE directive must be placed at the beginning of a source module
prior to the PROGRAM or MEMBER declarations. The subtitle remains the
same on every page of the listing unless it is changed by an EJECT
directive.

Example:

SUBTITLE(‘Global Data Declarations’)

TITLE (print MODULE title)

TITLE(module title)

TITLE Declares a listing title printed in the first column of the
first line of a Clarion listing.

module title A string constant containing the title to be printed.

A TITLE  is printed in the first column of the first line of a Clarion listing.
The TITLE directive does not print in the listing. The TITLE directive must
be placed at the beginning of a source module prior to the PROGRAM or
MEMBER declarations. The title remains the same on every page of the
listing.

Example:

TITLE(‘ORDERSYS - Order Entry System Listing’)



CHAPTER 3 DECLARING  VARIABLES 3-1

VVVVVariable Declaration Statementsariable Declaration Statementsariable Declaration Statementsariable Declaration Statementsariable Declaration Statements

BYTE (one-byte unsigned integer)

label BYTE(initial value) [,DIM( )] [,OVER( )] [,NAME( ) ] [,EXTERNAL ] [,DLL ] [,STATIC ] [,THREAD]
[,AUTO]

BYTE A one-byte unsigned integer.

Format: magnitude
| ....... |

Bits: 7 0
Range: 0 to 255

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

BYTE declares a one-byte unsigned integer.

Example:

Count1 BYTE !Declare one byte integer
Count2 BYTE,OVER(Count1) !Declare OVER the one byte integer
Count3 BYTE,DIM(4) !Declare it an array of 4 bytes
Count4 BYTE(5) !Declare with initial value
Count5 BYTE,EXTERNAL !Declare as external
Count6 BYTE,EXTERNAL,DLL !Declare as external in a .DLL
Count7 BYTE,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record  RECORD
Count8 BYTE,NAME(‘Counter’) !Declare with external name

. .



3-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SHORT (two-byte signed integer)

label SHORT([initial value]) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ]
[,THREAD] [,AUTO]

SHORT A two-byte signed integer.

Format:  ±  magnitude
 | . | ............... |

Bits: 15  14  0
Range: -32,768 to 32,767

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

SHORT declares a two-byte signed integer, using the Intel 8086 word
integer format. The high-order bit of this configuration is the sign bit (0 =
positive, 1 = negative). Negative values are represented in standard two’s
complement notation.

Example:

Count1 SHORT !Declare two-byte signed integer
Count2 SHORT,OVER(Count1) !Declare OVER the two-byte signed integer
Count3 SHORT,DIM(4) !Declare it an array of 4 shorts
Count4 SHORT(5) !Declare with initial value
Count5 SHORT,EXTERNAL !Declare as external
Count6 SHORT,EXTERNAL,DLL !Declare as external in a .DLL
Count7 SHORT,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD
Count7 SHORT,NAME(‘Counter’) !Declare with external name

. .



CHAPTER 3 DECLARING  VARIABLES 3-3

USHORT (two-byte unsigned integer)

label USHORT([initial value]) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ]
[,THREAD] [,AUTO]

USHORT A two-bye unsigned integer.

Format:  magnitude
 | ............... |

Bits: 15  0
Range:  0 to 65,535

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

USHORT declares a two-byte unsigned integer in the Intel 8086 word
format. There is no sign bit in this configuration.

Example:

Count1 USHORT !Declare two-byte unsigned integer
Count2 USHORT,OVER(Count1) !Declare OVER the two-byte unsigned integer
Count3 USHORT,DIM(4) !Declare it an array of 4 unsigned shorts
Count4 USHORT(5) !Declare with initial value
Count5 USHORT,EXTERNAL !Declare as external
Count6 USHORT,EXTERNAL,DLL !Declare as external in a .DLL
Count7 USHORT,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
Count8 USHORT,NAME(‘Counter’) !Declare with external name

 . .



3-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LONG (four-byte signed integer)

label LONG([initial value]) [,DIM( )] [,OVER( )] [,NAME( ) ] [,EXTERNAL ] [,DLL ] [,STATIC] [,THREAD]
[,AUTO]

LONG A four-byte unsigned integer.

Format:  ± magnitude
 | . | .............................. |

Bits: 31  30 0
Range: -2,147,483,648 to 2,147,483,647

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

LONG  declares a four-byte signed integer, using the Intel 8086 long integer
format. The high-order bit is the sign bit (0 = positive, 1 = negative).
Negative values are represented in standard two’s complement notation.

Example:

Count1 LONG !Declare four-byte signed integer
Count2 LONG,OVER(Count1) !Declare OVER the four-byte signed integer
Count3 LONG,DIM(4) !Declare it an array of 4 longs
Count4 LONG(5) !Declare with initial value
Count5 LONG,EXTERNAL !Declare as external
Count6 LONG,EXTERNAL,DLL !Declare as external in a .DLL
Count7 LONG,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD
Count8 LONG,NAME(‘Counter’) !Declare with external name

. .



CHAPTER 3 DECLARING  VARIABLES 3-5

ULONG (four-byte unsigned integer)

label ULONG([initial value]) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ]
[,THREAD] [,AUTO]

ULONG A four-byte unsigned integer.

Format:  magnitude
 | ............................... |

Bits: 31  0
Range: 0 to 4,294,967,295

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

ULONG  declares a four-byte unsigned integer, using the Intel 8086 long
integer format. There is no sign bit in this configuration.

Example:

Count1 ULONG !Declare four-byte unsigned integer
Count2 ULONG,OVER(Count1) !Declare OVER four-byte unsigned integer
Count3 ULONG,DIM(4) !Declare it an array of 4 unsigned longs
Count4 ULONG(5) !Declare with initial value
Count5 ULONG,EXTERNAL !Declare as external
Count6 ULONG,EXTERNAL,DLL !Declare as external in a .DLL
Count7 ULONG,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
Count8 ULONG,NAME(‘Counter’) !Declare with external name

 . .



3-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SREAL (four-byte signed floating point)

label SREAL( [initial value]) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ]
[,THREAD] [,AUTO]

SREAL A four-byte floating point number.

Format: ±  exponent  significand
| . | ......... | ....................... |

Bits:  31 30 23 0
Range: 0, ± 1.175494e-38 .. ± 3.402823e+38 (6 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

SREAL declares a four-byte floating point signed numeric variable, using
the Intel 8087 short real (single precision) format.

Example:

Count1 SREAL !Declare four-byte signed floating point
Count2 SREAL,OVER(Count1) !Declare OVER the four-byte

! signed floating point
Count3 SREAL,DIM(4) !Declare it an array of 4 floats
Count4 SREAL(5) !Declare with initial value
Count5 SREAL,EXTERNAL !Declare as external
Count6 SREAL,EXTERNAL,DLL !Declare as external in a .DLL
Count7 SREAL,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record  RECORD
Count8  SREAL,NAME(‘Counter’) !Declare with external name

 . .



CHAPTER 3 DECLARING  VARIABLES 3-7

REAL (eight-byte signed floating point)

label REAL( [initial value]) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ] [,THREAD]
[,AUTO]

REAL An eight-byte floating point number.

Format: ± exponent significand
| . | ........... | ...................................... |

Bits: 63 62 52 0
Range: 0, ± 2.225073858507201e-308 .. ± 1.79769313496231e+308

(15 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

REAL  declares an eight-byte floating point signed numeric variable, using
the Intel 8087 long real (double precision) format.

Example:

Count1 REAL !Declare eight-byte signed floating point
Count2 REAL,OVER(Count1) !Declare OVER the eight-byte

!  signed floating point
Count3 REAL,DIM(4) !Declare it an array of 4 reals
Count4 REAL(5) !Declare with initial value
Count5 REAL,EXTERNAL !Declare as external
Count6 REAL,EXTERNAL,DLL !Declare as external in a .DLL
Count7 REAL,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD
Count8 REAL,NAME(‘Counter’) !Declare with external name

. .



3-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BFLOAT4 (four-byte signed floating point)

label BFLOAT4( [initial value]) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ]
[,THREAD] [,AUTO]

BFLOAT4 A four-byte floating point number.

Format:  exponent   ± significand
| ........... | . | ...................................... |

Bits:  31 23 22 0
Range: 0, ± 5.87747e-39 .. ± 1.70141e+38 (6 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

BFLOAT4  declares a four-byte floating point signed numeric variable,
using the Microsoft BASIC (single precision) format. This data type is
normally used for compatibility with existing data since it is internally
converted to a REAL before all arithmetic operations.

Example:

Count1 BFLOAT4 !Declare four-byte signed floating point
Count2 BFLOAT4,OVER(Count1) !Declare OVER the four-byte

!  signed floating point
Count3 BFLOAT4,DIM(4) !Declare array of 4 single-precision reals
Count4 BFLOAT4(5) !Declare with initial value
Count5 BFLOAT4,EXTERNAL !Declare as external
Count6 BFLOAT4,EXTERNAL,DLL !Declare as external in a .DLL
Count7 BFLOAT4,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
Count8 BFLOAT4,NAME(‘Counter’) !Declare with external name

. .



CHAPTER 3 DECLARING  VARIABLES 3-9

BFLOAT8 (eight-byte signed floating point)

label BFLOAT8( [initial value]) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ]
[,THREAD] [,AUTO]

BFLOAT8 An eight-byte floating point number.

Format: exponent ± significand
| ........... | . | ....................................... |

Bits:  63 55 54 0
Range: 0, ± 5.877471754e-39 .. ± 1.7014118346e+38

(15 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

BFLOAT8  declares an eight-byte floating point signed numeric variable,
using the Microsoft BASIC (double precision) format. This data type is
normally used for compatibility with existing data since it is internally
converted to a REAL before all arithmetic operations.

Example:

Count1 BFLOAT8 !Declare eight-byte signed floating point
Count2 BFLOAT8,OVER(Count1) !Declare OVER the eight-byte

!  signed floating point
Count3 BFLOAT8,DIM(4) !Declare it an array of 4 reals
Count4 BFLOAT8(5) !Declare with initial value
Count5 BFLOAT8,EXTERNAL !Declare as external
Count6 BFLOAT8,EXTERNAL,DLL !Declare as external in a .DLL
Count7 BFLOAT8,NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
Count8 BFLOAT8,NAME(‘Counter’) !Declare with external name

. .



3-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DECIMAL (signed pac ked decimal)

label DECIMAL( length [,places] [,initial value]) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ]
[,STATIC ] [,THREAD] [,AUTO]

DECIMAL A packed decimal floating point number.

Format: ±  magnitude
| . | .............................................. |

Bits: 127 124  0
Range: -9,999,999,999,999,999,999,999,999,999,999 to

+9,999,999,999,999,999,999,999,999,999,999

length A required numeric constant containing the total number
of decimal digits (integer and fractional portion com-
bined) in the variable. The maximum length is 31.

places A numeric constant that fixes the number of decimal
digits in the fractional portion (to the right of the deci-
mal point) of the variable. It must be less than or equal
to the length parameter. If omitted, the variable will be
declared as an integer.

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

DECIMAL  declares a variable length packed decimal signed numeric
variable. Each byte of a DECIMAL holds two decimal digits (4 bits per
digit). The left-most byte holds the sign in its high-order nibble (0 =
positive, anything else is negative) and one decimal digit. Therefore,
DECIMAL variables always contain a fixed “odd” number of digits
(DECIMAL(10) and DECIMAL(11) both use 6 bytes).



CHAPTER 3 DECLARING  VARIABLES 3-11

Example:

Count1 DECIMAL(5,0) !Declare three-byte signed packed decimal
Count2 DECIMAL(5),OVER(Count1) !Declare OVER the three-byte

!  signed packed decimal
Count3 DECIMAL(5,0),DIM(4) !Declare it an array of 4 decimals
Count4 DECIMAL(5,0,5) !Declare with initial value
Count5 DECIMAL(5,0),EXTERNAL !Declare as external
Count6 DECIMAL(5,0),EXTERNAL,DLL !Declare as external in a .DLL
Count7 DECIMAL(5,0),NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD
Count8 DECIMAL(5,0),NAME(‘Counter’) !Declare with external name

. .



3-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PDECIMAL (signed packed decimal)

label PDECIMAL( length [,places] [,initial value]) [,DIM( )] [,OVER( )] [,NAME( ) ] [,EXTERNAL ] [,DLL ]
[,STATIC ] [,THREAD] [,AUTO]

PDECIMAL A packed decimal floating point number.

Format:  magnitude  ±
| .............................................. | . |

Bits:  127  4  0
Range: -9,999,999,999,999,999,999,999,999,999,999 to

+9,999,999,999,999,999,999,999,999,999,999

length A required numeric constant containing the total number
of decimal digits (integer and fractional portion com-
bined) in the variable. The maximum length is 31.

places A numeric constant that fixes the number of decimal
digits in the fractional portion (to the right of the deci-
mal point) of the variable. It must be less than or equal
to the length parameter. If omitted, the variable will be
declared as an integer.

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PDECIMAL  declares a variable length packed decimal signed numeric
variable in the Btrieve and IBM/EBCDIC type of format. Each byte of an
PDECIMAL holds two decimal digits (4 bits per digit). The right-most byte
holds the sign in its low-order nibble (0Fh or 0Ch = positive, 0Dh =
negative) and one decimal digit. Therefore, PDECIMAL variables always
contain a fixed “odd” number of digits (PDECIMAL(10) and
PDECIMAL(11) both use 6 bytes).



CHAPTER 3 DECLARING  VARIABLES 3-13

Example:

Count1 PDECIMAL(5,0) !Declare three-byte signed packed decimal
Count2 PDECIMAL(5),OVER(Count1) !Declare OVER the three-byte

! signed packed decimal
Count3 PDECIMAL(5,0),DIM(4) !Declare it an array of 4 decimals
Count4 PDECIMAL(5,0,5) !Declare with initial value
Count5 PDECIMAL(5,0),EXTERNAL !Declare as external
Count6 PDECIMAL(5,0),EXTERNAL,DLL !Declare as external in a .DLL
Count7 PDECIMAL(5,0),NAME(‘SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
Count8 PDECIMAL(5,0),NAME(‘Counter’) !Declare with external name

 . .



3-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

STRING (fixed-length string)

|    length |
label STRING( |string constant |) [,DIM( )][,OVER( )] [,NAME( ) ] [,EXTERNAL ] [,DLL ] [,STATIC ]

|    picture | [,THREAD] [,AUTO]

STRING A character string.

Format: A fixed number of bytes.
Size: 1 to 65,520 bytes in 16-bit, or 4MB in 32-bit.

length A numeric constant that defines the number of bytes in
the STRING. String variables are not initialized unless
given a string constant.

string constant The initial value of the STRING. The length of the
STRING (in bytes) is set to the length of the string
constant.

picture Used to format the values assigned to the STRING. The
length is the number of bytes needed to contain the
formatted STRING.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

STRING declares a fixed-length character string. The memory assigned to
the STRING is initialized to all blanks unless the AUTO attribute is present.

In addition to its explicit declaration, all STRING variables are also
implicitly declared as STRING(1),DIM(length of string). This allows each
character in the STRING to be addressed as an array element. If the
STRING also has a DIM attribute, this implicit array declaration is the last
(optional) dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a STRING using
the “string slicing” technique. This technique performs similar action to the



CHAPTER 3 DECLARING  VARIABLES 3-15

SUB function, but is much more flexible and efficient. It is more flexible
because a “string slice” may be used on both the destination and source
sides of an assignment statement and the SUB function can only be used as
the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a “slice” of the STRING, the beginning and ending character
numbers are separated by a colon (:) and placed in the implicit array
dimension position within the square brackets ([]) of the STRING. The
position numbers may be integer constants, variables, or expressions. If
variables are used, there must be at least one blank space between the
variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Example:

Name STRING(20) !Declare 20 byte name field
ArrayString STRING(5),DIM(20) !Declare array
Company STRING(‘Clarion Software, Inc.’) !The software company - 22 bytes
Phone STRING(@P(###)###-####P) !Phone number field - 13 bytes
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD
NameField STRING(20),NAME(‘Name’) !Declare with external name

. .
CODE
NameField = ‘Tammi’ !Assign a value
NameField[5] = ‘y’ ! change fifth letter
NameField[5:6] = ‘ie’ ! and change a “slice”

!  -- the fifth and sixth letters
ArrayString[1] = ‘First’ !Assign value to first element
ArrayString[1,2] = ‘u’ !Change first element 2nd character
ArrayString[1,2:3] = NameField[5:6] !Assign slice to slice



3-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CSTRING (fixed-length null terminated string)

|     length |
label CSTRING(|string constant |) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ]

|     picture | [,STATIC ] [,THREAD] [,AUTO]

CSTRING A character string.

Format: A fixed number of bytes.
Size: 2 to 65,520 bytes in 16-bit, or unlimited in 32-bit.

length A numeric constant that defines the number of bytes of
storage the string will use. This must include a position
for the terminating null character. String variables are
not initialized unless given a string constant.

string constant A string constant containing the initial value of the
string. The length of the string is set to the length of the
string constant plus the terminating null character.

picture The picture token used to format the values assigned to
the string. The length of the string is the number of bytes
needed to contain the formatted string and the terminat-
ing null character.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

CSTRING declares a character string terminated by a null character (ASCII
zero). The memory assigned to the CSTRING is initialized to a zero length
string unless the AUTO attribute is present.

CSTRING matches the string data type used in the “C” language and the
“ZSTRING” data type of the Btrieve Record Manager. Storage and memory
requirements are fixed-length, however the terminating null character is
placed at the end of the data entered. CSTRING should be used to achieve
compatibility with outside files or procedures.



CHAPTER 3 DECLARING  VARIABLES 3-17

In addition to its explicit declaration, all CSTRINGs are implicitly declared
as a CSTRING(1),DIM(length of string). This allows each character in the
CSTRING to be addressed as an array element. If the CSTRING also has a
DIM attribute, this implicit array declaration is the last (optional) dimension
of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a CSTRING using
the “string slicing” technique. This technique performs similar action to the
SUB function, but is much more flexible and efficient. It is more flexible
because a “string slice” may be used on both the destination and source
sides of an assignment statement and the SUB function can only be used as
the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a “slice” of the CSTRING, the beginning and ending character
numbers are separated by a colon (:) and placed in the implicit array
dimension position within the square brackets ([]) of the CSTRING. The
position numbers may be integer constants, variables, or expressions. If
variables are used, there must be at least one blank space between the
variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Since a CSTRING must be null-terminated, the programmer must be
responsible for ensuring that an ASCII zero is placed at the end of the data if
the field is only accessed through its array elements or as a “slice” (not as a
whole entity). Also, a CSTRING can have “junk” stored after the null
terminator. Because of this they do not work well inside GROUPs.

Example:

Name CSTRING(21) !Declare 21 byte field - 20 bytes data
OtherName CSTRING(21),OVER(Name) !Declare field over name field
Contact CSTRING(21),DIM(4) !Array 21 byte fields - 80 bytes data
Company CSTRING(‘Clarion Software, Inc.’) !23 byte string - 22 bytes data
Phone CSTRING(@P(###)###-####P) ! Declare 14 bytes - 13 bytes data
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
NameField CSTRING(21),NAME(‘ZstringField’) !Declare with external name

. .
CODE
Name = ‘Tammi’ !Assign a value
Name[5] = ‘y’ ! then change fifth letter
Name[6] = ‘s’ ! then add a letter
Name[7] = ‘<0>’ ! and handle null terminator
Name[5:6] = ‘ie’ ! and change a “slice”

!  -- the fifth and sixth letters
Contact[1] = ‘First’ !Assign value to first element
Contact[1,2] = ‘u’ !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to slice



3-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PSTRING (embedded length-byte string)

|    length |
label PSTRING( |string constant |) [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ]

|    picture | [,THREAD] [,AUTO]

PSTRING A character string.

Format: A fixed number of bytes.
Size: 2 to 255 bytes.

length A numeric constant that defines the number of bytes in
the string. This must include the first position length-
byte.

string constant A string constant containing the initial value of the
string. The length of the string is set to the length of the
string constant plus the length-byte.

picture The picture token used to format the values assigned to
the string. The length of the string is the number of bytes
needed to contain the formatted string plus the first
position length byte. String variables are not initialized
unless given a string constant.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

PSTRING declares a character string with a leading length byte included in
the number of bytes declared for the string. The memory assigned to the
PSTRING is initialized to a zero length string unless the AUTO attribute is
present.

PSTRING matches the string data type used by the Pascal language and the
“LSTRING” data type of the Btrieve Record Manager. Storage and memory
requirements are fixed-length, however, the leading length byte will contain
the number of characters actually stored. PSTRING is internally converted



CHAPTER 3 DECLARING  VARIABLES 3-19

to a STRING intermediate value for use during program execution. It should
be used to achieve compatibility with outside files or procedures.

In addition to its explicit declaration, all PSTRINGs are implicitly declared
as a PSTRING(1),DIM(length of string). This allows each character in the
PSTRING to be addressed as an array element. If the PSTRING also has a
DIM attribute, this implicit array declaration is the last (optional) dimension
of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a PSTRING using
the “string slicing” technique. This technique performs similar action to the
SUB function, but is much more flexible and efficient. It is more flexible
because a “string slice” may be used on both the destination and source
sides of an assignment statement and the SUB function can only be used as
the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a “slice” of the PSTRING, the beginning and ending character
numbers are separated by a colon (:) and placed in the implicit array
dimension position within the square brackets ([]) of the PSTRING. The
position numbers may be integer constants, variables, or expressions. If
variables are used, there must be at least one blank space between the
variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Since a PSTRING must have a leading length byte, the programmer must be
responsible for ensuring that its value is always correct if the field is only
accessed through its array elements or as a “slice” (not as a whole entity).
The PSTRING’s length byte is addressed as element zero (0) of the array
(the only case in Clarion where an array has a zero element). Therefore, the
valid range of array indexes for a PSTRING(30) would be 0 to 29. Also, a
PSTRING can have ‘junk’ stored outside the active portion of the string.
Because of this they do not work well inside GROUPs.

Example:

Name PSTRING(21) !Declare 21 byte field - 20 bytes data
OtherName PSTRING(21),OVER(Name) !Declare field over name field
Contact PSTRING(21),DIM(4) !Array 21 byte fields - 80 bytes data
Company PSTRING(‘Clarion Software, Inc.’) !23 byte string - 22 bytes data
Phone PSTRING(@P(###)###-####P) !Declare 14 bytes - 13 bytes data
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
NameField PSTRING(21),NAME(‘LstringField’) !Declare with external name

. .
CODE
Name = ‘Tammi’ !Assign a value
Name[5] = ‘y’ ! then change fifth letter
Name[6] = ‘s’ ! then add a letter
Name[0] = ‘<6>’ ! and handle length byte
Name[5:6] = ‘ie’ ! and change a “slice” -- the 5th and 6th letters
Contact[1] = ‘First’ !Assign value to first element
Contact[1,2] = ‘u’ !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to slice



3-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DATE (four-byte date)

label DATE [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLLL ] [,STATIC] [,THREAD] [,AUTO]

DATE A four-byte date.

Format: year mm  dd
 | ........ | .... | .... |

Bits: 31  15  7 0
Range: year: 1 to 9999

 month: 1 to 12
 day: 1 to 31

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

DATE  declares a four-byte date variable. This format matches the “DATE”
field type used by the Btrieve Record Manager. A DATE used in a numeric
expression is converted to the number of days elapsed since December 28,
1800 (Clarion Standard Date - usually stored as a LONG). The valid Clarion
Standard Date range is January 1, 1801 through December 31, 2099. Using
an out-of-range date produces unpredictable results. DATE fields should be
used to achieve compatibility with outside files or procedures.

Example:

DueDate DATE !Declare a date field
OtherDate DATE,OVER(DueDate) !Declare field over date field
ContactDate DATE,DIM(4) !Array of 4 date fields
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
DateRecd DATE,NAME(‘DateField’) !Declare with external name

. .

See Also: Standard Date



CHAPTER 3 DECLARING  VARIABLES 3-21

TIME (four-byte time)

label TIME [,DIM( )] [,OVER( )] [,NAME( ) ] [,EXTERNAL ] [,DLL ] [,STATIC] [,THREAD] [,AUTO]

TIME A four-byte time.

Format: hh  mm ss  hs
 | .... | .... | .... | .... |

Bits: 31  23 15 7  0
Range:  hours: 0 to 23

 minutes: 0 to 59
 seconds: 0 to 59

 seconds/100: 0 to 99

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has no initial value.

TIME  declares a four byte time variable. This format matches the “TIME”
field type used by the Btrieve Record Manager. A TIME used in a numeric
expression is converted to the number of hundredths of a second elapsed
since midnight (Clarion Standard Time - usually stored as a LONG). TIME
fields should be used to achieve compatibility with outside files or
procedures.

Example:

ChkoutTime TIME !Declare checkout time field
OtherTime TIME,OVER(CheckoutTime) !Declare field over time field
ContactTime TIME,DIM(4) !Array of 4 time fields
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
TimeRecd TIME,NAME(‘TimeField’) !Declare with external name

. .

See Also: Standard Time



3-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

GROUP (compound data structure)

label GROUP( [ group ] ) [,PRE( )] [,DIM( )] [,OVER( )] [,NAME( )] [,EXTERNAL ] [,DLL ] [,STATIC ]
[,THREAD] [,BINDABLE ] [, TYPE]

  declarations
END

GROUP A compound data structure.

group The label of a previously declared GROUP, QUEUE, or
RECORD structure from which it will inherit its struc-
ture. This may be a GROUP or QUEUE with the TYPE
attribute.

PRE Declare a label prefix for variables within the structure.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or
structure.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dy-
namic expressions.

TYPE Specify the GROUP is a type definition for GROUPs
passed as parameters.

declarations Multiple consecutive variable declarations.

A GROUP structure allows multiple variable declarations to be referenced
by a single label. It may be used to dimension a set of variables, or to assign
or compare sets of variables in a single statement. In large complicated
programs, a GROUP structure is helpful for keeping sets of related data
organized. A GROUP must be terminated by a period or the END statement.

The structure of a GROUP declared with the group parameter begins with
the same structure as the named group; the GROUP inherits the fields of the
named group. The GROUP may also contain its own declarations that
follow the inherited fields. If the group parameter names a QUEUE or
RECORD structure, only the fields are inherited and not the functionality
implied by the QUEUE or RECORD.



CHAPTER 3 DECLARING  VARIABLES 3-23

When referenced in a statement or expression, a GROUP is treated as a
STRING composed of all the variables within the structure. A GROUP
structure may be nested within another data structure, such as a RECORD or
another GROUP.

Because of their internal storage format, numeric variables (other than
DECIMAL) declared in a group do not collate properly when treated as
strings. For this reason, building a KEY on a GROUP that contains numeric
variables may produce an unexpected collating sequence.

A GROUP with the BINDABLE attribute makes all the variables within the
GROUP  available for use in a dynamic expression. The contents of each
variable’s NAME attribute is the logical name used in the dynamic
expression. If no NAME attribute is present, the label of the variable
(including prefix) is used. Space is allocated in the .EXE for the names of all
of the variables in the structure. This creates a larger program that uses more
memory than it normally would. Therefore, the BINDABLE attribute should
only be used when a large proportion of the constituent fields are going to be
used.

A GROUP with the TYPE attribute is not allocated any memory; it is only a
type definition for GROUPs that are passed as parameters to PROCEDUREs
or FUNCTIONs. This allows the receiving procedure to directly address
component fields in the passed GROUP. The parameter declaration on the
PROCEDURE or FUNCTION statement can instantiate a local prefix for the
passed GROUP as it names the passed GROUP for ther procedure, however
this is not necessary if you use the Field Qualification syntax instead of
prefixes. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used
in the type definition) to directly address component fields of the GROUP
passed as the parameter.



3-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

PROGRAM
PassGroup GROUP,TYPE !Type-definition for passed GROUP parameters
F1 STRING(20) ! first field
F2 STRING(1) ! middle field
F3 STRING(20) ! last field

END

MAP
MyProc1(PassGroup) !Passes a GROUP defined the same as PassGroup

END

NameGroup GROUP !Name group
First STRING(20) ! first name
Middle STRING(1) ! middle initial
Last STRING(20) ! last name

END !End group declaration

NameGroup2 GROUP(PassGroup) !Group that inherits PassGroup’s fields
! resulting in NameGroup2:F1, NameGroup2:F2,
! and NameGroup2:F3

END ! fields declared in this group

DateTimeGrp GROUP,DIM(10) !Date/time array
Date LONG
Time LONG

END !End group declaration

FileNames GROUP,BINDABLE !Bindable group
FileName STRING(8),NAME(‘FILE’) !Dynamic name: FILE
Dot STRING(‘.’) !Dynamic name: Dot
Extension STRING(3),NAME(‘EXT’) !Dynamic name: EXT

END

CODE
MyProc1(NameGroup) !Call proc passing NameGroup as parameter
MyProc1(NameGroup2) !Call proc passing NameGroup2 as parameter

MyProc1 PROCEDURE(PassedGroup) !Proc to receive GROUP parameter
LocalVar STRING(20)
CODE
LocalVar = PassedGroup:F1 !Assign value in the first field to LocalVar

!  from passed parameter

See Also: Field Qualification



CHAPTER 3 DECLARING  VARIABLES 3-25

LIKE (inherited data type)

new declaration LIKE( like declaration) [,DIM( )] [,OVER( )] [,PRE( )] [,NAME( )] [,EXTERNAL ] [,DLL ]
[,STATIC] [,THREAD] [,BINDABLE ]

LIKE Declares a variable whose data type is inherited from
another variable.

new declaration The label of the new data element declaration.

like declaration The label of the data element declaration whose defini-
tion will be used.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or
structure.

PRE Declare a label prefix for variables within the new
declaration structure (if the like declaration is a complex
data structure). This is not required, since you may use
the new declaration in the Field Qualification syntax to
directly reference any member of the new structure.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dy-
namic expressions.

LIKE  tells the compiler to define the new declaration using the same
definition as the like declaration, including all attributes. If the original like
declaration changes, so does the new declaration.

The new declaration may use the DIM and OVER attributes. If the like
declaration has a DIM attribute, the new declaration is already an array. If a
further DIM attribute is added to the new declaration, the array is further
dimensioned.

The PRE and NAME attributes may be used, if appropriate. If the like
declaration already has these attributes, the new declaration will inherit
them and compiler errors can occur. To correct this, specify a PRE or NAME
attribute on the new declaration to override the inherited attribute.



3-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

Amount REAL !Define a field
QTDAmount LIKE(Amount) !Use same definition
YTDAmount LIKE(QTDAmount) !Use same definition again
MonthlyAmts LIKE(Amount),DIM(12) !Use same definition for array, 12 elements
AmtPrPerson LIKE(MonthlyAmts),DIM(10)

!Use same definition for array of 120 elements (12,10)

Construct GROUP,PRE(Con) !Define a group
Field1 LIKE(Amount) ! con:field1 - real
Field2 STRING(10) ! con:field2 - string(10)

END

NewGroup LIKE(Construct) !Define new group, containing
! NewGroup:field1 - real
! NewGroup:field2 - string(10)

AmountFile FILE,DRIVER(‘Clarion’),PRE(Amt)
Record RECORD
Amount REAL !Define a field
QTDAmount LIKE(Amount) !Use same definition

. .

See Also: DIM, OVER, PRE, NAME, Field Qualification



CHAPTER 3 DECLARING  VARIABLES 3-27

Implicit V ariables

Implicit variables are not declared in data declarations. They are created by
the compiler when it first encounters them. Implicit variables are
automatically initialized to blank or zero; they do not have to be explicitly
assigned values before use. You may always assume that they contain blanks
or zero before your program’s first assignment to them.

Any implicit variable used in the global data declaration area (between the
keywords PROGRAM and CODE) is Global data, assigned static memory.
Any implicit variable used between the keywords MEMBER and
PROCEDURE (or FUNCTION) is Module data, assigned static memory.
Any other implicit variable is Local data, assigned dynamic memory on the
program’s stack.

Since the compiler dynamically creates implicit variables as they are
encountered, there is a danger that problems may arise that can be difficult
to trace. This is due to the lack of compile-time error and type checking on
implicit variables. For example, if you spell incorrectly the name of a
previously used implicit variable, the compiler will not tell you, but will
simply create a new implicit variable with the new spelling. When your
program checks the value in the original implicit variable, it will be
incorrect. Therefore, implicit variables should be used with care and caution,
and only within a limited scope (or not at all).

Implicit variables are generally used for: array subscripts, true/false
switches, intermediate variables in complex calculations, loop control
variables, etc. The Clarion language provides three types of implicit
variables:

       # Pound sign names an implicit LONG variable, a label
terminated by a # character.

       $ Dollar sign names an implicit REAL variable, a label
terminated by a $ character.

       “ Double quote names an implicit 32 byte string, a label
terminated by a “ character.

Example:

LOOP Counter# = 1 TO 10 !Implicit LONG loop counter
ArrayField[Counter#] = Counter# * 2 ! to initialize an array

END

Address” = CLIP(City) & ‘, ‘ & State & ‘ ‘ & Zip !Implicit STRING(32)
MESSAGE(Address”) !Used to display a temporary value

Percent$ = ROUND((Quota / Sales),.1) * 100 !Implicit REAL
MESSAGE(FORMAT(Percent$,@P%<<<.##P)) !Used to display a temporary value

See Also: Data Declarations and Memory Allocation



3-28 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Reference Variables

A reference variable contains a reference to another data declaration (its
“target”). You declare a reference variable by prepending an ampersand (&)
to the data type of its target (&BYTE, &FILE, &LONG, &WINDOW, etc.).
Depending upon the target’s data type, the reference variable may contain
the target’s memory address, or a more complex internal data structure
(describing the location and type of target data).

Valid reference variable declarations are: &BYTE, &SHORT, &USHORT,
&LONG, &ULONG, &REAL, &SREAL, &BFLOAT8, &BFLOAT4,
&DECIMAL, &PDECIMAL, &STRING, &CSTRING, &PSTRING,
&QUEUE, &FILE, &BLOB, &VIEW, and &WINDOW. Reference
variables may not be declared within GROUP, FILE, QUEUE, or VIEW
structures.

The &STRING, &CSTRING, &PSTRING, &DECIMAL, and
&PDECIMAL reference variable declarations do not require length
parameters, since all necessary information about the specific target data
item is contained in the reference. This means a &STRING reference
variable may contain a reference to any length STRING variable. A
reference variable declared with &WINDOW can target either an
APPLICATION, WINDOW, or REPORT structure.

The label of the reference variable is syntactically correct every place in
executable code where its target is allowed. When used in a code statement,
the reference variable is automatically “dereferenced” to supply the
statement the value of its target (except for reference assignment
statements). References cross thread boundaries, and so, may be used to
reference data items in other execution threads.

The &= operator executes a reference assignment statement (destination &=
source). This assigns the source’s reference to the destination reference
variable.

Example:

App1  APPLICATION(‘Hello’)
 END

App2  APPLICATION(‘Buenos Dias’)
 END

AppRef &WINDOW !Reference to an APPLICATION, WINDOW, or REPORT
CODE
IF CTL:Language = ‘English’ !If english language user
AppRef &= App1 ! reference english application frame

ELSE
AppRef &= App2 ! else reference spanish application frame

END
OPEN(AppRef) !Open the referenced application frame window

See Also: Reference Assignment Statements, THREAD



CHAPTER 3 DECLARING  VARIABLES 3-29

AtAtAtAtAttributes of Vtributes of Vtributes of Vtributes of Vtributes of Variablesariablesariablesariablesariables

PRE (set group label prefix)

PRE( [ prefix ] )

PRE Provides a label prefix for complex data structures.

prefix Acceptable characters are alphabet letters, numerals 0
through 9, and the underscore character. A prefix must
start with an alphabet character and must not be a
reserved word. By convention, a prefix is 1-3 characters,
although it can be longer.

The PRE attribute provides a label prefix for complex data structures. It is
used to distinguish between identical variable names that occur in different
structures. When referenced in executable statements, assignments, and
parameter lists, a prefix is attached to a label by a colon (Pre:Label). The
PRE attribute may be used with the following data structures discussed in
this chapter: GROUP, and LIKE.

Another more flexible method to distinguish between identical variable
names that occur in different structures does not use the PRE attribute, but
instead uses the Field Qualification syntax. When referenced in executable
statements, assignments, and parameter lists, the label of the structure
containing the field is attached to the field label by a colon
(GroupName:Label).

Example:

G1 GROUP,PRE(Mem) !Declare some memory variables
Message STRING(30) ! with the Mem prefix
Page LONG
Line LONG
Device STRING(30)

END

G2 LIKE(G1),PRE(Me2) !Declare second GROUP LIKE the first
!Contains same variables with Me2 prefix

CODE
Mem:Message = ‘Variable in original group’ !Using prefix
G1:Message = ‘Same Variable in original group’ !Using Field Qualification
Me2:Message = ‘Variable in LIKE group’
G2:Message = ‘Same Variable in LIKE group’

See Also: Reserved Words, Field Qualification



3-30 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DIM (set array dimensions)

DIM(dimension,...,dimension)

DIM Declares a variable as an array.

dimension A numeric constant which specifies the number of
elements in this dimension of the array.

The DIM  attribute declares a variable as an array. The variable is repeated
the number of times specified by the dimension parameters. Multi-
dimensional arrays may be thought of as nested. Each dimension in the array
has a corresponding subscript. Therefore, referencing a variable in a three
dimensional array requires three subscripts. There is no limit to the number
of dimensions; however, the total size of an array must not exceed 65,520
bytes of data in 16-bit applications (there is no limit in 32-bit applications).

Subscripts identify which element of the array is being referenced. A
subscript list contains a subscript for each dimension of the array. Each
subscript is separated by a comma and the entire list is enclosed in brackets
([ ]). A subscript may be a numeric constant, expression, or function. The
entire array may be referenced by the label of the array without a subscript
list.

A GROUP structure is a special case. Each level of nesting adds subscripts
to the GROUP and the variables within the GROUP. Data declared within
the GROUP may be referenced exactly like the GROUP itself.

Example:

Scr GROUP !Characters on a text-mode screen
Row GROUP,DIM(25) !Twenty-five rows
Pos GROUP,DIM(80) !Two thousand positions
Attr BYTE !Attribute byte
Char BYTE !Character byte

. . . !Terminate the group structures
! In the group above:
! Scr is a 4,000 byte GROUP
! Row[1] is a 160 byte GROUP
! Pos[1,1] is a 2 byte GROUP
! Attr[1,1] is a BYTE
! Char[1,1] is a BYTE

Month STRING(10),DIM(12) !Dimension the month to 12
CODE
CLEAR(Month) !Assign blanks to the entire array
Month[1] = ‘January’ !Load the months into the array
Month[2] = ‘February’
Month[3] = ‘March’

See Also: MAXIMUM



CHAPTER 3 DECLARING  VARIABLES 3-31

EXTERNAL (set variable defined externally)

EXTERNAL

The EXTERNAL  attribute specifies that the variable on which it is placed is
defined in an external library. Therefore, a variable with the EXTERNAL
attribute is declared and may be referenced in the Clarion code, but is not
allocated memory. The memory for the variable is allocated by the external
library. This allows the Clarion program access to variables declared as
public in external libraries.

The EXTERNAL attribute is valid only on variables declared outside FILE,
QUEUE, or GROUP structures.

The variable declarations in all libraries (or .EXEs) that reference common
variables must be EXACTLY the same (with the appropriate addition of the
EXTERNAL attribute). If they are not exactly the same, data corruption
could occur. Any incompatibilities between libraries cannot be detected by
the compiler or linker, therefore it is the programmer’s responsibility to
ensure that consistency is maintained.

When using EXTERNAL to declare a variable shared by multiple libraries
(.OBJs, .LIBs, or .DLLs and .EXE), only one library should define the
variable without the EXTERNAL attribute. All the other libraries (and the
.EXE) should declare the variable with the EXTERNAL attribute. This
ensures that there is only one memory allocation for the variable and all the
libraries and the .EXE will reference the same memory when referring to
that variable.

One suggested way of coding large systems using many .DLLs and/or
.EXEs that share the same variables would have one .DLL containing the
actual data definition that only contains FILE and global variable definitions
that are shared among all (or most) of the .DLLs and .EXEs. This makes one
central library in which the actual file definitions are maintained. This one
central .DLL is linked into all .EXEs that use those common files. All other
.DLLs and/or .EXEs in the system would declare the common variables with
the EXTERNAL and DLL attributes.

Example:

TotalCount LONG,EXTERNAL !A variable declared in an external library

See Also: NAME, DLL



3-32 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DLL (set variable defined externally in .DLL)

DLL( [ flag ] )

DLL Declares a variable defined externally in a .DLL.

flag A numeric constant, equate, or Project system define
which specifies the attribute as active or not. If the flag
is zero, the attribute is not active, just as if it were not
present. If the flag is any value other than zero, the
attribute is active.

The DLL  attribute specifies that the variable on which it is placed is defined
in a .DLL. A variable with DLL attribute must also have the EXTERNAL
attribute. The DLL attribute is required for 32-bit applications because
.DLLs are relocatable in a 32-bit flat address space, which requires one extra
dereference by the compiler to address the variable. The DLL attribute is
valid only on variables declared outside FILE, QUEUE, or GROUP
structures.

The variable declarations in all libraries (or .EXEs) that reference common
variables must be EXACTLY the same (with the appropriate addition of the
EXTERNAL and DLL attributes). If they are not exactly the same, data
corruption could occur. Any incompatibilities between libraries cannot be
detected by the compiler or linker, therefore it is the programmer’s
responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL to declare a variable shared by .DLLs
and .EXE, only one .DLL should define the variable without the
EXTERNAL and DLL attributes. All the other .DLLs (and the .EXE) should
declare the variable with the EXTERNAL and DLL attributes. This ensures
that there is only one memory allocation for the variable and all the .DLLs
and the .EXE will reference the same memory when referring to that
variable.

One suggested way of coding large systems using many .DLLs and/or
.EXEs that share the same variables would have one .DLL containing the
actual data definition that only contains FILE and global variable definitions
that are shared among all (or most) of the .DLLs and .EXEs. This makes one
central library in which the actual file definitions are maintained. This one
central .DLL is linked into all .EXEs that use those common files. All other
.DLLs and/or .EXEs in the system would declare the common variables with
the EXTERNAL and DLL attributes.

Example:

TotalCount LONG,EXTERNAL,DLL !A variable declared in an external .DLL

See Also: EXTERNAL



CHAPTER 3 DECLARING  VARIABLES 3-33

NAME (set variable’s external name)

NAME( [ | constant | ])
| variable |

NAME Specifies an “external” name for the linker or file driver.

constant A string constant.

variable The label of a STRING variable declared in the global
data declaration area or a MEMBER module’s data
declaration area.

The NAME  attribute specifies an “external” name for the linker or file
driver. The NAME attribute is completely independent of the EXTERNAL
attribute—there is no required connection between the two, although both
attributes may be used on the same variable.

The NAME attribute may be placed on a FUNCTION or PROCEDURE
Prototype, FILE, KEY, INDEX, MEMO, any field declared within a FILE,
any field declared within a QUEUE structure, or any field not within a
structure. The NAME attribute has different implications depending on
where it is used.

NAME(constant) may be specified on a FUNCTION or PROCEDURE
Prototype. The constant supplies the external name used by the linker to
identify the procedure or function from an external library.

The NAME(constant) or NAME(variable) attribute on a FILE declaration
specifies a DOS directory file specification. If the constant or variable does
not contain a drive and path, the current drive and directory are assumed. If
the extension is omitted, the directory entry assumes the file driver’s default
value. Some file drivers require that KEYs, INDEXes, or MEMOs be in
separate files. Therefore, a NAME may also be placed on a KEY, INDEX, or
MEMO. A NAME attribute without a constant or variable defaults to the
label of the declaration statement on which it is placed (including any
specified prefix).

NAME(constant) may be used on any field declared within the RECORD
structure. This provides the file driver with the name of a field as it may be
used in that driver’s file system.

NAME(constant) may be used on any field declared within a QUEUE
structure. This provides the capability of run time dynamic sorts.

NAME(constant) may be used on any variable declared outside of any
structure. This provides the linker with an external name to identify a
variable declared in an external library. If the variable also has the
EXTERNAL attribute, it is declared, and its memory is allocated, as a public
variable in the external library. Without the EXTERNAL attribute, it is
declared, and its memory is allocated, in the Clarion program, and it is



3-34 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

declared as an external variable in the external library.

Example:

PROGRAM
MAP
 MODULE(‘External.Obj’)
AddCount(LONG),LONG,C,NAME(‘_AddCount’) !C function named ‘_AddCount’

. .

Cust FILE,PRE(Cus),NAME(CustName) !Filename in CustName variable
CustKey KEY(‘Name’),NAME(‘c:\data\cust.idx’) !Declare key, cust.idx
Record RECORD
Name STRING(20) !Default NAME to ‘Cus:Name’

. .

SortQue QUEUE,PRE(Que)
Field1 STRING(10),NAME(‘FirstField’) !QUEUE SORT NAME
Field2 LONG,NAME(‘SecondField’) !QUEUE SORT NAME

END

CurrentCnt LONG,EXTERNAL,NAME(‘Cur’) !Field declared public in
! external library as ‘Cur’

TotalCnt LONG,NAME(‘Tot’) !Field declared external
! in external library as ‘Tot’

See Also: FUNCTION and PROCEDURE Prototypes, FILE, KEY, INDEX, QUEUE,
EXTERNAL



CHAPTER 3 DECLARING  VARIABLES 3-35

OVER (set shared memory location)

OVER(overvariable)

OVER Allows one memory address to be referenced two
different ways.

overvariable The label of a variable that already occupies the memory
to be shared.

The OVER attribute allows one memory address to be referenced two
different ways. The variable declared with the OVER attribute must not be
larger than the overvariable it is being declared OVER (it may be smaller,
though).

You may declare a variable OVER an overvariable which is part of the
parameter list passed into a PROCEDURE or FUNCTION.

A field within a GROUP structure cannot be declared OVER a variable
outside that GROUP structure.

Example:

SomeProc PROCEDURE(PassedGroup) !Proc receives a GROUP parameter

NewGroup GROUP,OVER(PassedGroup) !Redeclare passed GROUP parameter
Field1 STRING(10) !Compiler warning issued that
Field2 STRING(2) ! NewGroup must not be larger

END ! than PassedGroup

CustNote FILE,PRE(Csn) !Declare CustNote file
Notes  MEMO(2000) !The memo field
Record RECORD
CustID LONG

 . .

CsnMemoRow STRING(10),DIM(200),OVER(Csn:Notes)
!Csn:Notes memo may be addressed
! as a whole or in 10-byte chunks

See Also: DIM



3-36 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

STATIC (set local variable static)

STATIC

The STATIC  attribute allows a variable declared within a PROCEDURE or
FUNCTION to be allocated static memory instead of stack memory. This
makes any value contained in the variable “persistent” from one instance of
the procedure to the next.

Example:

SomeProc PROCEDURE
AcctFile STRING(64),STATIC !STATIC needed for use as

! Variable in NAME attribute

Transactions FILE,DRIVER(‘Clarion’),PRE(TRA),NAME(AcctFile)
AccountKey KEY(TRA:Account),OPT,DUP
Record RECORD
Account SHORT !Account code
Date LONG !Transaction Date
Amount DECIMAL(13,2) !Transaction Amount

. .

See Also: Data Declarations and Memory Allocation

THREAD (set thread-specific static variable)

THREAD

The THREAD  attribute declares a static variable which is allocated memory
separately for each execution thread in the program. This makes the value
contained in the variable dependent upon which thread is executing.
Whenever a new execution thread is begun, a new instance of the variable,
specific to that thread, is created.

The variable must be allocated static memory so it should be declared as
Local data with the STATIC attribute. It may also be declared as Global data
or Module data.

This attribute creates runtime “overhead,” particularly on Global or Module
data. Therefore, it should be used only when absolutely necessary.

Example:

GlobalVar LONG,THREAD !Each execution thread gets its own copy

SomeProc PROCEDURE
LocalVar LONG,THREAD !Local threaded variable (automatically STATIC)

See Also: START, Data Declarations and Memory Allocation, STATIC



CHAPTER 3 DECLARING  VARIABLES 3-37

BINDABLE (set dynamic expression string variables)

BINDABLE

The BINDABLE  attribute declares a GROUP, QUEUE, FILE, or VIEW
whose constituent variables are all available for use in a runtime expression
string. The contents of each variable’s NAME attribute is the logical name
used in the runtime expression string. If no NAME attribute is present, the
label of the variable (including prefix) is used. Space is allocated in the
.EXE for the names of all of the variables in the structure. This creates a
larger program that uses more memory than it normally would. Therefore,
the BINDABLE attribute should only be used when a large proportion of the
constituent fields are going to be used.

Example:

FileNames GROUP,BINDABLE !Bindable group
FileName STRING(8),NAME(‘FILE’) !Dynamic name: FILE
Dot STRING(‘.’) !Dynamic name: Dot
Extension STRING(3),NAME(‘EXT’) !Dynamic name: EXT

END !

See Also: BIND, UNBIND, EVALUATE

AUTO (uninitialized local variable)

AUTO

The AUTO  attribute allows a variable, declared within a PROCEDURE or
FUNCTION, to be allocated uninitialized stack memory. Without the AUTO
attribute, a numeric variable is initialized to zero and a string variable is
initialized to all blanks when its memory is assigned at run-time.

The AUTO attribute is used when you do not need to rely on an initial blank
or zero value because you intend to assign some other value to the variable.
This saves a small amount of run-time memory by eliminating the internal
code necessary to perform the automatic initialization for the variable.

Example:

SomeProc PROCEDURE
SaveCustID LONG,AUTO !Non-initialized local variable



3-38 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TYPE (GROUP type definition)

TYPE

The TYPE attribute creates a “type definition” for a GROUP. The type
definition can then be used in a LIKE statement to define other similar
GROUPs. A GROUP with the TYPE attribute is not allocated any memory.

Example:

PassGroup GROUP,TYPE !Type-definition for passed GROUP parameters
F1 STRING(20) ! first field
F2 STRING(1) ! middle field
F3 STRING(20) ! last field

END

NameGroup LIKE(PassGroup),PRE(Nme) !Name group



CHAPTER 3 DECLARING  VARIABLES 3-39

Data Declarations and MemorData Declarations and MemorData Declarations and MemorData Declarations and MemorData Declarations and Memory Allocationy Allocationy Allocationy Allocationy Allocation

Global, Local, Static, and Dynamic

Data declarations allocate memory to store the data values. Global, Local,
Static, and Dynamic are terms that describe types of memory allocation.

The terms “Global” and “Local” refer to the “visibility” of data:

     • “Global” means the data is visible and available to all
procedures in the program.

     • “Local” means the data has limited visibility. This may
be limited to one procedure or function, or limited to a
specific set of procedures and/or functions.

The terms “Static” and “Dynamic” refer to the persistence of the data’s
memory allocation:

     • “Static” means the data is allocated memory that is not
released until the entire program is finished executing.

     • “Dynamic” means the data is allocated memory on the
program’s stack. Stack memory is released when the
PROCEDURE or FUNCTION that allocated the stack
memory returns to the place in the program from which
it was called.



3-40 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Data Declaration Sections

There are three areas where data can be declared in a Clarion program:

     • In the PROGRAM module, after the keyword PRO-
GRAM and before the CODE statement. This is the
Global data section.

     • In a MEMBER module, after the keyword MEMBER
and before the first PROCEDURE or FUNCTION
statement. This is the Module data section.

     • In a PROCEDURE or FUNCTION, after the keyword
PROCEDURE (or FUNCTION) and before the CODE
statement. This is the Local data section.

Global data is visible to executable statements and expressions in every
PROCEDURE and FUNCTION in the PROGRAM. Global data is allocated
in Static memory.

Module data is visible only to the set of PROCEDUREs and FUNCTIONs
contained in the MEMBER module. Of course, it may be passed as a
parameter to PROCEDUREs or FUNCTIONs in other MEMBER modules,
if required. Module data is also allocated Static memory.

Local data is visible only within the PROCEDURE or FUNCTION in
which it is declared. Of course, it may be passed as a parameter to any other
PROCEDURE or FUNCTION. Local data is allocated Dynamic memory.
Thew memory is allocated on the program’s stack for variables smaller than
the stack threshold (5K default), otherwise they are automatically placed
onto the heap. This can be overridden by using the STATIC attribute,
making its value persistent between calls to the procedure.

Dynamic memory allocation for Local data allows a FUNCTION or
PROCEDURE to be truly recursive, receiving a new copy of its local
variables each time it is called.

See Also: FUNCTION and PROCEDURE Prototypes, STATIC



CHAPTER 3 DECLARING  VARIABLES 3-41

PPPPPicturicturicturicturicture Te Te Te Te Tokokokokokensensensensens
Picture tokens provide a masking format for displaying and editing
variables. Picture tokens may be used as parameters of STRING, ENTRY, or
STRING OPTION declarations in SCREEN structures; as a parameter of
STRING statements in a REPORT structure; as a parameter of some Clarion
procedures and functions; or, the parameter of STRING, CSTRING and
PSTRING variable declarations.

There are seven types of picture tokens: numeric and currency, scientific
notation, date, time, pattern, key-in template, and string.

Numeric and Currency Pictures

@N [currency] [sign] [fill] size [grouping] [places] [sign] [currency] [B]

@N All numeric and currency pictures begin with @N.

currency Either a dollar sign ($) or a string constant enclosed in
tildes (~). When it precedes the sign indicator and there
is no fill  indicator, the currency symbol “floats” to the
left of the high order digit. If there is a fill  indicator, the
currency symbol remains fixed in the left-most position.
If the currency indicator follows the size and grouping, it
appears at the end of the number displayed.

sign Specifies the display format for negative numbers. If a
hyphen precedes the fill  and size indicators, negative
numbers will display with a leading minus sign. If a
hyphen follows the size, grouping, places, and currency
indicators, negative numbers will display with a trailing
minus sign. If parentheses are placed in both positions,
negative numbers will be displayed enclosed in paren-
theses. To prevent ambiguity, a trailing minus sign
should always have grouping specified.

fill Specifies leading zeros, spaces, or asterisks (*) in any
leading zero positions, and suppresses grouping. If the
fill  indicator is omitted, leading zeros are suppressed.

  0 (zero) Produces leading zeroes
  _ (underscore) Produces leading spaces
  *  (asterisk) Produces leading asterisks

size The size is required to specify the total number of
significant digits to display, including the number of
digits in the places indicator and any formatting charac-
ters.



3-42 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

grouping A grouping symbol, other than a comma (the default),
can be placed to the right of the size indicator to specify
a three digit group separator.To prevent ambiguity, a
hyphen grouping indicator should always have the sign
specified.

. (period) Produces periods
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

places Specifies the decimal separator symbol and the number
of decimal digits. The number of decimal digits must be
less than the size indicator. The decimal separator may
be a period (.), grave accent (‘ -- produces periods for
grouping separators, unless overridden), or the letter “v”
(used only for STRING field storage declarations—not
for display).

. (period) Produces a period
‘  (grave accent) Produces a comma
v Produces no decimal separator

B Specifies that the format displays as blank whenever its
value is zero.

The numeric and currency pictures format numeric values for screen display
or in reports. If the value is greater than the maximum value the picture can
display, a string of asterisks is displayed.



CHAPTER 3 DECLARING  VARIABLES 3-43

Example:

Numeric Result Format
@N9 4,550,000 Nine digits, group with commas (default)
@N_9B 4550000 Nine digits, no grouping, leading blanks if zero
@N09 004550000 Nine digits, leading zero
@N*9 ***45,000 Nine digits, asterisk fill, group with commas
@N9_ 4 550 000 Nine digits, group with spaces
@N9. 4.550.000 Nine digits, group with periods

Decimal Result Format
@N9.2 4,550.75 Two decimal places, period decimal separator
@N_9.2B 4550.75 Two decimal places, period decimal separator, no

grouping, blank if zero
@N_9‘2 4550,75 Two decimal places, comma decimal separator
@N9.‘2 4.550,75 Comma decimal separator, group with periods
@N9_‘2 4 550,75 Comma decimal separator, group with spaces,

Signed Result Format
@N-9.2B -2,347.25 Leading minus sign, blank if zero
@N9.2- 2,347.25- Trailing minus sign
@N(10.2) (2,347.25) Enclosed in parens when negative

Dollar Currency Result Format
@N$9.2B $2,347.25 Leading dollar sign, blank if zero
@N$10.2- $2,347.25- Leading dollar sign, trailing minus when negative
@N$(11.2) $(2,347.25) Leading dollar sign, in parens when negative

Int’l Currency Result Format
@N12_‘2~ F~ 1 5430,50 F France
@N~L. ~12‘ L. 1.430.050 Italy
@N~£~12.2 £1,240.50 United Kingdom
@N~kr~12‘2 kr1.430,50 Norway
@N~DM~12‘2 DM1.430,50 Germany
@N12_‘2~ mk~ 1 430,50 mk Finland
@N12‘2~ kr~ 1.430,50 kr Sweden

Storage-Only Pictures:
Variable1 STRING(@N_6v2) !Declare as 6 bytes stored without decimal
CODE
Variable1 = 1234.56 !Assign value, stores ‘123456’ in file
MESSAGE(FORMAT(Variable1,@N_7.2)) !Display with decimal point: ‘1234.56’



3-44 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Scientific Notation Pictures

@Em.n[B ]

@E All scientific notation pictures begin with @E.

m Determines the total number of characters in the format
provided by the picture.

n Indicates the number of digits that appear to the left of
the decimal point.

B Specifies that the format displays as blank when the
value is zero.

The scientific notation picture formats very large or very small numbers. The
format is a decimal number raised by a power of ten.

Example:

Picture Value Result
@E9.0 1,967,865 .20e+007
@E12.1 1,967,865  1.9679e+006
@E12.1B 0
@E12.1 -1,967,865 -1.9679e+006
@E12.1 .000000032  3.2000e-008



CHAPTER 3 DECLARING  VARIABLES 3-45

Date Pictures

@Dn[s][B]

@D All date pictures begin with @D.

n Determines the date picture format. Date picture formats
range from 1 through 18. A leading zero (0) indicates a
zero-filled day or month.

s A separation character between the month, day, and year
components. If omitted, the slash ( / ) characters appears.

. (period) Produces periods
‘ (grave accent) Produces commas
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

B Specifies that the format displays as blank when the
value is zero.

Dates may be stored in numeric variables (usually LONG), a DATE field
(for Btrieve compatibility), or in a STRING declared with a date picture. A
date stored in a numeric variable is called a “Clarion Standard Date.”  The
stored value is the number of days since December 28, 1800. The date
picture token converts the value into one of the 16 date formats.

Example:

Picture Format Result
@D1 mm/dd/yy 10/31/59
@D01 mm/dd/yy 01/01/95
@D2 mm/dd/yyyy 10/31/1959
@D3 mmm dd, yyyy OCT 31,1959
@D4 mmmmmmmmm dd, yyyy October 31, 1959
@D5 dd/mm/yy 31/10/59
@D6 dd/mm/yyyy 31/10/1959
@D7 dd mmm yy 31 OCT 59
@D8 dd mmm yyyy 31 OCT 1959
@D9 yy/mm/dd 59/10/31
@D10 yyyy/mm/dd 1959/10/31
@D11 yymmdd 591031
@D12 yyyymmdd 19591031
@D13 mm/yy 10/59
@D14 mm/yyyy 10/1959
@D15 yy/mm 59/10
@D16 yyyy/mm 1959/10
@D17 Windows Control Panel setting for Short Date
@D18 Windows Control Panel setting for Long Date

 Alternate separators
@D1. mm.dd.yy Period separator
@D2- mm-dd-yyyy Dash separator
@D5_ dd mm yy Underscore produces space separator
@D6‘ dd,mm,yyyy Grave accent produces comma separator

See Also: Standard Date



3-46 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Time Pictures

@Tn[s][B]

@T All time pictures begin with @T.

n Determines the time picture format. Time picture
formats range from 1 through 8. A leading zero (0)
indicates zero-filled hours.

s A separation character. By default, colon ( : ) characters
appear between the hour, minute, and second compo-
nents of certain time picture formats. The following s
indicators provide an alternate separation character for
these formats.

. (period) Produces periods
‘ (grave accent) Produces commas
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

B Specifies that the format displays as blank when the
value is zero.

Times may be stored in a numeric variable (usually a LONG), a TIME field
(for Btrieve compatibility), or in a STRING declared with a time picture. A
time stored in a numeric variable is called a “Standard Time.”  The stored
value is the number of hundredths of a second since midnight. The picture
token converts the value to one of the six time formats.

Example:

Picture Format Result
@T1 hh:mm 17:30
@T2 hhmm 1730
@T3 hh:mmXM 5:30PM
@T03 hh:mmXM 05:30PM
@T4 hh:mm:ss 17:30:00
@T5 hhmmss 173000
@T6 hh:mm:ssXM 5:30:00PM
@T7 Windows Control Panel setting for Short Time
@T8 Windows Control Panel setting for Long Time

 Alternate separators
@T1. hh.mm Period separator
@T1- hh-mm Dash separator
@T3_ hh mmXM Underscore produces space separator
@T4‘ hh,mm,ss Grave accent produces comma separator

See Also: Standard Time



CHAPTER 3 DECLARING  VARIABLES 3-47

Pattern Pictures

@P[<][#][x]P[B ]

@P All pattern pictures begin with the @P delimiter and end
with the P delimiter. The case of the delimiters must be
the same.

< Specifies an integer position that is blank when zero.

# Specifies an integer position.

x Represents optional display characters. These characters
appear in the final result string.

P All pattern pictures must end with P. If a lower case @p
delimiter is used, the ending P delimiter must also be
lower case.

B Specifies that the format displays as blank when the
value is zero.

Pattern pictures contain optional integer positions and optional edit
characters. Any character other than < or # is considered an edit character
which will appear in the formatted picture string. The @P and P delimiters
are case sensitive. Therefore, an upper case “P” can be included as an edit
character if the delimiters are both lower case “p” and vice versa.

Pattern pictures do not recognize decimal points, in order to permit the
period to be used as an edit character. Therefore, the value formatted by a
pattern picture should be an integer. If a floating piont value is formatted by
a pattern picture, only the integer portion of the number will appear in the
result.

Example:

Picture Value Result
@P###-##-####P 215846377 215-84-6377
@P<#/##/##P 103159 10/31/59
@P(###)###-####P 3057854555 (305)785-4555
@P###/###-####P 7854555 000/785-4555
@p<#:##PMp 530 5:30PM
@P<#’ <#”P 506 5' 6"
@P<#lb. <#oz.P 902 9lb. 2oz.
@P4##A-#P 112 411A-2
@PA##.C#P 312.45 A31.C2



3-48 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Key-in Template Pictures

@K[@][#][<][x][\][?][^ ][_][|]K [B]

@K All key-in template pictures begin with the @K delim-
iter and end with the K delimiter. The case of the
delimiters must be the same.

@ Specifies only uppercase and lowercase alphabetic
characters.

# Specifies an integer 0 through 9.

< Specifies an integer that is blank for high order zeros.

x Represents optional constant display characters (any
displayable character). These characters appear in the
final result string.

\ Indicates the following character is a display character.
This allows you to include any of the picture formatting
characters (@,#,<,\,?,^,_,|) within the string as a display
character.

? Specifies any character may be placed in this position.

^ Specifies only uppercase alphabetic characters in this
position.

_ Underscore specifies only lowercase alphabetic charac-
ters in this position.

| Allows the operator to “stop here” if there are no more
characters to input. Only the data entered and any
display characters up to that point will be in the string
result.

K All key-in template pictures must end with K. If a lower
case @k delimiter is used, the ending K delimiter must
also be lower case.

B Specifies that the format displays as blank when the
value is zero.

Key-in pictures may contain integer positions ( # < ), alphabet character
positions ( @ ^ _ ), any character positions ( ? ), and display characters. Any
character other than a formatting indicator is considered a display character,
which appears in the formatted picture string. The @K and K delimiters are
case sensitive. Therefore, an upper case “K” may be included as a display
character if the delimiters are both lower case “k” and vice versa.

Key-in pictures are used specifically with STRING, PSTRING, and
CSTRING fields to allow custom field editing control and validation. Using
a key-in picture containing any of the alphabet indicators ( @ ^ _ ) on a
numeric entry field produces unpredictable results.



CHAPTER 3 DECLARING  VARIABLES 3-49

Using the Insert typing mode for a key-in picture could produce
unpredictable results. Therefore, key-in pictures always receive data entry in
Overwrite mode, even if the INS attribute is present.

Example:

Picture Value Entered Result String
@K###-##-####K 215846377 215-84-6377
@K#####|-####K 33064 33064
@K#####|-####K 330643597 33064-3597
@K<# ^^^ ##K 10AUG59 10 AUG 59
@K(###)@@@-##\@##K 305abc4555 (305)abc-45@55
@K###/?##-####K 7854555 000/785-4555
@k<#:##^Mk 530P 5:30PM
@K<#’ <#”K 506 5' 6"
@K4#_#A-#K 1g12 41g1A-2



3-50 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

String Pictures

@Slength

@S All string pictures begin with @S.

length Determines the number of characters in the picture
format.

A string picture describes an unformatted string of a specific length.

Example:

Name STRING(@S20) !A 20 character string field



CHAPTER 3 DECLARING  VARIABLES 3-51

Compiler DirCompiler DirCompiler DirCompiler DirCompiler Directivesectivesectivesectivesectives

EQUATE (assign label)

|  label |
label EQUATE( | constant | )

| picture |
| type |

EQUATE Assigns a label to another label or constant.

label The label of any statement preceding the EQUATE
statement. This is used to declare an alternate statement
label.

constant A numeric or string constant. This is used to declare a
shorthand label for a constant value. It also makes a
constant easy to locate and change.

picture A picture token. This is used to declare a shorthand label
for a picture token. However, the screen and report
formatter in the Clarion Editor will not recognize the
equated label as a valid picture.

type A data type. This is usually used to declare a single
method of declaring a variable as one of several data
types. depending upon compiler settings (like a C++
typedef for a simple data type).

The EQUATE  directive assigns a label to another label or constant. It does
not use any run-time memory. The label of an EQUATE directive cannot be
the same as its parameter.

Example:

Init EQUATE(SetUpProg) !Set alias label
Off EQUATE(0) !Off means zero
On EQUATE(1) !On means one
PI EQUATE(3.1415927) !The value of PI
EnterMsg EQUATE(‘Press Ctrl-Enter to SAVE’)
SocSecPic EQUATE(@P###-##-####P) !Soc-sec number picture

OMIT(‘End16BitChk’,Flag32Bit = 0) !OMIT if 32-bit compile is turned off
SIGNED EQUATE(LONG) !SIGNED = LONG in a 32-bit compile
End16BitChk
OMIT(‘End32BitChk’,Flag32Bit = 1) !OMIT if 32-bit compile is turned on

SIGNED EQUATE(SHORT) !SIGNED = SHORT in a 16-bit compile
End32BitChk

See Also: Reserved Words



3-52 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SIZE (memory size in bytes)

| variable |
SIZE( | constant | )

| picture |

SIZE Supplies the amount of memory used for storage.

variable The label of a previously declared variable.

constant A numeric or string constant.

picture A picture token.

SIZE directs the compiler to supply the amount of memory (in bytes) used
to store the variable, constant, or picture.

Example:

SavRec STRING(1),DIM(SIZE(Cus:Record)
!Dimension the string to size of record

StringVar STRING(SIZE(‘Clarion Software, Inc.’))
!A string long enough for the constant

LOOP I# = 1 TO SIZE(ParseString) !Loop for number of bytes in the string

PicLen = SIZE(@P(###)###-####P) !Save size of the picture



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-1

ExprExprExprExprExpressionsessionsessionsessionsessions
An expression is a mathematical, string, or logical formula that produces a
value. An expression may be the source variable of an assignment statement,
a parameter of a procedure or function, a subscript of an array (a
dimensioned variable), or the condition of an IF, CASE, LOOP, or
EXECUTE structure. Expressions may contain constant values, variables,
and function calls connected by logical and/or arithmetic or string operators.

Expression Evaluation

Expressions are evaluated in the standard algebraic order of operations. The
precedence of operations is controlled by operator type and placement of
parentheses. Each operation produces an (internal) intermediate value used
in subsequent operations. Parentheses may be used to group operations
within expressions. Expressions are evaluated beginning with the inner-most
set of parentheses and working through to the outer-most set.

Precedence levels for expression evaluation, from highest to lowest, are:

Level 1  ( ) Parenthetical Grouping
Level 2  - Unary Minus (Negative sign)
Level 3 function call Gets the RETURN value
Level 4 ^ Exponentiation
Level 5 * / % Multiplication, Division, Modulus Division
Level 6 + - Addition, Subtraction
Level 7 & Concatenation
Level 8 = <> Logical Comparisons
Level 9 AND, NOT, OR Boolean expressions

Expressions may produce numeric values, string values, or logical values
(true/false evaluation). An expression may contain no operators at all; it may
be a single variable, constant value, or function call.

Arithmetic Operators

An arithmetic operator combines two operands arithmetically to produce an
intermediate value. The operators are:

   + Addition  (A + B gives the sum of A and B)
   - Subtraction (A - B gives the difference of A and B)
   * Multiplication (A *  B multiples A by B)
   / Division  (A / B gives divides A by B)
   ^ Exponentiation (A ̂  B gives A raised to power of B)
   % Modulus Division (A %  B gives the remainder of A divided by B)



4-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Logical Operators

A logical operator compares two operands or expressions and produces a
true or false condition. There are two types of logical operators: conditional
and Boolean. Conditional operators compare two values or expressions.
Boolean operators connect string, numeric, or logical expressions together to
determine true-false logic. Operators may be combined to create complex
operators.

Conditional Operators = Equal sign
< Less than
> Greater than

Boolean Operators NOT Boolean NOT
~ Tilde (Logical NOT)
AND Boolean AND
OR Boolean OR
XOR Boolean XOR (eXclusive OR)

Combined operators <> Not equal
~= Not equal
NOT = Not equal
<= Less than or equal to
=< Less than or equal to
~> Not greater than
NOT > Not greater than
 >= Greater than or equal to
=> Greater than or equal to
~< Not less than
NOT < Not less than

During logical evaluation, any non-zero value indicates a true condition, and
a null (blank) string or zero value indicates a false condition.

Example:

Logical Expression Result
A = B True when A is equal to B
A < B True when A is less than B
A > B True when A is greater than B
A <> B, A ~= B, A NOT = B True when A is not equal to B
A ~< B, A >= B, A NOT < B True when A is not less than B
A ~> B, A <= B, A NOT > B True when A is not greater than B
~ A, NOT A True when A is null or zero
A AND B True when A is true and B is true
A OR B True when A is true, or B is true, or both are true
A XOR B True when A is true or B is true, but not both.



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-3

Numeric Constants

Numeric constants are fixed numeric values. They may occur in data
declarations, in expressions, and as parameters of procedures, functions, or
attributes. A numeric constant may be represented in decimal (base 10—the
default), binary (base 2), octal (base 8), hexadecimal (base 16), or scientific
notation formats. Formatting characters, such as dollar signs and commas,
are not permitted in numeric constants.

Decimal (base ten) numeric constants may contain an optional leading
minus sign (hyphen character), an integer, and an optional decimal with a
fractional component. Binary (base two) numeric constants may contain an
optional leading minus sign, the digits 0 and 1, and a terminating B or b
character. Octal (base eight) numeric constants contain an optional leading
minus sign, the digits 0 through 7, and a terminating O or o character.
Hexadecimal (base sixteen) numeric constants contain an optional leading
minus sign, the digits 0 through 9, alphabet characters A through F
(representing the numbers 10 through 15) and a terminating H or h character.
If the left-most character is a letter A through F, a leading zero must be used.

Example:

-924 !Decimal constants
76.346
1011b !Binary constants

-1000110B
3403o !Octal constants

-7041312O
-1FFBh !Hexadecimal constants

0CD1F74FH

Numeric Expressions

Numeric expressions may be used as parameters of procedures or functions,
the condition of IF, CASE, LOOP, or EXECUTE structures, or as the source
portion of an assignment statement where the destination is a numeric
variable. A numeric expression may contain arithmetic operators and the
concatenation operator, but they may not contain logical operators. When
used in a numeric expression, string constants and variables are converted to
numeric intermediate values. If the concatenation operator is used, the
intermediate value is converted to numeric after the concatenation occurs.

Example:

Count + 1 !Add 1 to Count
(1 - N * N) / R !N times N subtracted from 1 then divided by R
305 & 7854555 !Concatenate area code with phone number

See Also: Data Conversion Rules



4-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

String Constants

A string constant is a set of characters enclosed in single quotes
(apostrophes). The maximum length of a string constant is 255 characters.
Characters that cannot be entered from the keyboard may be inserted into a
string constant by enclosing their ASCII character codes in angle brackets
(<> ). ASCII character codes may be represented in decimal or hexadecimal
numeric constant format.

In a string constant, a left angle bracket ( < ) initiates a scan for a right angle
bracket. Therefore, to include a left angle bracket in a string constant
requires two left angle brackets in succession. To include an apostrophe as
part of the value inside a string constant requires two apostrophes in
succession. Two apostrophes ( ‘’ ), with no characters (or just spaces)
between them, represents a null, or blank, string. Consecutive occurrences of
the same character within a string constant may be represented by repeat
count notation. The number of times the character is to be repeated is placed
within curly braces ( { } ) immediately following the character to repeat. To
include a left curly brace ({) as part of the value inside a string constant
requires two left curly braces ({{) in succession.

Example:

‘string constant’ !A string constant
‘It’’s a girl!’ !With embedded apostrophe
‘<27,15>’ !Using decimal ASCII codes
‘A << B’ !With embedded left angle, A < B
‘*{20}’ !Twenty asterisks, repeat-count notation
‘’ !A null (blank) string

The Concatenation Operator

The concatenation operator ( & ) is used to append one string or variable to
another. The length of the result string is the sum of the lengths of the two
values being concatenated. Numeric data types may be concatenated with
strings or other numeric variables or constants. In many cases, the CLIP
function should be used to remove any trailing spaces from a string being
concatenated to another string.

Example:

CLIP(FirstName) & ‘ ‘ Initial & ‘. ‘ & LastName !Concatenate full name
‘Clarion Software’ & ‘, Inc.’ !Concatenate two constants

See Also: CLIP, Numeric Expressions, Data Conversion Rules



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-5

String Expressions

String expressions may be used as parameters of procedures, functions, and
attributes, or as the source portion of an assignment statement when the
destination is a string variable. String expressions may contain a single
string or numeric variable, or a complex combination of sub-expressions,
functions, and operations.

Example:

StringVar STRING(30)
Name STRING(10)
Weight STRING(3)
Phone LONG
CODE
StringVar = ‘Address:’ & Cus:Address !Concatenate a constant and variable

StringVar = ‘Phone:’ & ‘ 305-’ & FORMAT(Phone,@P###-####P)
!Concatenate constant valuess
! and FORMAT function’s return value

StringVar = Weight & ‘lbs.’ !Concatenate a constant and variable



4-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Implicit String Arrays and String Slicing

In addition to their explicit declaration, all STRING, CSTRING and
PSTRING variables have an implicit array declaration of one character
strings, dimensioned by the length of the string. This is directly equivalent
to declaring a second variable as:

StringVar STRING(10)
StringArray STRING(1),DIM(SIZE(StringVar)),OVER(StringVar)

This implicit array declaration allows each character in the string to be
directly addressed as an array element, without the need of the second
declaration.

If the string also has a DIM attribute, this implicit array declaration is the
last (optional) dimension of the array (to the right of the explicit
dimensions). The MAXIMUM function does not operate on the implicit
dimension, you should use SIZE instead.

You may also directly address multiple characters within a string using the
“string slicing” technique. This technique performs a similar function to the
SUB function, but is much more flexible and efficient. It is more flexible
because a “string slice” may be used as either the destination or source sides
of an assignment statement, while the SUB function can only be used as the
source. It is more efficient because it takes less memory than either
individual character assignments or the SUB function.

To take a “slice” of the string, the beginning and ending character numbers
are separated by a colon (:) and placed in the implicit array dimension
position within the square brackets ([]) of the string. The position numbers
may be integer constants, variables, or expressions. If variables are used,
there must be at least one blank space between the variable name and the
colon separating the beginning and ending number (to prevent PREfix
confusion).

Example:

Name STRING(15)
CONTACT STRING(15),DIM(4)
CODE
Name = ‘Tammi’ !Assign a value
Name[5] = ‘y’ ! then change fifth letter
Name[6] = ‘s’ ! then add a letter
Name[0] = ‘<6>’ ! and handle length byte
Name[5:6] = ‘ie’ ! and change a “slice”

!  -- the fifth and sixth letters
Contact[1] = ‘First’ !Assign value to first element
Contact[1,2] = ‘u’ !Change first element 2nd character
Contact[1,2:3] = Name[5:6] !Assign slice to first element 2nd & 3rd characters

See Also: STRING, CTRING, PSTRING



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-7

Logical Expressions

Logical expressions evaluate true-false conditions in IF, LOOP UNTIL, and
LOOP WHILE control structures. Control is determined by the final result
(true or false) of the expression. Logical expressions are evaluated from left
to right. The right operand of an AND, OR, or XOR logical expression will
only be evaluated if it could affect the result. Parentheses should be used to
eliminate ambiguous evaluation and to control evaluation precedence. The
level or precedence for the logical operators is as follows:

Level 1 Conditional operators
Level 2 ~, NOT
Level 3 AND
Level 4 OR, XOR

Example:

LOOP UNTIL KEYBOARD() !True when user presses any key
 !some statements
END

IF A = B THEN RETURN. !RETURN if A is equal to B

LOOP WHILE ~ Done# !Loop while false (Done# = 0)
 !some statements
END

IF A >= B OR (C > B AND E = D) THEN RETURN.
!True if a >= b, also true if
! both c > b and e = d.
!The second part of the expression
! (after OR) is evaluated only if the
! first part is not true.



4-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Runtime ExprRuntime ExprRuntime ExprRuntime ExprRuntime Expression Stringsession Stringsession Stringsession Stringsession Strings
Clarion for Windows has the ability to evaluate Clarion language
expressions dynamically created at runtime, rather than at development time.
This allows a Clarion program to contruct expressions “on the fly.”  This
also makes it possible to allow an end-user to enter the expression to
evaluate.

An expression is a mathematical or logical formula that produces a value; it
is not a complete Clarion language statement. Expressions may only contain
constant values, variables, or function calls connected by logical and/or
arithmetic operators. An expression may be used as the source side of an
assignment statement, a parameter of a procedure or function, a subscript of
an array (a dimensioned variable), or the conditions of IF, CASE, LOOP, or
EXECUTE structures.

Any program variable, and most of the internal Clarion functions, can be
used as part of a runtime expression string. User-defined functions that fall
within certain specific guidelines (described in the BIND statement
documentation) may also be used in runtime expression strings.

All of the standard Clarion expression syntax is available for use in runtime
expression strings. This includes parenthetical grouping and all the
arithmetic, logical, and string operators. Dynamic expressions are evaluated
just as any other Clarion expression and all the standard operator precedence
level rules described in the Expression Evaluation section (see page 3) apply.

It takes three steps to use runtime expression strings:

     • The variables that are allowed to be used in the expres-
sions must be explicitly declared with the BIND state-
ment.

     • The expression must be built. This may involve concat-
enating user choices or allowing the user to directly type
in their own expression.

     • The expression is passed to the EVALUATE function
which returns the result. If the expression is not a valid
Clarion expression, ERRORCODE is set.

Once the expression is evaluated, its result is used just as the result of any
hard-coded expression would be. For example, a runtime expression string
could provide a filter expression to eliminate certain records when viewing
or printing a database (the FILTER expression of a VIEW structure is an
implicit runtime expression string).



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-9

BIND (declare runtime expression string variable)

BIND( | name,variable | )
| name,function |
| group |

BIND Identifies variables allowed to be used in dynamic
expressions.

name A string constant containing the identifier used in the
dynamic expression. This may be the same as the
variable or function label.

variable The label of any variable (including fields in FILE,
GROUP, or QUEUE structures) or passed parameter. If it
is an array, it must have only one dimension.

function The label of a Clarion language FUNCTION that returns
a STRING, REAL, or LONG value. If parameters are
passed to the function, they must be STRING value-
parameters (passed by value, not by address).

group The label of a GROUP, RECORD, or QUEUE structure
declared with the BINDABLE attribute.

The BIND  statement declares the logical name used to identify a variable or
user-defined function in runtime expression strings. A variable or user-
defined function must be identified with the BIND statement before it can be
used in an expression string.

  BIND(name,variable)
The specified name is used in the expression in place of
the label of the variable.

  BIND(name,function)
The specified name is used in the expression in place of
the label of the function.

  BIND(group) Declares all the variables within the GROUP, RECORD,
or QUEUE (with the BINDABLE attribute) available for
use in a dynamic expression. The contents of each
variable’s NAME attribute is the logical name used in
the dynamic expression. If no NAME attribute is
present, the label of the variable (including prefix) is
used.

A GROUP, RECORD, or QUEUE structure declared with the BINDABLE
attribute has space allocated in the .EXE for the names of all of the data
elements in the structure. This creates a larger program that uses more
memory than it normally would. Also, the more variables that are bound at
one time, the slower the EVALUATE function will work. Therefore,
BIND(group) should only be used when a large proportion of the constituent
fields are going to be used.



4-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

PROGRAM
MAP
AllCapsFunc(STRING),STRING !Clarion function

END

Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .

Detail FILE,DRIVER(‘Clarion’),PRE(Dtl),BINDABLE !Bindable RECORD structure
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

. .

CODE
BIND(‘ShipName’,Hea:ShipToName) !BIND a single variable
BIND(Dtl:Record) !BIND a RECORD structure
BIND(‘SomeFunc’,AllCapsFunc) !BIND a Clarion language function
IF EVALUATE(‘ShipName = SomeFunc(ShipName)’)
MESSAGE(‘Name is in ALL CAPS’)

END

AllCapsFunc FUNCTION(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also: UNBIND, EVALUATE



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-11

UNBIND (free runtime expression string variable)

UNBIND( [name] )

UNBIND Frees variables from use in runtime expression strings.

name A string constant that specifies the identifier used by the
dynamic expression evaluator. If omitted, all bound
variables are unbound.

The UNBIND  statement frees logical names previously bound by the BIND
statement. The more variables that are bound at one time, the slower the
EVALUATE function works. Therefore, UNBIND should be used to free all
variables and user-defined functions not currently available for use in
runtime expression strings.

Example:

 PROGRAM
 MAP
 AllCapsFunc(STRING),STRING !Clarion function

 END

Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .

Detail FILE,DRIVER(‘Clarion’),PRE(Dtl),BINDABLE !Bindable RECORD structure
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

. .

CODE
BIND(‘ShipName’,Hea:ShipToName)
BIND(Dtl:Record)
BIND(‘SomeFunc’,AllCapsFunc)
UNBIND(‘ShipName’) !UNBIND the variable
UNBIND(‘SomeFunc’) !UNBIND the Clarion language function
UNBIND !UNBIND all bound variables

AllCapsFunc FUNCTION(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also: BIND, EVALUATE



4-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EVALUATE (return runtime expression string result)

EVALUATE( expression)

EVALUATE Evaluates runtime expression strings.

expression A string constant or variable containing the expression to
evaluate.

The EVALUATE  function returns the result of the expression as a STRING
value. If the expression does not meet the rules of a valid Clarion expression,
the result will be a null string, and the ERRORCODE function is set.

The more variables are bound at one time, the slower the EVALUATE
function works. Therefore, BIND(group) should only be used when most of
the group’s fields are needed, and UNBIND should be used to free all
variables and user-defined functions not currently required for use in
dynamic expressions.

Return Data Type: STRING

Errors Posted: 800 Illegal Expression
801 Variable Not Found

Example:

 PROGRAM
 MAP
 AllCapsFunc(STRING),STRING !Clarion function

 END
Header FILE,DRIVER(‘Clarion’),PRE(Hea),BINDABLE !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .
StringVar STRING(20)
CODE
BIND(‘ShipName’,Hea:ShipToName)
BIND(‘SomeFunc’,AllCapsFunc)
StringVar = ‘SMITH’
IF EVALUATE(‘StringVar = SomeFunc(ShipName)’)
DO SmithProcess

END
AllCapsFunc FUNCTION(PassedString)
CODE
RETURN(UPPER(PassedString))

See Also: BIND, UNBIND



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-13

Assignment StatementsAssignment StatementsAssignment StatementsAssignment StatementsAssignment Statements

Simple Assignment Statements

destination = source

destination The label of a variable or data structure property.

source A numeric or string constant, variable, function, expres-
sion, or data structure property.

The = sign assigns the value of source to the destination; it copies the value
of the source expression into the destination variable. If destination and
source are different data types, the value the destination receives from the
source is dependent upon the Data Conversion Rules.

Example:

Name = ‘JONES’ !Variable = string constant
PI = 3.14159 !Variable = numeric constant
Cosine = SQRT(1 - Sine * Sine) !Variable = function return value
A = B + C + 3 !Variable = numeric expression
Name = CLIP(FirstName) & ‘ ‘ Initial & ‘. ‘ & LastName

!Variable = string expression

See Also: Data Conversion Rules

Operating Assignment Statements

destination += source
destination -= source
destination *= source
destination /= source
destination ^= source
destination %= source

destination Must be the label of a variable. This may not be any type
property (window, control, report, etc.).

source A constant, variable, function, or expression.

Operating assignment statements perform their operation on the destination
and source, assigning the result to the destination. Operating assignment
statements are more efficient than their equivalent operations.

Example:

Operating Assignment Functional Equivalent
A += 1  A = A + 1
A -= B  A = A - B
A *= -5  A = A * -5
A /= 100  A = A / 100
A ^= I + 1  A = A ^ (I + 1)
A %= 7  A = A % 7



4-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Deep Assignment Statements

destination :=: source

destination The label of a GROUP, RECORD, or QUEUE data
structure, or an array.

source The label of a GROUP, RECORD, or QUEUE data
structure, or a numeric or string constant, variable,
function, or expression.

The :=: sign executes a deep assignment statement which performs multiple
individual component variable assignments from one data structure to
another. The assignments are only performed between the variables within
each structure that have exactly matching labels, ignoring all prefixes. The
compiler looks within nested GROUP structures to find matching labels.
Any variable in the destination which does not have a label exactly matching
a variable in the source, is not changed.

Deep assignments are performed just as if each matching variable were
individually assigned to its matching variable. This means that all normal
data conversion rules apply to each matching variable assignment. For
example, the label of a nested source GROUP may match a nested
destination GROUP or simple variable. In this case, the nested source
GROUP is assigned to the destination as a STRING, just as normal GROUP
assignment is handled.

The name of a source array may match a destination array. In this case, each
element of the source array is assigned to its corresponding element in the
destination array. If the source array has more or fewer elements than the
destination array, only the matching elements are assigned to the
destination.

If the destination is an array variable that is not part of a GROUP,
RECORD, or QUEUE, and the source is a constant, variable, or expression,
then each element of the destination array is initialized to the value of the
source. This is a much more efficient method of initializing an array to a
specific value than using a LOOP structure and assigning each element in
turn.



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-15

Example:

Group1 GROUP
S SHORT
L LONG

END

Group2 GROUP
L SHORT
S REAL
T LONG

END

ArrayField SHORT,DIM(1000)

CODE
Group2 :=: Group1 !Is equivalent to:

!  Group2:S = Group1:S
!  Group2:L = Group1:L
! and performs all necessary data conversion

ArrayField :=: 7 !Is equivalent to:
! LOOP I# = 1 to 1000
! ArrayField[I#] = 7
! END



4-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Reference Assignment Statements

destination &= source

destination The label of a reference variable.

source The label of another reference variable of the same type
as the destination, or the label of a variable or data
structure of the type referenced by the destination. This
cannot be an expression, only a data label.

The &=  sign executes a reference assignment statement which assigns to the
destination reference variable the reference to the source variable.
Depending upon the data type, the destination reference variable may
receive the source’s memory address, or a more complex internal data
structure (describing the location and type of source data).

The declarations of the destination reference variable and its source must
match exactly; reference assignment does not perform automatic type
conversion. For example, a reference assignment statement to a destination
declared as &QUEUE must have a source that is either another &QUEUE
reference variable, or the label of a QUEUE structure.

Example:

Queue1 QUEUE
ShortVar SHORT
LongVar1 LONG
LongVar2 LONG

END

QueueRef &QUEUE !Reference a QUEUE, only
LongRef &LONG !Reference a LONG, only

CODE
QueueRef &= Queue1 !Assign QUEUE reference
IF SomeCondition !Evaluate some condition
LongRef &= Queue1:LongVar1 ! and reference an appropriate variable

ELSE
LongRef &= Queue1:LongVar2

END
LongRef += 1 !Increment either LongVar1 or LongVar2

! depending upon which variable is referenced

See Also: Reference Variables



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-17

CLEAR (clear a variable)

CLEAR( label [,n])

CLEAR Clears any value from a variable.

label The label of a variable.

n A numeric constant; 1 or -1. This parameter indicates a
cleared value other than zero or blank. If n is 1, the
variable is set to the highest possible value for that data
type. For STRING, PSTRING and CSTRING, that is
ASCII 255. If n is -1, the variable is set to the lowest
possible value for that data type. For STRING,
PSTRING and CSTRING, that is ASCII 0.

The CLEAR  statement clears any value from the label variable. If n is
omitted, numeric variables are cleared to zero, and string variables are
cleared to spaces. If the label parameter is a GROUP, RECORD, or QUEUE
structure name, all variables in the structure are cleared. If the variable has a
DIM attribute, the entire array is cleared. A single element of an array
cannot be CLEARed.

Example:

CLEAR(Count) !Clear a variable
CLEAR(Cus:Record) !Clear the record structure
CLEAR(Amount,1) !Clear variable to highest possible value
CLEAR(Amount,-1) !Clear variable to lowest possible value



4-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Data Conversion RulesData Conversion RulesData Conversion RulesData Conversion RulesData Conversion Rules
The Clarion language provides automatic conversion between data types.
However, some assignments can produce an unequal source and destination.
Assigning an “out of range” value can produce unpredictable results.

Base Types

To facilitate this automatic data type conversion, Clarion internally uses four
Base Types to which all data items are automatically converted when any
operation is performed on the data. These types are: STRING, LONG,
DECIMAL, and REAL.These are all standard Clarion data types.

The STRING Base Type is used as the intermediate type for all string
operations.  The LONG, DECIMAL, and REAL Base Types are used in all
arithmetic operations. Which numeric type is used, and when, is determined
by the original data types of the operands and the type of operation being
performed on them.

The “normal” Base Type for each data type is:

Base Type LONG:
BYTE
SHORT
USHORT
LONG
DATE
TIME
Integer Constants

Base Type DECIMAL:
ULONG
DECIMAL
PDECIMAL
STRING(@Nx.y)
Decimal Constants

Base Type REAL:
SREAL
REAL
BFLOAT4
BFLOAT8
STRING(@Ex.y)
Scientific Notation Constants
Untyped (? and *?) Parameters

Base Type STRING:
STRING
CSTRING
PSTRING
String Constants

DATE and TIME data types are first converted to Clarion Standard Date and
Clarion Standard Time intermediate values and have a LONG Base Type for



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-19

all operations.

For the most part, Clarion’s internal use of these Base Types is transparent to
the programmer and do not require any consideration when planning
applications. However, for business programming with numeric data
containing fractional portions (currency, for instance), using data types that
have the DECIMAL Base Type has some significant advantages over REAL
Base Types.

     • DECIMAL supports 31 significant digits of accuracy for
data storage while REAL only supports 15.

     • DECIMAL automatically rounds to the precision
specified by the data declaration, while REAL can create
rounding problems due to the transalation of decimal
(base 10) numbers to binary (base 2) for processing by
the CPU’s Floating Point Unit (or Floating Point emula-
tion software).

     • On machines without a Floating Point Unit, DECIMAL
is substantially faster than REAL.

     • DECIMAL operations are closely linked with conven-
tional (decimal) arithmetic.

BCD Operations and Functions

Clarion has a Binary Coded Decimal (BCD) library of operations and
functions that execute in a manner similar to the manner in which decimal
arithmetic is performed on paper. These operations use internal intermediate
values with 31 digits accuracy on both sides of the decimal point.

The big advantage of the BCD operations is that it is very easy to “see” what
is happening because they execute just as you would with pencil and paper.
Simply imagine doing the computation long hand and throwing away
numbers that go off the end of the page (rounding to the right).

Having 31 fixed decimal places either side of the decimal point there are
numbers that cannot be represented in a BCD system which can be
represented by a REAL. Therefore, understanding what is going on is useful.

Generally, the only cases where underflow will affect you is in division
operations, usually when dividing by a multiple of 3. For example:

100000/3 = 33333.3333333333333333333333333333333
(100000/3)-INT(100000/3)*100000 = 33333.3333333333333333333333333300000

BCD computation times are very data sensitive; the time taken is
proportional to how long the computation would take you by hand.
Therefore, the longer the numbers involved, the longer the execution times.
However, standard “tricks of the trade” (such as multiplying by a power of



4-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ten by shifting the decimal point) are spotted, making the BCD libraries fast
in real world applications.

The following operations may execute as BCD operations:

Addition  (+), Subtraction (-), Multiplication  (*)
Performed as a BCD operation when neither operand has
a REAL Base Type (both are LONG or DECIMAL) and
one has the DECIMAL Base Type. Any digits appearing
to the right of 1e31 disappear (wrap), and any to the left
of 1e-30 are rounded up.

Division (/) Performed as a BCD operation when neither operand has
a REAL Base Type (both are LONG or DECIMAL).
Any digits appearing to the right of 1e31 disappear
(wrap), and any to the left of 1e-30 are rounded up.

Exponentiation (^) Performed as a BCD operation when the first operand is
a DECIMAL or LONG Base Type and the second
operand is a LONG Base Type. Any digits appearing to
the right of 1e31 disappear (wrap), and any to the left of
1e-30 are rounded.

ABS() Removes the sign from a DECIMAL variable or inter-
mediate value and returns the DECIMAL value.

INT() Truncates a DECIMAL intermediate value and returns a
DECIMAL value.

ROUND() If the second parameter is a LONG or DECIMAL Base
Type, then rounding is performed as a BCD operation
which returns a DECIMAL value. ROUND is very
efficient as a BCD operation and should be used to
compare REALs to DECIMALs at decimal width.

Type Conversion and Intermediate Results

Internally, a BCD intermediate result may have up to 31 digits of accuracy
on both sides of the decimal point, so any two DECIMALs can be added
with complete accuracy. Therefore, storage from BCD intermediate results
to a data type can result in loss of precision. This is handled as follows :

Decimal(x,y) = BCD
First the BCD value is rounded to y decimal places. If
the result overflows x digits then leading digits are
removed (this corresponds to “wrapping around” a
decimal counter).

Integer = BCD Any digits to the right of the decimal point are ignored.
The decimal is then converted to an integer with com-
plete accuracy and then taken modulo 2^32.



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-21

String(@Nx.y) = BCD
The BCD value is rounded to y decimal places, the
result is fitted into the pictured string.  If overflow
occurs, an invalid picture (####) results.

Real = BCD The most significant 15 digits are taken and the decimal
point ‘floated’ accordingly.

For those operations and functions that do not support DECIMAL types, the
DECIMAL is converted to REAL first. In cases where more than 15 digits
were available in the DECIMAL value, there is a loss of accuracy.

Note: Untyped parameters have an implicit REAL Base Type, therefore
DECIMAL Base Type data passed as an Untyped Parameterswill only
have 15 digits of precision. DECIMAL Base Types can be passed as
*DECIMAL parameters with no loss of precision.

When EVALUATEing a expression (or processing a VIEW FILTER)
the REAL Base Type is used.

Simple Assignment Data Conversion

The rules of simple assignment data conversion from source into destination
are as follows:

BYTE = (SHORT, USHORT, LONG, or ULONG)
The destination receives the low-order 8 bits of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates
any decimal portion, then the destination receives the
low-order 8 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no formatting
characters. The source is converted to a LONG, which
truncates any decimal portion, then the destination
receives the low-order 8 bits of the LONG.



4-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SHORT = BYTE The destination receives the value of the source.

(USHORT, LONG, or ULONG)
The destination receives the low-order 16 bits of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates
any decimal portion, then the destination receives the
low-order 16 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no formatting
characters. The source is first converted to a LONG,
which truncates any decimal portion, then the destina-
tion receives the low-order 16 bits of the LONG.

USHORT = BYTE The destination receives the value of the source.

(SHORT, LONG, or ULONG)
The destination receives the low-order 16 bits of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates
any decimal portion, then the destination receives the
low-order 16 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
LONG, which truncates any decimal portion, then the
destination receives the low-order 16 bits of the LONG.

 LONG = (BYTE, SHORT, USHORT, or ULONG)
The destination receives the value and the sign of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the value of the source, includ-
ing the sign, up to 231. If the number is greater than 231,
the destination receives the result of modulo 231. Any
decimal portion is truncated.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
REAL, which is then converted to the LONG.



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-23

DATE = (BYTE, SHORT, USHORT, or ULONG)
The destination receives the Btrieve format for the
Clarion Standard Date for the value of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG as a Clarion
Standard Date, which truncates any decimal portion,
then the destination receives the Btrieve format for the
Clarion Standard Date.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
LONG as a Clarion Standard Date, which truncates any
decimal portion, then the destination receives the Btrieve
format for the Clarion Standard Date.

TIME = (BYTE, SHORT, USHORT, or ULONG)
The destination receives the Btrieve format for the
Clarion Standard Time for the value of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG as a Clarion
Standard Time, which truncates any decimal portion,
then the destination receives the Btrieve format for the
Clarion Standard Time.

(STRING, CSTRING, PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
LONG as a Clarion Standard Time, which truncates any
decimal portion, then the destination receives the Btrieve
format for the Clarion Standard Time.

ULONG = (BYTE, SHORT, or USHORT)
The source is first converted to a LONG, then the
destination receives the entire 32 bits of the LONG.

LONG The destination receives the entire 32 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The source is first converted to a LONG, which truncates
any decimal portion, then the destination receives the
entire 32 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
LONG, which truncates any decimal portion, then the
destination receives the entire 32 bits of the LONG.



4-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

REAL = (BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the full integer portion and the
sign of the source.

(DECIMAL, PDECIMAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer portion, and
the decimal portion of the source.

(STRING, CSTRING, PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

SREAL = (BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional
portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

BFLOAT8 = (BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional
portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.



CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS 4-25

BFLOAT4 = (BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional
portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

DECIMAL = (BYTE, SHORT, USHORT, LONG, ULONG, or PDECIMAL)
The destination receives the sign and the value of the
source, wrapping or rounding as appropriate.

(REAL, or SREAL)
The destination receives the sign, integer, and the high
order part of the fraction from the source. The high order
fractional portion is rounded in the destination.

(STRING, CSTRING, PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

PDECIMAL = (BYTE, SHORT, USHORT, LONG, ULONG, or DECIMAL)
The destination receives the sign and the value of the
source, wrapping or rounding as appropriate.

(REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and the high
order part of the fraction from the source. The high order
fractional portion is rounded in the destination.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.



4-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

STRING = (BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional
portion of the source (rounded into the string’s picture
format). The value is left justified in the destination.

CSTRING = (BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional
portion of the source (rounded into the string’s picture
format). The value is left justified in the destination.

PSTRING = (BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOAT8, or BFLOAT4)
The destination receives the sign, integer, and fractional
portion of the source (rounded into the string’s picture
format). The value is left justified in the destination.



CHAPTER 5 CONTROL STATEMENTS 5-1

ContrContrContrContrControl Structurol Structurol Structurol Structurol Structureseseseses

CASE (selective execution structure)

CASE  condition
OF expression [ TO expression ]
  statements
[ OROF expression [ TO expression ] ]
  statements
[ ELSE ]
  statements
END

CASE Initiates a selective execution structure.

condition A numeric or string variable or expression.

OF The statements following an OF are executed when the
expression following the OF option is equal to the
condition of the CASE. There may be many OF options
in a CASE structure.

expression A numeric or string constant, variable, or expression.

TO TO  allows a range of values in an OF or OROF. The
statements following the OF (or OROF) are executed if
the value of the condition falls within the inclusive range
specified by the expressions. The expression following
OF (or OROF) must contain the lower limit of the range.
The expression following TO must contain the upper
limit of the range.

OROF The statements following an OROF are executed when
either the expression following the OROF or the OF
option is equal to the condition of the CASE. There may
be many OROF options associated with one OF option.
An OROF may optionally be put on a separate line. An
OROF does not terminate preceding statements groups,
so control “falls into” the OROF statements.

ELSE The statements following ELSE are executed when all
preceding OF and OROF options have been evaluated as
not equivalent. ELSE is not required; however, when
used, it must be the last option in the CASE structure.

statements Any valid Clarion executable source code.

A CASE structure selectively executes statements based on equivalence
between the condition and expression or range of expressions. CASE
structures may be nested within other executable structures and other
executable structures may be nested within CASE structures. The CASE
structure must terminate with an END statement (or period).



5-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

CASE ACCEPTED() !Evaluate field edit routine
OF ?Name !If field is Name
ERASE(?Address,?Zip) ! erase Address through Zip
GET(NameFile,NameKey) ! get the record

CASE Action !Evaluate Action
OF 1 ! adding record - does not exist
IF NOT ERRORCODE() ! should be a file error
ErrMsg = ‘ALREADY ON FILE’ ! otherwise display error message
DISPLAY(?Address,?Zip) ! display address through zipcode
SELECT(?Name) ! re-enter the name

END
OF 2 OROF 3 ! change or delete - record exists
DISPLAY(?Address,?Zip) ! display address through zipcode

END ! end case action

CASE Name[1] !Get first letter of name
OF ‘A’ TO ‘M’ !Process first half of alphabet
OROF ‘a’ TO ‘m’
DO FirstHalf

OF ‘N TO ‘Z’ OROF ‘n’ TO ‘z’ !Process second half of alphabet
DO SecondHalf

END !End case sub(name

OF ?Address !If field is address
DO AddressVal ! call validation routine

END !End case accepted()



CHAPTER 5 CONTROL STATEMENTS 5-3

EXECUTE (statement execution structure)

EXECUTE expression
  statement 1
  statement 2
  [ BEGIN

statements
  END ]
  statement n
END

EXECUTE Initiates a single statement execution structure.

expression A numeric expression or a variable that contains a
numeric integer.

statement 1 A single statement that executes only when the expres-
sion is equal to 1.

statement 2 A single statement that executes only when the expres-
sion is equal to 2.

BEGIN BEGIN marks the beginning of a structure containing a
number of lines of code. The BEGIN structure will be
treated as a single statement by the EXECUTE structure.
The BEGIN structure is terminated by a period or the
keyword END.

statement n A single statement that executes only when the expres-
sion is equal to n.

An EXECUTE  structure selects a single executable statement (or executable
code structure) based on the value of the expression. The EXECUTE
structure must terminate with an END statement (or period).

If  the expression equals 1, the first statement (statement 1) executes. If
expression equals 2, the second statement (statement 2) executes, and so on.
If the value of the expression is zero, or greater than the total number of
statements (or structures) within the EXECUTE structure, program
execution continues with the next statement following the EXECUTE
structure.

EXECUTE structures may be nested within other executable structures.
Other executable structures (IF, CASE, LOOP, EXECUTE, and BEGIN)
may be nested within an EXECUTE.



5-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

EXECUTE Transact !Evaluate Transact
ADD(Customer) !Execute if Transact = 1
PUT(Customer) !Execute if Transact = 2
DELETE(Customer) !Execute if Transact = 3

END !End execute

EXECUTE CHOICE() !Evaluate CHOICE() function
OrderPart !Execute if CHOICE() = 1
BEGIN !Execute if CHOICE() = 2
SavVendor” = Vendor
UpdVendor
IF Vendor <> SavVendor”
Mem:Message = ‘VENDOR NAME CHANGED’

. .
CASE VendorType !Execute if CHOICE() = 3
OF 1
UpdPartNo1

OF 2
UpdPartNo2

END
RETURN !Execute if CHOICE() = 4

END !End execute

See Also: BEGIN



CHAPTER 5 CONTROL STATEMENTS 5-5

IF (conditional execution structure)

IF logical expression [ THEN ]
  statements
[ ELSIF  logical expression  [ THEN ]
  statements ]
[ ELSE
  statements ]
END

IF Initiates a conditional statement execution structure.

logical expression A numeric or string variable, expression, or function. A
logical expression evaluates a condition. Control is
determined by the result (true or false) of the expression.
A zero (or blank) value evaluates as false, anything else
is true.

THEN The statements following THEN are executed when the
preceding logical expression is evaluated as true. If used,
THEN must only be placed on the same line as the IF  or
ELSIF .

statements An executable statement, or a sequence of executable
statements.

ELSIF The logical expression following an ELSIF  is evaluated
only when all preceding IF  or ELSIF  conditions were
evaluated as false.

ELSE The statements following ELSE are executed when all
preceding IF  and ELSIF  options were evaluated as
false. ELSE is not required, however, when it is used, it
must be the last option in the IF structure.

An IF  structure controls program execution based on the outcome of one or
more logical expressions. IF structures may have any number of ELSIF
statement groups. IF structures may be “nested” within other executable
structures. Other executable structures may be nested within an IF structure.
Each IF structure must terminate with an END statement (or period).

Example:

IF Cus:TransCount = 1 !If new customer
AcctSetup ! call account setup procedure

ELSIF Cus:TransCount > 10 AND Cus:TransCount < 100 !If regular customer
DO RegularAcct ! process the account

ELSIF Cus:TransCount > 100 !If special customer
DO SpecialAcct ! process the account

ELSE !Otherwise
DO NewAcct ! process the account
IF Cus:Credit THEN CheckCredit ELSE CLEAR(Cus:CreditStat).

! verify credit status
END

IF ERRORCODE() THEN ErrHandler(Cus:AcctNumber,Trn:InvoiceNbr). !Handle errors



5-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LOOP (iteration structure)

LOOP  [ | count TIMES | ]
| i = initial TO limit [ BY step ] |
|  UNTIL logical expression |
|  WHILE logical expression |

   statements
END

LOOP Initiates an iterative statement execution structure.

count A numeric constant, variable, or expression that deter-
mines the number of TIMES the statements in the LOOP
are executed.

TIMES Executes count number of iterations of the statements.

i The label of a variable which is automatically
incremented on each iteration of the LOOP.

= Assigns a new value to the increment ( i ) variable for
each cycle of the LOOP.

initial A numeric constant, variable, or expression that specifies
the initial value assigned to the increment variable ( i )
on the first pass through the LOOP structure.

TO A syntax conjunctive for the limit parameter.

limit When i is greater than limit, the LOOP structure control
sequence terminates.

BY A syntax conjunctive for the step parameter.

step A numeric constant, variable, or expression. The step
determines the quantity by which the i variable incre-
ments on each iteration of the LOOP. If the BY step
parameter is omitted, i increments by 1.

UNTIL Evaluates the logical expression before each iteration of
the LOOP. If the logical expression evaluates to true, the
LOOP control sequence terminates.

WHILE Evaluates the logical expression before each iteration of
the LOOP. If the logical expression evaluates to false,
the LOOP control sequence terminates.

logical expression A numeric or string variable, expression, or function. A
logical expression evaluates a condition. Control is
determined by the result (true or false) of the expression.
A zero (or blank) value evaluates as false, anything else
is true.

statements An executable statement, or a sequence of executable
statements.

A LOOP structure repetitively executes the statements within its structure.



CHAPTER 5 CONTROL STATEMENTS 5-7

LOOP conditions are always evaluated at the top of the LOOP, before the
LOOP is executed. LOOP structures may be nested within other executable
code structures. Other executable code structures may be nested within a
LOOP structure. Each LOOP structure must terminate with an END
statement (or period).

A LOOP with no parameters iterates continuously, unless a BREAK or
RETURN statement is executed. BREAK discontinues the LOOP and
continues program execution with the statement following the LOOP
structure. All statements within a LOOP structure are executed unless a
CYCLE statement is executed. CYCLE immediately sends program
execution back to the top of the LOOP for the next iteration, without
executing any statements following the CYCLE in the LOOP.

Example:

LOOP !Continuous loop
Char = GetChar() ! get a character
IF Char <> CarrReturn ! if it’s not a carriage return
Field = CLIP(Field) & Char ! append the character

ELSE ! otherwise
BREAK ! break out of the loop

. . !End if, end loop

IF ERRORCODE() !On error
LOOP 3 TIMES ! loop three times
BEEP ! sound the alarm

. . !End loop, end if

LOOP I# = 1 TO 365 BY 7 !Loop, increment I# by 7 each time
GET(DailyTotal,I#) ! read every 7th record
DO WeeklyJob ! do the routine

END !End loop

SET(MasterFile) !Point to first record
LOOP UNTIL EOF(MasterFile) !Process all the records
NEXT(MasterFile) ! read a record
ProcMaster ! call the procedure

END

LOOP WHILE KEYBOARD() !Empty the keyboard buffer
ASK ! without processing keystrokes

END

See Also: BREAK, CYCLE



5-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ContrContrContrContrControl Statementsol Statementsol Statementsol Statementsol Statements

BREAK (immediately leave loop)

BREAK

The BREAK  statement immediately terminates the LOOP or ACCEPT loop
and transfers control to the first statement following the LOOP or ACCEPT
loop structure. BREAK may only be used in a LOOP or ACCEPT loop
structure.

Example:

LOOP !Loop
ASK ! wait for a keystroke
IF KEYCODE() = 256 ! if Esc key pressed
BREAK ! break out of the loop

ELSE ! otherwise
BEEP ! sound the alarm

END
END

ACCEPT !ACCEPT loop structure
CASE ACCEPTED()
OF ?Ok
CallSomeProc

OF ?Cancel
BREAK ! break out of the loop

END
END

See Also: LOOP, CYCLE, ACCEPT



CHAPTER 5 CONTROL STATEMENTS 5-9

CHAIN (execute another program)

CHAIN(program)

CHAIN Terminates the current program and executes another.

program A string constant or variable containing the name of the
program to execute. This may be any .EXE or .COM
program.

CHAIN  terminates the current program, closing all files and returning its
memory to the operating system, and executes another program.

Example:

 PROGRAM !MainMenu program code
CODE
EXECUTE CHOICE()
CHAIN(‘Ledger’) !Execute LEDGER.EXE
CHAIN(‘Payroll’) !Execute PAYROLL.EXE
RETURN !Return to DOS

END

 PROGRAM !Ledger program code
CODE
EXECUTE CHOICE()
CHAIN(‘MainMenu’) !Return to MainMenu program
RETURN !Return to DOS

END

PROGRAM !Payroll program code
CODE
EXECUTE CHOICE()
CHAIN(‘MainMenu’) !Return to MainMenu program
RETURN !Return to DOS

END

See Also: RUN



5-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CYCLE (go to top of loop)

CYCLE

The CYCLE  statement passes control immediately back to the top of the
LOOP or ACCEPT loop, where the LOOP condition is evaluated. CYCLE
may only be used in a LOOP or ACCEPT loop structure.

In an ACCEPT loop, for certain events, CYCLE terminates an automatic
action before it is performed (such as EVENT:Move). This behavior is
documented for each event so affected.

Example:

SET(MasterFile) !Point to first record
LOOP !Process all the records
NEXT(MasterFile) ! read a record
IF ERRORCODE() THEN BREAK. !Get out of loop at end of file
DO MatchMaster ! check for a match
IF NoMatch ! if match not found
CYCLE ! jump to top of loop

END
DO TransVal ! validate the transaction
PUT(MasterFile) ! write the record

END

See Also: LOOP, BREAK, ACCEPT

DO (call a ROUTINE)

DO label

DO Executes a ROUTINE.

label The label of a ROUTINE statement.

The DO statement is used to execute a ROUTINE local to a PROGRAM,
PROCEDURE, or FUNCTION. When a ROUTINE completes execution,
program control reverts to the statement following the DO statement. A
ROUTINE may only be called within the CODE section containing the
ROUTINE’s source code.

Example:

DO NextRecord !Call the next record routine
DO CalcNetPay !Call the calc net pay routine

See Also: EXIT, ROUTINE



CHAPTER 5 CONTROL STATEMENTS 5-11

EXIT (leave a ROUTINE)

EXIT

The EXIT  statement immediately leaves a ROUTINE and returns program
control to the statement following the DO statement that called it. This is
different from RETURN, which completely exits the PROCEDURE or
FUNCTION even when called from within a ROUTINE.

An EXIT statement is not required. A ROUTINE with no EXIT statement
terminates automatically when the entire sequence of statements in the
ROUTINE is complete.

Example:

CalcNetPay ROUTINE
IF GrossPay = 0 !If no pay
EXIT ! exit the routine

END
NetPay = GrossPay - FedTax - Fica
QtdNetPay += NetPay
YtdNetPay += NetPay

See Also: DO, RETURN

GOTO (go to a label)

GOTO label

GOTO Unconditionally transfers program control to another
statement.

label The label of another executable statement within the
PROGRAM, PROCEDURE, FUNCTION, or ROU-
TINE.

The GOTO statement unconditionally transfers control from one statement
to another. The target label of a GOTO must not be the label of a ROUTINE,
PROCEDURE, or FUNCTION.

The scope of GOTO is limited to the currently executing ROUTINE,
PROCEDURE, or FUNCTION; it may not target a label outside the
ROUTINE, PROCEDURE, or FUNCTION in which it is used.

Example:

ComputeIt FUNCTION(Level)
CODE
IF Level = 0 THEN GOTO PassCompute. !Skip rate calculation if no Level
Rate = Level * MarkUp !Compute Rate
RETURN(Rate) ! and return it

PassCompute RETURN(999999) !Return bogus number



5-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

HALT (exit program)

HALT( [errorlevel] [,message])

HALT Immediately terminates the program.

errorlevel A positive integer constant or variable (range: 0 - 250)
which is the exit code to pass to DOS, setting the DOS
ERRORLEVEL. If omitted,the default is zero.

message A string constant or variable which is typed on the
screen after program termination.

The HALT  statement immediately returns to the operating system, setting
the errorlevel and optionally displaying a message after the program
terminates.

If the program being HALTed was launched by a RUN statement within
another Clarion program, the errorlevel exit code HALT sets may be
determined by using the RUNCODE function in the launching program.

Example:

PasswordProc PROCEDURE
Password STRING(10)
Window WINDOW,CENTER

ENTRY(@s10),AT(5,5),USE(Password),HIDE
 END

CODE
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Password)
IF Password <> ‘Pay$MeMoRe’
HALT(0,’Incorrect Password entered.’)

END
END

END

See Also: RUN, RUNCODE, STOP



CHAPTER 5 CONTROL STATEMENTS 5-13

IDLE (arm periodic procedure)

IDLE([procedure] [,separation])

IDLE Arms a procedure that periodically executes.

procedure The label of a PROCEDURE. The procedure may not
take any parameters.

separation An integer that specifies the minimum wait time (in
seconds) between calls to the procedure. A separation of
0 specifies continuous calls. If separation is omitted, the
default value is 1 second.

An IDLE  procedure is active while ASK or ACCEPT are waiting for user
input. Only one IDLE procedure may be active at a time, and it executes on
thread zero (0). Naming a new IDLE procedure overrides the previous one.
An IDLE statement with no parameters disarms the IDLE process.

An IDLE procedure is usually prototyped in the PROGRAM’s MAP. If
prototyped in a MEMBER MAP, the IDLE statements which activate and
de-activate it must be contained in a procedure or function within the same
MEMBER module.

Example:

IDLE(ShoTime,10) !Call shotime every 10 seconds
IDLE(CheckNet) !Check network activity every 1 second
IDLE !Disarm idle procedure

See Also: ASK, ACCEPT, PROCEDURE, MAP



5-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RETURN (return to caller)

RETURN( [expression] )

RETURN Terminates a PROGRAM, PROCEDURE, or FUNC-
TION.

expression The expression passes the return value of a FUNCTION
back to the expression in which the FUNCTION was
used. The expression is required for a FUNCTION and
may not be used in a PROCEDURE or PROGRAM.

The RETURN  statement terminates a PROGRAM, PROCEDURE, or
FUNCTION, and passes control back to the caller. When RETURN is
executed from the CODE section of a PROGRAM, the program is
terminated, all files and windows are closed, and control is passed to the
operating system.

RETURN is required in a FUNCTION and optional in a PROCEDURE or
PROGRAM. If RETURN is not used in a PROCEDURE or PROGRAM, an
implicit RETURN occurs at the end of the executable code. The end of
executable code is defined as the end of the source file, or the beginning of
another PROCEDURE, FUNCTION, or ROUTINE.

RETURN from a PROCEDURE or FUNCTION (whether explicit or
implicit) automatically closes any local APPLICATION, WINDOW,
REPORT, or VIEW structure opened in the PROCEDURE or FUNCTION.
It does not automatically close any Global or Module Static APPLICATION,
WINDOW, REPORT, or VIEW. It also closes and frees any local QUEUE
structure declared without the STATIC attribute.

Example:

IF Done# THEN RETURN. !Quit when done

DayOfWeek FUNCTION(Date) !Function to return the day of the week
CODE
EXECUTE (Date % 7) + 1 !Determine what day of week Date is
RETURN(‘Sunday’) ! and RETURN the correct day string
RETURN(‘Monday’)
RETURN(‘Tuesday’)
RETURN(‘Wednesday’)
RETURN(‘Thursday’)
RETURN(‘Friday’)
RETURN(‘Saturday’)

END



CHAPTER 5 CONTROL STATEMENTS 5-15

RUN (execute command)

RUN( command )

RUN Executes a command as if it were entered on the DOS
command line.

command A string constant or variable containing the command to
execute. This may include a full path and command line
parameters.

The RUN statement executes a command to execute a DOS or Windows
program. When the command executes, the new program is loaded as the
ontop and active program. Execution control in the launching program
returns immediately to the statement following RUN and the program
continues executing as a background application. The user can return to the
launching program by either terminating the launched program, or switching
back to it through the Windows Task List.

If the command does not contain a path to the program, the following search
sequence is followed:

 1. The DOS current directory
 2. The Windows directory
 3. The Windows system directory
 4. Each directory in the DOS PATH
 5. Each directory mapped in a network

The successful execution of the command may be verified with the
RUNCODE function, which returns the DOS exit code of the command. If
unsuccessful, RUN posts the error to the ERROR and ERRORCODE
functions.

Errors Posted: RUN may post any possible error

Example:

RUN(‘notepad.exe readme.txt’) !Run Notepad, automatically loading readme.txt file
RUN(ProgName) !Run the command in the ProgName variable

See Also: RUNCODE, HALT



5-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SHUTDOWN (arm termination procedure)

SHUTDOWN([procedure])

SHUTDOWN Arms a procedure which is called when the program
terminates.

procedure The label of a PROCEDURE. If omitted, the SHUT-
DOWN process is disarmed.

The SHUTDOWN statement arms a procedure which is called when the
program terminates. The shutdown procedure is called by normal program
termination or by an abnormal-end/run-time halt. It may not be able to
execute for an abnormal-end/run-time halt, depending upon the state of the
system resources at the time of the crash. It is not called if the computer is
rebooted or the program is terminated due to power failure. RESTART
within a SHUTDOWN procedure is not recommended.

The same effect as SHUTDOWN can be more safely achieved by simply
calling a procedure to execute on EVENT:CloseDown for the application
frame.

Example:

SHUTDOWN(CloseSys) !Arm CloseSys as the shutdown procedure



CHAPTER 5 CONTROL STATEMENTS 5-17

STOP (suspend program execution)

STOP( [ message ] )

STOP Suspends program execution and displays a message
window.

message An optional string expression (up to 64K) which dis-
plays in the error window.

STOP suspends program execution and displays a message window. It
offers the user the option of continuing the program or exiting. When
exiting, it closes all files and frees the allocated memory.

Example:

PswdScreen WINDOW
STRING(‘ Please Enter the Password ‘),AT(5,5)
ENTRY(@10),AT(20,5),USE(Password),HIDE !Password storage field

END
CODE
OPEN(PswdScreen) !Open the password screen
ACCEPT ! and get user input
CASE ACCEPTED
OF ?Password)
IF Password <> ‘PayMe$moRe’ !Correct password?
STOP(‘Incorrect Password Entered -- Access Denied’)
HALT(0,’Incorrect password’) !If not, throw them out

END
END

END



CHAPTER  6 WINDOW STRUCTURES 6-1

Clarion WindoClarion WindoClarion WindoClarion WindoClarion Windowswswswsws

Window Overview

In most Windows programs there are three types of screen windows used:
application windows, document windows, and dialog boxes. An application
window is the first window opened in a Windows program, and it usually
contains the main menu as the entry point to the rest of the program. All
other windows in the program are document windows or dialog boxes.

Along with these three screen window types, there are two user interface
design conventions that are used in Windows programs:  the Single
Document Interface (SDI), and the Multiple Document Interface (MDI).

An SDI program usually only contains linear logic that allows the user to
take only one execution path (thread) at a time; it does not open separate
execution threads which the user may move between. This is the same type
of program logic used in most DOS programs. An SDI program would not
contain a Clarion APPLICATION structure as its application window. The
Clarion WINDOW structure (without an MDI attribute) is used to define an
SDI program’s application window, and the subsequent document windows
or dialog boxes opened on top of it.

An MDI program allows the user to choose multiple execution paths
(threads) and change from one to another at any time. This is a very
common Windows program user interface. It is used by applications as a
way of organizing and grouping windows which present several execution
paths for the user to take.

A Clarion APPLICATION structure defines the MDI application window.
The MDI application window acts as a parent for all the MDI child windows
(document windows and dialog boxes), in that the child windows are clipped
to its frame and automatically moved when the application frame is moved.
They can also be concealed en masse by minimizing the parent. There may
be only one APPLICATION open at any time in a Clarion Windows
program.

Document windows and dialog boxes are very similar in that they are both
defined as Clarion WINDOW structures. They differ in the conventional
context in which they are commonly used and the conventions regarding
appearance and attributes. In many cases, the difference is not
distinguishable and does not matter. The generic term for both document
windows and dialog boxes is “window” and that is the term used throughout
this text.

Document windows usually display data. By convention they are movable
and resizable. They usually have a title, a system menu, and maximize



6-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

button. For example, in the Windows environment, the “Main” program
group window that appears when you DOUBLE-CLICK on the “Main” icon in
the Program Manager’s desktop, is a document window.

Dialog boxes usually request information from the user or alert the user to
some condition, usually prior to performing some action requested by the
user. They may or may not be movable, and so, may or may not have a
system menu and title. By convention, they are not resizable, although they
can have a maximize button which gives the dialog two alternate sizes. A
dialog box may be system modal (the user must respond before doing
anything else in Windows), application modal (the user must respond before
doing anything in the application), or modeless. For example, in the Clarion
environment, the window that appears from the File menu’s Open selection
is an application modal dialog box that requests the name of the file to open.

Control Fields and Input Focus

The objects placed in an APPLICATION or WINDOW structure are “control
fields.”  “Control” is a standard Windows term used to refer to any screen
object—command buttons, text entry fields, radio buttons, list boxes, etc. In
most DOS programs, the term “field” is usually used to refer to these
objects. In this document, the terms “control” and “field” are generally
interchangeable.

Controls appear only in MENUBARs, TOOLBARs, or WINDOW
structures. Controls are available to the user to select and/or edit the data
they contain only when it has “input focus.”  This occurs when the user uses
the TAB key, the mouse, or an accelerator key combination to highlight the
control.

A WINDOW also has “input focus” when it is the top WINDOW in the
currently active execution thread. Since Clarion for Windows allows multi-
threaded programs, the concept of which WINDOW currently has focus is
important. Only the thread whose uppermost WINDOW has focus is active.
The user may edit data in the WINDOW’s control fields only when it has
focus.

Field Equate Labels

In WINDOW structures, every control field with a USE variable is assigned
a field number by the compiler. By default, these field numbers begin with
one (1) and are assigned to controls in the order they appear in the
WINDOW structure code. The actual assigned numbers can be overridden
by the second parameter of the USE attribute. The order of appearance in
code determines the “natural” selection order of control fields for the
ACCEPT structure (which may be altered with the SELECT statement). The



CHAPTER 6 WINDOW STRUCTURES 6-3

order of appearance in code is independent of the control’s placement on the
screen. Therefore, there is not necessarily any correlation between a
control’s position on screen and the field number assigned by the compiler.

There are a number of statements that use these field numbers as parameters.
It would be very tedious to “hard code” these numbers in order to use these
statements. Therefore, Clarion provides a mechanism to address this
problem: Field Equate Labels.

Field Equate Labels always begin with a question mark (?) followed by the
name of the control’s USE variable. The leading question mark indicates to
the compiler a Field Equate Label. They are very similar to normal
EQUATE compiler directives. The compiler substitutes the field number for
the Field Equate Label at compile time. This makes it unnecessary to know
field numbers in advance.

Field Equate Labels for USE variables which are array elements always
begin with a question mark ( ? ) followed by the name of the USE variable
followed by an underscore and a number (?ArrayField_1). Array elements
from the same array are incrementally numbered beginning with one (1) for
each element used in the same structure (?ArrayField_1, ?ArrayField_2, ...).
Multi-dimensioned arrays are treated similarly (?ArrayField_1_1,
?ArrayField_1_2, ...).

Two or more controls with exactly the same USE variable in one WINDOW
or APPLICATION structure would create the same Field Equate Label for
all. Therefore, when the compiler encounters this condition, all Field Equate
Labels for that USE variable are discarded. This makes it impossible to
reference any of these controls in executable code, preventing confusion
about which control you really want to reference. It also allows you to
deliberately create this condition to display the contents of the variable in
multiple controls using different display pictures. Some fields may have
USE variables that can only be Field Equate Labels (a unique label with a
leading question mark). This provides a way of referencing these fields in
code statements.

In APPLICATION structures, every menu selection in the MENUBAR, and
every control with a USE variable placed in the TOOLBAR, is assigned a
number by the compiler. By default, these numbers begin with negative one
(-1) and are decremented by one (1) in the order the menu selections and
controls appear in the APPLICATION structure code.



6-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

WindoWindoWindoWindoWindow Structurw Structurw Structurw Structurw Structureseseseses

APPLICATION (declare an MDI frame window)

label APPLICATION( ‘title’) [,AT( )] [,CENTER] [,SYSTEM] [,MAX ] [,ICON( )] [,STATUS( )] [,HLP( )]
[,CURSOR( )] [,TIMER( )] [,ALRT( ) ] [,ICONIZE] [,MAXIMIZE ] [,MASK ] [,FONT( )]
[,MSG( )] [,IMM] [,AUTO] [, | HSCROLL | ] [, | DOUBLE | ]

| VSCROLL | | NOFRAME |
| HVSCROLL | | RESIZE |

  [ MENUBAR
      multiple menu and/or item declarations
   END ]
  [ TOOLBAR
      multiple control field declarations
    END ]
END

APPLICATION Declares a Multiple Document Interface (MDI) frame.

label A valid Clarion label. A label is required on the APPLI-
CATION statement.

title Specifies the title text for the application window.

AT Specifies the initial size and location of the application
window. If omitted, default values are selected by the
runtime library.

CENTER Specifies that the window’s initial position is centered in
the screen by default. This attribute takes effect only if at
least one parameter of the AT attribute is omitted.

SYSTEM Specifies the presence of a system menu.

MAX Specifies the presence of a maximize control.

ICON Specifies the presence of a minimize control, and names
a file or standard icon identifier for the icon displayed
when the window is minimized.

STATUS Specifies the presence of a status bar at the base of the
application window.

HLP Specifies the “Help ID” associated with the APPLICA-
TION window and provides the default for any child
windows.

CURSOR Specifies a mouse cursor to be displayed when the
mouse is positioned over the APPLICATION window. If
omitted, the Windows default cursor is used.

TIMER Specifies periodic timed event generation.

ALRT Specifies “hot” keys active for the APPLICATION.

ICONIZE Specifies the APPLICATION is opened as an icon.



CHAPTER 6 WINDOW STRUCTURES 6-5

MAXIMIZE Specifies the APPLICATION is maximized when
opened.

MASK Specifies pattern input editing mode of all ENTRY
controls in the TOOLBAR.

FONT Specifies the default font for all controls in the toolbar.

MSG Specifies a string constant containing the default text to
display in the status bar for all controls in the APPLICA-
TION.

IMM Specifies the window generates events whenever it is
moved or resized.

AUTO Specifies all toolbar controls’ USE variables re-display
on screen each time through the ACCEPT loop.

HSCROLL Specifies that a horizontal scroll bar is automatically
added to the application frame when any portion of a
child window lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added
to the application frame when any portion of a child
window lies vertically outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are
automatically added to the application frame when any
portion of a child window lies outside the visible area.

DOUBLE Specifies a double-width frame around the window. A
window with this type of frame may not be resized.

NOFRAME Specifies a window with no frame. A window with this
type of frame may not be resized.

RESIZE Specifies a thick frame around the window which does
allow window resizing.

MENUBAR Defines the menu structure (optional). The menu speci-
fied in an APPLICATION is the “Global menu.”

TOOLBAR Defines a toolbar structure (optional). The toolbar
specified in an APPLICATION is the “Global toolbar.”

APPLICATION  declares a Multiple Document Interface (MDI) frame
window. MDI is a part of the standard Windows interface, and is used by
Windows applications to present several “views” in different windows. This
is a way of organizing and grouping these. The MDI frame window
(APPLICATION structure) acts as a “parent” for all the MDI “child”
windows (WINDOW structures with the MDI attribute). These MDI “child”
windows are clipped to the APPLICATION frame and automatically moved
when the frame is moved, and can be totally concealed by minimizing the
parent.

There may be only one APPLICATION window open at any time in a
Clarion Windows program, and it must be opened before any MDI “child”



6-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

windows may be opened. However, non-MDI windows may be opened
before or after the APPLICATION is opened, and may be on the same
execution thread as the APPLICATION.

An MDI “child” window must not be on the same execution thread as the
APPLICATION. Therefore, any MDI “child” window called directly from
the APPLICATION must be in a separate procedure so the START function
can be used to begin a new execution thread. Once started, multiple MDI
“child” windows may be called in the new thread.

A “conventional” APPLICATION window would have the ICON, MAX,
STATUS, RESIZE, and SYSTEM attributes. This creates an application
frame window with minimize and maximize buttons, a status bar, a resizable
frame, and a system menu. It would also have a MENUBAR structure
containing the global menu items, and may have a TOOLBAR with
“shortcuts” to global menu items. These attributes create a standard
Windows look and feel for the application frame.

An APPLICATION window may not contain controls except within its
MENUBAR and TOOLBAR structures, and cannot be used for any output.
For output, document windows or dialog boxes are required (defined using
the WINDOW structure).

When the APPLICATION window is first opened, it remains hidden until
the first DISPLAY statement or ACCEPT loop is encountered. This enables
any changes to be made to the appearance before it is displayed. For
example, the caption or size can be adjusted via runtime property
assignment.

Events Generated:

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:CloseWindow
The window is closing.

EVENT:CloseDown
The application is closing.

EVENT:OpenWindow
The window is opening.

EVENT:LoseFocus The window is losing focus to another thread.

EVENT:GainFocus The window is gaining focus from another thread.

EVENT:Suspend The window still has input focus but is giving control to
another thread to process timer events.

EVENT:Resume The window still has input focus and is regaining control
from an EVENT:Suspend.



CHAPTER 6 WINDOW STRUCTURES 6-7

EVENT:Timer The TIMER attribute has triggered.

EVENT:Move The user is moving the window. CYCLE aborts the
move.

EVENT:Moved The user has moved the window.

EVENT:Size The user is resizing the window. CYCLE aborts the
resize.

EVENT:Sized The user has resized the window.

EVENT:Restore The user is restoring the window’s previous size.
CYCLE aborts the resize.

EVENT:Restored The user has restored the window’s previous size.

EVENT:Maximize The user is maximizing the window. CYCLE aborts the
resize.

EVENT:MaximizedThe user has maximized the window.

EVENT:Iconize The user is minimizing the window. CYCLE aborts the
resize.

EVENT:Iconized The user has minimized the window.

EVENT:Completed AcceptAll (non-stop) mode has finished processing all
the window’s controls.

EVENT:DDErequest
A client has requested a data item from this Clarion
DDE server application.

EVENT:DDEadvise
A client has requested continuous updates of a data item
from this Clarion DDE server application.

EVENT:DDEexecute
A client has executed a DDEEXECUTE statement to
this Clarion DDE server application.

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE
server application.

EVENT:DDEdata A DDE server has supplied an updated data item to this
Clarion client application.

EVENT:DDEclose A DDE server has terminated the DDE link to this
Clarion client application.



6-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

!An MDI application frame window with system menu, minimize and maximize
! buttons, a status bar, scroll bars, and a resizable frame, containing the
! main menu and toolbar for the application:

MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(‘&File’),USE(?FileMenu)
ITEM(‘&Open...’),USE(?OpenFile)
ITEM(‘&Close’),USE(?CloseFile),DISABLE
ITEM(‘E&xit’),USE(?MainExit)

END
MENU(‘&Edit’),USE(?EditMenu)
ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM(‘&Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM(‘&Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE

END
MENU(‘&Window’),STD(STD:WindowList),LAST
ITEM(‘&Tile’),STD(STD:TileWindow)
ITEM(‘&Cascade’),STD(STD:CascadeWindow)
ITEM(‘&Arrange Icons’),STD(STD:ArrangeIcons)

END
MENU(‘&Help’),USE(?HelpMenu)
ITEM(‘&Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(‘&Search...’),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘&How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(‘&About MyApp...’),USE(?HelpAbout)

END
END
TOOLBAR
BUTTON(‘E&xit’),USE(?MainExitButton)
BUTTON(‘&Open’),USE(?OpenButton),ICON(ICON:Open)

END
END

CODE
OPEN(MainWin) !Open APPLICATION
ACCEPT !Display APPLICATION and accept user input
CASE ACCEPTED() !Which control was chosen?
OF ?OpenFile !Open... menu selection
OROF ?OpenButton !Open button on toolbar
START(OpenFileProc) !Start new execution thread

OF ?MainExit !Exit menu selection
OROF ?MainExitButton !Exit button on toolbar
BREAK !Break ACCEPT loop

OF ?HelpAbout !About... menu selection
HelpAboutProc !Call application information procedure

END
END
CLOSE(MainWin) !Close APPLICATION



CHAPTER 6 WINDOW STRUCTURES 6-9

WINDOW (declare a dialog window)

label WINDOW(‘title’) [,AT( )] [,CENTER] [,SYSTEM] [,MAX ] [,ICON( )] [,STATUS( )] [,HLP( )]
[,CURSOR( )] [,MDI] [,MODAL ] [,MASK ] [,FONT( )] [,GRAY][,TIMER( )] [,ALRT( ) ]
[,ICONIZE] [,MAXIMIZE] [,MSG( )] [,TOOLBOX ][,PALETTE( ) ] [,DROPID( )] [,IMM]
[,AUTO] [, | HSCROLL | ] [, | DOUBLE | ]

| VSCROLL | | NOFRAME |
| HVSCROLL | | RESIZE |

  [ MENUBAR
       menus and/or items
    END ]
  [ TOOLBAR
       controls
    END ]
   controls
END

WINDOW Declares a document window or dialog box.

label A valid Clarion label. A label is required.

title A string constant containing the window’s title text.

AT Specifies the initial size and location of the window. If
omitted, default values are selected by the runtime
library.

CENTER Specifies that the window’s initial position is centered
on screen relative to its parent window, by default. This
attribute takes effect only if at least one parameter of the
AT attribute is omitted.

SYSTEM Specifies the presence of a system menu.

MAX Specifies the presence of a maximize control.

ICON Specifies the presence of a minimize control, and names
a file or standard icon identifier for the icon displayed
when the window is minimized.

STATUS Specifies the presence of a status bar for the window.

HLP Specifies the “Help ID” associated with the window.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the window. This cursor is inherited by
the WINDOW’s controls unless overridden.

MDI Specifies that the window conforms to normal MDI
child-window behavior.

MODAL Specifies the window is “system modal” and must be
closed before the user may do anything else.

MASK Specifies pattern input editing mode of all ENTRY
controls in this window.

FONT Specifies the default font for all controls in this window.



6-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

GRAY Specifies that the window has a gray background for use
with 3-D look controls.

TIMER Specifies periodic timed event generation.

ALRT Specifies “hot” keys active when the window has focus.

ICONIZE Specifies the window is opened as an icon.

MAXIMIZE Specifies the window is maximized when opened.

MSG Specifies a string constant containing the default text to
display in the status bar for all controls in the window.

TOOLBOX Specifies the window is “always on top” and its controls
never retain focus.

PALETTE Specifies the number of hardware colors used for
graphics in the window.

DROPID Specifies the window may serve as a drop target for
drag-and-drop actions.

IMM Specifies the window generates events whenever it is
moved or resized.

AUTO Specifies all window controls’ USE variables re-display
on screen each time through the ACCEPT loop.

HSCROLL Specifies that a horizontal scroll bar is automatically
added to the window when any scrollable portion of the
window lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added
to the window when any scrollable portion of the
window lies vertically outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are
automatically added to the window when any scrollable
portion of the window lies outside the visible area.

DOUBLE Specifies a double-width frame around the window. A
window with this type of frame may not be resized.

NOFRAME Specifies a window with no frame. A window with this
type of frame may not be resized.

RESIZE Specifies a thick frame around the window, which does
allow window resizing.

MENUBAR Defines a menu structure (optional).

menus and/or itemsMENU and/or ITEM declarations that define the menu
selections.

TOOLBAR Defines a toolbar structure (optional).

controls Control field declarations that define tools available on
the TOOLBAR, or the control fields in the WINDOW.



CHAPTER 6 WINDOW STRUCTURES 6-11

A WINDOW  declares a document window or dialog box which may contain
controls, and may be used to display output to the user. When the WINDOW
is first opened, it remains hidden until the first DISPLAY statement or
ACCEPT loop is encountered. This enables any changes to be made to the
appearance before it is displayed. For example, the caption or size can be
adjusted via runtime property assignment. Any previously opened
WINDOW on the same execution thread is disabled.

A WINDOW automatically receives a single-width border frame unless one
of the DOUBLE, NOFRAME, or RESIZE attributes are specified. Screen
coordinates are measured in dialog units. A dialog unit is defined as one-
quarter the average character width and one-eighth the average character
height of the font specified in the WINDOW’s FONT attribute (or the
system font, if no FONT attribute is specified on the WINDOW).

A WINDOW with the MODAL attribute is system modal; it takes exclusive
control of the computer. This means that any other progam running in the
background halts its execution until the MODAL WINDOW is closed.
Therefore, the MODAL attribute should be used only when absolutely
necessary. Also, the RESIZE attribute is ignored, and the WINDOW cannot
be moved when the MODAL attribute is present.

A WINDOW without the MDI attribute, when opened in an MDI program
on an MDI execution thread, is application modal. This means that the user
must respond before moving to any other window in the application. The
user may, however, move to any other program running in Windows at the
time. Non-MDI windows may be opened either before or after an
APPLICATION is opened, and may be on the same execution thread as the
APPLICATION or any MDI child window (application modal) or their own
thread (not application modal).

A WINDOW with the MDI attribute is an MDI “child” window. MDI
“child” windows are clipped to the APPLICATION frame and automatically
moved when the frame is moved, and can be totally concealed by
minimizing the parent APPLICATION. MDI “child” windows are modeless;
the user may change to the top window of another execution thread, within
the same application or any other application running in Windows, at any
time. An MDI “child” window must not be on the same execution thread as
the APPLICATION. Therefore, any MDI “child” window called directly
from the APPLICATION must be in a separate procedure so the START
function can be used to begin a new execution thread. Once started, multiple
MDI “child” windows may be called in the new thread.

The MENUBAR specified in a WINDOW with the MDI attribute is
automatically merged into the “Global menu” (from the APPLICATION)
when the WINDOW receives focus unless either the WINDOW’s or
APPLICATION’s MENUBAR has the NOMERGE attribute. A MENUBAR
specified in a WINDOW without the MDI attribute is never merged into the
“Global menu”—it always appears in the window itself.



6-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The TOOLBAR specified in a WINDOW with the MDI attribute is
automatically merged into the “Global toolbar” (from the APPLICATION)
when the WINDOW receives focus, unless either the WINDOW’s or
APPLICATION’s TOOLBAR has the NOMERGE attribute. The toolbar
specified in a WINDOW without the MDI attribute is never merged into the
“Global toolbar”—it always appears in the window itself.

A WINDOW with the TOOLBOX attribute is automatically “always on top”
and its controls do not retain focus (just as if they all had the SKIP
attribute). This creates a window whose controls all behave in the same
manner as controls in the toolbar. Normally, a WINDOW with the
TOOLBOX attribute would be executed in its own thread.

Events Generated:

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:CloseWindow
The window is closing.

EVENT:CloseDown
The application is closing.

EVENT:OpenWindow
The window is opening.

EVENT:LoseFocus The window is losing focus to another thread.

EVENT:GainFocus The window is gaining focus from another thread.

EVENT:Suspend The window still has input focus but is giving control to
another thread to process timer events.

EVENT:Resume The window still has input focus and is regaining control
from an EVENT:Suspend.

EVENT:Timer The TIMER attribute has triggered.

EVENT:Move The user is moving the window. CYCLE aborts the
move.

EVENT:Moved The user has moved the window.

EVENT:Size The user is resizing the window. CYCLE aborts the
resize.

EVENT:Sized The user has resized the window.

EVENT:Restore The user is restoring the window’s previous size.
CYCLE aborts the resize.

EVENT:Restored The user has restored the window’s previous size.

EVENT:Maximize The user is maximizing the window. CYCLE aborts the
resize.



CHAPTER 6 WINDOW STRUCTURES 6-13

EVENT:MaximizedThe user has maximized the window.

EVENT:Iconize The user is minimizing the window. CYCLE aborts the
resize.

EVENT:Iconized The user has minimized the window.

EVENT:Completed AcceptAll (non-stop) mode has finished processing all
the window’s controls.

EVENT:DDErequest
A client has requested a data item from this Clarion
DDE server application.

EVENT:DDEadvise
A client has requested continuous updates of a data item
from this Clarion DDE server application.

EVENT:DDEexecute
A client has executed a DDEEXECUTE statement to
this Clarion DDE server application.

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE
server application.

EVENT:DDEdata A DDE server has supplied an updated data item to this
Clarion client application.

EVENT:DDEclose A DDE server has terminated the DDE link to this
Clarion client application.



6-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

 !MDI child window with system menu, minimize and maximize buttons, status bar,
 ! scroll bars, a resizable frame, with menu and toolbar which are merged into the
 !application’s menubar and toolbar:
MDIChild WINDOW(‘Child One’),MDI,SYSTEM,MAX,ICON(‘Icon.ICO’),STATUS,HVSCROLL,RESIZE

MENUBAR
MENU(‘File’),USE(?FileMenu)
ITEM(‘Close’),USE(?CloseFile)

END
MENU(‘Edit’),USE(?EditMenu)
ITEM(‘Undo’),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END
TOOLBAR
BUTTON(‘Cut’),USE(?CutButton),ICON(ICON:Cut),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),ICON(ICON:Copy),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),ICON(ICON:Paste),STD(STD:Paste)

END
TEXT,HVSCROLL,USE(Pre:Field)
BUTTON(‘&OK’),USE(?Exit),DEFAULT

END

 !Non-MDI, system menu, maximize button, status bar, non-resizable frame,
NonMDI WINDOW(‘Dialog Window’),SYSTEM,MAX,STATUS

TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
BUTTON(‘&OK’),USE(?Exit),DEFAULT

END

 !System-modal window with non-resizable frame, with only a message and Ok button:
ModalWin WINDOW(‘Modal Window’),MODAL

IMAGE(ICON:Exclamation)
STRING(‘An ERROR has occurred’)
BUTTON(‘&OK’),USE(?Exit),DEFAULT

END



CHAPTER 6 WINDOW STRUCTURES 6-15

APPLICAPPLICAPPLICAPPLICAPPLICAAAAATION and WINDOTION and WINDOTION and WINDOTION and WINDOTION and WINDOW AtW AtW AtW AtW Attributestributestributestributestributes

ALRT (set window “hot” keys)

ALRT( keycode)

ALRT Specifies a “hot” key active while the APPLICATION or
WINDOW has focus.

keycode A numeric constant keycode or keycode EQUATE.

The ALRT  attribute specifies a “hot” key active while the APPLICATION or
WINDOW has focus. When the user presses an ALRT “hot” key for the
APPLICATION or WINDOW, two field-independent events,
EVENT:PreAlertKey and EVENT:AlertKey, are generated. If the code
executes a CYCLE statement when processing EVENT:PreAlertKey, you
“shortstop” the EVENT:AlertKey, preventing library’s default action on the
alerted keypress for the window.

You may have multiple ALRT attributes on one APPLICATION or
WINDOW. The ALERT statement and the ALRT attribute of a window or
control are completely separate. This means that clearing ALERT keys has
no effect on any keys alerted by ALRT attributes.

Example:

Screen WINDOW,ALRT(F10Key),ALRT(F9Key) !F10 and F9 alerted
LIST,AT(109,48,50,50),USE(?List),FROM(Que),IMM
BUTTON(‘&Ok’),AT(111,108,,),USE(?Ok)
BUTTON(‘&Cancel’),AT(111,130,,),USE(?Cancel)

END
CODE
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:PreAlertKey !Pre-check alert events
IF FOCUS() <> ?LIST !Allow execution only on the list
CYCLE !Terminate alert processing on other controls

END
OF EVENT:AlertKey !Alert processing
CASE KEYCODE()
OF F9Key !Check for F9
F9HotKeyProc !Call hot key procedure

OF F10Key !Check for F10
F10HotKeyProc !Call hot key procedure

END
END

END



6-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

AT (set window position and size)

AT( [x] [,y] [,width] [,height])

AT Specifies the initial position and size of the window.

x An integer constant or constant expression that specifies
the initial horizontal position of the top left corner. If
omitted, the runtime library provides a default value.

y An integer constant or constant expression that specifies
the initial vertical position of the top left corner. If
omitted, the runtime library provides a default value.

width An integer constant or constant expression that specifies
the initial width. If omitted, the runtime library provides
a default value.

height An integer constant or constant expression that specifies
the initial height. If omitted, the runtime library provides
a default value.

The AT  attribute defines the initial position and size of an APPLICATION or
WINDOW. If any parameter is omitted, the runtime library provides a
default value. The x and y parameters are relative to the top left hand corner
of the video screen when the AT attribute is placed on an APPLICATION
structure, or a WINDOW without the MDI attribute that is opened before
any APPLICATION structure is opened by the program. They are relative to
the top left hand corner of the APPLICATION when the AT attribute is
placed on a WINDOW with the MDI attribute, or a WINDOW without the
MDI attribute opened after an APPLICATION structure has been opened.

The width and height parameters specify the size of the “client area” or
“workspace” of an APPLICATION. This is the area below the MENUBAR
and above the status bar which defines the area in which the TOOLBAR is
placed and MDI “child” windows are opened. On a WINDOW, they specify
the size of the “workspace” which may contain control fields.

The values contained in the x, y, width, and height parameters are mreasured
in to dialog units. Dialog units are defined as one-quarter the average
character width by one-eighth the average character height. The size of a
dialog unit is dependent upon the size of the default font for the window.
This measurement is based on the font specified in the FONT attribute of the
window, or the system default font specified by Windows.

Example:

WinOne WINDOW,AT(0,0,380,200),MDI !top left corner, relative to app frame
 END

WinTwo WINDOW,AT(0,0,380,200) !Top left corner, relative to video screen
 END



CHAPTER 6 WINDOW STRUCTURES 6-17

AUTO (set USE variable automatic re-display)

AUTO

The AUTO  attribute specifies all window and toolbar controls’ USE
variables re-display on screen each time through the ACCEPT loop. This
incurs some overhead, but ensures the data displayed is current, without
requiring explicit DISPLAY statements.

Example:

WinOne WINDOW,AT(,,380,200),MDI,CENTER,AUTO !All controls values always display
 !controls

 END
CODE
ACCEPT !ACCEPT automatically re-dislays changed USE variables
END

CENTER (set position and size)

CENTER

The CENTER attribute indicates that the window’s default width and height
are centered. A WINDOW structure with the MDI attribute is centered on
the APPLICATION. An APPLICATION structure is centered on the screen.
A non-MDI WINDOW is centered on its parent (the window currently with
focus when the non-MDI WINDOW is opened).

This attribute has no meaning unless at least one parameter of the AT
attribute is omitted. This means that the CENTER attribute provides a
default value for any omitted AT parameter.

Example:

 !Window centered relative to application frame:
WinOne WINDOW,AT(,,380,200),MDI,CENTER

END

 !Window centered relative to its parent:
WinTwo WINDOW,AT(,,380,200),CENTER

END



6-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CURSOR (set mouse cursor type)

CURSOR(file)

CURSOR Specifies a mouse cursor to display for the window.

file A string constant containing the name of a .CUR file, or
an EQUATE naming a Windows-standard mouse cursor.
The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the
mouse is positioned over the window. This cursor is inherited by the controls
in the window unless overridden.

The Windows standard mouse cursors contained in EQUATES.CLW are:

  CURSOR:None No mouse cursor
  CURSOR:Arrow The normal windows arrow cursor
  CURSOR:IBeam A capital “I” like a steel I-beam
  CURSOR:Wait An hourglass
  CURSOR:Cross A large plus sign
  CURSOR:UpArrow A vertical arrow
  CURSOR:Size A four-headed arrow
  CURSOR:Icon A box within a box
  CURSOR:SizeNWSE A double-headed arrow slanting left
  CURSOR:SizeNESW A double-headed arrow slanting right
  CURSOR:SizeWE A double-headed horizontal arrow
  CURSOR:SizeNS A double-headed vertical arrow
  CURSOR:DragWE A double-headed horizontal arrow

Example:

 !Window with Windows-standard large plus sign cursor
WinOne WINDOW,CURSOR(CURSOR:Cross)

END

 !Window with custom cursor
WinTwo WINDOW,CURSOR(‘CUSTOM.CUR’)

END



CHAPTER 6 WINDOW STRUCTURES 6-19

DOUBLE, NOFRAME, RESIZE (set window border)

DOUBLE
NOFRAME
RESIZE

The DOUBLE , NOFRAME , and RESIZE attributes specify a WINDOW
or APPLICATION border frame style other than the default single-width
border. The DOUBLE  attribute places a double-width border around the
window and the NOFRAME  attribute places no border on the window. A
window with these frame types may not be resized.

The RESIZE attribute places a thick border frame around the window. This
is the only type that allows the user to dynamically resize the window.
RESIZE is ignored on any WINDOW with the MODAL attribute.

The RESIZE frame type is normally used on APPLICATION structures and
WINDOW structures used as document windows, not dialog boxes.
NOFRAME is usually used on “hidden” windows used only to activate an
ACCEPT loop. DOUBLE is a common dialog bix frame type.

Example:

 !A Window with a single-width border:
Win1 WINDOW

 END

 !A resizable Window:
Win2 WINDOW,RESIZE

 END

 !A Window with a double-width border:
Win3 WINDOW,DOUBLE

 END

 !A Window without a border:
Win4 WINDOW,NOFRAME

 END



6-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FONT (set window default f ont)

FONT([typeface] [,size] [,color] [,style])

FONT Specifies the default display font for the window.

typeface A string constant containing the name of the font. If
omitted, the system font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the system default font size is used.

color A LONG integer constant containing the red, green, and
blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, black is used.

style An integer constant or constant expression or EQUATE
specifying the strike weight and style of the font. If
omitted, the weight is normal.

The FONT attribute on a WINDOW or APPLICATION structure specifies
the default display font for all controls in the WINDOW or APPLICATION
that do not have a FONT attribute. This is also the default font for newly
created controls on the window, and is the font used by the SHOW and
TYPE statements when writing to the window.

The typeface may name any font registered in the Windows system. The
EQUATES.CLW file contains EQUATE values for standard style values. A
style on the range zero (0) to one thousand (1000) specifies the strike weight
of the font. You may add to that values that indicate italic, underline, or
strikeout text. The following EQUATES are in EQUATES.CLW:

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)

Example:

 !A Window using 14 point Times New Roman
Win1 WINDOW,FONT(‘Times New Roman’,14,00H)

 END

 !A Window using 14 point Times New Roman, Bold and Italic
Win2 WINDOW,FONT(‘Times New Roman’,14,00H,FONT:italic+FONT:bold)

 END



CHAPTER 6 WINDOW STRUCTURES 6-21

GRAY (set 3-D look background)

GRAY

The GRAY  attribute indicates that the WINDOW has a gray background,
suitable for use with three-dimensional dialog controls. All controls on a
WINDOW with the GRAY attribute are automatically given a three-
dimensional appearance. Controls in a TOOLBAR are always automatically
given a three-dimensional appearance, without the GRAY attribute.

This attribute is not valid on an APPLICATION structure.

The three-dimensional look may be disabled by SET3DLOOK.

Example:

 !A Window with 3-D controls
Win1 WINDOW,GRAY

 END



6-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

HLP (set window’s on-line help identifier)

HLP(helpID)

HLP Specifies the helpID for the APPLICATION, WINDOW,
or control.

helpID A string constant specifying the key used to access the
Help system. This may be either a Help keyword or a
“context string.”

The HLP  attribute specifies the helpID for the APPLICATION or
WINDOW. Help, if available, is automatically displayed by Windows
whenever the user presses F1.

If the user presses F1 to request help when the APPLICATION window is
foremost and no menus are active, the APPLICATION’s helpID is used to
locate the Help text. Otherwise, the library automatically uses the helpID of
the active menu of uppermost control or window, searching up the hierarchy
until an object with that helpID is found. The helpID of the APPLICATION
is at the top of the hierarchy.

The helpID may contain a Help keyword or a “context string.”  A Help
keyword is a keyword or phrase that is displayed in the Help Search dialog.
When the user presses F1, if only one topic in the help file specifies this
keyword, the help file is opened at that topic; if more than one topic
specifies the keyword, the search dialog is opened for the user.

A “context string” is identified by a leading tilde (~) in the helpID, followed
by a unique identifier (no spaces allowed) associated with exactly one help
topic. When the user presses F1, the help file is opened at the specific topic
associated with that “context string.”  If the tilde is missing, the helpID is
assumed to be a help keyword.

Example:

 !A Window with a help context string:
Win1 WINDOW,HLP(‘~Win1Help’)

 END

 !A Window with a help keyword:
Win2 WINDOW,HLP(‘Window One Help’)

 END



CHAPTER 6 WINDOW STRUCTURES 6-23

HSCROLL, VSCROLL, HVSCROLL (set window scroll bars)

HSCROLL
VSCROLL
HVSCROLL

The HSCROLL , VSCROLL , and HVSCROLL  parameters place scroll
bars on an APPLICATION or WINDOW. HSCROLL adds a horizontal
scroll bar to the bottom, VSCROLL adds a vertical scroll bar on the right
side, and HVSCROLL adds both.

The vertical scroll bar allows a mouse to scroll up or down. The horizontal
scroll bar allows a mouse to scroll left or right. The scroll bars appear
whenever any scrollable portion of the APPLICATION or WINDOW lies
outside the visible area on screen.

Example:

 !A Window with a horizontal scroll bar:
Win1 WINDOW,HSCROLL

 END

 !A Window with a vertical scroll bar:
Win2 WINDOW,VSCROLL

 END

 !A Window with both scroll bars:
Win2 WINDOW,HVSCROLL

 END



6-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ICON (set window icon)

ICON( [file] )

ICON Specifies an icon to display for the APPLICATION or
WINDOW.

file A string constant containing the name of an .ICO file, or
an EQUATE for the Windows-standard icon to display.
The .ICO file is automatically linked into the .EXE as a
resource.

The ICON  attribute specifies an icon to display for the APPLICATION or
WINDOW. On an APPLICATION or WINDOW, ICON also specifies the
presence of a minimize control. The minimize control appears in the top
right corner of the window as a downward pointing triangle (usually). When
the user clicks the mouse on it, the window shrinks to an icon without
halting its execution. When an APPLICATION or non-MDI WINDOW is
minimized, the icon file is displayed in the operating system’s desktop;
when a WINDOW with the MDI attribute is minimized, the icon file is
displayed in the APPLICATION.

EQUATE statements for the Windows-standard icons are contained in the
EQUATES.CLW file. The following list is a representative sample of these
(see EQUATES.CLW for the complete list):

ICON:None No icon
ICON:Application
ICON:Question ?
ICON:Exclamation !
ICON:Asterisk *
ICON:VCRtop >>|
ICON:VCRrewind <<
ICON:VCRback <
ICON:VCRplay >
ICON:VCRfastforward >>
ICON:VCRbottom |<<
ICON:VCRlocate ?

Example:

 !A Window with a minimize button:
WinOne WINDOW,ICON(‘MyIcon.ICO’)

 END

 !A Window with a minimize button:
WinTwo WINDOW,ICON(ICON:Application)

 END



CHAPTER 6 WINDOW STRUCTURES 6-25

ICONIZE (set window open as icon)

ICONIZE

The ICONIZE  attribute specifies the APPLICATION or WINDOW is
opened minimized as the icon specified by the ICON attribute. When an
APPLICATION or non-MDI WINDOW is minimized, the icon file is
displayed in the operating system’s desktop; when a WINDOW with the
MDI attribute is minimized, the icon file is displayed in the APPLICATION.

Example:

 !A Window with a minimize button, opened as the icon:
Win2 WINDOW,ICON(‘MyIcon.ICO’),ICONIZE

 END



6-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

IMM (set immediate resize event notification)

IMM

The IMM  attribute on a WINDOW or APPLICATION specifies immediate
event generation whenever the user moves or resizes the window. It
generates one the following events before the action is executed:

EVENT:Move
EVENT:Size
EVENT:Restore
EVENT:Maximize
EVENT:Iconize

If the code that handles these events executes a CYCLE statement, the action
is not performed. This allows you to prevent the user from moving or
resizing the window. Once the action has been performed, one or more of
the following events are generated:

EVENT:Moved
EVENT:Sized
EVENT:Restored
EVENT:Maximized
EVENT:Iconized

Multiple post-action events are generated because some of the actions have
multiple results. For example, if the user CLICKS on the maximize button,
EVENT:Maximize is generated. If there is no CYCLE statement executed as
a result of this event, the action is performed, then EVENT:Maximized,
EVENT:Moved, and EVENT:Sized are generated. This occurs because the
window has been maximized, which also moves and resizes it at the same
time.

Example:

Win2 WINDOW(‘Some Window’),AT(58,11,174,166),MDI,DOUBLE,MAX,IMM
 LIST,AT(109,48,50,50),USE(?List),FROM(‘Que’),IMM
 BUTTON(‘&Ok’),AT(111,108,,),USE(?Ok)
 BUTTON(‘&Cancel’),AT(111,130,,),USE(?Cancel)

 END
CODE
OPEN(Win2)
ACCEPT
CASE EVENT()
OF EVENT:Move !Prevent user from moving window
CYCLE

OF EVENT:Maximized !When Maximized
?List{PROP:Height} = 100 ! resize the list

OF EVENT:Restored !When Restored
?List{PROP:Height} = 50 ! resize the list

END
END



CHAPTER 6 WINDOW STRUCTURES 6-27

MASK (set pattern editing data entry)

MASK

The MASK  attribute specifies pattern input editing mode of all controls in
this window. This means that, as the user types in data, each character is
automatically validated against the control’s picture for proper input
(numbers only in numeric pictures, etc.). This forces the user to enter data in
the format specified by the control’s display picture.

If omitted, Windows free-input is allowed in the controls. Free-input means
the user’s data is formatted to the control’s picture only after entry. This
allows users to enter data as they choose and it is automatically formatted to
the control’s picture after entry. If the user types in data in a format different
from the control’s picture, the libraries attempt to determine the format the
user used, and convert the data to the control’s display picture. For example,
if the user types “January 1, 1995” into a control with a display picture of
@D1, the runtime library formats the user’s input to “1/1/95.”  This action
occurs only after the user completes data entry and moves to another control.
If the runtime library cannot determine what format the user used, it will not
update the USE variable. It then beeps and leaves the user on the same
control with the data they entered, to allow them to try again.

Example:

 !A Window with pattern input editing enabled
Win2 WINDOW,MASK

 END

MAX (set maximize control)

MAX

The MAX  attribute specifies a maximize control on the APPLICATION or
WINDOW. The maximize control appears in the top right corner of the
window as a box containing either an upward pointing triangle, or an
upward pointing triangle above a downward pointing triangle (in Windows
3.1). When the user clicks the mouse on it, an APPLICATION or non-MDI
WINDOW expands to occupy the full screen, an MDI WINDOW expands to
occupy the entire APPLICATION. Once expanded, the maximize control
appears as an upward pointing triangle above a downward pointing triangle.
Click the mouse on it again, and the window returns to its previous size and
the maximize control appears as an upward pointing triangle.

Example:

 !A Window with a maximize button:
Win2 WINDOW,MAX

 END



6-28 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MAXIMIZE (set window open maximized)

MAXIMIZE

The MAXIMIZE  attribute specifies the APPLICATION or WINDOW is
opened maximized.When maximized, an APPLICATION or non-MDI
WINDOW expands to occupy the full screen, and an MDI WINDOW
expands to occupy the entire APPLICATION. Once expanded, the maximize
control appears as an upward pointing triangle above a downward pointing
triangle (in Windows 3.1).

Example:

 !A Window with a maximize button, opened maximized:
Win2 WINDOW,MAX,MAXIMIZE

 END

MDI (set MDI child window)

MDI

The MDI  attribute specifies a WINDOW structure that acts as a “child”
window to the APPLICATION. MDI “child” windows are clipped to the
APPLICATION frame—they scroll only within the boundaries set by the
display size of the APPLICATION. MDI “child” windows are automatically
moved when the APPLICATION frame is moved, and can be totally
concealed by minimizing the APPLICATION. A WINDOW with the MDI
attribute cannot be opened unless there is a currently open APPLICATION.

MDI “child” windows are modeless; the user may change to the top window
of another execution thread, within the same application or any other
application running in Windows, at any time. An MDI “child” window must
not be on the same execution thread as the APPLICATION. Therefore, any
MDI “child” window called directly from the APPLICATION must be in a
separate procedure so the START function can be used to begin a new
execution thread. Once started, multiple MDI “child” windows may be
called in the new thread.

A non-MDI WINDOW operates independently of any previously opened
APPLICATION. It will, however, disable an APPLICATION if it or any of
its MDI “child” windows are on the same execution thread. This makes a
non-MDI window opened in an MDI program an “application modal”
window which effectively disables the application while the user has the
window open (unless it is opened in its own execution thread). It does not,
however, prevent the user from changing to another application running
under Windows.

Example:

 !An MDI child Window:
Win2 WINDOW,MDI

 END



CHAPTER 6 WINDOW STRUCTURES 6-29

MODAL (set system modal window)

MODAL

The MODAL  attribute specifies the WINDOW is “system modal.”  This
means that no other window (in the same or any other concurrent program)
can receive focus while the MODAL window has focus—the MODAL
window has exclusive control of the computer. MODAL windows are
usually used for error messages, or messages which require immediate
attention by the user, such as:  “Please insert a disk in drive A:.”

A WINDOW without the MODAL attribute, may be “application-modal” or
“modeless.”  An application-modal window is a non-MDI window opened as
the top window of an MDI execution thread. An application-modal window
restricts the user from moving to another execution thread in the same
application, but does not restrict them from changing to another Windows
program.

A modeless window is an MDI “child” WINDOW (with the MDI attribute)
without the MODAL attribute. From a modeless window, The top window
on other execution threads may be selected by the mouse, keyboard, or menu
commands. If so, the other window takes focus and becomes uppermost on
the video display. Any window not on the top of its execution thread may
not be selected to receive focus, even from a modeless window.

Example:

 Win2 WINDOW,MODAL !A system-modal Window
END



6-30 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MSG (set window status bar message)

MSG(text)

MSG Specifies text to display in the status bar.

text A string constant containing the message to display in
the status bar.

The MSG attribute on an APPLICATION or WINDOW structure specifies
the text to display in the first zone of the status bar when the control with
focus has no MSG attribute of its own.

Example:

WinOne WINDOW,AT(0,0,160,400),MSG(‘Enter Data’) !Default MSG to use
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),MSG(‘Enter or Select’)
TEXT,AT(20,0,40,40),USE(E2) !Default MSG used
ENTRY(@S8),AT(100,200,20,20),USE(E2) !Default MSG used
CHECK(‘&A’),AT(0,120,20,20),USE(?C7),MSG(‘On or Off’)
OPTION(‘Option 1’),USE(OptVar),MSG(‘Pick One or Two’)
RADIO(‘Radio 1’),AT(120,0,20,20),USE(?R1)
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2)

END
END

PALETTE (set number of hardware colors)

PALETTE( colors)

PALETTE Specifies the number of hardware colors displayed in the
window.

colors An integer constant specifying the number of hardware
colors displayed in the window.

The PALETTE  attribute on a WINDOW specifies how many colors in the
hardware palette you want this window to use when it is the foreground
window. This is only applicable in hardware modes where a palette is in use
and spare colors (not reserved by the system) are available - in practice this
means 256 color mode. This enforces a particular set of colors for the
graphics. 24-bit color (16.7M) does not use a hardware palette. Values of
PALETTE above 256 are not recommended.

Example:

WinOne WINDOW,AT(0,0,160,400),PALETTE(256) !Display 256-color
IMAGE,AT(120,120,20,20),USE(ImageField)

END



CHAPTER 6 WINDOW STRUCTURES 6-31

STATUS (set status bar)

STATUS( [widths] )

STATUS Specifies the presence of a status bar.

widths A list of integer constants (separated by commas)
specifying the size of each zone in the status bar. If
omitted, the status bar has one zone the width of the
window.

The STATUS attribute specifies the presence of a status bar at the base of
the APPLICATION or WINDOW. The status bar of an MDI WINDOW is
always displayed at the bottom of the APPLICATION. A WINDOW without
the MDI attribute displays its status bar at the base of the WINDOW. If the
STATUS attribute is not present on the APPLICATION or WINDOW, there
is no status bar.

The status bar may be divided into multiple zones specified by the widths
parameters. The size of each zone is specified in dialog units. A negative
value indicates the zone is expandable, but has a minimum width indicated
by the parameter’s absolute value. If no widths parameters are specified, a
single expanding zone with no minimum width is created, which is
equivalent to a STATUS(-1).

The first zone of the status bar is always used to display MSG attributes.
The MSG attribute string is displayed in the status bar as long as its control
field still has input focus. A control or menu item without a MSG attribute
causes the status bar to revert to its former state (either blank or displaying
the text previously displayed in the zone).

Text may be placed in, or retrieved from, any zone of the status bar using the
runtime property assignment syntax. The text remains present until replaced.
The status bar configuration can also be changed dynamically by using the
runtime property assignment syntax.

Example:

 !An APPLICATION with a one-zone status bar:
MainWin APPLICATION,STATUS

END

 !A WINDOW with a two-zone status bar:
Win1 WINDOW,STATUS(160,160)

 END



6-32 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SYSTEM (set system menu)

SYSTEM

The SYSTEM attribute specifies the presence of a Windows system menu
(also called the control menu) on the APPLICATION or WINDOW. This
menu contains standard Windows menu selections, such as: Close,
Minimize, Maximize (the window), and Switch To (another window). The
actual selections available on a given window depend upon the attributes set
for that window.

Example:

 !An APPLICATION with a system menu:
MainWin APPLICATION,SYSTEM

END
 !A WINDOW with a system menu:
Win1 WINDOW,SYSTEM

 END

TOOLBOX (set toolbox window behavior)

TOOLBOX

The TOOLBOX  attribute specifies a WINDOW that is “always on top.”
Neither the WINDOW nor its controls retain input focus. This creates
control behavior as if all the controls in the WINDOW had the SKIP
attribute. Normally, a WINDOW with the TOOLBOX attribute executes in
its own execution thread to provide a set of tools to the window with input
focus. The MSG attributes of the controls in the window appear in the status
bar when the mouse cursor is positioned over the control.



CHAPTER 6 WINDOW STRUCTURES 6-33

Example:

 PROGRAM
MainWin APPLICATION(‘My Application’)

MENUBAR
MENU(‘File’),USE(?FileMenu)
ITEM(‘E&xit’),USE(?MainExit),LAST

END
MENU(‘Edit’),USE(?EditMenu)
ITEM(‘Use Tools’),USE(?UseTools)

. . .
Pre:Field STRING(400)
UseToolsThread BYTE
ToolsThread BYTE
CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?MainExit
BREAK

OF ?UseTools
UseToolsThread = START(UseTools)

. .

UseTools PROCEDURE !A procedure that uses a toolbox
MDIChild WINDOW(‘Use Tools Window’),MDI

 TEXT,HVSCROLL,USE(Pre:Field)
 BUTTON(‘&OK’),USE(?Exit),DEFAULT

 END
CODE
OPEN(MDIChild) !Open the window
DISPLAY ! and display it
ToolsThread = START(Tools) !Pop up the toolbox
ACCEPT
CASE EVENT() !Check for user-defined events
OF 401h ! posted by toolbox controls
Pre:Field += ‘ ‘ & FORMAT(TODAY(),@D1) ! append date to end of field

OF 402h
Pre:Field += ‘ ‘ & FORMAT(CLOCK(),@T1) ! append time to end of field

END
CASE ACCEPTED()
OF ?Exit
POSTEVENT(400h,,ToolsThread) !Signal to close tools window
BREAK

. .
CLOSE(MDIChild)

Tools PROCEDURE !The toolbox procedure
Win1 WINDOW(‘Tools’),TOOLBOX

 BUTTON(‘Date’),USE(?Button1)
 BUTTON(‘Time’),USE(?Button2)

 END
CODE
OPEN(Win1)
ACCEPT
IF EVENT() = 400h THEN BREAK. !Check for close window signal
CASE ACCEPTED()
OF ?Button1
POSTEVENT(401h,,UseToolsThread) !Post datestamp signal

OF ?Button2
POSTEVENT(402h,,UseToolsThread) !Post timestamp signal

. .
CLOSE(Win1)



6-34 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TIMER (set periodic event)

TIMER(period)

TIMER Specifies a periodic event.

period An integer constant or constant expression specifying the
interval between timed events, in hundredths of a
second. The maximum period you can specify is 6553 (a
Windows limitation).

The TIMER  attribute specifies generation of a periodic field-independent
event whenever the time period passes. EQUATES.CLW contains
EVENT:Timer which equates the timer-generated event. The FOCUS()
function returns the number of the control that currently has focus at the
time of the event.

Example:

RunClock PROCEDURE
ShowTime LONG

 !A WINDOW with a timed event occurring every second:
Win1 WINDOW,TIMER(100)

 STRING(@T4),USE(ShowTime)
 END

CODE
OPEN(Win1)
ShowTime = CLOCK()
ACCEPT
CASE EVENT()
OF EVENT:Timer
ShowTime = CLOCK()
DISPLAY

END
END
CLOSE(Win1)



CHAPTER 6 WINDOW STRUCTURES 6-35

MENUBAR and TMENUBAR and TMENUBAR and TMENUBAR and TMENUBAR and TOOLBAR StructurOOLBAR StructurOOLBAR StructurOOLBAR StructurOOLBAR Structureseseseses

MENUBAR (declare a pulldown menu)

MENUBAR  [, NOMERGE ]
    [ MENU( )
        [ ITEM( ) ]
        [ MENU( )
            [ ITEM( ) ]
         END ]
     END ]
    [ ITEM( ) ]
END

MENUBAR Declares the menu for an APPLICATION or WINDOW.

NOMERGE Specifies menu merging behavior.

MENU A menu item with an associated drop box containing
other menu selections.

ITEM A menu item for selection.

The MENUBAR  structure declares the pulldown menu selections displayed
for an APPLICATION or WINDOW. MENUBAR must appear in the source
code before any TOOLBAR or controls.

On an APPLICATION, the MENUBAR defines the Global menu selections
for the program. These are active and available on all MDI “child” windows
(unless the window’s own MENUBAR structure has the NOMERGE
attribute). If the NOMERGE attribute is specified on the APPLICATION’s
MENUBAR, then the menu is a local menu displayed only when no MDI
child windows are open and there is no global menu.

On an MDI WINDOW, the MENUBAR defines menu selections that are
automatically merged with the Global menu. Both the Global and the
window’s menu selections are then active while the MDI “child” window
has input focus. Once the window loses focus, its specific menu selections
are removed from the Global menu. If the NOMERGE attribute is specified
on an MDI WINDOW’s MENUBAR, the menu overwrites and replaces the
Global menu.

On a non-MDI WINDOW, the MENUBAR is never merged with the Global
menu. A MENUBAR on a non-MDI WINDOW always appears in the
WINDOW, not on any APPLICATION which may have been previously
opened.

Events generated by local menu items are sent to the WINDOW’s ACCEPT
loop in the normal way. Events generated by global menu items are sent to
the active event loop of the thread which opened the APPLICATION (in a
normal multi-thread application this means the APPLICATION’s own



6-36 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ACCEPT loop).

Dynamic changes to menu items which reference the currently active
window affect only the currently displayed menu, even if global items are
changed. Changes made to the Global menu items when the APPLICATION
is the current window, or which reference the global APPLICATION
window affect the global portions of all menus, whether already open or not.

When a WINDOW’s MENUBAR is merged into an APPLICATION’s
MENUBAR, the global menu selections appear first, followed by the local
menu selections, unless the FIRST or LAST attributes are specified on
individual menu selections.

Example:

 !An MDI application frame window with main menu for the application:
MainWin APPLICATION(‘My Application’)

MENUBAR
MENU(‘File’),USE(?FileMenu)
ITEM(‘Open...’),USE(?OpenFile)
ITEM(‘Close’),USE(?CloseFile),DISABLE
ITEM(‘E&xit’),USE(?MainExit),LAST

END
MENU(‘Edit’),USE(?EditMenu)
 ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
 ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
 ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE
END
MENU(‘Help’),USE(?HelpMenu),LAST
ITEM(‘Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(‘Search for Help On...’),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(‘About MyApp...’),USE(?HelpAbout)

END
END

END

 !An MDI child window with menu for the window, merged into the
 ! application’s menubar:
MDIChild WINDOW(‘Child One’),MDI

 MENUBAR
 MENU(‘File’),USE(?FileMenu) !Merges into File menu
 ITEM(‘Close’),USE(?CloseFile) !Supercedes main menu selection
 ITEM(‘Pick...’),USE(?PickFile) !Added to menu selections

 END
 MENU(‘Edit’),USE(?EditMenu) !Merges into Edit menu
 ITEM(‘Undo’),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo) !Added to menu

!These items supercede main menu selections:
 ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
 ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
 ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

 END
 MENU(‘Window’),STD(STD:WindowList),LAST
 ITEM(‘Tile’),STD(STD:TileWindow)
 ITEM(‘Cascade’),STD(STD:CascadeWindow)

 END
 END
 TEXT,HVSCROLL,USE(Pre:Field)
 BUTTON(‘&OK’),USE(?Exit),DEFAULT

 END



CHAPTER 6 WINDOW STRUCTURES 6-37

 !An MDI window with its own menu, overwriting the main menu:
MDIChild2 WINDOW(‘Dialog Window’),MDI,SYSTEM,MAX,STATUS

MENUBAR,NOMERGE
MENU(‘File’),USE(?FileMenu)
ITEM(‘Close’),USE(?CloseFile)

END
MENU(‘Edit’),USE(?EditMenu)
ITEM(‘Undo’),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END

TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
BUTTON(‘&OK’),USE(?Exit),DEFAULT

END

 !A non-MDI window with its own menu:
NonMDI WINDOW(‘Dialog Window’),SYSTEM,MAX,STATUS

 MENUBAR
 MENU(‘File’),USE(?FileMenu)
 ITEM(‘Close’),USE(?CloseFile)

 END
 MENU(‘Edit’),USE(?EditMenu)
 ITEM(‘Undo’),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
 ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
 ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
 ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

 END
 END
 TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
 BUTTON(‘&OK’),USE(?Exit),DEFAULT

 END



6-38 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TOOLBAR (declare a tool bar)

TOOLBAR  [,AT( )] [,CURSOR( )] [,FONT( )] [,NOMERGE]
controls

END

TOOLBAR Declares tools for an APPLICATION or WINDOW.

AT Specifies the initial size of the toolbar. If omitted,
default values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the TOOLBAR. If omitted, the WIN-
DOW or APPLICATION structure’s CURSOR attribute
is used, else the Windows default cursor is used.

FONT Specifies the default display font for the controls in the
TOOLBAR.

NOMERGE Specifies tools merging behavior.

controls Control field declarations that define the available tools.

The TOOLBAR  structure declares the tools displayed for an
APPLICATION or WINDOW. On an APPLICATION, the TOOLBAR
defines the Global tools for the program. If the NOMERGE attribute is
specified on the APPLICATION’s TOOLBAR, the tools are local and are
displayed only when no MDI child windows are open; there are no global
tools. Global tools are active and available on all MDI “child” windows
unless an MDI “child” window’s TOOLBAR structure has the NOMERGE
attribute. If so, the “child” window’s tools overwrite the Global tools.

On an MDI WINDOW, the TOOLBAR defines tools that are automatically
merged with the Global toolbar. Both the Global and the window’s tools are
then active while the MDI “child” window has input focus. Once the
window loses focus, its specific tools are removed from the Global toolbar.
If the NOMERGE attribute is specified on an MDI WINDOW’s TOOLBAR,
the tools overwrite and replace the Global toolbar. On a non-MDI
WINDOW, the TOOLBAR is never merged with the Global menu. A
TOOLBAR on a non-MDI WINDOW always appears in the WINDOW, not
on any APPLICATION which may have been previously opened.

Events generated by local tools are sent to the WINDOW’s ACCEPT loop in
the normal way. Events generated by global tools are sent to the active event
loop of the thread which opened the APPLICATION. In a normal multi-
thread application, this means the APPLICATION’s own ACCEPT loop.

TOOLBAR controls generate events in the normal manner. However, they do
not keep the focus, and cannot be operated from the keyboard unless
accelerator keys are provided. As soon as user interaction with a TOOLBAR
control is done, focus returns to the window and local control which
previously had it.



CHAPTER 6 WINDOW STRUCTURES 6-39

Dynamic changes to tools which reference the currently active window
affect only the currently displayed toolbar, even if global tools are changed.
Changes made to the Global toolbar when the APPLICATION is the current
window, or which reference the global APPLICATION’s window affect the
global portions of all toolbars, whether already open or not.

When a WINDOW’s TOOLBAR is merged into an APPLICATION’s
TOOLBAR, the global tools appear first, followed by the local tools. The
toolbars are merged so that the fields in the WINDOW’s toolbar begin just
right of the position specified by the value of the width parameter of the
APPLICATION TOOLBAR’s AT attribute. The height of the displayed
toolbar is the maximum height of the “tallest” tool, whether global or local.
If any part of a control falls below the bottom, the height is increased
accordingly.

Example:

 !An MDI application frame window containing the
 ! main menu and toolbar for the application:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
ITEM(‘E&xit’),USE(?MainExit)

END
TOOLBAR
BUTTON(‘Exit’),USE(?MainExitButton)

END
END

 !An MDI child window with toolbar for the window, merged into the
 ! application’s toolbar:
MDIChild WINDOW(‘Child One’),MDI

TOOLBAR
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)

END
TEXT,HVSCROLL,USE(Pre:Field)
BUTTON(‘&OK’),USE(?Exit),DEFAULT

END
 !An MDI window with its own toolbar, overwriting the main toolbar:
MDIChild2 WINDOW(‘Dialog Window’),MDI,SYSTEM,MAX,STATUS

TOOLBAR,NOMERGE
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)

END
TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
BUTTON(‘&OK’),USE(?Exit),DEFAULT

END
 !A non-MDI window with its own toolbar:
NonMDI WINDOW(‘Dialog Window’),SYSTEM,MAX,STATUS

TOOLBAR
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)

END
TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
BUTTON(‘&OK’),USE(?Exit),DEFAULT

END



6-40 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MENUBAR and TMENUBAR and TMENUBAR and TMENUBAR and TMENUBAR and TOOLBAR AtOOLBAR AtOOLBAR AtOOLBAR AtOOLBAR Attributestributestributestributestributes

CURSOR (set toolbar mouse cursor type)

CURSOR(file)

CURSOR Specifies a mouse cursor to display for the TOOLBAR.

file A string constant containing the name of a .CUR file, or
an EQUATE naming a Windows-standard mouse cursor.
The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the
mouse is positioned over the TOOLBAR. This cursor is inherited by the
controls in the toolbar unless overridden.

EQUATE statements for the Windows-standard mouse cursors are contained
in the EQUATES.CLW file. The following list is a representative sample of
these (see EQUATES.CLW for the complete list):

 CURSOR:None No mouse cursor
 CURSOR:Arrow Normal windows arrow cursor
 CURSOR:IBeam Capital “I” like a steel I-beam
 CURSOR:Wait Hourglass
 CURSOR:Cross Large plus sign
 CURSOR:UpArrow Vertical arrow
 CURSOR:Size Four-headed arrow
 CURSOR:Icon Box within a box
 CURSOR:SizeNWSE Double-headed arrow slanting left
 CURSOR:SizeNESW Double-headed arrow slanting right
 CURSOR:SizeWE Double-headed horizontal arrow
 CURSOR:SizeNS Double-headed vertical arrow
 CURSOR:DragWE Double-headed horizontal arrow

Example:

 !Toolbar with large plus sign cursor
WinOne WINDOW

TOOLBAR,CURSOR(‘CURSOR:Cross’)
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)

END
END



CHAPTER 6 WINDOW STRUCTURES 6-41

FONT (set toolbar default f ont)

FONT([typeface] [,size] [,color] [,style])

FONT Specifies the default display font for the TOOLBAR.

typeface A string constant containing the name of the font. If
omitted, the system font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the system default font size is used.

color A LONG integer constant containing the red, green, and
blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, black is used.

style An integer constant or constant expression or EQUATE
specifying the strike weight and style of the font. If
omitted, the weight is normal.

The FONT  attribute on a TOOLBAR structure specifies the default display
font for all controls in the TOOLBAR that do not have a FONT attribute.
The typeface may name any font registered in the Windows system. The
EQUATES.CLW file contains EQUATE values for standard style values. A
style on the range zero (0) to one thousand (1000) specifies the strike weight
of the font. You may add to that values that indicate italic, underline, or
strikeout text. The following EQUATES are in EQUATES.CLW:

  FONT:thin EQUATE (100)
  FONT:regular EQUATE (400)
  FONT:bold EQUATE (700)
  FONT:italic EQUATE (01000H)
  FONT:underline EQUATE (02000H)
  FONT:strikeout EQUATE (04000H)

Example:

Win1 WINDOW !A toolbar using 14 point Times New Roman
TOOLBAR,FONT(‘Times New Roman’,14,00H)
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)

END
END

Win2 WINDOW !14 point Times New Roman, Bold and Italic
TOOLBAR,FONT(‘Times New Roman’,14,00H,FONT:italic+FONT:bold)
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)

END
END



6-42 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

NOMERGE (set merging behavior)

NOMERGE

The NOMERGE attribute indicates that the MENUBAR or TOOLBAR on
a WINDOW should not be merged with the Global menu or toolbar.

The NOMERGE attribute on an APPLICATION’s MENUBAR indicates that
the menu is local and to be displayed only when no MDI “child” windows
are open and that there is no Global menu. The NOMERGE attribute on an
APPLICATION’s TOOLBAR indicates that the tools are local and to be
displayed only when no MDI “child” windows are open and that there are no
Global tools.

Without the NOMERGE attribute, an MDI WINDOW’s menu and toolbar
are automatically merged with the global menu and toolbar, and then
displayed in the APPLICATION menu and toolbar. When NOMERGE is
specified, the WINDOW’s menu and toolbar overwrite the Global menu and
toolbar. The menu and toolbar displayed when the WINDOW has focus are
only the WINDOW’s own menu and toolbar. However, they are still
displayed on the APPLICATION.

A MENUBAR or TOOLBAR specified in a non-MDI WINDOW is never
merged with the Global menu or toolbar—they appear in the WINDOW.

Example:

 !An MDI application frame window with local-only menu and toolbar:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS

MENUBAR,NOMERGE
ITEM(‘E&xit’),USE(?MainExit)

END
TOOLBAR,NOMERGE
BUTTON(‘Exit’),USE(?MainExitButton)

END
END

 !MDI window with its own menu and toolbar, overwriting the application’s:
MDIChild WINDOW(‘Dialog Window’),MDI,SYSTEM,MAX,STATUS

MENUBAR,NOMERGE
MENU(‘Edit’),USE(?EditMenu)
ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END
TOOLBAR,NOMERGE
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)

END
TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
BUTTON(‘&OK’),USE(?Exit),DEFAULT

END



CHAPTER 6 WINDOW STRUCTURES 6-43

MENUBAR ContrMENUBAR ContrMENUBAR ContrMENUBAR ContrMENUBAR Controlsolsolsolsols

MENU (declare a menu box)

MENU(text) [,USE( )] [,KEY( )] [,MSG( )] [,HLP( )] [,STD( )] [,RIGHT] [,DISABLE ]
[, | FIRST | ]

| LAST |

MENU Declares a menu box within a MENUBAR.

text A string constant containing the display text for the
menu selection.

USE A field equate label to reference the menu selection in
executable code.

KEY Specifies an integer constant or keycode equate that
immediately opens the menu.

MSG Specifies a string constant containing the text to display
in the status bar when the menu is pulled down.

HLP Specifies a string constant containing the help system
identifier for the menu.

STD Specifies an integer constant or equate that identifies a
“Windows standard behavior” for the menu.

RIGHT Specifies the MENU appears at the far right of the action
bar.

FIRST Specifies the MENU appears at the left or top of the
menu when merged.

LAST Specifies the MENU appears at the right or bottom of
the menu when merged.

DISABLE Specifies the menu appears dimmed when the WINDOW
or APPLICATION is first opened.

MENU  declares a drop-down or cascading menu box structure within a
MENUBAR structure. When the MENU is selected, the MENU and/or
ITEM statements within the structure are displayed in a menu box. A
MENU is not required to have any MENUs or ITEMs in it. A menu box
usually appears (drops down) immediately below its text on the menu bar (or
above, if there is no room below). When selected with ENTER or RIGHT ARROW,
any subsequent menu drop-box appears (cascades) immediately to the right
of the MENU text in the preceding menu box (or left, if there is no room to
the right). LEFT ARROW backs up to the preceding menu. The KEY attribute
designates a separate accelerator key for the field. This may be any valid
Clarion keycode to immediately pull down the MENU.

The text string may contain an ampersand ( & ) which designates the
following character as the accelerator “hot” key which is automatically



6-44 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

underlined. If the MENU is on the menu bar, pressing the Alt key together
with the accelerator key highlights and displays the MENU. If the MENU is
within another MENU, pressing the accelerator key, alone, highlights and
executes the MENU. If there is no ampersand in the text, the first non-blank
character in the text string is the accelerator key for the MENU, but it will
not be underlined. To include an ampersand as part of the text, place two
ampersands together (&&) in the text string and only one will display.

Example:

 !An MDI application frame window with main menu for the application:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(‘File’),USE(?FileMenu),FIRST
ITEM(‘Open...’),USE(?OpenFile)
ITEM(‘Close’),USE(?CloseFile),DISABLE
ITEM(‘E&xit’),USE(?MainExit)

END
MENU(‘Edit’),USE(?EditMenu),KEY(CtrlE),HLP(‘EditMenuHelp’)
ITEM(‘Undo’),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo),DISABLE
ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE

END
MENU(‘Window’),STD(STD:WindowList),MSG(‘Arrange or Select Window’),LAST
ITEM(‘Tile’),STD(STD:TileWindow)
ITEM(‘Cascade’),STD(STD:CascadeWindow)
ITEM(‘Arrange Icons’),STD(STD:ArrangeIcons)

END
MENU(‘Help’),USE(?HelpMenu),LAST,RIGHT
ITEM(‘Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(‘Search for Help On...’),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(‘About MyApp...’),USE(?HelpAbout)

END
END

END



CHAPTER 6 WINDOW STRUCTURES 6-45

ITEM (declare a menu item)

ITEM(text) [,USE( )] [,KEY( )] [,MSG( )] [,HLP( ) ] [,STD( )] [,CHECK] [,DISABLE ]
[, | FIRST | ] [,SEPARATOR ]

| LAST |

ITEM Declares a menu choice within a MENUBAR or MENU
structure.

text A string constant containing the display text for the
menu item.

USE A field equate label to reference the menu item in
executable code, or the variable used with CHECK.

KEY Specifies an integer constant or keycode equate that
immediately executes the menu item.

MSG Specifies a string constant containing the text to display
in the status bar when the menu item is highlighted.

HLP Specifies a string constant containing the help system
identifier for the menu item.

STD Specifies an integer constant or equate that identifies a
“Windows standard action” the menu item executes.

CHECK Specifies an on/off ITEM.

DISABLE Specifies the menu item appears dimmed when the
WINDOW or APPLICATION is first opened.

FIRST Specifies the ITEM appears at the top of the menu when
menus are merged.

LAST Specifies the ITEM appears at the bottom of the menu
when menus are merged.

SEPARATOR Specifies the ITEM displays a solid horizontal line
across the menu box at run-time to delimit groups of
menu selections. No other attributes may be specified
with SEPARATOR.

ITEM  declares a menu choice within a MENUBAR or MENU structure.
The text string may contain an ampersand ( & ) which designates the
following character as an accelerator “hot” key which is automatically
underlined. If the ITEM is on the menu bar, pressing the Alt key together
with the accelerator key highlights and executes the ITEM. If the ITEM is in
a MENU, pressing the accelerator key, alone, when the menu is displayed,
highlights and executes the ITEM. If there is no ampersand in the text, the
first non-blank character in the text string is the accelerator key for the
ITEM, which will not be underlined. To include an ampersand as part of the
text, place two ampersands together (&&) in the text string and only one will
display.



6-46 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The KEY attribute designates a separate “hot” key for the field. This may be
any valid Clarion keycode to immediately execute the ITEM’s action.

A cursor bar highlights individual ITEMs within the MENU structure. Each
ITEM is usually associated with some code to be executed upon selection of
that ITEM, unless the STD attribute is present. The STD atribute specifies a
standard Windows action the menu item performs, such as Tile or Cascade
the windows.

The SEPARATOR attribute creates an ITEM which serves only to delimit
groups of menus selections so it should not have a text parameter, nor any
other attributes. It creates a solid horizontal line across the menu box.

An ITEM that is not within a MENU structure is placed on the menu bar.
This creates a menu bar selection which has no related drop-down menu.
The normal convention to indicate this to the user is to terminate the text
displayed for the item with an exclamation point (!). For example, the text
for the ITEM might contain ‘Exit!’ to alert the user to the executable nature
of the menu choice.

Events Generated:

EVENT:Accepted The control has been pressed by the user.

Example:

 !An MDI application frame window with main menu for the application:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
ITEM(‘E&xit!’),USE(?MainExit),FIRST
MENU(‘File’),USE(?FileMenu),FIRST
ITEM(‘Open...’),USE(?OpenFile) ,HLP(‘OpenFileHelp’) ,FIRST
ITEM(‘Close’),USE(?CloseFile),HLP(‘CloseFileHelp’),DISABLE
ITEM(‘Auto Increment’),USE(ToggleVar),CHECK

END
MENU(‘Edit’),USE(?EditMenu),KEY(CtrlE),HLP(‘EditMenuHelp’)
ITEM(‘Undo’),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo),DISABLE
ITEM,SEPARATOR
ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut),DISABLE
ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy),DISABLE
ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste),DISABLE

END
MENU(‘Window’),STD(STD:WindowList),MSG(‘Arrange or Select Window’),LAST
ITEM(‘Tile’),STD(STD:TileWindow)
ITEM(‘Cascade’),STD(STD:CascadeWindow)
ITEM(‘Arrange Icons’),STD(STD:ArrangeIcons)
ITEM,SEPARATOR

END
MENU(‘Help’),USE(?HelpMenu),LAST,RIGHT
ITEM(‘Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(‘Search for Help On...’),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(‘About MyApp...’),USE(?HelpAbout),MSG(‘Copyright Info’),LAST

END
END

END



CHAPTER 6 WINDOW STRUCTURES 6-47

TTTTTOOLBAR and WINDOOOLBAR and WINDOOOLBAR and WINDOOOLBAR and WINDOOOLBAR and WINDOW ContrW ContrW ContrW ContrW Control Fieldsol Fieldsol Fieldsol Fieldsol Fields

BOX (declare a window box control)

BOX  ,AT( ) [,USE( )] [,DISABLE ] [,COLOR( )] [,FILL( ) ] [,ROUND] [,FULL ] [,SCROLL ] [,HIDE]

BOX Places a rectangular box on the window.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW (or APPLICATION) is first opened.

COLOR Specifies the color for the border of the control. If
omitted, the border is black.

FILL Specifies the fill color for the control. If omitted, the box
is not filled with color.

ROUND Specifies the box corners are rounded. If omitted, the
corners are square.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

The BOX control places a rectangular box on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. This
control cannot receive input focus and does not generate events.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 BOX,FILL(COLOR:MENU),FULL !Filled, full screen, black border
 BOX,AT(0,0,20,20) !Unfilled, black border
 BOX,AT(0,20,20,20),USE(?Box1),DISABLE

!Unfilled, black border, dimmed
 BOX,AT(20,20,20,20),ROUND !Unfilled, rounded, black border
 BOX,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

!Filled, black border
 BOX,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)

!Unfilled, active border color border
 BOX,AT(480,180,20,20),SCROLL !Scrolls with screen

 END



6-48 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BUTTON (declare a pushbutton control)

BUTTON(text) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )] [,HLP( )] [,SKIP]
[,STD( )] [,FONT( )] [,ICON( )] [,DEFAULT ] [,IMM][,REQ] [,FULL ] [,SCROLL ] [,ALRT( ) ]
[,HIDE] [DROPID( )] [TIP( )] [, | LEFT | ]

| RIGHT |

BUTTON Places a command button on the WINDOW or
TOOLBAR.

text A string constant containing the text to display on the
button face (along with any ICON specified). This may
contain an ampersand (&) to indicate the “hot” letter
(accelerator key) for the button.

AT Specifies the initial size and location of the control. If
omitted, default values are set by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to and presses the button.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control does not receive input focus and
may only be accessed with the mouse or accelerator key.

STD Specifies an integer constant or equate that identifies a
“Windows standard action” the control executes.

FONT Specifies the display font for the control.

ICON Specifies an .ICO file or standard icon to display on the
button face.

DEFAULT Specifies the BUTTON is automatically pressed when
the user presses the ENTER key.

IMM Specifies the control generates an event when the left
mouse button is pressed, continuing as long as it is
depressed. If omitted, an event is generated only when
the left mouse button is pressed and released on the
control.



CHAPTER 6 WINDOW STRUCTURES 6-49

REQ Specifies that when the BUTTON is pressed, the runtime
library automatically checks all ENTRY controls in the
same WINDOW with the REQ attribute to ensure they
contain data other than blanks or zeroes.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

LEFT Specifies that the text appears to the left of the icon.

RIGHT Specifies that the text appears to the right of the icon.

The BUTTON  control places a pushbutton on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute.

A BUTTON with the IMM attribute generates an event as soon as the left
mouse button is pressed on the control and continues to do so until it is
released. This allows the BUTTON control’s executable code to execute
continuously until the mouse button is released. A BUTTON without the
IMM attribute generates an event only when the left mouse button is pressed
and released on the control.

A BUTTON with the REQ attribute is a “required control fields check”
button. REQ attributes of ENTRY or TEXT control fields are not checked
until a BUTTON with the REQ attribute is pressed or the INCOMPLETE
function is called. Focus is given to the first required control which is blank
or zero.

A BUTTON with an ICON attribute displays the icon on the button face in
addition to its text parameter (which appears below the icon, by default). The
text parameter also serves for accelerator “hot” key definition.



6-50 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The control has been pressed by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
BUTTON(‘1’),AT(0,0,20,20),USE(?B1)
BUTTON(‘2’),AT(20,0,20,20),USE(?B2),KEY(F10Key)
BUTTON(‘3’),AT(40,0,20,20),USE(?B3),MSG(‘Button 3’)
BUTTON(‘4’),AT(60,0,20,20),USE(?B4),HLP(‘Button4Help’)
BUTTON(‘5’),AT(80,0,20,20),USE(?B5),STD(STD:Cut)
BUTTON(‘6’),AT(100,0,20,20),USE(?B6),FONT(‘Arial’,12)
BUTTON(‘7’),AT(120,0,20,20),USE(?B7),ICON(ICON:Question)
BUTTON(‘8’),AT(140,0,20,20),USE(?B8),DEFAULT
BUTTON(‘9’),AT(160,0,20,20),USE(?B9),IMM
BUTTON(‘10’),AT(180,0,20,20),USE(?B10),CURSOR(CURSOR:Wait)
BUTTON(‘11’),AT(200,0,20,20),USE(?B11),REQ
BUTTON(‘12’),AT(220,0,20,20),USE(?B12),ALRT(F10Key)
BUTTON(‘13’),AT(240,0,20,20),USE(?B13),SCROLL

END
CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?B1
!Perform some action

END
END



CHAPTER 6 WINDOW STRUCTURES 6-51

CHECK (declare a window checkbox control)

CHECK(text) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )] [,HLP( )] [,SKIP ]
[,FONT( )] [,ICON( )] [,FULL ] [,SCROLL ] [,ALRT( ) ] [,HIDE] [,DROPID( )]
[,TIP( )] [, | LEFT | ]

| RIGHT |

CHECK Places a check box on the WINDOW or TOOLBAR.

text A string constant containing the text to display for the
check box. This may contain an ampersand (&) to
indicate the “hot” letter for the check box.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of a numeric variable to receive the value of
the check box, zero (0 = OFF) or one (1 = ON).

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to and toggles the box.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control does not receive input focus and
may only be accessed with the mouse or accelerator key.

FONT Specifies the display font for the control.

ICON Specifies an .ICO file or standard icon to display on the
button face of a “latching” pushbutton.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DROPID Specifies the control may serve as a drop target for drag-



6-52 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

LEFT Specifies that the text appears to the left of the check
box.

RIGHT Specifies that the text appears to the right of the check
box (the default position).

The CHECK  control places a check box on the WINDOW (or TOOLBAR)
at the position and size specified by its AT attribute. A CHECK with an
ICON attribute appears as a “latched” button with the icon displayed on the
button face. When the button appears “up” the CHECK is off and the USE
variable receives a zero (0); when it appears “down” the CHECK is on and
the USE variable receives a one (1). The PROP:TrueValue and
PROP:FalseValue runtime properties can be used to automatically set the
USE variable to values other than zero and one.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The control has been toggled by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
CHECK(‘1’),AT(0,0,20,20),USE(C1)
CHECK(‘2’),AT(0,20,20,20),USE(C2),KEY(F10Key)
CHECK(‘3’),AT(0,40,20,20),USE(C3),MSG(‘Button 3’)
CHECK(‘4’),AT(0,60,20,20),USE(C4),HLP(‘Check4Help’)
CHECK(‘5’),AT(20,80,20,20),USE(C5),LEFT
CHECK(‘6’),AT(0,100,20,20),USE(C6),FONT(‘Arial’,12)
CHECK(‘7’),AT(0,120,20,20),USE(C7),ICON(ICON:Question)
CHECK(‘8’),AT(0,140,20,20),USE(C8),DEFAULT
CHECK(‘9’),AT(0,160,20,20),USE(C9),IMM
CHECK(‘10’),AT(0,180,20,20),USE(C10),CURSOR(CURSOR:Wait)
CHECK(‘11’),AT(0,200,20,20),USE(C11),ALRT(F10Key),DISABLE

END
CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?C1
IF C1 = 1
ENABLE(?C11)

ELSE
DISABLE(?C11)

END
END

END



CHAPTER 6 WINDOW STRUCTURES 6-53

COMBO (declare an entry/list control)

COMBO(picture) ,FROM( ) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )]
[,HLP( ) ] [,SKIP] [,FONT( )] [,FORMAT( )] [,DROP] [,COLUMN] [,VCR] [,FULL ]
[,SCROLL ] [,ALRT( ) ] [,HIDE] [,READONLY ] [,REQ] [,NOBAR ] [DROPID( )] [,TIP( )]
[, | MARK() |][, | HSCROLL |][, | LEFT |][, | INS |][, | UPR |]

| IMM | | VSCROLL | | RIGHT | | OVR | | CAP |
| HVSCROLL | | CENTER |

| DECIMAL |

COMBO Places a data entry field with an associated list of data
items on the WINDOW or TOOLBAR.

picture A display picture token that specifies the input format
for the data entered into the control.

FROM Specifies the origin of the data displayed in the list.

AT Specifies the initial size and location of the control. If
omitted, the runtime library chooses a value.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code or the label of the variable that receives the value
selected by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control receives input focus to enter text
only with the mouse or accelerator key and does not
retain focus.

FONT Specifies the display font for the control.

FORMAT Specifies the display format of the data.

DROP Specifies a drop-down list box and the number of
elements the drop-down portion contains.

COLUMN Specifies a field-by-field highlight bar on multi-column
list boxes.

VCR Specifies a VCR-type control to the left of the horizontal
scroll bar (if present).



6-54 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

READONLY Specifies the control does not allow data entry.

NOBAR Specifies the highlight bar is displayed only when the
LIST has focus.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

REQ Specifies the control may not be left blank or zero.

MARK Specifies multiple item selection mode.

IMM Specifies generation of an event whenever the user
presses any key.

HSCROLL Specifies that a horizontal scroll bar is automatically
added to the list box when any portion of the data item
lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added
to the list box when any data items lie vertically outside
the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are
automatically added to the list box when any portion of
the data items lies outside the visible area.

LEFT Specifies that the data is left justified within the list.

RIGHT Specifies that the data is right justified within the list.

CENTER Specifies that the data is centered within the list.

DECIMAL Specifies that the data is aligned on the decimal point
within the list.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on
windows with the MASK attribute).

UPR / CAP Specifies all upper case or proper name capitalization
(First Letter Of Each Word Capitalized) entry.

The COMBO  control places a data entry field with an associated list of data
items on the WINDOW (or TOOLBAR) at the position and size specified by
its AT attribute (a combination of an ENTRY and LIST control). The user



CHAPTER 6 WINDOW STRUCTURES 6-55

may type in data or select an item from the list. The entered data is not
automatically validated against the entries in the list. The data entry portion
of the COMBO acts as an “incremental locator” to the list—as the user types
each character, the highlight bar is positioned to the closest matching entry.

A COMBO with the DROP attribute displays only the currently selected
data item on screen until the control has focus and the user presses the down
arrow key, or CLICKS ON the the icon to the right of the displayed data item.
When either of these occurs, the selection list appears (“drops down”) to
allow the user to select an item.

A COMBO with the IMM attribute generates an event every time the user
moves the highlight bar to another selection, or pressed any key that causes
the displayed entries to scroll. This allows an opportunity for the source
code to re-fill the display QUEUE, or get the currently highlighted record to
display other fields from the record. A COMBO with the VCR attribute has
scroll control buttons like a Video Cassette Recorder to the left of the
horizontal scroll bar (if there is one). These buttons allow the user to use the
mouse to scroll through the list.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has selected an entry.

EVENT:Rejected The user has entered an invalid value for the entry
picture.

EVENT:NewSelection
The current selection in the list has changed (highlight
has moved up or down).

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

 A COMBO with the IMM attribute also generates the following events:

EVENT:ScrollUp The highlight bar has attempted to move off the top of
the LIST.

EVENT:ScrollDown
The highlight bar has attempted to move off the bottom
of the LIST.

EVENT:PageUp The user pressed PgUp.

EVENT:PageDown
The user pressed PgDn.



6-56 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EVENT:ScrollTop The user pressed Ctrl-PgUp.

EVENT:ScrollBottom
The user pressed Ctrl-PgDn.

EVENT:PreAlertKey
The user pressed a printable character or an ALRT
attribute hot key.

EVENT:AlertKey The user pressed a printable character or an ALRT
attribute hot key.

EVENT:Locate The user pressed the locator VCR button.

 A COMBO with the DROP attribute also generates the following events:

EVENT:DroppingDown
The user pressed the down arrow button.

EVENT:DroppedDown
The list has dropped.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
COMBO(@S8),AT(0,0,20,20),USE(C1),FROM(Que)
COMBO(@S8),AT(20,0,20,20),USE(C2),FROM(Que),KEY(F10Key)
COMBO(@S8),AT(40,0,20,20),USE(C3),FROM(Que),MSG(‘Button 3’)
COMBO(@S8),AT(60,0,20,20),USE(C4),FROM(Que),HLP(‘Check4Help’)
COMBO(@S8),AT(80,0,20,20),USE(C5),FROM(Q) |
 ,FORMAT(‘5C~List~15L~Box~’),COLUMN

COMBO(@S8),AT(100,0,20,20),USE(C6),FROM(Que),FONT(‘Arial’,12)
COMBO(@S8),AT(120,0,20,20),USE(C7),FROM(Que),DROP(8)
COMBO(@S8),AT(140,0,20,20),USE(C8),FROM(Que),HVSCROLL,VCR
COMBO(@S8),AT(160,0,20,20),USE(C9),FROM(Que),IMM
COMBO(@S8),AT(180,0,20,20),USE(C10),FROM(Que),CURSOR(CURSOR:Wait)
COMBO(@S8),AT(200,0,20,20),USE(C11),FROM(Que),ALRT(F10Key)
COMBO(@S8),AT(220,0,20,20),USE(C12),FROM(Que),LEFT
COMBO(@S8),AT(240,0,20,20),USE(C13),FROM(Que),RIGHT
COMBO(@S8),AT(260,0,20,20),USE(C14),FROM(Que),CENTER
COMBO(@N8.2),AT(280,0,20,20),USE(C15),FROM(Que),DECIMAL
END

CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?C1
LOOP X# = 1 to RECORDS(Que) !Check for user’s entry in Que
GET(Que,X#)
IF C1 = Que THEN BREAK. !Break loop if present

END
IF X# > RECORDS(Que) !Check for BREAK
Que = C1 ! and add the entry
ADD(Que)

. . .

See Also: LIST, ENTRY



CHAPTER 6 WINDOW STRUCTURES 6-57

CUSTOM (declare a window .VBX custom control)

CUSTOM(text) ,AT( ) [,CLASS( ) ] [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )]
[,HLP( )] [,SKIP ] [,FULL ] [,SCROLL ] [,ALRT( )] [,HIDE] [,FONT( )] [DROPID( )]
[,TIP( )] [,property( value )]

CUSTOM Places a Visual Basic .VBX control on the WINDOW or
TOOLBAR.

text A string constant containing the title for the control.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the control.

CLASS Specifies the .VBX filename and type of control.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of a variable to receive the value of the control.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control does not receive input focus and
may only be accessed with the mouse or accelerator key.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

FONT Specifies the display font for the control.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.



6-58 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

property A string constant containing the name of a custom
property setting for the control.

value A string constant containing the property value number
or EQUATE for the property.

The CUSTOM control places a Visual Basic .VBX control on the
WINDOW (or TOOLBAR) at the position and size specified by its AT
attribute.

The property attribute allows you to specify any additional property settings
the .VBX control may require. These are properties that need to be set for
the .VBX control to properly function, and are not standard Clarion
properties (such as AT, CURSOR, or USE). The custom control should only
receive values for these properties that are defined for that control. Valid
properties and values for those properties would be defined in the custom
control’s documentation. You may have multiple property attributes on a
single CUSTOM control.

Events Generated:

EVENT:VBXevent  A VBX-specific event occurred. Interrogate the
PROP:VBXEvent and PROP:VBXEventArg properties
for the event.

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed using the control.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 CUSTOM,AT(0,0,120,320),USE(C1), |

CLASS(‘graph.vbx’,’graph’),’graphstyle’(‘2’)
 END

CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?C1
?C1{‘graphstyle’} = ‘3’ !Change graphstyle property “on the fly”

! using runtime property access syntax
END

END



CHAPTER 6 WINDOW STRUCTURES 6-59

ELLIPSE (declare a window ellipse control)

ELLIPSE  ,AT( ) [,USE( )] [,DISABLE ] [,COLOR( )] [,FILL( ) ] [,FULL ] [,SCROLL ] [,HIDE]

ELLIPSE Places a “circular” figure on the WINDOW or
TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

COLOR Specifies the color for the border of the ellipse. If
omitted, the ellipse has a black border.

FILL Specifies the fill color for the control. If omitted, the
ellipse is not filled with color.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

The ELLIPSE  control places a “circular” figure on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. The ellipse
is drawn inside a “bounding box” defined by the  x, y, width, and height
parameters of it sAT attribute. The x and y parameters specify the starting
point, and the width and height parameters specify the horizontal and
vertical size of the “bounding box.”  This control cannot receive input focus
and does not generate events.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 ELLIPSE,FILL(COLOR:MENU),FULL !Filled, full screen, black border
 ELLIPSE,AT(0,0,20,20) !Unfilled, black border
 ELLIPSE,AT(0,20,20,20),USE(?Box1),DISABLE !Dimmed
 ELLIPSE,AT(20,20,20,20),ROUND !Unfilled, rounded, black border
 ELLIPSE,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

!Filled, black border
 ELLIPSE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDeR)

!Unfilled, active border color border
 ELLIPSE,AT(480,180,20,20),SCROLL !Scrolls with screen

 END



6-60 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ENTRY (declare a data entry control)

ENTRY(picture) ,AT() [,CURSOR()] [,USE()] [,DISABLE ] [,KEY()] [,MSG()] [,HLP()] [,SKIP ]
[,FONT()] [,IMM] [,PASSWORD] [,REQ] [,FULL ] [,SCROLL ][,ALRT() ] [,HIDE] [,TIP( )]
[,READONLY ] [DROPID( )] [, | INS | ] [, | CAP | ] [, | LEFT | ]

| OVR | | UPR | | RIGHT |
| CENTER |
| DECIMAL |

ENTRY Places a data entry field on the WINDOW or
TOOLBAR.

picture A display picture token that specifies the input format
for the data entered into the control.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of the variable that receives the value entered
into the control by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control receives input focus to enter text
only with the mouse or accelerator key and does not
retain focus.

FONT Specifies the display font for the control.

IMM Specifies immediate event generation whenever the user
presses any key.

PASSWORD Specifies non-display of the data entered (password
mode).

REQ Specifies the control may not be left blank or zero.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.



CHAPTER 6 WINDOW STRUCTURES 6-61

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

READONLY Specifies the control does not allow data entry.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on
windows with the MASK attribute).

UPR / CAP Specifies all upper case or proper name capitalization
(First Letter Of Each Word Capitalized) entry.

LEFT Specifies that the data entered is left justified within the
area specified by the AT attribute.

RIGHT Specifies that the data entered is right justified within the
area specified by the AT attribute.

CENTER Specifies that the data entered is centered within the area
specified by the AT attribute.

DECIMAL Specifies that the data entered is aligned on the decimal
point within the area specified by the AT attribute.

The ENTRY  control places a data entry field on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. Data
entered is formatted according to the picture, and the variable specified in
the USE attribute receives the data entered when the user has completed data
entry and moves on to another control. Data entry scrolls horizontally to
allow the user to enter data to the full length of the variable. Therefore, the
right and left arrow keys move within the data in the ENTRY control.

An ENTRY control with the PASSWORD attribute displays asterisks when
the user enters data. This is useful for password-type variables. An ENTRY
control with the SKIP attribute is used for seldom-used data entry. Display-
only data should be declared with the READONLY attribute.

The MASK attribute on a WINDOW specifies pattern input editing mode of
all controls in the window. This means that, as the user types in data, each
character is automatically validated against the control’s picture for proper
input (numbers only in numeric pictures, etc.). This forces the user to enter
data in the format specified by the control’s display picture. If omitted,
Windows free-input is allowed in the controls. This is Windows’ default data
entry mode. Free-input means the user’s data is formatted to the control’s
picture only after entry. This allows users to enter data as they choose and it
is automatically formatted to the control’s picture after entry. If the user
types in data in a format different from the control’s picture, the libraries



6-62 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

attempt to determine the format the user used, and convert the data to the
control’s display picture. For example, if the user types “January 1, 1995”
into a control with a display picture of @D1, the runtime library formats the
user’s input to “1/1/95.”  This action occurs only after the user completes
data entry and moves to another control. If the runtime library cannot
determine what format the user used, it will not update the USE variable. It
then beeps and leaves the user on the same control with the data they
entered, to allow them to try again.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed data entry in the control.

EVENT:Rejected The user has entered an invalid value for the entry
picture.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

 An ENTRY with the IMM attribute also generates the following events:

EVENT:NewSelection
The user has pressed a key.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
ENTRY(@S8),AT(0,0,20,20),USE(E1)
ENTRY(@S8),AT(20,0,20,20),USE(E2),KEY(F10Key)
ENTRY(@S8),AT(40,0,20,20),USE(E3),MSG(‘Button 3’)
ENTRY(@S8),AT(60,0,20,20),USE(E4),HLP(‘Entry4Help’)
ENTRY(@S8),AT(80,0,20,20),USE(E5),DISABLE
ENTRY(@S8),AT(100,0,20,20),USE(E6),FONT(‘Arial’,12)
ENTRY(@S8),AT(120,0,20,20),USE(E7),REQ,INS,CAP
ENTRY(@S8),AT(140,0,20,20),USE(E8),SCROLL,OVR,UPR
ENTRY(@S8),AT(160,0,20,20),USE(E9),IMM
ENTRY(@S8),AT(180,0,20,20),USE(E10),CURSOR(CURSOR:Wait)
ENTRY(@S8),AT(200,0,20,20),USE(E11),ALRT(F10Key)
ENTRY(@S8),AT(220,0,20,20),USE(E12),LEFT
ENTRY(@S8),AT(240,0,20,20),USE(E13),RIGHT
ENTRY(@S8),AT(260,0,20,20),USE(E14),CENTER
ENTRY(@N8.2),AT(280,0,20,20),USE(E15),DECIMAL

END



CHAPTER 6 WINDOW STRUCTURES 6-63

GROUP (declare a group of window controls)

GROUP(text) ,AT()  [,CURSOR()] [,USE()] [,DISABLE ] [,KEY()] [,MSG()]  [,HLP()] [,FONT()]
[,BOXED] [,FULL ] [,SCROLL ] [,HIDE] [,ALRT( ) ] [,SKIP] [,TIP( )] [,DROPID( )]

     controls
END

GROUP Declares a group of controls that may be referenced as
one entity.

text A string constant containing the prompt for the group of
controls. This may contain an ampersand (&) to indicate
the “hot” letter for the prompt. The text is displayed on
screen only if the BOXED attribute is also present.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control (or any control within the
GROUP). If omitted, the window’s CURSOR attribute is
used, else the Windows default cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the GROUP control and the controls in the
GROUP appear dimmed when the WINDOW or APPLI-
CATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the first control in the
GROUP.

MSG Specifies a string constant containing the default text to
display in the status bar when any control in the GROUP
has focus.

HLP Specifies a string constant containing the default help
system identifier for any control in the GROUP.

FONT Specifies the display font for the control and the default
for all the controls in the GROUP.

BOXED Specifies a single-track border around the group of
controls with the text at the top of the border.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the GROUP control and the controls in the
GROUP scroll with the window.

HIDE Specifies the GROUP control and the controls in the
GROUP do not appear when the WINDOW or APPLI-



6-64 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CATION is first opened. UNHIDE must be used to
display them.

ALRT Specifies “hot” keys active for the controls in the
GROUP.

SKIP Specifies the controls in the GROUP do not receive
input focus and may only be accessed with the mouse or
accelerator key.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

controls Control declarations that may be referenced as the
GROUP.

The GROUP control declares a group of controls that may be referenced as
one entity. GROUP allows the user to use the cursor keys instead of the TAB

key to move between the controls in the GROUP, and provides default MSG
and HLP attributes for all controls in the GROUP. This control cannot
receive input focus.

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 GROUP(‘Group 1’),USE(?G1),KEY(F10Key)
 ENTRY(@S8),AT(0,0,20,20),USE(?E1)
 ENTRY(@S8),AT(20,0,20,20),USE(?E2)

 END
 GROUP(‘Group 2’),USE(?G2),MSG(‘Group 2’)
 ENTRY(@S8),AT(40,0,20,20),USE(?E3)
 ENTRY(@S8),AT(60,0,20,20),USE(?E4)

 END
 GROUP(‘Group 3’),USE(?G3),AT(80,0,20,20),BOXED
 ENTRY(@S8),AT(80,0,20,20),USE(?E5)
 ENTRY(@S8),AT(100,0,20,20),USE(?E6)

 END
 GROUP(‘Group 4’),USE(?G4),FONT(‘Arial’,12)
 ENTRY(@S8),AT(120,0,20,20),USE(?E7)
 ENTRY(@S8),AT(140,0,20,20),USE(?E8)

 END
 GROUP(‘Group 5’),USE(?G5),CURSOR(CURSOR:Wait)
 ENTRY(@S8),AT(160,0,20,20),USE(?E9)
 ENTRY(@S8),AT(180,0,20,20),USE(?E10)

 END
 GROUP(‘Group 6’),USE(?G6),SCROLL,HLP(‘Group6Help’)
 ENTRY(@S8),AT(200,0,20,20),USE(?E11)
 ENTRY(@S8),AT(220,0,20,20),USE(?E12)

 END
 END



CHAPTER 6 WINDOW STRUCTURES 6-65

IMAGE (declare a window graphic image control)

IMAGE(file) ,AT( ) [,USE( )] [,DISABLE ] [,FULL ] [,SCROLL ] [,HIDE] [, | HSCROLL | ]
| VSCROLL |
| HVSCROLL |

IMAGE Places a graphic image on the WINDOW or TOOLBAR.

file A string constant containing the name of the file to
display. The file is linked into the .EXE as a resource.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

HSCROLL Specifies that a horizontal scroll bar is automatically
added to the IMAGE control when the graphic image is
wider than the area specified for display.

VSCROLL Specifies that a vertical scroll bar is automatically added
to the IMAGE control when the graphic image is taller
than the area specified for display.

HVSCROLL Specifies that both vertical and horizontal scroll bars are
automatically added to the IMAGE control when the
graphic image is larger than the display area.

The IMAGE  control places a graphic image on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. This may
be a bitmap (.BMP), icon (.ICO), PaintBrush (.PCX), Graphic Interchange
Format (.GIF), JPEG (.JPG), or Windows metafile (.WMF). This control
cannot receive input focus and does not generate events.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 IMAGE(‘PIC.BMP’),AT(0,0,20,20),USE(?I1)
 IMAGE(‘PIC.WMF’),AT(40,0,20,20),USE(?I3),SCROLL

 END



6-66 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LINE (declare a window line control)

LINE  ,AT( ) [,USE( )] [,DISABLE ] [,COLOR( ) ] [,FULL ] [,SCROLL ] [,HIDE]

LINE Places a straight line on the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

COLOR Specifies the color for the line. If omitted, the color is
black.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

The LINE  control places a straight line on the WINDOW (or TOOLBAR) at
the position and size specified by its AT attribute. The x and y parameters of
the AT attribute specify the starting point of the line. The width and height
parameters of the AT attribute specify the horizontal and vertical distance to
the end point of the line. If these are both positive numbers, the line slopes
to the right and down from its starting point. If the width is negative, the line
slopes left; if the height is negative, the line slopes left. If either the width or
height is zero, the line is horizontal or vertical. This control cannot receive
input focus and does not generate events.

 Width Height Result
 positive positive right and down from start point
 negative positive left and down from start point
 positive negative right and up from start point
 negative negative left and up from start point
 zero positive vertical, down from start point
 zero negative vertical, up from start point
 positive zero horizontal, right from start point
 negative zero horizontal, left from start point

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 LINE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER) !Border color
 LINE,AT(480,180,20,20),SCROLL !Scrolls with screen

 END



CHAPTER 6 WINDOW STRUCTURES 6-67

LIST (declare a window list control)

LIST ,FROM( ) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )] [,HLP( )] [,SKIP]
[,FONT( )] [,FORMAT( )] [,DROP] [,COLUMN] [,VCR] [,FULL ] [,SCROLL ] [,NOBAR ]
[,ALRT( ) ] [,HIDE] [,DRAGID( )] [,DROPID( )] [,TIP( )]
[, | MARK( ) | ] [, | HSCROLL | ] [, | LEFT | ]

| IMM | | VSCROLL | | RIGHT |
| HVSCROLL | | CENTER |

| DECIMAL |

LIST Places a scrolling list of data items on the WINDOW or
TOOLBAR.

FROM Specifies the origin of the data displayed in the list.

AT Specifies the initial size and location of the control. If
omitted, the runtime library chooses a value.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code, or the label of the variable that receives the value
selected by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control does not receive input focus and
may only be accessed with the mouse or accelerator key.

FONT Specifies the display font for the control.

FORMAT Specifies the display format of the data. This can include
icons, colors, and tree controls.

DROP Specifies a drop-down list box and the number of
elements the drop-down portion contains.

COLUMN Specifies cell-by-cell highlighting on multi-column lists.

VCR Specifies a VCR-type control to the left of the horizontal
scroll bar (if present).

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.



6-68 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SCROLL Specifies the control scrolls with the window.

NOBAR Specifies the highlight bar is displayed only when the
LIST has focus.

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DRAGID Specifies the control may serve as a drag host for drag-
and-drop actions.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

MARK Specifies multiple items selection mode.

IMM Specifies generation of an event whenever the user
presses any key.

HSCROLL Specifies that a horizontal scroll bar is automatically
added to the list box when any portion of the data item
lies horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added
to the list box when any data items lie vertically outside
the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are
automatically added to the list box when any portion of
the data items lies outside the visible area.

LEFT Specifies that the data is left justified within the LIST.

RIGHT Specifies that the data is right justified within the LIST.

CENTER Specifies that the data is centered within the LIST.

DECIMAL Specifies that the data is aligned on the decimal point
within the LIST.

The LIST  control places a scrolling list of data items on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. The data
items displayed in the LIST come from a QUEUE or STRING specified by
the FROM attribute and are formatted by the parameters specified in the
FORMAT attribute (which can include colors, icons, and tree control
parameters).

The CHOICE function returns the QUEUE entry number (the value returned
by POINTER(queue)) of the selected item when the EVENT:Accepted event
has been generated by the LIST. The data displayed in the LIST is
automatically refreshed every time through the ACCEPT loop, whether the
AUTO attribute is present or not.



CHAPTER 6 WINDOW STRUCTURES 6-69

A LIST with the DROP attribute displays only the currently selected data
item on screen until the control has focus and the user presses the down
arrow key, or CLICKS ON the the icon to the right of the displayed data item.
When either of these occurs, the selection list appears (“drops down”) to
allow the user to select an item.

A LIST with the IMM attribute generates an event every time the user moves
the highlight bar to another selection, or pressed any key that causes the
displayed entries to scroll. This allows an opportunity for the source code to
re-fill the display QUEUE, or get the currently highlighted record to display
other fields from the record. If VSCROLL is also present, the vertical scroll
bar is always displayed and when the end-user CLICKS on the scroll bar,
events are generated but the list does not move (executable code should
perfrom this action). You can interrogate the PROP:VscrollPos property to
determine the scroll thumb’s position from 0 (top) to 255 (bottom).

A LIST with the VCR attribute has scroll control buttons like a Video
Cassette Recorder to the left of the horizontal scroll bar (if there is one).
These buttons allow the user to use the mouse to scroll through the list.

A LIST with the DRAGID attribute can serve as a drag-and-drop host,
providing information to be moved or copied to another control. A LIST
with the DROPID attribute can serve as a drag-and-drop target, receiving
information from another control. These attributes work together to specify
drag-and-drop “signatures” that define a valid target for the operation. The
DRAGID() and DROPID() functions, along with the SETDROPID
procedure, are used to perform the data exchange.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has selected an entry from the control.

EVENT:NewSelection
The current selection in the list has changed (the high-
light bar has moved up or down).

EVENT:ScrollUp The highlight bar has attempted to move off the top of
the LIST (only with the IMM attribute).

EVENT:ScrollDown
The highlight bar has attempted to move off the bottom
of the LIST (only with the IMM attribute).

EVENT:PageUp The user pressed PGUP (only with the IMM attribute).

EVENT:PageDown The user pressed PGDN (only with the IMM attribute).

EVENT:ScrollTop The user pressed CTRL+PGUP (only with IMM attribute).

EVENT:ScrollBottom
The user pressed CTRL+PGDN (only with IMM attribute).



6-70 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EVENT:Locate The user pressed the locator VCR button (only with the
IMM attribute).

EVENT:ScrollDrag The scroll bar “thumb” is being moved (only with the
IMM attribute).

EVENT:PreAlertKey
The user pressed a printable character  (only with the
IMM attribute) or an ALRT attribute hot key.

EVENT:AlertKey The user pressed a printable character (only with the
IMM attribute) or an ALRT attribute hot key.

EVENT:Dragging The mouse cursor is over a potential drag target (only
with the DRAGID attribute).

EVENT:Drag The mouse cursor has been released over a drag target
(only with the DRAGID attribute).

EVENT:Drop The mouse cursor has been released over a drag target
(only with the DROPID attribute).

EVENT:DroppingDown
The user has requested the droplist drop down (only with
the DROP attribute). CYCLE aborts the dropdown.

EVENT:DroppedDown
The user has dropped the droplist (only with the DROP
attribute).

EVENT:Expanding The user has clicked on a tree expansion box (only with
the T in the FORMAT attribute string). CYCLE aborts
the expansion.

EVENT:Expanded The user has clicked on a tree expansion box (only with
the T in the FORMAT attribute string).

EVENT:Contracting
The user has clicked on a tree contraction box (only with
the T in the FORMAT attribute string). CYCLE aborts
the contraction.

EVENT:Contracted The user has clicked on a tree contraction box (only with
the T in the FORMAT attribute string).



CHAPTER 6 WINDOW STRUCTURES 6-71

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 LIST,AT(0,0,20,20),USE(?L1),FROM(Que),IMM
 LIST,AT(20,0,20,20),USE(?L2),FROM(Que),KEY(F10Key)
 LIST,AT(40,0,20,20),USE(?L3),FROM(Que),MSG(‘Button 3’)
 LIST,AT(60,0,20,20),USE(?L4),FROM(Que),HLP(‘Check4Help’)
 LIST,AT(80,0,20,20),USE(?L5),FROM(Q),FORMAT(‘5C~List~15L~Box~’),COLUMN
 LIST,AT(100,0,20,20),USE(?L6),FROM(Que),FONT(‘Arial’,12)
 LIST,AT(120,0,20,20),USE(?L7),FROM(Que),DROP(6)
 LIST,AT(140,0,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR
 LIST,AT(180,0,20,20),USE(?L10),FROM(Que),CURSOR(CURSOR:Wait)
 LIST,AT(200,0,20,20),USE(?L11),FROM(Que),ALRT(F10Key)
 LIST,AT(220,0,20,20),USE(?L12),FROM(Que),LEFT
 LIST,AT(240,0,20,20),USE(?L13),FROM(Que),RIGHT
 LIST,AT(260,0,20,20),USE(?L14),FROM(Que),CENTER
 LIST,AT(280,0,20,20),USE(?L15),FROM(Que),DECIMAL

 END

See Also: COMBO, DRAGID, DROPID, SETDROPID



6-72 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

OPTION (declare a group of window RADIO controls)

OPTION(text) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )] [,HLP( )] [,BOXED]
[,FULL ] [,SCROLL ] [,HIDE] [,FONT( )] [,ALRT( ) ] [,SKIP] [DROPID( )] [,TIP( )]

  radios
END

OPTION Declares a group of RADIO controls.

text A string constant containing the prompt for the group of
controls. This may contain an ampersand (&) to indicate
the “hot” letter for the prompt. The text is displayed on
screen only if the BOXED attribute is also present.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of a variable to receive the choice. If this is a
string variable, it receives the value of the RADIO string
(with any accelerator key ampersand stripped out)
selected by the user. If a numeric variable, it receives the
number of the RADIO button selected by the user (the
value returned by the CHOICE() function).

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the currently selected RA-
DIO in the OPTION control.

MSG Specifies a string constant containing the default text to
display in the status bar when any control in the OP-
TION has focus.

HLP Specifies a string constant containing the default help
system identifier for any control in the OPTION.

BOXED Specifies a single-track border around the RADIO
controls with the text at the top of the border.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.



CHAPTER 6 WINDOW STRUCTURES 6-73

FONT Specifies the display font for the control and the default
for all the controls in the OPTION.

ALRT Specifies “hot” keys active for the controls in the OP-
TION.

SKIP Specifies the controls in the OPTION do not receive
input focus and may only be accessed with the mouse or
accelerator key.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

radios Multiple RADIO control declarations.

The OPTION  control declares a group of RADIO controls that offer the
user a list of choices. The multiple RADIO controls in the OPTION
structure define the choices offered to the user.

Input focus changes between the OPTION’s RADIO controls are signalled
only to the individual RADIO controls affected. This means the events
generated when the user changes input focus within an OPTION structure
are field-specific events for the affected RADIO controls, not the OPTION
structure which contains them.

A string variable as the OPTION structure’s USE attribute receives the text
of the RADIO control selected by the user, and the CHOICE(?Option)
function returns the number of the selected RADIO button. If the OPTION
structure’s USE attribute is a numeric variable, it receives the number of the
RADIO button selected by the user (the value returned by the CHOICE
function).

No RADIO button selected is a valid option, which occurs only when the
OPTION structure’s USE variable does not contain a value related to one of
its component RADIO controls. This condition only lasts until the user has
selected one of the RADIOs.

Events Generated:

EVENT:Selected One of the OPTION’s RADIO controls has received
input focus.

EVENT:Accepted One of the OPTION’s RADIO controls has been selected
by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.



6-74 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 OPTION(‘Option 1’),USE(OptVar1),KEY(F10Key),HLP(‘Option1Help’)
 RADIO(‘Radio 1’),AT(0,0,20,20),USE(?R1)
 RADIO(‘Radio 2’),AT(20,0,20,20),USE(?R2)
END
OPTION(‘Option 2’),USE(OptVar2),MSG(‘Option 2’),SCROLL
RADIO(‘Radio 3’),AT(40,0,20,20),USE(?R3)
RADIO(‘Radio 4’),AT(60,0,20,20),USE(?R4)

END
OPTION(‘Option 3’),USE(OptVar3),AT(80,0,20,20),BOXED
RADIO(‘Radio 5’),AT(80,0,20,20),USE(?R5)
RADIO(‘Radio 6’),AT(100,0,20,20),USE(?R6)

END
 OPTION(‘Option 4’),USE(OptVar4),FONT(‘Arial’,12),CURSOR(CURSOR:Wait)
 RADIO(‘Radio 7’),AT(120,0,20,20),USE(?R7)
 RADIO(‘Radio 8’),AT(140,0,20,20),USE(?R8)

 END
 END

See Also: RADIO



CHAPTER 6 WINDOW STRUCTURES 6-75

PROMPT (declare a prompt control)

PROMPT(text) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,FONT( )] [,FULL ] [,SCROLL ]
[,HIDE] [,DROPID( )] [, | LEFT | ]

| RIGHT |
| CENTER |

PROMPT Places a prompt for the next active control following it,
in the WINDOW or TOOLBAR.

text A string constant containing the text to display. This
may contain an ampersand (&) to indicate the “hot”
letter for the prompt.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

FONT Specifies the font used to display the text.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

LEFT Specifies that the prompt is left justified.

RIGHT Specifies that the prompt is right justified.

CENTER Specifies that the prompt is centered.

The PROMPT control places a prompt for the next active control following
the PROMPT in the WINDOW or TOOLBAR structure. The prompt text is
placed on the WINDOW (or TOOLBAR) at the position and size specified
by its AT attribute.

The text may contain an ampersand (&) to indicate the letter immediately
following the ampersand is the “hot” letter for the prompt. By default, the



6-76 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

“hot” letter displays with an underscore below it to indicate its special
purpose. This “hot” letter, when pressed in conjunction with the ALT key,
changes input focus to the next control following the PROMPT in the
WINDOW or TOOLBAR structure, which is capable of receiving focus.

Disabling or hiding the control directly following the PROMPT in the
window structure does not autmatically disable or hide the PROMPT; it
must also be explicitly disabled or hidden, otherwise the PROMPT will then
refer to the next currently active control following the disabled control. This
allows you to place one PROMPT control on the window that will apply to
any of multiple controls (if only one will be active at a time). If the next
active control is a BUTTON, it is pressed when the user presses the
PROMPT’s “hot key.”

To include an ampersand as part of the prompt text, place two ampersands
together (&&) in the text string and only one will display.

This control cannot receive input focus.

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 PROMPT(‘Enter Data:’),AT(10,100,20,20),USE(?P1),CURSOR(CURSOR:Wait)
 ENTRY(@S8),AT(100,100,20,20),USE(E1)
 PROMPT(‘Enter More Data:’),AT(10,200,20,20),USE(?P2),CURSOR(CURSOR:Wait)
 ENTRY(@S8),AT(100,200,20,20),USE(E2)
 ENTRY(@D1),AT(100,200,20,20),USE(E3)

 END
CODE
OPEN(MDIChild)

  IF SomeCondition
HIDE(?E2) !Prompt will refer to E3

ELSE
HIDE(?E3) !Prompt will refer to E2

END



CHAPTER 6 WINDOW STRUCTURES 6-77

PROGRESS (declare a progress control)

PROGRESS, AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,FULL ] [,SCROLL ] [,HIDE]
[,DROPID( )] [,RANGE( )]

PROGRESS Places a control that displays the current progress of a
batch process in the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of the variable containing the value of the
current progress, or a field equate label to reference the
control in executable code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

RANGE Specifies the range of values the progress bar displays. If
omitted, the default range is zero (0) to one hundred
(100).

The PROGRESS control declares a control that displays a progress bar.
This usually displays the current percentage of completion of a batch
process.

If a variable is named as the USE attribute, the progress bar is automatically
updated whenever the value in that variable changes. If the USE attribute is
a field equate label, you must directly update the display by assigning a
value (within the range defined by the RANGE attribute) to the control’s
PROP:progress property (an undeclared property equate -- see Undeclared
Properties).

This control cannot receive input focus.



6-78 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

BackgroundProcess PROCEDURE !Background processing batch process

ProgressVariable LONG

Win WINDOW(‘Batch Processing...’),AT(,,400,400),TIMER(1),MDI,CENTER
PROGRESS,AT(100,100,200,20),USE(ProgressVariable),RANGE(0,200)
PROGRESS,AT(100,140,200,20),USE(?ProgressBar),RANGE(0,200)
BUTTON(‘Cancel’),AT(190,300,20,20),STD(STD:Close)

END

CODE
OPEN(Win)
OPEN(File)
?ProgressVariable{PROP:rangehigh} = RECORDS(File)
?ProgressBar{PROP:rangehigh} = RECORDS(File)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records when timer allows it
ProgressVariable += 3 !Auto-updates 1st progress bar
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
?ProgressBar{PROP:progress} += 1 !Manually update 2nd progress bar
!Perform some batch processing code

. . .
CLOSE(File)



CHAPTER 6 WINDOW STRUCTURES 6-79

RADIO (declare a window radio button control)

RADIO(text) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )] [,HLP( )] [,SKIP ]
[,FONT( )] [,ICON( )] [,FULL ] [,SCROLL ] [,HIDE] [,ALRT( ) ] [DROPID( )] [VALUE( ) ]
[,TIP( )] [, | LEFT | ]

| RIGHT |

RADIO Places a radio button on the WINDOW or TOOLBAR.

text A string constant containing the text to display for the
radio button. This may contain an ampersand (&) to
indicate the “hot” letter for the radio button.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately selects the radio button.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control does not receive input focus and
may only be accessed with the mouse or accelerator key.

FONT Specifies the display font for the control.

ICON Specifies an .ICO file or standard icon to display on the
face of a “latching” button.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

ALRT Specifies “hot” keys active for the control.



6-80 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

VALUE Specifies the value the OPTION structure’s USE variable
receives when the radio button is selected by the user.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

LEFT Specifies the text appears to the left of the radio button.

RIGHT Specifies the text appears to the right of the radio button
(this is the default position).

The RADIO  control places a radio button on the WINDOW (or TOOLBAR)
at the position and size specified by its AT attribute. A RADIO control may
only be placed within an OPTION control. When selected by the user, the
RADIO text (with any accelerator key ampersand stripped out) is placed in
the OPTION’s USE variable, unless the VALUE attribute is used.

A RADIO with an ICON attribute appears as a “latched” pushbutton with
the icon on the button face. When the icon appears “up” the RADIO is off;
when it appears “down” the RADIO is on and the OPTION’s USE variable
receives the value in the selected RADIO’s text parameter (unless the
VALUE attribute is used).

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The control has been selected by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.



CHAPTER 6 WINDOW STRUCTURES 6-81

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 OPTION(‘Option 1’),USE(OptVar1)
 RADIO(‘Radio 1’),AT(0,0,20,20),USE(?R1),KEY(F10Key)
 RADIO(‘Radio 2’),AT(20,0,20,20),USE(?R2),MSG(‘Radio 2’)

 END
 OPTION(‘Option 2’),USE(OptVar2)
 RADIO(‘Radio 3’),AT(40,0,20,20),USE(?R3),FONT(‘Arial’,12)
 RADIO(‘Radio 4’),AT(60,0,20,20),USE(?R4),CURSOR(CURSOR:Wait)

 END
 OPTION(‘Option 3’),USE(OptVar3)
 RADIO(‘Radio 5’),AT(80,0,20,20),USE(?R5),HLP(‘Radio5Help’)
 RADIO(‘Radio 6’),AT(100,0,20,20),USE(?R6)

 END
 OPTION(‘Option 4’),USE(OptVar4)
 RADIO(‘Radio 7’),AT(120,0,20,20),USE(?R7),ICON(‘Radio1.ICO’)
 RADIO(‘Radio 8’),AT(140,0,20,20),USE(?R8),ICON(‘Radio2.ICO’)

 END
 OPTION(‘Option 5’),USE(OptVar5)
 RADIO(‘Radio 9’),AT(100,20,20,20),USE(?R9),LEFT
 RADIO(‘Radio 10’),AT(120,20,20,20),USE(?R10),LEFT

 END
 OPTION(‘Option 6’),USE(OptVar6),SCROLL
 RADIO(‘Radio 11’),AT(200,0,20,20),USE(?R11),SCROLL
 RADIO(‘Radio 12’),AT(220,0,20,20),USE(?R12),SCROLL

 END
END

See Also: OPTION



6-82 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

REGION (declare a window region control)

REGION ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,FILL ] [,COLOR( ) ] [,IMM] [,FULL ]
[,SCROLL ] [,HIDE] [,DRAGID( ) ] [,DROPID( )]

REGION Defines an area in the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control is disabled when the WINDOW or
APPLICATION is first opened.

FILL Specifies the red, green, and blue component values that
create the fill color for the control. If omitted, the region
is not filled with color.

COLOR Specifies the border color of the control. If omitted,
there is no border.

IMM Specifies control generates an event whenever the mouse
is moved in the region.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DRAGID Specifies the control may serve as a drag host for drag-
and-drop actions.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

The REGION  control defines an area on screen at the position and size
specified by its AT attribute. Generally, tracking the position of the mouse is
the reason for defining a REGION. The MOUSEX and MOUSEY functions
can be used to determine the exact position of the mouse when the event
occurs. Use of the IMM attribute causes some excess code and speed
overhead at runtime, so it should be used only when necessary. This control
cannot receive input focus.



CHAPTER 6 WINDOW STRUCTURES 6-83

A REGION with the DRAGID attribute can serve as a drag-and-drop host,
providing information to be moved or copied to another control. A REGION
with the DROPID attribute can serve as a drag-and-drop target, receiving
information from another control. These attributes work together to specify
drag-and-drop “signatures” that define a valid target for the operation. The
DRAGID() and DROPID() functions, along with the SETDROPID
procedure, are used to perform the data exchange. Since a REGION can be
defined over any other control, you can write drag-and-drop code between
any two controls. Simply define REGION controls to handle the required
drag-and drop functionality.

Events Generated:

EVENT:Accepted The mouse has been clicked by the user in the region.

A REGION with the IMM attribute also generates the following events:

EVENT:MouseIn The mouse has entered the region.

EVENT:MouseOut The mouse has left the region.

EVENT:MouseMove
The mouse has moved within the region.

A REGION with the DRAGID attribute also generates the following events:

EVENT:Dragging The mouse cursor is over a potential drag target.

EVENT:Drag The mouse cursor has been released over a drag target.

 A REGION with the DROPID attribute also generates the following events:

EVENT:Drop The mouse cursor has been released over a drag target.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 REGION,AT(10,100,20,20),USE(?R1)
 REGION,AT(100,100,20,20),USE(?R2),CURSOR(CURSOR:Wait)
 REGION,AT(10,200,20,20),USE(?R3),IMM
 REGION,AT(100,200,20,20),USE(?R4),COLOR(COLOR:ACTIVEBORDER)
 REGION,AT(10,300,20,20),USE(?R4),FILL(COLOR:ACTIVEBORDER)

 END



6-84 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SHEET (declare a group of TAB controls)

SHEET ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,FULL ] [,SCROLL ] [,HIDE]
[,FONT( )] [,DROPID( )] [,WIZARD] [,SPREAD] [,SKIP ]

  tabs
END

SHEET Declares a group of TAB controls.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of a variable to receive the choice. If this is a
string variable, it receives the value of the TAB string
(with any accelerator key ampersand stripped out)
currently selected by the user. If a numeric variable, it
receives the number of the TAB currently selected by the
user (the value returned by the CHOICE() function).

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the currently selected TAB in
the SHEET control.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

FONT Specifies the display font for the control and the default
for all the controls in the SHEET.

ALRT Specifies “hot” keys active for controls in the SHEET.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

WIZARD Specifies the SHEET’s TAB controls do not appear. The
user is moved from TAB to TAB under the program’s
control (usually with “Next” and “Previous” buttons).

SPREAD Specifies the TABs are evenly spaced on one line.

SKIP Specifies the TAB controls in the SHEET do not receive



CHAPTER 6 WINDOW STRUCTURES 6-85

input focus through the TAB key sequence and may only
be accessed with the mouse or accelerator key.

tabs Multiple TAB control declarations.

The SHEET control declares a group of TAB controls that offer the user
multiple “pages” of controls for the window. The multiple TAB controls in
the SHEET structure define the “pages” displayed to the user.

Input focus changes between the SHEET’s TAB controls are signalled only
to the individual TAB controls affected. This means the events generated
when the user changes input focus within a SHEET structure are field-
specific events for the affected TAB controls, not the SHEET structure
which contains them.

A string variable as the SHEET structure’s USE attribute receives the text of
the TAB control selected by the user, and the CHOICE(?Option) function
returns the number of the selected TAB control. If the SHEET structure’s
USE attribute is a numeric variable, it receives the number of the TAB
control selected by the user (the same value returned by the CHOICE
function).

Events Generated:

EVENT:Selected One of the SHEET’s TAB controls has received input
focus.

EVENT:Accepted One of the SHEET’s TAB controls has been selected by
the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

EVENT:TabChanging
Focus is passing to another tab.



6-86 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB(‘Tab One’),USE(?TabOne)
OPTION(‘Option 1’),USE(OptVar1),KEY(F10Key),HLP(‘Option1Help’)
RADIO(‘Radio 1’),AT(20,0,20,20),USE(?R1)
RADIO(‘Radio 2’),AT(40,0,20,20),USE(?R2)

END
OPTION(‘Option 2’),USE(OptVar2),MSG(‘Option 2’)
RADIO(‘Radio 3’),AT(60,0,20,20),USE(?R3)
RADIO(‘Radio 4’),AT(80,0,20,20),USE(?R4)

END
PROMPT(‘Enter Data:’),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB(‘Tab Two’),USE(?TabTwo)
OPTION(‘Option 3’),USE(OptVar3)
RADIO(‘Radio 1’),AT(20,0,20,20),USE(?R5)
RADIO(‘Radio 2’),AT(40,0,20,20),USE(?R6)

END
OPTION(‘Option 4’),USE(OptVar4)
RADIO(‘Radio 3’),AT(60,0,20,20),USE(?R7)
RADIO(‘Radio 4’),AT(80,0,20,20),USE(?R8)

END
PROMPT(‘Enter Data:’),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON(‘Ok’),AT(100,180,20,20),USE(?Ok)
BUTTON(‘Cancel’),AT(200,180,20,20),USE(?Cancel)

 END

See Also: TAB



CHAPTER 6 WINDOW STRUCTURES 6-87

SPIN (declare a spinning list control)

SPIN(picture) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )]  [,HLP( )] [,SKIP]
[,FONT( )] [,FULL ] [,SCROLL ] [,ALRT( ) ] [,HIDE][,READONLY ] [,REQ] [,IMM] [,TIP( )]
[DROPID( )] [, | LEFT | ] [, | INS | ] , | RANGE()[,STEP] | [, | UPR |]

| RIGHT | | OVR | | FROM( ) | | CAP |
| CENTER |
| DECIMAL |

SPIN Places a “spinning” list of data items on the WINDOW
or TOOLBAR.

picture A display picture token that specifies the format for the
data displayed in the control.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code or the label of the variable that receives the value
selected by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control receives input focus to enter text
only with the mouse or accelerator key and does not
retain focus.

FONT Specifies the display font for the control.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.



6-88 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

READONLY Specifies the control does not allow data entry.

REQ Specifies the control may not be left blank or zero.

IMM Specifies immediate event generation whenever the user
presses any key.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

LEFT Specifies that the data is left justified within the area
specified by the AT attribute.

RIGHT Specifies that the data is right justified within the area
specified by the AT attribute.

CENTER Specifies that the data is centered within the area speci-
fied by the AT attribute.

DECIMAL Specifies that the data is aligned on the decimal point
within the area specified by the AT attribute.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on
windows with the MASK attribute).

RANGE Specifies the range of values the user may choose.

STEP Specifies the increment/decrement amount of the choices
within the specified RANGE. If omitted, the STEP is
1.0.

FROM Specifies the origin of the choices displayed for the user.

UPR / CAP Specifies all upper case or proper name capitalization
(First Letter Of Each Word Capitalized) entry.

The SPIN control places a “spinning” list of data items on the WINDOW
(or TOOLBAR) at the position and size specified by its AT attribute. The
“spinning” list displays only the current selection with a pair of buttons to
the right to allow the user to “spin” through the available selections (similar
to a slot machine wheel).

If the SPIN control offers the user regularly spaced numeric choices, the
RANGE attribute specifies the valid range of values from which the user
may choose. The STEP attribute then works in conjunction with RANGE to
increment/decrement those values by the specified amount. If the choices are
not regular, or are string values, the FROM attribute is used instead of
RANGE and STEP. The FROM attribute provides the SPIN control its list of
choices from a memory QUEUE or a string. Using the FROM attribute, you
may provide the user any type of choices in the SPIN control.

The user may select an item from the list or type in the desired value, so this
control also acts as an ENTRY control.



CHAPTER 6 WINDOW STRUCTURES 6-89

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has selected a value from the control.

EVENT:Rejected The user has entered an invalid value for the entry
picture.

EVENT:NewSelection
The user has changed the displayed value.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 SPIN(@S8),AT(0,0,20,20),USE(SpinVar1),FROM(Que)
 SPIN(@N3),AT(20,0,20,20),USE(SpinVar2),RANGE(1,999),KEY(F10Key)
 SPIN(@N3),AT(40,0,20,20),USE(SpinVar3),RANGE(5,995),STEP(5)
 SPIN(@S8),AT(60,0,20,20),USE(SpinVar4),FROM(Que),HLP(‘Check4Help’)
 SPIN(@S8),AT(80,0,20,20),USE(SpinVar5),FROM(Que),MSG(‘Button 3’)
 SPIN(@S8),AT(100,0,20,20),USE(SpinVar6),FROM(Que),FONT(‘Arial’,12)
 SPIN(@S8),AT(120,0,20,20),USE(SpinVar7),FROM(Que),DROP
 SPIN(@S8),AT(140,0,20,20),USE(SpinVar8),FROM(Que),HVSCROLL,VCR
 SPIN(@S8),AT(160,0,20,20),USE(SpinVar9),FROM(Que),IMM
 SPIN(@S8),AT(180,0,20,20),USE(SpinVar10),FROM(Que),CURSOR(CURSOR:Wait)
 SPIN(@S8),AT(200,0,20,20),USE(SpinVar11),FROM(Que),ALRT(F10Key)
 SPIN(@S8),AT(220,0,20,20),USE(SpinVar12),FROM(Que),LEFT
 SPIN(@S8),AT(240,0,20,20),USE(SpinVar13),FROM(Que),RIGHT
 SPIN(@S8),AT(260,0,20,20),USE(SpinVar14),FROM(Que),CENTER
 SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar15),FROM(Que),DECIMAL

 END



6-90 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

STRING (declare a window string control)

STRING(text) ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,FONT( )] [,FULL ] [,SCROLL ] [,HIDE]
[,TRN] [,DROPID( )] [, | LEFT | ]

| RIGHT |
| CENTER |
| DECIMAL |

STRING Places the text on the WINDOW or TOOLBAR.

text A string constant containing the text to display, or a
display picture token to format the variable specified in
the USE attribute.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code, or a variable whose contents are displayed in the
format of the picture token declared instead of string
text.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

FONT Specifies the font used to display the text.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

TRN Specifies the text or USE variable characters transpar-
ently display over the background.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

LEFT Specifies that the text is left justified within the area
specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area
specified by the AT attribute.

CENTER Specifies that the text is centered within the area speci-
fied by the AT attribute.



CHAPTER 6 WINDOW STRUCTURES 6-91

DECIMAL Specifies that the text is aligned on the decimal point
within the area specified by the AT attribute.

The STRING control places the text on the WINDOW (or TOOLBAR) at
the position and size specified by its AT attribute.

If the text parameter is a picture token instead of a string constant, the
contents of the variable named in the USE attribute are formatted to that
display picture, at the position and size specified by the AT attribute. This
makes the STRING with a USE variable a “display-only” control for the
variable. The data displayed in the STRING is automatically refreshed every
time through the ACCEPT loop, whether the AUTO attribute is present or
not.

There is a difference between ampersand (&) use in STRING and PROMPT
controls. An ampersand in a STRING displays as part of the text, while an
ampersand in a PROMPT defines the prompt’s “hot” letter.

A STRING with the TRN attribute displays characters transparently, without
obliterating the background. This means only the pixels required to create
each character are written to screen. This allows the STRING to be placed
directly on top of an IMAGE without destroying the background picture.

This control cannot receive input focus.

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
 STRING(‘String Constant’),AT(10,0,20,20),USE(?S1)
 STRING(@S30),AT(10,20,20,20),USE(StringVar1)
 STRING(@S30),AT(10,20,20,20),USE(StringVar2),CURSOR(CURSOR:Wait)
 STRING(@S30),AT(10,20,20,20),USE(StringVar3),FONT(‘Arial’,12)

 END



6-92 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TAB (declare a page of a SHEET control)

TAB( text ) [,CURSOR( )] [,USE( )] [,KEY( )] [,MSG( )] [,HLP( )] [,REQ] [DROPID( )] [,TIP( )]
  controls
END

TAB Declares a group of controls that constitute one of the
multiple “pages” of controls contained within a SHEET
structure.

text A string constant containing the text to display on the
TAB.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE Specifies a field equate label to reference the control in
executable code.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the default text to
display in the status bar when any control in the TAB
has focus.

HLP Specifies a string constant containing the default help
system identifier for any control in the TAB.

REQ Specifies that when another TAB is selected, the runtime
library automatically checks all ENTRY controls in the
same TAB structure with the REQ attribute to ensure
they contain data other than blanks or zeroes.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

controls Multiple control declarations. This should not contain
any SHEET controls (nested SHEET structures are not
supported).

The TAB structure declares a group of controls that constitute one of the
multiple “pages” of controls contained within a SHEET structure. The
multiple TAB controls in the SHEET structure define the “pages” displayed
to the user. The SHEET structure’s USE attribute receives the text of the
TAB control selected by the user.

Input focus changes between the SHEET’s TAB controls are signalled only
to the individual TAB controls affected. This means the events generated
when the user changes input focus within a SHEET structure are field-



CHAPTER 6 WINDOW STRUCTURES 6-93

specific events for the affected TAB controls, not the SHEET structure
which contains them.

Events Generated:

EVENT:Selected The TAB control has received input focus.

EVENT:Accepted The TAB control has been selected by the user.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB(‘Tab One’),USE(?TabOne)
OPTION(‘Option 1’),USE(OptVar1),KEY(F10Key),HLP(‘Option1Help’)
RADIO(‘Radio 1’),AT(20,0,20,20),USE(?R1)
RADIO(‘Radio 2’),AT(40,0,20,20),USE(?R2)

END
OPTION(‘Option 2’),USE(OptVar2),MSG(‘Option 2’)
RADIO(‘Radio 3’),AT(60,0,20,20),USE(?R3)
RADIO(‘Radio 4’),AT(80,0,20,20),USE(?R4)

END
PROMPT(‘Enter Data:’),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB(‘Tab Two’),USE(?TabTwo)
OPTION(‘Option 3’),USE(OptVar3)
RADIO(‘Radio 1’),AT(20,0,20,20),USE(?R5)
RADIO(‘Radio 2’),AT(40,0,20,20),USE(?R6)

END
OPTION(‘Option 4’),USE(OptVar4)
RADIO(‘Radio 3’),AT(60,0,20,20),USE(?R7)
RADIO(‘Radio 4’),AT(80,0,20,20),USE(?R8)

END
PROMPT(‘Enter Data:’),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON(‘Ok’),AT(100,180,20,20),USE(?Ok)
BUTTON(‘Cancel’),AT(200,180,20,20),USE(?Cancel)

 END

See Also: SHEET



6-94 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TEXT (declare a multi-line data entry control)

TEXT ,AT( ) [,CURSOR( )] [,USE( )] [,DISABLE ] [,KEY( )] [,MSG( )] [,HLP( )] [,SKIP] [,FONT( )]
[,REQ] [,FULL ] [,SCROLL ] [,ALRT( ) ] [,HIDE] [,READONLY ] [,DROPID( )] [,UPR]
[,TIP( )] [, | INS | ] [, | HSCROLL | ] [, | LEFT | ]

| OVR | | VSCROLL | | RIGHT |
| HVSCROLL | | CENTER |

TEXT Places a multi-line data entry field on the WINDOW or
TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of the variable that receives the value entered
into the control by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control receives input focus to enter text
only with the mouse or accelerator key and does not
retain focus.

FONT Specifies the display font for the control.

REQ Specifies the control may not be left blank or zero.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

READONLY Specifies the control does not allow data entry.

DROPID Specifies the control may serve as a drop target for drag-



CHAPTER 6 WINDOW STRUCTURES 6-95

and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on
windows with the MASK attribute).

UPR Specifies all upper case entry.

HSCROLL Specifies that a horizontal scroll bar is automatically
added to the text field when any portion of the data lies
horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added
to the text field when any of the data lies vertically
outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are
automatically added to the text field when any portion of
the data lies outside the visible area.

LEFT Specifies that the text is left justified within the area
specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area
specified by the AT attribute.

CENTER Specifies that the text is centered within the area speci-
fied by the AT attribute.

The TEXT  control places a multi-line data entry field on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. The
variable specified in the USE attribute receives the data entered when the
user has completed data entry and moves on to another control.

Events Generated:

EVENT:Selected The control has received input focus.

EVENT:Accepted The user has completed data entry in the control.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
TEXT,AT(0,0,40,40),USE(E1),ALRT(F10Key),CENTER
TEXT,AT(20,0,40,40),USE(E2),KEY(F10Key),HLP(‘Text4Help’)
TEXT,AT(40,0,40,40),USE(E3),SCROLL,OVR,UPR
TEXT,AT(60,0,40,40),USE(E4),CURSOR(CURSOR:Wait),RIGHT
TEXT,AT(80,0,40,40),USE(E5),DISABLE,FONT(‘Arial’,12)
TEXT,AT(100,0,40,40),USE(E6),HVSCROLL,LEFT
TEXT,AT(120,0,40,40),USE(E7),REQ,INS,CAP,MSG(‘Text Field 7’)

END



6-96 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ContrContrContrContrControl Field Atol Field Atol Field Atol Field Atol Field At tributestributestributestributestributes

ALRT (set control “hot” keys)

ALRT( keycode)

ALRT Specifies a “hot” key active while the control has focus.

keycode A numeric constant keycode or keycode EQUATE.

The ALRT  attribute specifies a “hot” key active while the control has focus.
When the user presses an ALRT “hot” key for a control, two field-specific
events, EVENT:PreAlertKey and EVENT:AlertKey, are generated. If the
code executes a CYCLE statement when processing EVENT:PreAlertKey,
you “shortstop” the EVENT:AlertKey, preventing library’s default action on
the alerted keypress for the control.

You may have multiple ALRT attributes on one control. The ALERT
statement and the ALRT attribute of a window or control are completely
separate. This means that clearing ALERT keys has no effect on any keys
alerted by ALRT attributes.

Example:

WinOne WINDOW,AT(0,0,160,400)
ENTRY,AT(6,40),USE(SomeVar1),ALRT(F9Key) !F9 alerted for control
ENTRY,AT(60,40),USE(SomeVar2),ALRT(F10Key) !F10 alerted for control

END
CODE
OPEN(WinOne)
ACCEPT
CASE FIELD()
OF ?SomeVar1
CASE EVENT()
OF EVENT:PreAlertKey !Pre-check alert events
IF NOT SomeVar1
CYCLE !Terminate alert processing on other controls

END
OF EVENT:AlertKey !Alert processing
DO F9Routine

END
OF ?SomeVar2
CASE EVENT()
OF EVENT:AlertKey !Alert processing
DO F10Routine

END
END

END



CHAPTER 6 WINDOW STRUCTURES 6-97

AT (set control position and size in window)

AT([x] [,y] [,width] [,height])

AT Defines the position and size of a control.

x An integer constant or constant expression that specifies
the horizontal position of the top left corner. If omitted,
the runtime library provides a default value (zero).

y An integer constant or constant expression that specifies
the vertical position of the top left corner. If omitted, the
runtime library provides a default value (zero).

width An integer constant or constant expression that specifies
the width. If omitted, the runtime library provides a
default value.

height An integer constant or constant expression that specifies
the height. If omitted, the runtime library provides a
default value.

The AT  attribute defines the position and size of a control. If any parameter
is omitted, the runtime library provides a default value.

The values contained in the x, y, width, and height parameters are measured
in dialog units. Dialog units are defined as one-quarter the average character
width by one-eighth the average character height. The size of a dialog unit is
dependent upon the size of the default font for the window. This
measurement is based on the font specified in the FONT attribute of the
window, or the system default font specified by Windows.

Example:

 !Measurement in dialog units
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(8,40,80,8) !Approx. 2 characters in, 5 down, 20 wide, 1 high
END

 !Measurement in Tousandths of an Inch
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(1000,1000,2000,250) !1" in & down, 2" wide, 1/4" high
END

 !Measurement in Millimeters
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(100,100,200,50) !1 cm in and down, 2 cm wide, 50 mm high
END

 !Measurement in Points
WinOne WINDOW,AT(0,0,160,400)

ENTRY,AT(72,72,144,18) !1" in & down, 2" wide, 1/4" high
END



6-98 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BOXED (set window controls group border)

BOXED

The BOXED attribute specifies a single-track border around a GROUP or
OPTION structure. The text parameter of the GROUP or OPTION control
appears in a gap at the top of the border box. If BOXED is omitted, the text
parameter of the GROUP or OPTION control is not displayed on screen.

CAP, UPR (set display case)

CAP
UPR

The CAP and UPR attributes specify the automatic case of text entered into
ENTRY or TEXT controls when the MASK attribute is on the window. UPR
specifies all upper case.

The CAP attribute specifies “Proper Name Capitalization,” where the first
letter of each word is capitalized and all other letters are lower case. The
user can override this default behavior by pressing the SHIFT key to allow an
upper case letter in the middle of a name (allowing for names such as,
“McDowell”) or SHIFT while CAPS-LOCK is on, forcing a lower case first letter
(allowing for names such as, “von Richtofen”).

CHECK (set on/off ITEM)

CHECK

The CHECK  attribute specifies an ITEM that may be either ON or OFF.
When ON, a check appears to the left of the menu selection and the USE
variable receives the value one (1). When OFF, the check to the left of the
menu selection disappears and the USE variable receives the value zero (0).



CHAPTER 6 WINDOW STRUCTURES 6-99

CLASS (set .VBX custom control class)

CLASS( file [,name] )

CLASS The specifies the filename and type of .VBX custom
control.

file A string constant containing the name of the .VBX file
(including the .VBX extension) in which the custom
control is implemented.

name A string constant containing the name of the custom
control type from the .VBX file. If omitted, the first
control type defined in the .VBX file is used.

The CLASS attribute specifies the filename and type of .VBX custom
control. The name parameter identifies the specific control to use in a .VBX
that contains multiple controls.

Example:

WinOne WINDOW,AT(0,0,160,400)
CUSTOM,AT(0,0,120,320),CLASS(‘graph.vbx’,’graph’),’graphstyle’(‘2’)

END



6-100 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

COLOR (set control display color)

COLOR(rgb)

COLOR Specifies display color.

rgb A LONG or ULONG integer constant, or constant
EQUATE, containing the red, green, and blue compo-
nents that create the color in the three low-order bytes
(bytes 0, 1, and 2), or an EQUATE for a standard
Windows color value.

The COLOR  attribute specifies the display color of a BOX, LINE,
ELLIPSE, or REGION control. On a BOX, ELLIPSE, or REGION, the
color specified is the color used for the border.

EQUATEs for Windows’ standard colors are contained in the
EQUATES.CLW file. Windows automatically finds the closest match to the
specified rgb color value for the hardware on which the program is run.

Windows standard colors may be reconfigured by the user in the Windows
Control Panel. Any control using a Windows standard color is automatically
repainted with the new color when this occurs.

Example:

WinOne WINDOW,AT(0,0,160,400)
BOX,AT(20,20,20,20),COLOR(COLOR:ACTIVEBORDER)

!Windows’ active border color
BOX,AT(100,100,20,20),COLOR(00FF0000h) !Blue
BOX,AT(140,140,20,20),COLOR(0000FF00h) !Green
BOX,AT(180,180,20,20),COLOR(000000FFh) !Red

END

COLUMN (set list box highlight bar)

COLUMN

The COLUMN  attribute specifies a field-by-field highlight bar on a LIST or
COMBO control with multiple display columns.



CHAPTER 6 WINDOW STRUCTURES 6-101

CURSOR (set control mouse cursor type)

CURSOR(file)

CURSOR Specifies a mouse cursor to display for the control.

file A string constant containing the name of a .CUR file, or
an EQUATE naming a Windows-standard mouse cursor.
The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the
mouse is positioned over the control.

EQUATE statements for the Windows-standard mouse cursors are contained
in the EQUATES.CLW file. The following list is a representative sample of
these (see EQUATES.CLW for the complete list):

 CURSOR:None No mouse cursor
 CURSOR:Arrow Normal windows arrow cursor
 CURSOR:IBeam Capital “I” like a steel I-beam
 CURSOR:Wait Hourglass
 CURSOR:Cross Large plus sign
 CURSOR:UpArrow Vertical arrow
 CURSOR:Size Four-headed arrow
 CURSOR:Icon Box within a box
 CURSOR:SizeNWSE Double-headed arrow slanting left
 CURSOR:SizeNESW Double-headed arrow slanting right
 CURSOR:SizeWE Double-headed horizontal arrow
 CURSOR:SizeNS Double-headed vertical arrow
 CURSOR:DragWE Double-headed horizontal arrow

Example:

WinOne WINDOW,AT(0,0,160,400)
REGION,AT(20,20,20,20),CUSOR(CURSOR:IBeam)
REGION,AT(100,100,20,20),CURSOR(‘Custom.CUR’)

END



6-102 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DEFAULT (set enter key button)

DEFAULT

The DEFAULT  attribute specifies a BUTTON that is automatically pressed
when the user presses the ENTER key. Only one active BUTTON on a window
should have this attribute.

DISABLE (set control dimmed at open)

DISABLE

The DISABLE  attribute specifies a control that is disabled when the
WINDOW or APPLICATION is opened. The disabled control may be
activated with the ENABLE statement.

DROP (set list box behavior)

DROP(count)

DROP Specifies the list appears only when the user presses an
arrow cursor key or clicks on the drop icon.

count An integer constant that specifies the number of ele-
ments displayed.

The DROP attribute specifies that the selection list appears only when the
user presses an arrow cursor key or clicks on the drop icon to the right of the
currently selected value display. Once it drops into view, the list displays
count number of elements. If the DROP attribute is omitted, the LIST or
COMBO control always displays the number of data items specified by the
height parameter of the control’s AT of the selection list.

The DROP attribute does not work on a WINDOW with the MODAL
attribute and should not be used.

Example:

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L7),FROM(Que1),DROP(6)
COMBO(@S8),AT(120,120,20,20),USE(?C7),FROM(Que2),DROP(8)

END



CHAPTER 6 WINDOW STRUCTURES 6-103

DRAGID (set drag-and-drop host signatures)

DRAGID( signature [, signature] )

DRAGID Specifies a LIST or REGION control that can serve as a
drag-and-drop host.

signature A string constant containing an identifier used to indi-
cate valid drop targets. Any signature that begins with a
tilde (~) indicates that the information can also be
dragged to an external (Clarion) program. A single
DRAGID may contain up to 16 signatures.

The DRAGID  attribute specifies a LIST or REGION control that can serve
as a drag-and-drop host. DRAGID works in conjunction with the DROPID
attribute. The DRAGID signature strings (up to 16) define validation keys to
match against the signature parameters of the target control’s DROPID. This
provides control over where successful drag-and-drop operations are
allowed.

A drag-and-drop operation occurs when the user drags information from a
control with the DRAGID attribute to a control with the DROPID attribute.
For a successful drag-and-drop operation, both controls must have at least
one identical signature string in their respective DRAGID and DROPID
attributes.

Example:

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(‘FromList1’)

!Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(‘FromList1’)

!Allows drops from List1, but no drags
END

CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also: DROPID



6-104 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DROPID (set drag-and-drop target signatures)

DROPID( signature [, signature] )

DROPID Specifies a control that can serve as a drag-and-drop
target.

signature A string constant containing an identifier used to indi-
cate valid drag hosts. A single DROPID may contain up
to 16 signatures. Any signature that begins with a tilde
(~) indicates that the information can also be dropped
from an external (Clarion) program. A DROPID signa-
ture of ‘~FILE’ indicates the target accepts a comma-
delimited list of filenames dragged from the Windows
File Manager.

The DROPID attribute specifies a control that can serve as a drag-and-drop
target. DROPID works in conjunction with the DRAGID attribute. The
DROPID signature strings (up to 16) define validation keys to match against
the signature parameters of the host control’s DRAGID. This provides
control over where successful drag-and-drop operations are allowed.

A drag-and-drop operation occurs when the user drags information from a
control with the DRAGID attribute to a control with the DROPID attribute.
For a successful drag-and-drop operation, both controls must have at least
one identical signature string in their respective DRAGID and DROPID
attributes.

Example:

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(‘FromList1’)

!Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(‘FromList1’,’~FILE’)

!Allows drops from List1 or the Window File Manager,
! but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also: DRAGID



CHAPTER 6 WINDOW STRUCTURES 6-105

FILL (set display fill color)

FILL( rgb)

FILL Specifies display fill color.

rgb A LONG or ULONG integer constant, or constant
EQUATE, containing the red, green, and blue compo-
nents that create the color in the three low-order bytes
(bytes 0, 1, and 2) or an EQUATE for a standard Win-
dows color value.

The FILL  attribute specifies the display fill color of a BOX, ELLIPSE, or
REGION control. If omitted, the control is not filled with color.

Example:

WinOne WINDOW,AT(0,0,160,400)
BOX,AT(20,20,20,20),FILL(COLOR:ACTIVEBORDER)

!Windows’ active border color
BOX,AT(100,100,20,20),FILL(00FF0000h) !Blue
BOX,AT(140,140,20,20),FILL(0000FF00h) !Green
BOX,AT(180,180,20,20),FILL(000000FFh) !Red

END

FIRST, LAST (set MENU or ITEM position)

FIRST
LAST

The FIRST and LAST  attributes specify menu selection positioning within
the global pulldown menu, when a WINDOW’s MENUBAR is merged into
the global menu. The order of priorities is:

 1. Global selections with FIRST attribute
 2. Local selections with FIRST attribute
 3. Global selections without FIRST or LAST attributes
 4. Local selections without FIRST or LAST attributes
 5. Global selections with LAST attribute
 6. Local selections with LAST attribute



6-106 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FONT (set control f ont)

FONT([typeface] [,size] [,color] [,style])

FONT Specifies the display font for a control.

typeface A string constant containing the name of the font. If
omitted, the default font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the system default font size is used.

color A LONG integer constant containing the red, green, and
blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, the default font color is used.

style An integer constant, constant expression, or EQUATE
specifying the strike weight and style of the font. If
omitted, the default font weight is used.

The FONT attribute specifies the display font for the control, overriding any
FONT specified on the WINDOW.

The typeface may name any font registered in the Windows system. The
EQUATES.CLW file contains EQUATE values for standard style values. A
style on the range zero (0) to one thousand (1000) specifies the strike weight
of the font. You may add to that values that indicate italic, underline, or
strikeout text. The following EQUATES are in EQUATES.CLW:

  FONT:thin EQUATE (100)
  FONT:regular EQUATE (400)
  FONT:bold EQUATE (700)
  FONT:italic EQUATE (01000h)
  FONT:underline EQUATE (02000h)
  FONT:strikeout EQUATE (04000h)

Example:

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L7),FROM(Que1),FONT(‘Arial’,14,0FFh)

!14 point Arial typeface, Red, normal
LIST,AT(120,120,20,20),USE(?C7),FROM(Que2),FONT(‘Arial’,14,0,700)

!14 point Arial typeface, Black, Bold
LIST,AT(120,240,20,20),USE(?C7),FROM(Que2),FONT(‘Arial’,14,0,700+01000h)

!14 point Arial typeface, Black, Bold Italic
 END



CHAPTER 6 WINDOW STRUCTURES 6-107

FORMAT (set LIST or COMBO layout)

FORMAT( format string)

FORMAT Specifies the display format of the data in the LIST or
COMBO control.

format string A string constant specifying the display format.

The FORMAT  attribute specifies the display format of the data in the LIST
or COMBO control. The format string contains the information for single or
multi-column formatting of the data.

The format string contains “field-specifiers” which map to the fields of the
QUEUE. Multiple “field-specifiers” may be grouped together as a “field-
group” in square brackets ([ ]) to display as a single unit.

Only the fields in the QUEUE for which there are “field-specifiers” are
included in the display. This means that, if there are two fields specified in
the format string and three fields in the QUEUE, only the two specified in
the format string are displayed in the LIST or COMBO control.

The following describes the components allowed in a format string:

“Field-specifier” format: width  justification  [ (indent) ]  [  modifiers ]

width A required integer defining the width of the field.
Specified in dialog units.

justification A single capital letter (L , R , C , or D) that specifies
Left, Right, Center, or Decimal justification. One is
required.

indent An optional integer, enclosed in parentheses, that
specifies the indent from the justification. This may be
negative. With left (L ) justification, indent defines a left
margin; with right (R) or decimal (D), it defines a right
margin; and with center (C), it defines an offset from the
center of the field (negative = left offset).

modifiers: Optional special characters (listed below) to modify the display format of the
field or group. Multiple modifiers may be used on one field or group.

* An asterisk indicates color information for the field is
contained in four LONG fields that immediately follow
the data field in the QUEUE (or FROM attribute string).
The four colors are normal foreground, normal back-
ground, selected foreground, and selected background
(in that order).



6-108 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

I An I indicates an icon number for the field is contained
in a LONG field that immediately follows the data field
in the QUEUE (or FROM attribute string).The LONG
field contains a number that refers to an entry in a list of
icons associated with the LIST control through the
PROP:IconList runtime property. If an asterisk is also
specified for color, this LONG must follow all the color
information.

T [ (suppress) ] A T indicates the LIST is a tree control. The tree level is
contained in a LONG field that immediately follows the
data field in the QUEUE (or FROM attribute string). If
an asterisk and I are also specified, this LONG must
follow all their LONG fields. The expanded/contracted
state of the tree level is determined by the sign of the
tree level LONG field’s value (positive value=expanded
and negative value=contracted).

The optional suppress parameter can contain an L  to
suppress the conecting lines between levels, a B to
suppress expansion boxes, and an I  to suppress level
indentation (which also implicitly suppresses both lines
and boxes).

~header~ [ justification [ (indent) ] ]
A header string enclosed in tildes, followed by optional
justification and/or indent, displays the header at the top
of the list.  The header uses the same justification and
indent as the field, if not specifically overidden.

@picture@ The picture formats the field for display. The trailing @
is required to define the end of the picture, so that
display pictures like @N12~Kr~ can be used in the
format string without creating ambiguity.

? A question mark defines the locator field for a COMBO
list box with a selector field. For a drop-down multi-
column list box, this is the value displayed in the
current-selection box.

#number# The number enclosed in pound signs (#) indicates the
QUEUE field to display. Following fields in the format
string without an explicit #number# are taken in order
from the fields following the #number# field. For
example, #2# on the first field in the format string
indicates starting with the second field in the QUEUE,
skipping the first. If the number of fields specified in the
format string are >= the number of fields in the QUEUE,
the format “wraps around” to the start of the QUEUE.

_ An underscore underlines the field.

/ A slash causes the next field to appear on a new line
(only used on a field within a group).



CHAPTER 6 WINDOW STRUCTURES 6-109

| A vertical bar places a vertical line to the right of the
field.

M An M allows the field or group of fields to be dynami-
cally re-sized at runtime. This allows the user to drag the
right vertical bar (if present) or right edge of the data
area.

F An F creates a fixed column in the list that stays on
screen when the user horizontally pages through the
fields (by the HSCROLL attribute). Fixed fields or
groups must be at the start of the list. This is ignored if
placed on a field within a group.

S(integer) An S followed by an integer in parentheses adds a scroll
bar to the group. The integer defines the total number of
dialog units to scroll. This allows large fields to be
displayed in a small column width. This is ignored if
placed on a field within a group.

“Field-group” format: [ multiple field-specifiers ]   [ (size) ] [ modifiers ]

multiple field-specifiers
A list of field-specifiers contained in square brackets
( [ ] ) that cause them to be treated as a single display
unit.

size An optional integer, enclosed in parentheses, that
specifies the default width of the group. If omitted, the
size is calculated from the enclosed fields.

modifiers The “field-group” modifiers act on the entire group of
fields.  These are the same modifiers listed above for a
field (except the *, I, and T modifiers which are not
appropriate to groups).



6-110 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

PROGRAM
MAP
RandomAlphaData(*STRING)

END

TreeDemo QUEUE,PRE() !Data list box FROM queue
FName STRING(20)
ColorNFG LONG !Normal Foreground color for FName
ColorNBG LONG !Normal Background color for FName
ColorSFG LONG !Selected Foreground color for FName
ColorSBG LONG !Selected Background color for FName
IconField LONG !Icon number for FName
TreeLevel LONG !Tree Level
LName STRING(20)
Init STRING(4)

END

Win WINDOW(‘List Boxes’),AT(0,0,366,181),SYSTEM,DOUBLE
LIST,AT(0,34,366,146),FROM(TreeDemo),USE(?Show),HVSCROLL,   |

FORMAT(’80L*IT~First Name~*80L~Last Name~16C~Initials~’)
END

CODE
LOOP X# = 1 TO 20
RandomAlphaData(FName)
ColorNFG = COLOR:White !Assign FNAME’s colors
ColorNBG = COLOR:Maroon
ColorSFG = COLOR:Yellow
ColorSBG = COLOR:Blue
IconField = ((X#-1) % 4) + 1 !Assign icon number
TreeLevel = ((X#-1) % 4) + 1 !Assign tree level
RandomAlphaData(LName)
RandomAlphaData(Init)
ADD(TD)

END
OPEN(Win)
?Show{PROP:iconlist,1} = ICON:VCRback !Icon 1 = <
?Show{PROP:iconlist,2} = ICON:VCRrewind !Icon 2 = <<
?Show{PROP:iconlist,3} = ICON:VCRplay !Icon 3 = >
?Show{PROP:iconlist,4} = ICON:VCRfastforward !Icon 4 = >>
ACCEPT
END

RandomAlphaData PROCEDURE(Field) !MAP Prototype is: RandomAlphaData(*STRING)
CODE
Z# = RANDOM(1,SIZE(Field)) !Random fill size
LOOP Z# = 1 to Y# !Fill each character with
Field[Z#] = CHR(RANDOM(97,122)) ! a random lower case letter

END



CHAPTER 6 WINDOW STRUCTURES 6-111

FROM (set window listbox data source)

FROM(source)

FROM Specifies the source of the data elements displayed in a
LIST, COMBO, or SPIN.

source The label of a QUEUE, a field within a QUEUE, or a
string constant containing the data items to display in
the list.

The FROM  attribute specifies the source of the data elements displayed in a
LIST, COMBO, or SPIN.

For a SPIN control, the source would usually be a QUEUE field or string. If
the source is a QUEUE with multiple fields, only the first field is displayed
in the SPIN.

For LIST and COMBO controls, the data elements are formatted for display
according to the information in the FORMAT attribute. If the label of a
QUEUE is specified as the source, all fields in the QUEUE are displayed. If
the label of one field in a QUEUE is specified as the source, only that field
is displayed.

If a string constant is specified as the source, the individual data elements to
display in the LIST must be delimited by a vertical bar (|) character. To
include a vertical bar as part of one data element, place two adjacent vertical
bars in the string (||), and only one will be displayed. To indicate that an
element is empty, place at least one blank space between the two vertical
bars delimiting the elements (|  |).

Example:

Que1 QUEUE,PRE(Q1)
F1  LONG
F2 STRING(8)

END

Win1 WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),FORMAT(‘5C~List~15L~Box~’),COLUMN
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q1:F1)
SPIN(@S4),AT(280,0,20,20),USE(SpinVar2),FROM(‘Mr.|Mrs.|Ms.|Dr.’)

END



6-112 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FULL (set full-screen)

FULL

The FULL  attribute specifies the control expands to occupy the entire size
of the WINDOW for any missing AT attribute width or height parameter.

FULL may not be specified for TOOLBAR controls.

HIDE (set control hidden at open)

HIDE

The HIDE  attribute specifies the control does not appear when the
WINDOW or APPLICATION is first opened. UNHIDE must be used to
display it.

HLP (set control’s on-line help identifier)

HLP(helpID)

HLP Specifies the helpID for the control.

helpID A string constant specifying the key used to access the
Help system. This may be either a Help keyword or a
“context string.”

The HLP  attribute specifies the helpID for the control. Help, if available, is
automatically displayed by Windows whenever the user presses F1. If the
user presses F1 to request help when the control has input focus, the library
uses the control’s helpID to search the help file until an object with that
helpID is found.

The helpID may contain a Help keyword or a “context string.”  A Help
keyword is a keyword or phrase that is displayed in the Help Search dialog.
When the user presses F1, if only one topic in the help file specifies this
keyword, the help file is opened at that topic; if more than one topic
specifies the keyword, the search dialog is opened for the user.

A “context string” is identified by a leading tilde (~) in the helpID, followed
by a unique identifier (no spaces allowed) associated with exactly one help
topic. When the user presses F1, the help file is opened at the specific topic
associated with that “context string.”  If the tilde is missing, the helpID is
assumed to be a help keyword.

Example:

Win1 WINDOW
ENTRY(@s30),USE(SomeVariable),HLP(‘~Entry1Help’)!A help context string
ENTRY(@s30),USE(SomeVariable),HLP(‘Control Two Help’)!A help keyword

END



CHAPTER 6 WINDOW STRUCTURES 6-113

HSCROLL, VSCROLL, HVSCROLL (set control scroll bars)

HSCROLL
VSCROLL
HVSCROLL

The HSCROLL , VSCROLL , and HVSCROLL  attributes place scroll bars
on a COMBO, LIST, IMAGE, or TEXT control. HSCROLL adds a
horizontal scroll bar to the bottom; VSCROLL adds a vertical scroll bar on
the right side, and HVSCROLL adds both.

The vertical scroll bar allows a mouse to scroll the control’s display up or
down. The horizontal scroll bar allows a mouse to scroll the control’s
display left or right. The scroll bars appear whenever any scrollable portion
of the control lies outside the visible area on screen.

When you place VSCROLL on a LIST with the IMM attribute, the vertical
scroll bar is always present, even when the list is not full. When the user
clicks on the scroll bar, events are generated, but the list contents do not
move (executable code should perform this task). You can interrogate the
PROP:VscrollPos property to determine the scroll thumb’s position in the
range 0 (top) to 100 (bottom).



6-114 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ICON (set control icon)

ICON( [file] )

ICON Specifies an icon to display as the control.

file A string constant or EQUATE containing the name of an
.ICO file or Windows standard icon to display. The .ICO
file is automatically linked into the .EXE as a resource.

The ICON  attribute specifies an icon to display as the control. The icon is
displayed on the button face of the control. The ICON attribute may be
specified on a BUTTON, RADIO, or CHECK control. For RADIO and
CHECK controls, the ICON attribute creates “latched” pushbuttons, where
the control button appears “down” when on and “up” when off.

EQUATE statements for the Windows-standard icons are contained in the
EQUATES.CLW file. The following list is a representative sample of these
(see EQUATES.CLW for the complete list):

 ICON:None No icon
 ICON:Application
 ICON:Question ?
 ICON:Exclamation !
 ICON:Asterisk *
 ICON:VCRtop >>|
 ICON:VCRrewind <<
 ICON:VCRback <
 ICON:VCRplay >
 ICON:VCRfastforward >>
 ICON:VCRbottom |<<
 ICON:VCRlocate ?

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
OPTION(‘Option’),USE(OptVar)
RADIO(‘Radio 1’),AT(120,0,20,20),USE(?R1),ICON(‘Radio1.ICO’)
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2),ICON(‘Radio2.ICO’)

END
 CHECK(‘&A’),AT(0,120,20,20),USE(?C7),ICON(ICON:Asterisk)
 BUTTON(‘&1’),AT(120,0,20,20),USE(?B7),ICON(ICON:Question)

 END



CHAPTER 6 WINDOW STRUCTURES 6-115

IMM (set immediate event notification)

IMM

The IMM  attribute specifies immediate generation of an event.

On a REGION control, the IMM attribute generates an event whenever the
mouse enters, moves within, or leaves the area specified by the REGION’s
AT attribute. The exact position of the mouse can be deteremined by the
MOUSEX and MOUSEY functions.

On a BUTTON control, the IMM attribute indicates the BUTTON generates
an event when the left mouse button is pressed down on the control, instead
of on its release. The event is continuously generated as along as the user
keeps the mouse button pressed.

The IMM attribute specifies immediate event generation each time the user
presses any keystroke on a LIST or COMBO control, usually requiring the
QUEUE to be re-filled. When the user presses a printable character,
EVENT:NewSelection is generated. It does the same thing on an ENTRY or
SPIN control.

INS, OVR (set typing mode)

INS
OVR

The INS and OVR attributes specify the typing mode for an ENTRY or
TEXT control when the MASK attribute is present on the window. INS
specifies insert mode while OVR specifies overwrite mode. These modes are
only active on windows with the MASK attribute.



6-116 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

KEY (set control execution keycode)

KEY(keycode)

KEY Specifies a “hot” key for the control

keycode A Clarion Keycode or keycode equate label.

The KEY  attribute specifies a “hot” key to immediately give focus to the
control or execute the control’s associated action.

The following controls receive focus:

COMBO
CUSTOM
ENTRY
GROUP
LIST
OPTION
PROMPT
SPIN
TEXT

The following controls both receive focus and immediately execute:

BUTTON
CHECK
CUSTOM
RADIO
MENU
ITEM

Example:

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),KEY(F1Key)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),KEY(F2Key)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q),KEY(F3Key)
TEXT,AT(20,0,40,40),USE(E2),KEY(F4Key)
PROMPT(‘Enter &Data in E2:’),AT(10,200,20,20),USE(?P2),KEY(F5Key)
ENTRY(@S8),AT(100,200,20,20),USE(E2),KEY(F6Key)
BUTTON(‘&1’),AT(120,0,20,20),USE(?B7),KEY(F7Key)
CHECK(‘&A’),AT(0,120,20,20),USE(?C7),KEY(F8Key)
OPTION(‘Option’),USE(OptVar),KEY(F9Key)
RADIO(‘Radio 1’),AT(120,0,20,20),USE(?R1),KEY(F10Key)
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2),KEY(F11Key)

END
END



CHAPTER 6 WINDOW STRUCTURES 6-117

LEFT, RIGHT, CENTER, DECIMAL (set display justification)

LEFT( [indent] )
RIGHT( [indent] )
CENTER( [indent] )
DECIMAL(  [indent] )

indent An integer constant specifying the amount of offset from
the justification point. This is in dialog units.

The LEFT , RIGHT , CENTER, and DECIMAL  attributes specify the
justification of data displayed. LEFT specifies left justification, RIGHT
specifies right justification, CENTER specifies centered text, and
DECIMAL specifies numeric data aligned on the decimal point.

The indent parameter on the CENTER attribute specifies an offset from the
center (negative = left offset). On the DECIMAL attribute, indent specifies
the offset of the decimal point from the right.

The CHECK and RADIO controls allow LEFT or RIGHT only (without an
indent parameter). The TEXT control allows only LEFT(indent),
RIGHT(indent), or CENTER(indent).

The following controls allow LEFT(indent), RIGHT(indent),
CENTER(indent), or DECIMAL(indent):

COMBO
ENTRY
LIST
SPIN
STRING

Example:

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),RIGHT(4)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),CENTER
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q),DECIMAL(8)
TEXT,AT(20,0,40,40),USE(E2),LEFT(8)
ENTRY(@S8),AT(100,200,20,20),USE(E2),LEFT(4)
CHECK(‘&A’),AT(0,120,20,20),USE(?C7),LEFT
OPTION(‘Option’),USE(OptVar)
RADIO(‘Radio 1’),AT(120,0,20,20),USE(?R1),LEFT
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2),RIGHT

END
END



6-118 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MARK (set multiple selection mode)

MARK( flag)

MARK Enables multiple items selection.

flag The label of a QUEUE field.

The MARK  attribute enables multiple items selection from a LIST or
COMBO control. When an item in the LIST is selected, the appropriate flag
field is set to true (1). Each marked entry is automatically highlighted in the
LIST or COMBO. Changing the value of the flag field also changes the
screen display for the related LIST or COMBO entry.

If the MARK attribute is specified on the LIST or COMBO, the IMM
attribute may not be.

Example:

Que1 QUEUE,PRE(Q1)
MarkFlag BYTE
F1 LONG
F2 STRING(8)

END

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L1),FROM(Q1:F1),MARK(Q1:MarkFlag)
COMBO(@S8),AT(120,120,,),USE(?C1),FROM(Q1:F2),MARK(Q1:MarkFlag)

END



CHAPTER 6 WINDOW STRUCTURES 6-119

MSG (set control status bar message)

MSG(text)

MSG Specifies text to display in the status bar.

text A string constant containing the message to display in
the status bar.

The MSG attribute specifies the text to display in the first zone of the status
bar when the control has focus.

Example:

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),MSG(‘Enter or Select’)
LIST,AT(120,0,20,20),USE(?L1),FROM(Que1),MSG(‘Select One’)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVar1),FROM(Q),MSG(‘Choose One’)
TEXT,AT(20,0,40,40),USE(E2),MSG(‘Enter Text’)
ENTRY(@S8),AT(100,200,20,20),USE(E2),MSG(‘Enter Data’)
CHECK(‘&A’),AT(0,120,20,20),USE(?C7),MSG(‘On or Off’)
OPTION(‘Option 1’),USE(OptVar),MSG(‘Pick One or Two’)
RADIO(‘Radio 1’),AT(120,0,20,20),USE(?R1)
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2)

END
OPTION(‘Option’),USE(OptVar)
RADIO(‘Radio 1’),AT(120,40,20,20),USE(?R1),MSG(‘Pick One’)
RADIO(‘Radio 2’),AT(140,40,20,20),USE(?R2),MSG(‘Pick Two’)

END
END

NOBAR (set no highlight bar)

NOBAR

The NOBAR attribute specifies the currently selected element in the LIST is
only highlighted when the LIST control has focus.

PASSWORD (set data non-display)

PASSWORD

The PASSWORD attribute specifies non-display of the data entered in the
ENTRY control. When the user types in data, asterisks are displayed on
screen for each character entered.



6-120 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RANGE (set range limits)

RANGE(lower,upper)

RANGE Specifies the valid range of data values the user may
select in a SPIN control, or the range of values displayed
in a PROGRESS control.

lower A numeric constant that specifies the lower inclusive
limit of valid data.

upper A numeric constant that specifies the upper inclusive
limit of valid data.

The RANGE attribute specifies the valid range of data values the user may
select in a SPIN control. RANGE also defines the range of values that are
displayed in a PROGRESS control.This attribute works in conjunction with
the STEP attribute on SPIN controls. On a SPIN control, the STEP attribute
provides the user with the valid choices within the range.

Example:

WinOne WINDOW,AT(0,0,160,400)
SPIN(@N4.2),AT(280,0,20,20),USE(SpinVar1),RANGE(.05,9.95),STEP(.05)
SPIN(@n3),AT(280,0,20,20),USE(SpinVar2),RANGE(5,995),STEP(5)

END

READONLY (set display-only)

READONLY

The READONLY  attribute specifies a display-only COMBO, ENTRY,
SPIN or TEXT control. The control may receive input focus with the mouse,
but may not enter data. If the user attempts to change the displayed value, a
beep warns the user that data entry is not allowed.

REQ (set required entry)

REQ

The REQ attribute specifies an ENTRY or TEXT control that may not be
left blank or zero. The REQ attribute on an ENTRY or TEXT control is not
checked until a BUTTON with the REQ attribute is pressed, or the
INCOMPLETE() function is called.

When a BUTTON with the REQ attribute is pressed, or the
INCOMPLETE() function is called, all ENTRY and TEXT controls with the
REQ attribute are checked to ensure they contain data. The first control
encountered in this check that does not contain data inmediately receives
input focus.



CHAPTER 6 WINDOW STRUCTURES 6-121

RIGHT (set MENU position)

RIGHT

The RIGHT  attribute specifies the MENU is placed at the right end of the
action bar.

ROUND (set round-cornered window BOX)

ROUND

The ROUND attribute specifies a BOX control with rounded corners.

SCROLL (set scrolling control)

SCROLL

The SCROLL attribute specifies a control that moves with the window
when the WINDOW scrolls. This allows “virtual” windows larger than the
physical video display.

The presence of the SCROLL attribute means that the control stays fixed at a
position in the window relative to the top left corner of the virtual window,
whether that position is currently in view or not. This means that the control
appears to move as the window scrolls.

If the SCROLL attribute is omitted, the control stays fixed at a position in
the window relative to the top left corner of the currently visible portion of
the window. This means that the control appears to stay in the same position
on screen while the rest of the window scrolls. This is useful for controls
which should stay visible to the user at all times (such as Ok or Cancel
buttons).

Mixing controls with and without the SCROLL attribute on the same
WINDOW can result in multiple controls appearing to occupy the same
screen position. This occurs because the controls with SCROLL move and
the controls without SCROLL do not. This condition is temporary and
scrolling the window will correct the situation. The situation can be avoided
entirely by careful placement of controls in the window. For example, you
can place all controls without SCROLL at the bottom of the window then
place all controls with SCROLL above them extending to the right and left.
This would create a window that only scrolls horizontally.



6-122 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SEPARATOR (set separator line ITEM)

SEPARATOR

The SEPARATOR attribute specifies an ITEM in a MENU that displays a
horizontal line to group ITEMs within the MENU. No other attributes may
be specified for the ITEM.

SKIP (set Tab key skip)

SKIP

The SKIP attribute specifies the control may only be accessed with the
mouse or an accelerator key. Controls that allow data entry receive input
focus only during data entry and the control does not retain focus. Controls
that do not allow data entry do not receive or retain input focus. The effect
of this is to create the same behavior as a control in a toolbar. When the
mouse cursor is over a control with the SKIP attribute, the control’s MSG
attribute is displayed in the status bar.

SPREAD (set evenly spaced TAB controls)

SPREAD

The SPREAD attribute specifies a SHEET’s TAB controls are evenly
spaced.



CHAPTER 6 WINDOW STRUCTURES 6-123

STD (set standard behavior)

STD(behavior)

STD Specifies standard Windows behavior.

behavior An integer constant or EQUATE specifying the identifier
of a standard windows behavior.

The STD attribute specifies the control activates some standard Windows
action. This action is automatically executed by the runtime library and does
not generate an event.

EQUATE statements for the standard Windows actions are contained in the
EQUATES.CLW file. The following list is a representative sample of these
(see EQUATES.CLW for the complete list):

 STD:WindowList List of open MDI windows
 STD:TileWindow Tile Windows
 STD:CascadeWindow Cascade Windows
 STD:ArrangeIcons Arrange Icons
 STD:HelpIndex Help Contents
 STD:HelpSearch Help Search dialog

Example:

MDIChild WINDOW(‘Child One’),MDI,SYSTEM,MAX
MENUBAR
MENU(‘Edit’),USE(?EditMenu)
ITEM(‘Undo’),USE(?UndoText),KEY(CtrlZ),STD(STD:Undo)
ITEM(‘Cu&t’),USE(?CutText),KEY(CtrlX),STD(STD:Cut)
ITEM(‘Copy’),USE(?CopyText),KEY(CtrlC),STD(STD:Copy)
ITEM(‘Paste’),USE(?PasteText),KEY(CtrlV),STD(STD:Paste)

END
END
TOOLBAR
BUTTON(‘Cut’),USE(?CutButton),ICON(ICON:Cut),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),ICON(ICON:Copy),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),ICON(ICON:Paste),STD(STD:Paste)

END
END



6-124 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

STEP (set SPIN increment)

STEP(count)

STEP Specifies a SPIN control RANGE attribute’s increment/
decrement value.

count A numeric constant specifying the amount to increment
or decrement.

The STEP attribute specifies the amount by which a SPIN control’s value is
incremented or decremented within its valid RANGE. The default STEP
value is 1.0.

Example:

WinOne WINDOW,AT(0,0,160,400)
SPIN(@N4.2),AT(280,0,20,20),USE(SpinVar1),RANGE(.05,9.95),STEP(.05)
SPIN(@n3),AT(280,0,20,20),USE(SpinVar2),RANGE(5,995),STEP(5)

END



CHAPTER 6 WINDOW STRUCTURES 6-125

TIP (set “balloon help” text)

TIP( string )

TIP Specifies the text to display when the mouse cursor
pauses over the control.

string A string constant that specifies the text to display.

The TIP  attribute on a control specifies the text.to display in a “balloon
help” box when the mouse cursor pauses over the control. Although there is
no specific limit on the number of characters, the string should not be longer
than can be displayed on the screen.

Although it is valid on any control that can gain focus for user input, this
attribute is most commonly used on BUTTON controls with the ICON
attribute that are placed on the TOOLBAR. This allows the user to quickly
determine the control’s purpose without accessing the on-line Help system.

Automatic TIP attribute display can be disabled for any single control or
window by setting the PROP:NoTips undeclared property to one (1). It can
be disabled for an entire application by setting the PROP:NoTips for the
built-in variable SYSTEM to one (1).

The time delay before TIP display can be set for an entire application by
setting the PROP:TipDelay for the built-in variable SYSTEM to the desired
delay amount (in hundredths of a second). This is valid only for 16-bit
applications; in 32-bit operating systems, the amount of tip delay is an
operating system setting under the user’s control.

Example:

WinOne WINDOW,AT(0,0,160,400)
TOOLBAR
BUTTON(‘E&xit’),USE(?MainExitButton),ICON(ICON:hand),TIP(‘Exit Window’)
BUTTON(‘&Open’),USE(?OpenButton),ICON(ICON:Open),TIP(‘Open a File’)

END
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)
ENTRY(@S8),AT(100,200,20,20),USE(E2)

END



6-126 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TRN (set transparent window string)

TRN

The TRN attribute on a STRING control specifies the characters display
transparently, without obliterating the background over which the STRING
is placed. Only the pixels required to create each character are written to the
screen. This allows the STRING to be placed directly on top of an IMAGE
without destroying the background picture.

Example:

WinOne WINDOW,AT(0,0,160,400)
IMAGE(‘PIC.BMP’),USE(?I1),FULL !Full window image
STRING(‘String Constant’),AT(10,0,20,20),USE(?S1),TRN

!Transparent string on image
END



CHAPTER 6 WINDOW STRUCTURES 6-127

USE (set control variable or equate label)

USE( | label | [,number] [,equate] )
| variable |

USE Specifies a variable or field equate label for the control.

label A field equate label to reference the control in executable
code.

variable The label of the field to receive the value entered in the
control. This label (with a ? prepended) becomes the
field equate label for the control, unless the equate
parameter is used.

number An integer constant that specifies the number the com-
piler equates to the field equate label for the control.

equate A field equate label to reference the control in executable
code when the named variable has already been used in
the same structure. This provides a mechanism to
provide a unique field equate when the variable would
not.

The USE attribute specifies a variable or field equate label for the control.
USE with a label parameter simply provides a mechanism for executable
source code statements to reference the control. Some controls only allow a
field equate label as the USE parameter, not a variable. These controls are:
PROMPT, IMAGE, LINE, BOX, ELLIPSE, GROUP, RADIO, REGION,
MENU, and BUTTON. USE with a variable parameter supplies the control
with a variable to update by operator entry. This is applicable to an ITEM
with the CHECK attribute, or an ENTRY, OPTION, SPIN, TEXT, LIST,
COMBO, CHECK, or CUSTOM.

All controls in an APPLICATION or WINDOW are automatically assigned
numbers by the compiler. For an APPLICATION’s MENUBAR controls,
these numbers start at negative one (-1) and decrement by one (1) for each
MENU and ITEM in the MENUBAR. On a WINDOW, these numbers start
at one (1) and increment by one (1) for each control in the WINDOW.

The USE attribute’s number parameter allows you to specify the actual field
number the compiler assigns to the control. This number also is used as the
new starting point for subsequent field numbering for fields without a
number parameter in their USE attribute. Subsequent controls without a
number parameter in their USE attribute are incremented (or decremented)
relative to the last number assigned.

Two or more controls with exactly the same USE variable in one WINDOW
or APPLICATION structure would create the same Field Equate Label for
all, therefore, when the compiler encounters this condition, all Field Equate
Labels for that USE variable are discarded. This makes it impossible to
reference any of these controls in executable code, preventing confusion



6-128 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

about which control you really want to reference. It also allows you to
deliberately create this condition to display the contents of the variable in
multiple controls with different display pictures.

Example:

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)
ENTRY(@S8),AT(100,200,20,20),USE(E2)

END



CHAPTER 6 WINDOW STRUCTURES 6-129

VALUE (set RADIO control OPTION USE variable assignment)

VALUE(  string )

VALUE Specifies the value assigned to the OPTION structure’s
USE variable when the RADIO control is selected by the
user.

string A string constant that specifies the value to assign.

The VALUE  attribute specifies the value that is automatically assigned to
the OPTION structure’s USE variable when the RADIO control is selected
by the user. This attribute overrides the RADIO control’s text parameter.

All automatic type conversion rules apply to the string assigned to the
OPTION structure’s USE variable. Therefore, if the string contains only
numeric data and the USE variable is a numeric data type, it receives the
numeric value of the string.

Example:

Win WINDOW,AT(0,0,160,400)
OPTION(‘Option 1’),USE(OptVar1),MSG(‘Pick One or Two’)
RADIO(‘Radio 1’),AT(120,0,20,20),USE(?R1),VALUE(‘10’) !OptVar1 gets 10
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2),VALUE(‘20’) !OptVar1 gets 20

END
OPTION(‘Option 2’),USE(OptVar2),MSG(‘Pick One or Two’)
RADIO(‘Radio 1’),AT(120,0,20,20),USE(?R1),VALUE(‘10’) !OptVar2 gets ‘10’
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2),VALUE(‘20’) !OptVar2 gets ‘20’

END
END



6-130 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

VCR (set VCR control)

VCR( [field] )

VCR Places Video Cassette Recorder (VCR) style buttons on
a LIST or COMBO control.

field A field equate label that specifies the ENTRY control to
use as a locator for a LIST (not valid on a COMBO).

The VCR attribute places Video Cassette Recorder (VCR) style buttons on a
LIST or COMBO control. The VCR style buttons affect the scrolling
characteristics of the data displayed in the LIST or COMBO.

There are six buttons displayed as the VCR:

|< Top of list (EVENT:ScrollTop)
<< Page Up (EVENT:PageUp)
 < Entry Up (EVENT:ScrollUp)
 > Entry Down (EVENT:ScrollDown)
>> Page Down (EVENT:PageDown)
>| Bottom of list (EVENT:ScrollBottom)

On a LIST control’s VCR(field), there also appears a button with a question
mark (?) in the middle of the other buttons. This is the locator button that
gives focus to the control specified by the field parameter. When the user
enters data and then presses TAB on the locator field, the LIST scrolls to its
closest matching entry.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
LIST,AT(140,0,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR
ENTRY(@S8),AT(100,200,20,20),USE(E2)
LIST,AT(140,100,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR(?E2)

END

WIZARD (set “tabless” SHEET control)

WIZARD

The WIZARD  attribute specifies a SHEET control that does not display its
TAB controls. This allows the program to direct the user through each TAB
in a specified sequence (usually with “Next” and “Previous” buttons.



CHAPTER 7 WINDOW COMMANDS 7-1

EEEEEvent Pvent Pvent Pvent Pvent Prrrrrocessingocessingocessingocessingocessing

Event-driven Programming

Windows programs are generally event-driven. This means the user causes
an event by clicking the mouse on a screen control or pressing a key. Every
user action in the program results in Windows sending a message to the
program which owns the window telling it what the user has done. Once
Windows has sent the message signaling an event to the program, the
program has the opportunity to handle the event in the appropriate manner.
This basically means the Windows programming paradigm is exactly
opposite from the DOS programming paradigm—the operating system
(Windows) tells the program what to do, instead of the program telling the
operating system what to do.

Writing a Windows program in a programming language other than Clarion
becomes very complex, because the program must be coded to explicitly
handle every message from Windows. Common tasks, such as re-drawing
graphics that have been overwritten by a window that was open and is now
closed, must be explicitly coded in the program.

These common tasks could be handled automatically by writing generic
procedures to accomplish the task and call them every time the need arises.
Of course, in other programming languages, you would have to write these
procedures yourself. In Clarion for Windows, they are already written and
included as part of our runtime library. The Clarion language, therefore, has
persistent graphics commands that do not require an explicit re-draw each
time they are overwritten (unlike other languages).

In Clarion Windows programs, most of the messages from Windows are
automatically handled internally by the ACCEPT event processor. These are
the common events handled by the runtime library (screen re-draws, etc.).
Only those events that actually may require program action are passed on by
ACCEPT to your Clarion code. The net effect of this is to make your
programming job easier by removing the low-level “drudgery” code from
your program, allowing you to concentrate on the high-level aspects of
programming, instead.

There are two types of events passed on to the program by ACCEPT: Field-
specific and Field-independent events.

A Field-specific event occurs when the user presses a key that may require
the program to perform a specific action related to that control.

A Field-independent event does not relate to any one control but requires
some program action (for example, to close a window, quit the program, or
change execution threads). Most of these events cause the system to become
modal, since they require a response before the program may continue.



7-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ACCEPT (the event processor)

ACCEPT
  statements
END

ACCEPT The event handler.

statements Executable code statements.

The ACCEPT loop is the event handler that processes events generated by
Windows for the APPLICATION or WINDOW structures. An ACCEPT loop
and a window are bound together, in that, when the window is opened, the
next ACCEPT loop encountered will process all events for that window.

ACCEPT operates in the same manner as a LOOP—the BREAK and
CYCLE statements can be used within it. The ACCEPT loop cycles for
every event that requires program action. ACCEPT waits until the Clarion
runtime library sends it an event that the program should process, then
cycles through to execute its statements. During the time ACCEPT is
waiting, the Clarion runtime library has control, automatically handling
common events from Windows that do not need specific program action
(such as screen re-draws).

The current contents of all STRING control USE variables (in the top
window of each thread) automatically display on screen each time the
ACCEPT loop cycles to the top. This eliminates the need to explicitly issue
a DISPLAY statement to update the video display for display-only data.
USE variable contents for any other control automatically display on screen
for any event generated for that control, unless PROP:Auto is turned on to
automatically display all USE variables each time through the ACCEPT
loop.

Within the ACCEPT loop, the program determines what happened by using
the following functions:

  EVENT() Returns a value indicating what happened. Symbolic
constants for events are in the EQUATES.CLW file.

  FIELD() Returns the field number for the control to which the
event refers, if the event is a field-specific event.

  ACCEPTED() Returns the field number for the control to which the
event refers for the EVENT:Accepted event.

  SELECTED() Returns the field number for the control to which the
event refers for the EVENT:Selected event.

  FOCUS() Returns the field number of the control that has input
focus, no matter what event occurred.

  MOUSEX() Returns the x-coordinate of the mouse cursor.

  MOUSEY() Returns the y-coordinate of the mouse cursor.



CHAPTER 7 WINDOW COMMANDS 7-3

Two events cause an implicit BREAK from the ACCEPT loop. These are the
events that signal the close of a window (EVENT:CloseWindow) or close of
a program (EVENT:CloseDown). The program’s code need not check for
these events as they are handled automatically. However, the code may check
for them and execute some specific action, such as displaying a “You sure?”
window or handling some housekeeping details. A CYCLE statement at that
point returns to the top of the ACCEPT loop without exiting the window or
program.

Similarly, there are several other events whose action can also be terminated
by a CYCLE statement: EVENT:PreAlertKey, EVENT:Move, EVENT:Size,
EVENT:Restore, EVENT:Maximize, and EVENT:Iconize. A CYCLE
statement in response to any of these events stops the normal action and
prohibits generation of the related EVENT:AlertKey, EVENT:Moved,
EVENT:Sized, EVENT:Restored, EVENT:Maximized, or EVENT:Iconized.

Example:

CODE
OPEN(Window)
ACCEPT !Event handler
CASE FIELD()
OF 0 !Handle Field-independent events
CASE EVENT()
OF EVENT:Move
 CYCLE !Do not allow user to move the window

OF EVENT:Suspend
CASE FOCUS()
OF ?Field1

!Save some stuff
 END
OF EVENT:Resume

!Restore the stuff
END

OF ?Field1 !Handle events for Field1
CASE EVENT()
OF EVENT:Selected

! pre-edit code for field1
OF EVENT:Accepted

! completion code for field1
END

OF ?Field2
CASE EVENT()
OF EVENT:Selected

! pre-edit code for field2
OF EVENT:Accepted

! completion code for field2
END

END

See Also: EVENT, FIELD, FOCUS, ACCEPTED, SELECTED, CYCLE



7-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ALERT (set event generation key)

ALERT( [first-keycode] [,last-keycode])

ALERT Specifies keys that generate an event.

first-keycode A numeric keycode or keycode equate label. This may
be the lower limit in a range of keycodes.

last-keycode The upper limit keycode, or keycode equate label, in a
range of keycodes.

ALERT  specifies a key, or an inclusive range of keys, as event generation
keys. Two field-independent events, EVENT:PreAlertKey and
EVENT:AlertKey, are generated when the user presses the ALERTed key. If
the code executes a CYCLE statement when processing
EVENT:PreAlertKey, you “shortstop” the EVENT:AlertKey, preventing the
library’s default action on the alerted keypress for the window.

The ALERT statement with no parameters clears all ALERT keys. Any key
with a keycode may be used as the parameter of an ALERT statement.
ALERT generates field-independent events, since it is not associated with
any particular control. When EVENT:AlertKey is generated by an ALERT
key, the USE variable of the control that currently has input focus is not
automatically updated (use UPDATE if this is required).

The ALERT statement alerts its keys separately from the ALRT attribute of a
window or control. This means that clearing all ALERT keys has no effect
on any keys alerted by ALRT attributes.



CHAPTER 7 WINDOW COMMANDS 7-5

Example:

Screen WINDOW,ALRT(F10Key),ALRT(F9Key) !F10 and F9 alerted
LIST,AT(109,48,50,50),USE(?List),FROM(Que),IMM
BUTTON(‘&Ok’),AT(111,108,,),USE(?Ok)
BUTTON(‘&Cancel’),AT(111,130,,),USE(?Cancel)

END
CODE
ALERT !Turn off all alerted keys
ALERT(F1Key,F12Key) !Alert all function keys
ALERT(279) !Alert the Ctrl-Esc key
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:PreAlertKey !Pre-check alert events
IF KEYCODE() = F4Key !Dis-Allow F4 key
CYCLE !Terminate alert processing

END
OF EVENT:AlertKey !Alert processing
CASE KEYCODE()
OF 279 !Check for Ctrl+Esc
BREAK

OF F9Key !Check for F9
F9HotKeyProc !Call hot key procedure

OF F10Key !Check for F10
F10HotKeyProc !Call hot key procedure

END
END

END

See Also: UPDATE



7-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EVENT (return event number)

EVENT( )

The EVENT  function returns a number indicating what caused ACCEPT to
alert the program that something has happened that it may need to handle.
There are EQUATEs listed in EQUATES.CLW for all the events the program
may need to handle.

There are two types of events generated by ACCEPT: field-specific and
field-independent events. Field-specific events affect a single control, while
field-independent events affect the window or program. The type of event
can be determined by the values returned by the ACCEPTED, SELECTED,
and FIELD functions. If you need to know which field has input focus on a
field-independent event, use the FOCUS function.

For field-specific events:
The FIELD function returns the field number of the
control on which the event occurred. The ACCEPTED
function returns the field number if the event is
EVENT:Accepted. The SELECTED function returns the
field number if the event is EVENT:Selected.

For field-independent events:
The FIELD, ACCEPTED, and SELECTED functions all
return zero (0).

Return Data Type: SHORT

Example:

ACCEPT
CASE EVENT()
OF EVENT:Selected
CASE SELECTED()
OF ?Control1
!Pre-edit code here

OF ?Control2
!Pre-edit code here

END
OF EVENT:Accepted
CASE ACCEPTED()
OF ?Control1
!Post-edit code here

OF ?Control2
!Post-edit code here

END
OF EVENT:Suspend

!Save some stuff
OF EVENT:Resume

!Restore the stuff
END

END



CHAPTER 7 WINDOW COMMANDS 7-7

POST (post user-defined event)

POST( event [,control] [,thread] )

POST Posts an event.

event An integer constant, variable, expression, or EQUATE
containing an event number. A value in the range 400h
to 0FFFh is a User-defined event.

control An integer constant, EQUATE, variable, or expression
containing the field number of the control affected by the
event. If omitted, the event is field-independent.

thread An integer constant, EQUATE, variable, or expression
containing the execution thread number whose ACCEPT
loop is to process the event. If omitted, the event is
posted to the current thread.

POST posts an event to the currently active ACCEPT loop of the specified
thread. This may be User-defined events, or any other event. User-defined
event numbers can be defined as any integer between 400h and 0FFFh. Any
event posted with a control specified is a field-specific event, while those
without are field-independent events.

Example:

Win1  WINDOW(‘Tools’),AT(156,46,32,28),TOOLBOX
 BUTTON(‘Date’),AT(0,0,,),USE(?Button1)
 BUTTON(‘Time’),AT(0,14,,),USE(?Button2)

 END
CODE
OPEN(Win1)
ACCEPT
IF EVENT() = EVENT:User THEN BREAK. !Detect user-defined event
CASE ACCEPTED()
OF ?Button1
POST(EVENT:User,,UseToolsThread)

!Post field-independent event to other thread
OF ?Button2
POST(EVENT:User) !Post field-independent event to this thread

END
END
CLOSE(Win1)



7-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

YIELD (allow event processing)

YIELD

YIELD  temporarily gives control to Windows to allow other concurrently
executing Windows applications to process events they need to handle
(except those events that would post messages back to the program
containing the YIELD statement ,or events that would change focus to the
other application).

YIELD is used to ensure that long batch processing in a Clarion application
does not completely “lock out” other applications from completing their
tasks. This is known as “cooperative multi-tasking” and ensures that your
Windows programs peacefully co-exist with any other Windows
applications.

Within your Clarion application, YIELD only allows control to pass to
EVENT:Timer events in other execution threads. This allows you to code a
“background” procedure in its own execution thread using the TIMER
attribute to perform some long batch processing without requiring the user
to wait until the task is complete before continuing with other work in the
application. This is an industry-standard Windows method of doing
background processing within an application.

The example code on the next page demonstrates both approaches to
performing batch processing: making the user wait for the process to
complete, and processing in the background. Only the WaitForProcess
procedure requires the YIELD statement, because it takes full control of the
program.  Background processing using EVENT:Timer does not need a
YIELD statement, since the ACCEPT loop automatically performs
cooperative multi-tasking with other Windows applications.



CHAPTER 7 WINDOW COMMANDS 7-9

Example:

StartProcess PROCEDURE
Win WINDOW(‘Choose a Batch Process’),MDI

 BUTTON(‘Full Control’),USE(?FullControl)
 BUTTON(‘Background’),USE(?Background)
 BUTTON(‘Close’),USE(?Close)

 END
CODE
OPEN(Win)
ACCEPT
CASE FIELD()
OF ?FullControl
DISABLE(FIRSTFIELD(),LASTFIELD()) !Disable all buttons
WaitForProcess ! and call the batch process procedure
ENABLE(FIRSTFIELD(),LASTFIELD()) !Enable buttons when batch is complete

OF ?Background
X# = START(BackgroundProcess) !Start new execution thread for the process

OF ?Close
BREAK

END
END

WaitForProcess PROCEDURE !Full control Batch process
CODE
SETCURSOR(CURSOR:Wait) !Alert user to batch in progress
SET(File) !Set up a batch process
LOOP
NEXT(File)
IF ERRORCODE() THEN BREAK.
!Perform some batch processing code
YIELD !Yield to other applications and EVENT:Timer

END
SETCURSOR !Restore mmouse cursor

BackgroundProcess PROCEDURE !Background processing batch process
Win WINDOW(‘Batch Processing...’),TIMER(1),MDI

 BUTTON(‘Cancel’),STD(STD:Close)
 END

CODE
OPEN(Win)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records whenever the timer allows it
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
!Perform some batch processing code

. . .



7-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Multi-ThrMulti-ThrMulti-ThrMulti-ThrMulti-Threaded Applicationseaded Applicationseaded Applicationseaded Applicationseaded Applications

Multi-Threading vs. Multi-Tasking

Multi-threading, as the term is used here, should not be confused with the
ability to have the computer perform multiple tasks concurrently. Multiple
execution threads within a single executing program do not necessarily
imply multi-tasking, because only one thread normally executes at a time.

Windows 3.1 allows cooperative, non-preemptive, multi-tasking between
separately executing applications in any mode, and preemptive multi-tasking
in 386 enhanced mode. Its preemptive multi-tasking is based on “time
slicing” between the applications and the amount of time each
simultaneously executing application receives is governed by the end user’s
Windows configuration. See your Windows 3.1 documentation for an
explanation of Windows’ multi-tasking settings.

Windows 95 allows preemptive multi-tasking between separately executing
applications. Its preemptive multi-tasking is not based on “time slicing”
between the applications as Windows 3.1 was; instead, it has true preemptive
multi-tasking in which the amount of time each simultaneously executing
application receives is governed by each program yielding control to allow
other programs to execute.

A form of cooperative, non-preemptive, multi-threading (similar to inter-
application multi-tasking) can be accomplished within a single Clarion
application by using the TIMER attribute. This is not based on “time
slicing” between execution threads. Instead, each execution thread gains
control and does not relinquish it until it executes an ASK or ACCEPT
statement.

When the top window of an execution thread has the TIMER attribute, a
timer event (EVENT:Timer) is periodically generated to cycle its ACCEPT
loop to process the event. This occurs even if the thread does not currently
have input focus. Therefore, if you want to perform this type of multi-
threading, you must ensure that any lengthy execution code includes YIELD
statements that occasionally execute to allow the timer events in other
threads to generate and execute.

Multi-Threading and MDI

A multi-threaded application allows the user the ability to switch between
multiple execution threads at runtime, as they choose. This makes the
Windows Multiple Document Interface (MDI) approach to programming
possible. A single Windows application may have a maximum of 64
execution threads concurrently available.



CHAPTER 7 WINDOW COMMANDS 7-11

The first execution thread in any program is the main program code. This
opens an APPLICATION structure as the MDI “parent” window, containing
the main menu selections for the application.

The menu selections in the APPLICATION’s MENUBAR call the START
function to begin each subsequent execution thread. The procedures called
by START usually open an MDI “child” WINDOW, as a document window
or dialog box. These windows allow the user to perform the tasks the
application is designed to perform.

The last MDI “child” WINDOW opened (and not closed) in any execution
thread is the “top” window in the thread and has input focus when that
thread is executing. The user can switch between execution threads by using
the mouse to CLICK on the top window of another execution thread. Thread
switching can also be accomplished by selecting an open window from an
MDI window list in the main menu, if the APPLICATION’s menu contains
this standard Windows menu item.



7-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

START (return new execution thread)

START(procedure [,stack] )

START Begins a new execution thread.

procedure The label of the first PROCEDURE to call on the new
execution thread. The procedure must have been
prototyped not to receive any parameters.

stack An integer constant or variable containing the size of the
stack to allocate to the new execution thread. If omitted,
the default stack is 10,000 bytes.

The START function begins a new execution thread, calling the procedure
and returning the number assigned to the new thread. The returned thread
number number is used by procedures and functions whose action may be
performed on any execution thread (such as SETTARGET). The maximum
number of simultaneously available execution threads in a single application
is 64.

The first execution thread in any program is the main program code, which
is always numbered one (1). Therefore, the lowest value START can return
is two (2), when the first START function is executed in a program. START
may return zero (0), which indicates failure to open the thread. This can
occur by attempting to START a 65th thread, or by running out of memory,
or by starting a thread when the system is modal.

Return Data Type: LONG

Example:

MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(‘&File’),USE(?FileMenu)
ITEM(‘Selection &1...’),USE(?MenuSelection1)
ITEM(‘Selection &2...’),USE(?MenuSelection2)

END
END

END

SaveThread1 LONG  !Declare thread number save variable
SaveThread2 LONG  !Declare thread number save variable
CODE
OPEN(MainWin) !Open the APPLICATION
ACCEPT !Handle Global events
CASE ACCEPTED()
OF ?MenuSelection1
SaveThread1 = START(NewProc1) !Start a new thread

OF ?MenuSelection2
SaveThread2 = START(NewProc2) !Start a new thread

OF ?Exit
RETURN

END



CHAPTER 7 WINDOW COMMANDS 7-13

THREAD (return current execution thread)

THREAD( )

The THREAD  function returns the currently executing thread number. The
returned thread number number can be used by procedures and functions
whose action may be performed on any execution thread (such as
SETTARGET).

The maximum number of simultaneously available execution threads in a
single application is 64. The first execution thread in any program is the
main program code, which is always thread number one (1). Therefore,
THREAD always returns a value in the range of one (1) to sixty-four (64).

Return Data Type: LONG

Example:

MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(‘&File’),USE(?FileMenu)
ITEM(‘Selection &1...’),USE(?MenuSelection1)
ITEM(‘Selection &2...’),USE(?MenuSelection2)

END
END

END

SaveThread LONG  !Declare thread number save variable
SaveThread1 LONG  !Declare thread number save variable
SaveThread2 LONG  !Declare thread number save variable
CODE
SaveThread = THREAD() !Save thread number
OPEN(MainWin) !Open the APPLICATION
ACCEPT !Handle Global events
CASE ACCEPTED()
OF ?MenuSelection1
SaveThread1 = START(NewProc1) !Start a new thread

OF ?MenuSelection2
SaveThread2 = START(NewProc2) !Start a new thread

OF ?Exit
RETURN

END
END



7-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

WindoWindoWindoWindoWindow Pw Pw Pw Pw Prrrrrocedurocedurocedurocedurocedureseseseses

CHANGE (change control field value)

CHANGE(control,value)

CHANGE Changes the value displayed in a control in an APPLI-
CATION or WINDOW structure.

control Field number or field equate label of a window control
field.

value A constant or variable containing the control’s new
value.

The CHANGE  statement changes the value displayed in a control in an
APPLICATION or WINDOW structure. CHANGE updates the control’s
USE variable with the value, and then displays that new value in the control
field.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:Selected
CASE SELECTED()
OF ?Ctl:Code
CHANGE(?Ctl:Code,4) !Change Ctl:Code to 4 and display it

OF ?Ctl:Name
CHANGE(?Ctl:Name,’ABC Company’)

!Change Ctl:Name to ABC Company and display
END

OF EVENT:Accepted
CASE ACCEPTED()
OF ?OkButton
BREAK

OF ?CanxButton
CLEAR(Ctl:Record)
BREAK

END
END



CHAPTER 7 WINDOW COMMANDS 7-15

CLOSE (close window)

CLOSE(label)

CLOSE Closes the active APPLICATION or WINDOW struc-
ture.

label The label of an APPLICATION or WINDOW structure.

CLOSE terminates processing on the active APPLICATION or WINDOW
structure. Memory used by the active window is released when it is closed
and the underlying screen is automatically re-drawn.

When a window is closed, if it is not the top-most window on its execution
thread, all windows opened subsequent to the window being closed are
automatically closed first. This occurs in the reverse order from which they
were opened.

An APPLICATION or WINDOW that is declared local to (within) a
PROCEDURE or FUNCTION is automatically closed when the program
RETURNs from the procedure.

Example:

CLOSE(MenuScr) !Close the menu screen
CLOSE(CustEntry) !Close customer data entry screen



7-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CREATE (create new control)

CREATE( control ,type [,parent] )

CREATE Creates a new control.

control A field number or field equate label for the control to
create.

type An integer constant, expression, EQUATE, or variable
that specifies the type of control to create.

parent A field number or field equate label. This specifies an
OPTION, GROUP, or MENU to contain the new con-
trol.

CREATE  dynamically creates a new control in the currently active
APPLICATION or WINDOW. When first created, the new control is initially
hidden, so its properties can be set using the runtime property assignment
syntax, SETPOSITION, and SETFONT. It appears on screen only by
issuing an UNHIDE statement for the control. To place the new control on
the toolbar, add CREATE:TOOLBAR to the equate for the new control’s
type.

EQUATE statements for the type parameter are contained in the
EQUATES.CLW file. The following list is a comprehensive sample of these
(see EQUATES.CLW for the complete list):

 CREATE:sstring STRING(picture),USE(variable)
 CREATE:string STRING(constant)
 CREATE:image IMAGE()
 CREATE:region REGION()
 CREATE:line LINE()
 CREATE:box BOX()
 CREATE:ellipse ELLIPSE()
 CREATE:entry ENTRY()
 CREATE:button BUTTON()
 CREATE:prompt PROMPT()
 CREATE:option OPTION()
 CREATE:radio RADIO()
 CREATE:check CHECK()
 CREATE:group GROUP()
 CREATE:list LIST()
 CREATE:combo COMBO()
 CREATE:spin SPIN()
 CREATE:text TEXT()
 CREATE:custom CUSTOM()
 CREATE:droplist LIST(),DROP()
 CREATE:dropcombo COMBO(),DROP()
 CREATE:menu MENU()
 CREATE:item ITEM()



CHAPTER 7 WINDOW COMMANDS 7-17

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END

X SHORT
Y SHORT
Width SHORT
Height SHORT

Code4Entry STRING(10)
?Code4Entry EQUATE(100)

CODE
OPEN(Screen)
ACCEPT
CASE ACCEPTED()
OF ?Ctl:Code
IF Ctl:Code = 4
CREATE(?Code4Entry,CREATE:entry) !Create the control
?Code4Entry{PROP:use} = ‘Code4Entry’ !Set USE variable
?Code4Entry{PROP:text} = ‘@s10’ !Set entry picture
GETPOSITION(?Ctl:Code,X,Y,Width,Height)
?Code4Entry{PROP:at,1} = X + Width + 40 !Set x position
?Code4Entry{PROP:at,2} = Y !Set y position
UNHIDE(?Code4Entry) !Display the new control

END
OF ?OkButton
BREAK

OF ?CanxButton
CLEAR(Ctl:Record)
BREAK

END
END
CLOSE(Screen)
RETURN

See Also: DESTROY



7-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DESTROY (remove a control)

DESTROY(first control [,last control] )

DESTROY Removes window controls.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a
range of controls.

The DESTROY statement removes a control, or range of controls, from an
APPLICATION or WINDOW structure. When removed, the control’s
resources are returned to the operating system.

DESTROYing a GROUP, OPTION, MENU, TAB, or SHEET control also
destroys all controls contained within it.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
DESTROY(?Ctl:Code) !Remove a control
DESTROY(?Ctl:Code,?Ctl:Name) !Remove range of controls
DESTROY(2) !Remove the second control

See Also: CREATE



CHAPTER 7 WINDOW COMMANDS 7-19

DISABLE (dim a control)

DISABLE( first control [,last control] )

DISABLE Dims controls on the window.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a
range of controls.

The DISABLE  statement disables a control or a range of controls on an
APPLICATION or WINDOW structure. When disabled, the control appears
dimmed on screen.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
DISABLE(?Ctl:Code) !Disable a control
DISABLE(?Ctl:Code,?Ctl:Name) !Disable range of controls
DISABLE(2) !Disable the second control

See Also: ENABLE, HIDE, UNHIDE



7-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DISPLAY (write USE variables to screen)

DISPLAY(  [first control] [,last control] )

DISPLAY Writes the contents of USE variables to their associated
controls.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a
range of controls.

DISPLAY  writes the contents of the USE variables to their associated
controls on the active window. DISPLAY with no parameters writes the USE
variables for all controls on the screen. Using first control alone, as the
parameter of DISPLAY, writes a specific USE variable to the screen. Both
first control and last control parameters are used to display the USE
variables for an inclusive range of controls on the screen.

The current contents of the USE variables of all controls are automatically
displayed on screen each time the ACCEPT loop cycles. This eliminates the
need to explicitly issue a DISPLAY statement to update the video display.
Of course, if your application performs some operation that takes a long
time and you want to indicate to the user that something is happening
without cycling back to the top of the ACCEPT loop, you should DISPLAY
some variable that you have updated.

Example:

DISPLAY !Display all controls on the screen
DISPLAY(2) !Display control number 2
DISPLAY(3,7) !Display controls 3 through 7
DISPLAY(?MenuControl) !Display the menu control
DISPLAY(?TextBlock,?Ok) !Display range of controls

See Also: Field Equate Labels, UPDATE, ERASE



CHAPTER 7 WINDOW COMMANDS 7-21

ENABLE (re-activate dimmed control)

ENABLE( first control [,last control] )

ENABLE Reactivates disabled controls.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a
range of controls.

The ENABLE  statement reactivates a control, or range of controls, that
were dimmed by the DISABLE statement, or were declared with the
DISABLE attribute. Once reactivated, the control is again available to the
operator for selection.

Example:

CODE
OPEN(Screen)
DISABLE(?Control2) !Control2 is deactivated
IF Ctl:Password = ‘Supervisor’
ENABLE(?Control2) !Re-activate Control2

END

See Also: DISABLE, HIDE, UNHIDE



7-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ERASE (clear screen control and USE variables)

ERASE( [first control] [,last control] )

ERASE Blanks controls and clears their USE variables.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a
range of controls.

The ERASE statement erases the data from controls in the window and
clears their corresponding USE variables. ERASE with no parameters erases
all controls in the window. Using first control alone, as the parameter of
ERASE, clears a specific USE variable and its associated control. Both first
control and last control parameters are used to clear the USE variables and
associated controls for an inclusive range of controls in the window.

Example:

ERASE(?) !Erase the currently selected control
ERASE !Erase all controls on the screen
ERASE(3,7) !Erase controls 3 through 7
ERASE(?Name,?Zip) !Erase controls from name through zip
ERASE(?City,?City+2) !Erase City and 2 controls following City

See Also: Field equate labels



CHAPTER 7 WINDOW COMMANDS 7-23

GETFONT (get font information)

GETFONT( control ,typeface , size ,color ,style)

GETFONT Gets display font information.

control A field number or field equate label for the control from
which to get the information. If control is zero (0), it
specifies the WINDOW.

typeface A string variable to receive the name of the font.

size An integer variable to receive the size (in points) of the
font.

color A LONG integer variable to receive the red, green, and
blue values for the color of the font in the low-order
three bytes. If the value is negative, the color represents
a system color.

style An integer variable to receive the strike weight and style
of the font.

GETFONT  gets the display font information for the control. If the control
parameter is zero (0), GETFONT gets the default display font for the
window.

Example:

TypeFace STRING(20)
Size BYTE
Color LONG
Style LONG

CODE
OPEN(Screen)
GETFONT(0,TypeFace,Size,Color,Style) !Get font info for the window

See Also: SETFONT



7-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

GETPOSITION (get control position)

GETPOSITION( control ,x , y ,width ,height)

GETPOSITION Gets the position and size of an APPLICATION, WIN-
DOW, or control.

control A field number or field equate label for the control from
which to get the information. If control is zero (0), it
specifies the window.

x An integer variable to receive the horizontal position of
the top left corner.

y An integer variable to receive the vertical position of the
top left corner.

width An integer variable to receive the width.

height An integer variable to receive the height.

GETPOSITION  gets the position and size of an APPLICATION,
WINDOW, or control. The position and size values are dependent upon the
presence or absence of the SCROLL attribute on the control. If SCROLL is
present, the values are relative to the virtual window. If SCROLL is not
present, the values are relative to the top left corner of the currently visible
portion of the window. This means the values returned always match those
specified in the AT attribute or most recent SETPOSITION.

The values in the x, y, width, and height parameters are measured in dialog
units. Dialog units are defined as one-quarter the average character width by
one-eighth the average character height. The size of a dialog unit is
dependent upon the size of the default font for the window. This
measurement is based on the font specified in the FONT attribute of the
window, or the system default font specified by Windows.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END

X SHORT
Y SHORT
Width SHORT
Height SHORT
CODE
OPEN(Screen)
GETPOSITION(?Ctl:Code,X,Y,Width,Height)

See Also: SETPOSITION



CHAPTER 7 WINDOW COMMANDS 7-25

HELP (help window access)

HELP([helpfile] [,window-id])

HELP Opens a help file and activates a help window.

helpfile A string constant or the label of a STRING variable that
has the DOS directory file specification for the help file.
If the file specification does not contain a complete path
and filename, the help file is assumed to be in the
current directory. If the file extension is omitted, “.HLP”
is assumed. If the helpfile parameter is omitted, a
comma is required to hold its position.

window-id A string constant or the label of a STRING variable that
contains the key used to access the help system. This
may be either a help keyword or a “context string.”

The HELP  statement opens a designated helpfile, and activates the window
named by the window-id. While an ASK or ACCEPT is controlling program
execution, the active help window is displayed when the operator presses F1

(the “Help” key).

If the window-id parameter is omitted, the helpfile is nominated but not
opened. If the helpfile parameter is omitted, the current help file is opened,
and the window identified by window-id is activated. If both parameters are
omitted, the current helpfile is opened at the current topic.

The window-ID may contain a Help keyword. This is a keyword that is
displayed in the Help Search dialog. When the user presses F1, if only one
topic in the help file specifies this keyword, the help file is opened at that
topic; if more than one topic specifies the keyword, the search dialog is
opened for the user.

A “context string” is identified by a leading tilde (~) in the window-ID,
followed by a unique identifier associated with exactly one help topic. If the
tilde is missing, the window-ID is assumed to be a help keyword. When the
user presses F1, the help file is opened at the specific topic associated with
that “context string.”

Help windows are also activated by the HLP attribute of an APPLICATION,
WINDOW, or control.

Example:

HELP(‘C:\HLPDIR\LEDGER.HLP’) !Open the gen ledger help file
HELP(,’~CustUpd’) !Activate customer update help window
HELP !Display the help window

See Also: ASK, ACCEPT, HLP



7-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

HIDE (blank a control)

HIDE(first control [,last control] )

HIDE Hides window controls.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a
range of controls.

The HIDE  statement hides a control, or range of controls, on an
APPLICATION or WINDOW structure. When hidden, the control does not
appear on screen.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
HIDE(?Ctl:Code) !Hide a control
HIDE(?Ctl:Code,?Ctl:Name) !Hide range of controls
HIDE(2) !Hide the second control

See Also: UNHIDE, ENABLE, DISABLE

OPEN (open window for processing)

OPEN(label)

OPEN Opens a window.

label The label of an APPLICATION or WINDOW structure.

OPEN activates an APPLICATION or WINDOW for processing. However,
nothing is displayed until a DISPLAY statement or the ACCEPT loop is
encountered. This allows an opportunity to execute pre-display code to
customize the display.

Example:

OPEN(MenuScr) !Open the menu screen
OPEN(CustEntry) !Open customer data entry screen



CHAPTER 7 WINDOW COMMANDS 7-27

SELECT (select next control to process)

SELECT( [control] [,position] [,endposition] )

SELECT Sets the next control to receive input focus.

control A field number or field equate label of the next control
to process. If omitted, the SELECT statement initiates
AcceptAll mode.

position Specifies a position within the control to place the
cursor. For an ENTRY or TEXT, SPIN, or COMBO
control this is a character position, or a beginning
character position for a marked block. For an OPTION
structure, this is the selection number within the OP-
TION. For a LIST control, this is the QUEUE entry
number.

endposition Specifies an ending character position within an ENTRY,
TEXT, SPIN, or COMBO control. The character posi-
tion specified by position and endposition are marked as
a block, available for cut and paste operations.

SELECT overrides the normal TAB key sequence control selection order of
an APPLICATION or WINDOW. Its action affects the next ACCEPT
statement that executes. The control parameter determines which control the
ACCEPT loop will process next. If control specifies a control which cannot
rceive focus because a DISABLE or HIDE statment has been issued, focus
goes to the next control following it in the window’s source code that can
receive focus. If control specifies a control on a TAB which does not have
focus, the TAB is brought to the front before the control receives focus.

SELECT with position and endposition parameters specifies a marked block
in the control which is available for cut and paste operations.

SELECT with no parameters initiates AcceptAll mode (also called non-stop
mode). This is a field edit mode in which each control in the window is
processed in TAB key sequence by generating EVENT:Accepted for each.
This allows data entry validation code to execute for all controls, including
those that the user has not touched.

AcceptAll mode terminates when any of the following conditions is met:

          • A SELECT(?) statement selects the same control for the
user to edit. This code usually indicates the value it
contains is invalid and the user must re-enter data.

          • The Window{PROP:AcceptAll} property is set to zero
(0). This property contains one (1) when AcceptAll
mode is active. Assigning values to this property can
also be used to initiate and terminate AcceptAll mode.



7-28 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

          • A control with the REQ attribute is blank or zero.
AcceptAll mode terminates with the control highlighted
for user entry, without processing any more fields in the
TAB key sequence.

When all controls have been processed, EVENT:Completed is posted to the
window.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name)
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
SELECT(?Ctl:Code) !Start with Ctl:Code
ACCEPT
CASE ACCEPTED()
OF ?Ctl:Code
IF Ctl:Code > 150 !If data entered is invalid
BEEP ! alert the user and
SELECT(?) ! make them re-enter the data

END
OF ?Ctl:Name
SELECT(?Ctl:Name,1,5) !Mark first five characters as a block

OF ?OkButton
SELECT !Initiate AcceptAll mode

END
IF EVENT() = EVENT:Completed THEN BREAK.

!AcceptAll mode terminated
END

See Also: ACCEPT



CHAPTER 7 WINDOW COMMANDS 7-29

SET3DLOOK (set 3D window look)

SET3DLOOK(  [switch] )

SET3DLOOK Toggles three-dimensional look and feel.

switch An integer constant switching the 3D look off (0) and on
(1). If omitted, the default is one (1).

The SET3DLOOK  procedure sets up the program to display a three-
dimensional look and feel. The default program setting is 3D enabled. On a
WINDOW, the GRAY attribute causes the controls to display with a three-
dimensional appearance. Controls in the TOOLBAR are always displayed
with the three-dimensional look, unless disabled by SET3DLOOK. When
three-dimensional look is disabled by SET3DLOOK, the GRAY attribute
has no effect.

SET3DLOOK(0) turns off the three-dimensional look and feel.
SET3DLOOK(1) turns on the three-dimensional look and feel. Values other
than zero or one are reserved for future use.

Example:

MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
MENU(‘&File’),USE(?FileMenu)
ITEM(‘&Open...’),USE(?OpenFile)
ITEM(‘&Close’),USE(?CloseFile),DISABLE
ITEM(‘Turn off 3D Look’),USE(?Toggle3D),CHECK
ITEM(‘E&xit’),USE(?MainExit)

END
END

END
CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?Toggle3D
IF MainWin$?Toggle3D{PROP:text} = ‘Turn off 3D Look’ !If on
SET3DLOOK(0) !Turn off
MainWin$?Toggle3D{PROP:text} = ‘Turn on 3D Look’ ! and change text

ELSE !Else
SET3DLOOK(1) !Turn on
MainWin$?Toggle3D{PROP:text} = ‘Turn off 3D Look’ ! and change text

END
OF ?OpenFile
START(OpenFileProc)

OF ?MainExit
BREAK

END
END
CLOSE(MainWin)



7-30 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SETCURSOR (set temporary mouse cursor)

SETCURSOR( [cursor] )

SETCURSOR Specifies a temporary mouse cursor to display.

cursor An EQUATE naming a Windows-standard mouse cursor.
If omitted, turns off the temporary cursor.

The SETCURSOR statement specifies a temporary mouse cursor to display
until a SETCURSOR statement without a cursor parameter turns it off. This
cursor overrides all CURSOR attributes. When SETCURSOR without a
cursor parameter is encountered, all CURSOR attributes once again take
effect. SETCURSOR is generally used to display the hourglass while your
program is doing some “behind the scenes” work that the user should not
break into.

EQUATE statements for the Windows-standard mouse cursors are contained
in the EQUATES.CLW file. The following list is a representative sample of
these (see EQUATES.CLW for the complete list):

 CURSOR:None No mouse cursor
 CURSOR:Arrow Normal windows arrow cursor
 CURSOR:IBeam Capital “I” like a steel I-beam
 CURSOR:Wait Hourglass
 CURSOR:Cross Large plus sign
 CURSOR:UpArrow Vertical arrow
 CURSOR:Size Four-headed arrow
 CURSOR:Icon Box within a box
 CURSOR:SizeNWSE Double-headed arrow slanting left
 CURSOR:SizeNESW Double-headed arrow slanting right
 CURSOR:SizeWE Double-headed horizontal arrow
 CURSOR:SizeNS Double-headed vertical arrow

Example:

MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
 ,HVSCROLL,RESIZE

MENUBAR
ITEM(‘Batch Update’),USE(?Batch)

END
END

CODE
OPEN(MainWin)
ACCEPT
CASE ACCEPTED()
OF ?Batch
SETCURSOR(CURSOR:Wait) !Turn on hourglass mouse cursor
BatchUpdate ! and call the batch update procedure

END
END



CHAPTER 7 WINDOW COMMANDS 7-31

SETFONT (specify font)

SETFONT( control ,typeface , size ,color ,style)

SETFONT Dynamically sets the display font for a control.

control A field number or field equate label for the control to
affect. If control is zero (0), it specifies the WINDOW.

typeface A string constant or variable containing the name of the
font. If omitted, the system font is used.

size An integer constant or variable containing the size (in
points) of the font. If omitted, the system default font
size is used.

color A LONG integer constant or variable containing the red,
green, and blue values for the color of the font in the
low-order three bytes, or an EQUATE for a standard
Windows color value. If omitted, black is used.

style An integer constant, constant expression, EQUATE, or
variable specifying the strike weight and style of the
font. If omitted, the weight is normal.

SETFONT dynamically specifies the display font for the control, overriding
any FONT attribute previously specified. If the control parameter is zero (0),
SETFONT specifies the default display font for the window.

SETFONT allows you to specify all parameters of a font change at once,
instead of one at a time as runtime property assignment allows. This has the
advantage of implementing all changes at once, whereas runtime property
assignment would change each individually, displaying each separate change
as it occurs.

The typeface may name any font registered in the Windows system. The
EQUATES.CLW file contains EQUATE values for standard style values. A
style on the range zero (0) to one thousand (1000) specifies the strike weight
of the font. You may also add values that indicate italic, underline, or
strikeout text. The following EQUATES are in EQUATES.CLW:

  FONT:thin EQUATE (100)
  FONT:regular EQUATE (400)
  FONT:bold EQUATE (700)
  FONT:italic EQUATE (01000H)
  FONT:underline EQUATE (02000H)
  FONT:strikeout EQUATE (04000H)

Example:

SETFONT(0,’Arial’,14,,FONT:thin+FONT:Italic) !14 pt. Arial black thin italic

See Also: GETFONT



7-32 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SETPOSITION (specify new control position)

SETPOSITION( control ,x , y ,width ,height)

SETPOSITION Dynamically specifies the position and size of an
APPLICATION, WINDOW, or control.

control A field number or field equate label for the control to
affect. If control is zero (0), it specifies the window.

x An integer constant, expression, or variable that specifies
the horizontal position of the top left corner. If omitted,
the x position is not changed.

y An integer constant, expression, or variable that specifies
the vertical position of the top left corner. If omitted, the
y position is not changed.

width An integer constant, expression, or variable that specifies
the width. If omitted, the width is not changed.

height An integer constant, expression, or variable that specifies
the height. If omitted, the height is not changed.

SETPOSITION dynamically specifies the position and size of an
APPLICATION, WINDOW, or control. If any parameter is omitted, the
value is not changed.

The values contained in the x, y, width, and height parameters are measured
in dialog units. Dialog units are defined as one-quarter the average character
width by one-eighth the average character height. The size of a dialog unit is
dependent upon the size of the default font for the window. This
measurement is based on the font specified in the FONT attribute of the
window, or the system default font specified by Windows.

Using SETPOSITION produces a “smoother” control appearance change
than using property expressions to change the AT attribute’s parameter
values. This is because SETPOSITION changes all four parameters at once.
Property expressions must change one parameter at a time. Since each
individual parameter change would be immediately visible on screen, this
would cause the control to appear to “jump.”

Example:

CREATE(?Code4Entry,CREATE:entry,?Ctl:Code) !Create a control
?Code4Entry{PROP:use} = ‘Code4Entry’ !Set USE variable
?Code4Entry{PROP:text} = ‘@s10’ !Set entry picture
GETPOSITION(?Ctl:Code,X,Y,Width,Height) !Get Ctl:Code position
SETPOSITION(?Code4Entry,X+Width+40,Y) !Set x 40 past Ctl:Code
UNHIDE(?Code4Entry) !Display the new control

See Also: GETPOSITION



CHAPTER 7 WINDOW COMMANDS 7-33

SETTARGET (set current window or report)

SETTARGET( [target] [,thread] )

SETTARGET Sets the current window (or report) for drawing graphics
and other window-interaction statements.

target The label of an APPLICATION, WINDOW or REPORT
structure. If omitted, the last window opened and not yet
closed in the specified thread is used.

thread The number of the execution thread in which the target
structure is contained in the topmost procedure or
function. If omitted, the current execution thread is used.

The SETTARGET procedure makes the target the structure which is
current for drawing with the graphics primitives functions. SETTARGET
also sets the target for runtime property assignment, and the CREATE,
SETPOSITION, GETPOSITION, SETFONT, GETFONT, DISABLE,
HIDE, CONTENTS, DISPLAY, ERASE, and UPDATE statements. Using
these statements with SETTARGET allows you to manipulate the window
display in the topmost window of any execution thread.

This target will receive any graphics drawn with the graphics procedures and
functions described in the Graphics Commands chapter. This allows you to
draw graphics to the topmost window, or report, in any execution thread.

SETTARGET sets the ”built-in” variable, TARGET (also set when a window
is opened), which may be used in any statement which requires the label of
the current window or report. A REPORT data structure is never the default
target. Therefore, SETTARGET must be used before using the graphics
primitives functions to draw graphics on a REPORT.

SETTARGET does not change procedures, and it does not change which
ACCEPT loop receives the events generated by Windows. SETTARGET
without any parameters resets to the procedure and execution thread with the
currently active ACCEPT loop.

Example:

Report REPORT
 !Report structure controls

 END
CODE
OPEN(Report)
SETTARGET(Report) !Make the report the current target
TARGET{PROP:Landscape} = 1 ! and turn on landscape mode



7-34 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

UNHIDE (show hidden control)

UNHIDE(first control [,last control] )

UNHIDE Displays previously hidden controls.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a
range of controls.

The UNHIDE  statement reactivates a control or range of controls, that were
hidden by the HIDE statement. Once un-hidden, the control is again visible
on screen.

Example:

CODE
OPEN(Screen)
HIDE(?Control2) !Control2 is hidden
IF Ctl:Password = ‘Supervisor’
UNHIDE(?Control2) !Unhide Control2

END

See Also: HIDE, ENABLE, DISABLE



CHAPTER 7 WINDOW COMMANDS 7-35

UPDATE (write from screen to USE variables)

UPDATE(  [first control] [,last control] )

UPDATE Writes the contents of a control to its USE variable.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a
range of controls.

UPDATE writes the contents of a screen control to its USE variable. This
takes the value displayed on screen and places it in the variable specified by
the control’s USE attribute.

USE variables are updated automatically by ACCEPT as each control is
accepted. However, certain events (such as an ALERTed key press) do not
automatically update USE variables. This is the purpose of the UPDATE
statement.

  UPDATE Updates all controls on the screen.

  UPDATE(first control)
Updates a specific USE variable from its associated
screen control.

  UPDATE(first control,last control)
Updates the USE variables of an inclusive range of
screen controls.

Example:

UPDATE(?) !Update the currently selected control
UPDATE !Update all controls on the screen
UPDATE(?Address) !Update the address control
UPDATE(3,7) !Update controls 3 through 7
UPDATE(?Name,?Zip) !Update controls from name through zip
UPDATE(?City,?City+2) !Update city and 2 controls following

See Also: Field equate Labels



7-36 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

WindoWindoWindoWindoWindow Fw Fw Fw Fw Functionsunctionsunctionsunctionsunctions

ACCEPTED (return control just completed)

ACCEPTED( )

The ACCEPTED function returns the field number of the control on which
an EVENT:Accepted event occurred. ACCEPTED returns zero (0) for all
other events.

Positive field numbers are assigned by the compiler to all WINDOW
controls, in the order their declarations occur in the WINDOW structure.
Negative field numbers are assigned to all APPLICATION controls. In
executable code statements, field numbers are usually represented by field
equate labels—the label of the USE variable preceded by a question mark
(?FieldName).

Return Data Type: SHORT

Example:

CASE ACCEPTED() !Process post-edit code
OF ?Cus:Company
!Edit field value

OF ?Cus:CustType
!Edit field value

END

See Also: ACCEPT, EVENT



CHAPTER 7 WINDOW COMMANDS 7-37

CHOICE (return relative item position)

CHOICE( [control] )

CHOICE Returns a user selection number.

control A field equate label of a LIST, COMBO, or OPTION
control.

The CHOICE  function returns the sequence number of a selected item in an
OPTION structure, LIST box, or COMBO control. With no parameter,
CHOICE returns the sequence number of the selected item in the last control
(LIST, OPTION, or COMBO) that generated a Field-specific event to cycle
the ACCEPT loop. CHOICE(control) returns the current selection number of
any LIST, OPTION, or COMBO in the currently active window.

CHOICE returns the sequence number of the selected RADIO control within
an OPTION structure. The sequence number is determined by relative
position within the OPTION. The first control listed in the OPTION
structure’s code is relative position 1, the second is 2, etc.

CHOICE returns the memory QUEUE entry number of the selected item
when a LIST or COMBO box is completed.

Return Data Type: LONG

Example:

CODE
ACCEPT
EXECUTE CHOICE() !Perform menu option
AddRec ! procedure to add record
PutRec ! procedure to change record
DelRec ! procedure to delete record
RETURN ! return to caller

END
END



7-38 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CONTENTS (return contents of USE variable)

CONTENTS(control)

CONTENTS Returns the value in the USE variable of a control.

control A field number or field equate label.

The CONTENTS function returns a string containing the value in the USE
variable of an ENTRY, OPTION RADIO, or TEXT control.

A USE variable may be longer than its associated control field display
picture OR may contain fewer characters than its total capacity. The
CONTENTS function always returns the full length of the USE variable.

Return Data Type:  STRING

Example:

IF CONTENTS(?LastName) = ‘’ AND CONTENTS(?FirstName) = ‘’
!If first and last name are blank

MessageField = ‘Must Enter a First or Last Name’ ! display error message
END



CHAPTER 7 WINDOW COMMANDS 7-39

FIELD (return control with focus)

FIELD( )

The FIELD  function returns the field number of the control which has focus
at the time of any field-specific event. This includes both the
EVENT:Selected and EVENT:Accepted events. FIELD returns zero (0) for
field-independent events.

Positive field numbers are assigned by the compiler to all WINDOW
controls, in the order their declarations occur in the WINDOW structure.
Negative field numbers are assigned to all APPLICATION controls. In
executable code statements, field numbers are usually represented by field
equate labels—the label of the USE variable preceded by a question mark
(?FieldName).

Return Data Type:  LONG

Example:

Screen WINDOW
ENTRY(@N4),USE(Control1)
ENTRY(@N4),USE(Control2)
ENTRY(@N4),USE(Control3)
ENTRY(@N4),USE(Control4)

END
CODE
ACCEPT
IF NOT ACCEPTED() THEN CYCLE.
CASE FIELD() !Control edit control
OF ?Control1 ! Field number 1
IF Control1 = 0 ! if no entry
BEEP ! sound alarm
SELECT(?) ! stay on control

END
OF ?Control2 ! Field number 2
IF Control2 > 4 ! if status is more than 4
Scr:Message = ‘Control must be less than 4’
ERASE(?) ! clear control
SELECT(?) ! edit the control again

ELSE ! value is valid
CLEAR(Scr:Message) ! clear message

END
OF ?Control4 ! Field number 4
BREAK ! exit processing loop

. . ! end case, end loop

See Also: ACCEPTED, SELECTED, FOCUS, EVENT



7-40 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FIRSTFIELD (return first window control)

FIRSTFIELD( )

The FIRSTFIELD  function returns the lowest field number in the currently
active window.

Return Data Type: LONG

Example:

DISABLE(FIRSTFIELD(),LASTFIELD()) !Dim all control fields

FOCUS (return control with focus)

FOCUS( )

The FOCUS function returns the field number of the control which has
input focus at any time any event occurs.

Positive field numbers are assigned by the compiler to all WINDOW
controls, in the order their declarations occur in the WINDOW structure.
Negative field numbers are assigned to all APPLICATION controls. In
executable code statements, field numbers are usually represented by field
equate labels—the label of the USE variable preceded by a question mark
(?FieldName).

Return Data Type:  LONG

Example:

Screen WINDOW
ENTRY(@N4),USE(Control1)
ENTRY(@N4),USE(Control2)
ENTRY(@N4),USE(Control3)
ENTRY(@N4),USE(Control4)

END
CODE
ACCEPT
CASE EVENT()
OF EVENT:LoseFocus
OROF EVENT:CloseWindow
CASE FOCUS() !Control edit control
OF ?Control1 ! Field number 1
UPDATE(?Control1)

OF ?Control2 ! Field number 2
UPDATE(?Control2)

OF ?Control4 ! Field number 4
UPDATE(?Control4)

END
END

END

See Also: ACCEPTED, SELECTED, FIELD, EVENT



CHAPTER 7 WINDOW COMMANDS 7-41

INCOMPLETE (return empty REQ control)

INCOMPLETE( )

The INCOMPLETE  function returns the field number of the first control
with the REQ attribute in the currently active window that has been left zero
or blank, and gives input focus to that control. If all REQ controls in the
window contain data, INCOMPLETE returns zero (0) and leaves input focus
on the control that already had it.

The INCOMPLETE function duplicates the action performed by the REQ
attribute on a BUTTON control.

Return Data Type: LONG

Example:

CODE
OPEN(Screen)
ACCEPT
CASE ACCEPTED()
OF ?OkBUtton
IF INCOMPLETE() !Any REQ fields empty?
SELECT(INCOMPLETE()) ! if so, go to it
CYCLE

ELSE
BREAK !If not, go on

END
END

END

LASTFIELD (return last window control)

LASTFIELD( )

The LASTFIELD  function returns the highest field number in the currently
active window.

Return Data Type:  LONG

Example:

DISABLE(FIRSTFIELD(),LASTFIELD()) !Dim all control fields



7-42 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MESSAGE (return message box response)

MESSAGE( text [,caption] [,icon] [,buttons] [,default] [,style] )

MESSAGE Displays a message dialog box and returns the button the
user pressed.

text A string constant or variable containing the text to
display in the message box.

caption The dialog box title. If omitted, the dialog has no title.

icon A string constant, variable, or EQUATE for a Windows
standard icon. If omitted, no icon is displayed on the
dialog box.

buttons An integer constant, variable, EQUATE, or expression
which indicates which Windows standard buttons to
place on the dialog box. This may indicate multiple
buttons. If omitted, the dialog displays an Ok button.

default An integer constant, variable, EQUATE, or expression
which indicates the default button on the dialog box. If
omitted, the first button is the default.

style An integer constant or variable which specifies the
window is Application Modal (0) or System Modal (1).
If omitted, the window is Application Modal.

The MESSAGE function displays a Windows-standard message box,
typically requiring only a Yes or No response, or no specific response at all.
The function returns the number of the button the user presses to exit the
dialog box.

The EQUATES.CLW file contains symbolic constants for the icon, buttons,
and default parameters. The style parameter determines whether the message
window is Application Modal or System Modal. An Application Modal
window must be closed before the user is allowed to do anything else in the
application, but does not prevent the user from switching to another
Windows application. A System Modal window must be closed before the
user is allowed to do anything else in Windows.

Return Data Type: USHORT

Example:

CASE MESSAGE(‘Quit?’,’Editor’,ICON:Question,BUTTON:Yes+BUTTON:No,BUTTON:No,1)
!A ? icon with Yes and No buttons, the default button is No
! the window is System Modal

OF BUTTON:No
OF BUTTON:Yes
MESSAGE(‘Goodbye’) !A message with only an Ok button.
RETURN

END



CHAPTER 7 WINDOW COMMANDS 7-43

MOUSEX (return mouse horizontal position)

MOUSEX( )

The MOUSEX function returns a numeric value corresponding to the
current horizontal position of the mouse cursor at the time of the event. The
position is relative to the origin of that window.

The return value is in dialog units.

Return Data Type: SHORT

Example:

SaveMouseX = MOUSEX() !Save mouse position

MOUSEY (return mouse vertical position)

MOUSEY( )

The MOUSEY function returns a numeric value corresponding to the
current vertical position of the mouse cursor at the time of the event. The
position is relative to the origin of that window.

The return value is in dialog units.

Return Data Type: SHORT

Example:

SaveMouseY = MOUSEY() !Save mouse position



7-44 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

POPUP (return popup menu selection)

POPUP( selections [, x ] [, y ] )

POPUP Returns an integer indicating the user’s choice from the
menu.

selections A string constant, variable, or expression containing the
text for the menu choices.

x An integer constant, variable, or expression that specifies
the horizontal position of the top left corner. If omitted,
the menu appear at the current cursor position.

y An integer constant, variable, or expression that specifies
the vertical position of the top left corner. If omitted, the
menu appear at the current cursor position.

The POPUP function returns an integer indicating the user’s choice from the
popup menu that appears when the function is invoked. If the user CLICKS

outside the menu or presses ESC (indicating no choice), POPUP returns zero.

Within the selections string, each choice in the popup menu must be
delimited by a vertical bar (|) character. A set of vertical bars containing only
a hyphen (|-|) defines a separator between groups of menu choices. A menu
choice immediately preceded by a tilde (~) is disabled (it appears dimmed
out in the popup menu). A menu choice immediately preceded by a plus sign
(+) appears with a check mark to its left in the popup menu. A menu choice
immediately followed by a set of choices contained within curly braces
(|SubMenu{{SubChoice 1|SubChoice 2}|) defines a sub-menu within the
popup menu (the two beginning curly braces are required by the compiler to
differentiate your sub-menu from a string repeat count).

Each menu selection is numbered in ascending sequence according to its
position within the selections string, beginning with one (1). Separators and
selections that call a sub-menu are not included in the numbering sequence
(which makes an EXECUTE structure the most efficient code structure to
use with this function). When the user CLICKS or presses ENTER on a choice,
the function terminates, returning the position number of the selected menu
item.

Return Data Type: SHORT



CHAPTER 7 WINDOW COMMANDS 7-45

Example:

PopupString = ‘First|+Second|Sub menu{{One|Two}|-|Third|~Disabled’
ToggleChecked = 1
ACCEPT
CASE EVENT()
OF EVENT:AlertKey
IF KEYCODE() = MouseRight
EXECUTE POPUP(PopupString)
FirstProc !Call proc for selection 1
BEGIN !Code to execute for toggle selection 2
IF ToggleChecked = 1 !Check toggle state
SecondProc(Off) !Call proc to turn off something
PopupString = ‘First|Second|Sub menu{{One|Two}|-|Third|~Disabled’

!Reset string so the check mark does not appear
ToggleChecked = 0 !Set toggle flag

ELSE
SecondProc(On) !Call proc to turn off something
PopupString = ‘First|+Second|Sub menu{{One|Two}|-|Third|~Disabled’

!Reset string so the check mark does appear
ToggleChecked = 1 !Set toggle flag

END
END !End Code to execute for toggle selection 2
OneProc !Call proc for selection 3
TwoProc !Call proc for selection 4
ThirdProc !Call proc for selection 5
DisabledProc !Selection 6 is dimmed so it cannot execute this procedure

END
END

END
END



7-46 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SELECTED (return control that has received focus)

SELECTED( )

The SELECTED function returns the field number of the control receiving
input focus when an EVENT:Selected event occurs. SELECTED returns
zero (0) for all other events.

Positive field numbers are assigned by the compiler to all WINDOW
controls, in the order their declarations occur in the WINDOW structure.
Negative field numbers are assigned to all APPLICATION controls. In
executable code statements, field numbers are usually represented by field
equate labels—the label of the USE variable preceded by a question mark
(?FieldName).

Return Data Type: SHORT

Example:

CASE SELECTED() !Process pre-edit code
OF ?Cus:Company
!Pre-load field value

OF ?Cus:CustType
!Pre-load field value

END

See Also: ACCEPT, SELECT



CHAPTER 7 WINDOW COMMANDS 7-47

KKKKKeyboareyboareyboareyboareyboard Pd Pd Pd Pd Prrrrrocedurocedurocedurocedurocedureseseseses

ALIAS (set alternate keycode)

ALIAS( [keycode,[new keycode] ] )

ALIAS Changes the keycode generated when the original key is
pressed.

keycode A numeric keycode or keycode EQUATE.  If both
parameters are omitted, all ALIASed keys are reset to
their original values.

new keycode A numeric keycode or keycode EQUATE.  If omitted,
the keycode is reset to its original value.

ALIAS  changes the keycode to generate the new keycode when the user
presses the original key. ALIAS does not affect keypresses generated by
PRESSKEY. The effect of ALIAS is global, throughout all execution
threads, no matter where the ALIAS statement executes. Therefore, to only
change the keycode locally, you must reset ALIASed keys when the window
loses focus.

Keycode values 0800h through 0FFFFh are unassigned and may be used as a
new keycode. The practical effect of this is to disable the original key if your
program does not test for the new keycode.

Example:

ALIAS(EnterKey,TabKey) !Allow user to press enter instead of tab
ALIAS(F3Key,F1Key) !Move help to F3
ALIAS !Clear all aliased keys

ASK (get one keystroke)

ASK

ASK reads a single keystroke from the keyboard buffer. Program execution
stops to wait for a keystroke. If there is already a keystroke in the keyboard
buffer, ASK gets one keystroke without waiting.

The ASK statement also allows any TIMER attribute events to generate and
cycle their own ACCEPT loop. This means any batch processing code can
allow other threads to execute their TIMER attribute tasks during the batch
process.

Example:

ASK !Wait for a keystroke
LOOP WHILE KEYBOARD() !Empty the keyboard buffer
ASK ! without processing keystrokes

END



7-48 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PRESS (put characters in the buffer)

PRESS(string)

PRESS Places characters in the keyboard input buffer.

string A string constant, variable, or expression.

PRESS places characters in the Windows keyboard input buffer. The entire
string is placed in the buffer. Once placed in the keyboard buffer, the string
is processed just as if the user had typed in the data.

Example:

IF LocalRequest = AddRecord !On the way into a memo on adding a record
TempString = FORMAT(TODAY(),@D1) & ‘ ‘ & FORMAT(CLOCK(),@T4)
PRESS(TempString) !Pre-load first line of memo with date and time

END

PRESSKEY (put a keystroke in the buffer)

PRESSKEY(keycode)

PRESSKEY Places one keystroke in the keyboard input buffer.

keycode An integer constant or keycode EQUATE label.

PRESSKEY places one keystroke in the Windows keyboard input buffer.
Once placed in the keyboard buffer, the keycode is processed just as if the
user had pressed the key. ALIAS does not transform a PRESSKEY keycode.

Example:

IF Action = ‘Add’ !On the way into a memo control on an add record
Cus:MemoControl = FORMAT(TODAY(),@D1) & ‘ ‘ & FORMAT(CLOCK(),@T4)

!Pre-load first line of memo with date and time
PRESSKEY(EnterKey) ! and position user on second line

END

SETKEYCODE (specify keycode)

SETKEYCODE(keycode)

SETKEYCODE Sets the keycode returned by the KEYCODE function.

keycode An integer constant or keycode EQUATE label.

SETKEYCODE  sets the internal keycode returned by the KEYCODE
function. The keycode is not put into the keyboard buffer.

Example:

SETKEYCODE(0800h) !Set up the keycode function to return 0800h

See Also: KEYCODE, Keycode Equate Labels



CHAPTER 7 WINDOW COMMANDS 7-49

KKKKKeyboareyboareyboareyboareyboard Fd Fd Fd Fd Functionsunctionsunctionsunctionsunctions

KEYBOARD (return keystroke waiting)

KEYBOARD( )

The KEYBOARD  function returns the keycode of the first keystroke in the
keyboard buffer. It is used to determine if there are keystrokes waiting to be
processed by an ASK or ACCEPT statement.

Return Data Type: LONG

Example:

LOOP UNTIL KEYBOARD() !Wait for any key
ASK
IF KEYCODE() = EscKey THEN BREAK. !On esc key, break the loop

END

See Also: ASK, ACCEPT, Keycode Equate Labels

KEYCHAR (return ASCII code)

KEYCHAR( )

The KEYCHAR  function returns the ASCII value of the last key pressed at
the time the event occurred.

Return Data Type: LONG

Example:

ACCEPT !Wait for an event
CASE KEYCHAR() !Process the last keystroke
OF ‘A’ TO ‘Z’ ! upper case?
DO ProcessUpper

OF ‘a’ TO ‘z’ ! lower case?
DO ProcesLower

END
END

See Also: ASK, ACCEPT, SELECT, Keycode Equate labels



7-50 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

KEYCODE (return last keycode)

KEYCODE( )

The KEYCODE  function returns the keycode of the last key pressed at the
time the event occurred, or the last keycode value set by the SETKEYCODE
procedure.

Return Data Type: LONG

Example:

ACCEPT !Loop on the display
CASE KEYCODE() !Process the keystroke
OF UpKey ! up arrow
DO GetRecordUp ! get a record

OF DownKey ! down arrow
DO GetRecordDn ! get a record

END
END

See Also: ASK, ACCEPT, SELECT, Keycode Equate labels

KEYSTATE (return keyboard status)

KEYSTATE( )

The KEYSTATE  function returns a bitmap containing the status of the
SHIFT, CTRL, ALT , any extended key, CAPS LOCK, NUM LOCK, SCROLL LOCK, and
INSERT keys for the last KEYCODE function return value.  The bitmap is
contained in the high-order byte of the returned SHORT.

x . . . . . . . insert key (8000h)
. x . . . . . . scroll lock (4000h)
. . x . . . . . num lock (2000h)
. . . x . . . . caps lock (1000h)
. . . . x . . . extended (0800h)
. . . . . x . . alt (0400h)
. . . . . . x . ctrl (0200h)
. . . . . . . x shift (0100h)

Return Data Type: SHORT

Example:

ACCEPT !Loop on the display
CASE KEYCODE() !Process the keystroke
OF EnterKey ! up arrow
IF BAND(KEYSTATE(),0800h) !Detect enter on numeric keypad
PRESSKEY(TabKey) ! press tab for the user

END
END

END

See Also: KEYCODE, BAND



CHAPTER 7 WINDOW COMMANDS 7-51

WindoWindoWindoWindoWindows Standarws Standarws Standarws Standarws Standard Dialog Fd Dialog Fd Dialog Fd Dialog Fd Dialog Functionsunctionsunctionsunctionsunctions

COLORDIALOG (return chosen color)

COLORDIALOG(  [title] [,rgb] )

COLORDIALOG Displays the Windows standard color choice dialog box
to allow the user to choose a color.

title A string constant or variable containing the title to place
on the color choice dialog. If omitted, a default title is
supplied by Windows.

rgb A LONG integer variable to receive the selected color.

The COLORDIALOG  function displays the Windows standard color
choice dialog box and returns the color chosen by the user in the rgb
parameter. Any existing value in the rgb parameter sets the default color
choice presented to the user in the color choice dialog.

COLORDIALOG returns zero (0) if the user pressed the Cancel button, or
one (1) if the user pressed the Ok button on the color choice dialog.

Return Data Type: SHORT

Example:

MDIChild1 WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END

ColorNow LONG

CODE
IF NOT COLORDIALOG(‘Choose Box Color’,ColorNow)
ColorNow = 000000FFh !Default to Blue if user pressed Cancel

END
OPEN(MDIChild1)
BOX(100,50,100,50,ColorNow) !User-defined color for box



7-52 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FILEDIALOG (return chosen file)

FILEDIALOG(  [title] [,file] [,extensions] [,flag] )

FILEDIALOG Displays the Windows standard file choice dialog box to
allow the user to choose a file.

title A string constant or variable containing the title to place
on the file choice dialog. If omitted, a default title is
supplied by Windows.

file A string variable to receive the selected filename.

extensions A string constant or variable containing the available file
extension selections for the List Files of Type drop list.
If omitted, the default is all files (*.*).

flag An integer constant or variable to indicate type of file
action to perform. If omitted, or zero (0), the Open...
dialog is displayed and the user is warned if the file they
choose does not exist (the file is not automatically
opened). If one (1), the Save... dialog is displayed and
the user is warned if the file does exist (the file is not
automatically saved).

The FILEDIALOG  function displays the Windows standard file choice
dialog box and returns the file chosen by the user in the file parameter. Any
existing value in the file parameter sets the default file choice presented to
the user in the file choice dialog.

The extensions parameter string must contain a description followed by the
file mask. All elements in the string must be delimited by the vertical bar (|)
character. For example, the extensions string ‘All Files | *.* | Clarion Source
| *.CLW’ defines two selections for the List Files of Type drop list. The first
extension listed in the extensions string is the default.

FILEDIALOG returns zero (0) if the user pressed the Cancel button, or one
(1) if the user pressed the Ok button on the file choice dialog.

Return Data Type: SHORT



CHAPTER 7 WINDOW COMMANDS 7-53

Example:

ViewTextFile PROCEDURE

ViewQue  QUEUE !LIST control display queue
STRING(255)

END

FileName STRING(64),STATIC !Filename variable

ViewFile FILE,DRIVER(‘ASCII’),NAME(FileName),PRE(Vew)
Record RECORD

STRING(255)
END

END

MDIChild1 WINDOW(‘View Text File’),AT(0,0,320,200),MDI,SYSTEM,HVSCROLL
 LIST,AT(0,0,320,200),USE(?L1),FROM(ViewQue),HVSCROLL

 END

CODE
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’Text|*.TXT|Source|*.CLW’,0)
RETURN !Return if no file chosen

END
OPEN(ViewFile) !Open the file
IF ERRORCODE() THEN RETURN. ! aborting on any error

SET(ViewFile) !Start at top of file
LOOP
NEXT(ViewFile) !Reading each line of text
IF ERRORCODE() THEN BREAK. !Break loop at end of file

ViewQue = Vew:Record !Assign text to queue
ADD(ViewQue) ! and add a queue entry

END
CLOSE(ViewFile) !Close the file
OPEN(MDIChild1) ! and open the window
ACCEPT !Allow the user to read the text and
END ! break out of ACCEPT loop only from

! system menu close option
FREE(ViewQue) !Free the queue memory
RETURN ! and return to caller



7-54 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FONTDIALOG (return chosen font)

FONTDIALOG( [title] [,typeface] [,size] [,color] [,style])

FONTDIALOG Displays the standard Windows font choice dialog box to
allow the user to choose a font.

title A string constant or variable containing the title to place
on the font choice dialog. If omitted, a default title is
supplied by Windows.

typeface A string variable to receive the name of the chosen font.

size An integer variable to receive the size (in points) of the
chosen font.

color A LONG integer variable to receive the red, green, and
blue values for the color of the chosen font in the low-
order three bytes.

style An integer variable to receive the strike weight and style
of the chosen font.

The FONTDIALOG  function displays the Windows standard font choice
dialog box to allow the user to choose a font. When called, any values in the
parameters set the default font values presented to the user in the font choice
dialog. They also receive the user’s choice when the user presses the Ok
button on the dialog.

FONTDIALOG returns zero (0) if the user pressed the Cancel button, or one
(1) if the user pressed the Ok button.

Return Data Type:  SHORT

Example:

MDIChild1 WINDOW(‘View Text File’),AT(0,0,320,200),MDI,SYSTEM,HVSCROLL
!window controls

END
Typeface STRING(20)
FontSize LONG
FontColor LONG
FontStyle LONG
CODE
OPEN(MDIChild1) !open the window
IF FONTDIALOG(‘Choose Display Font’,Typeface,FontSize,FontColor,FontStyle)
SETFONT(0,Typeface,FontSize,FontColor,FontStyle) !Set window font

ELSE
SETFONT(0,’Arial’,12) !Set default font

END
ACCEPT
!Window handling code

END



CHAPTER 7 WINDOW COMMANDS 7-55

PRINTERDIALOG (return chosen printer)

PRINTERDIALOG(  [title] [,flag] )

PRINTERDIALOG
Displays the Windows standard printer choice dialog box
to allow the user to choose a file.

title A string constant or variable containing the title to place
on the file choice dialog. If omitted, a default title is
supplied by Windows.

flag A numeric constant or variable which, if non-zero,
displays the Print Setup dialog instead of the printer
choice dialog. This is the same dialog as called by
placing STD:PrintSetup in the STD attribute of a menu
item.

The PRINTERDIALOG  function displays the Windows standard printer
choice dialog box (or the Print Setup dialog) and returns the printer chosen
by the user in the PRINTER “built-in” variable in the internal library. This
sets the default printer used for the next REPORT opened.

PRINTERDIALOG returns zero (0) if the user pressed the Cancel button, or
one (1) if the user pressed the Ok button on the dialog.

Return Data Type: SHORT

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS,FONT(‘Arial’,12),PRE(Rpt)
!Report structures and controls

END

CODE
IF NOT PRINTERDIALOG(‘Choose Printer’)
RETURN !Abort if user pressed Cancel

END
OPEN(CustRpt)



7-56 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Drag and DrDrag and DrDrag and DrDrag and DrDrag and Drop Pop Pop Pop Pop Prrrrrocessingocessingocessingocessingocessing
Drag-and-drop is a very powerful Windows tool that allows a user to copy or
move data from one control to another (or even within the same control).
These controls may be in the same window, separate windows in the same
application, or even separately executing Clarion applications.

Implementing drag-and-drop in a Clarion application involves two
processes:

       • Specifying drag host and drop target controls.

       • Performing the data exchange when the user initiates
drag-and-drop by handling the drag-and-drop events.

To specify a drag host, you place the DRAGID attribute on a LIST or
REGION control with a set of “signatures” that verify valid drop targets for
the data. To specify a drop target, you place the DROPID attribute on a
control to list the set of valid drag “signatures” from which the control will
accept data. Drag-and-drop operations only occur between controls with
matching “signatures” in their respective DRAGID and DROPID attributes.

A successful drag-and-drop operation occurs when the user drags
information from a control with the DRAGID attribute to a control with the
DROPID attribute and both controls have at least one identical signature
string in their respective DRAGID and DROPID attributes. When the user
initiates drag-and-drop, EVENT:Dragging is posted to the host control
whenever the mouse is over a potential target control (valid or not).
EVENT:Drag is posted to the host control when the user releases the mouse
button over a potential target control (valid or not). EVENT:Drop is posted
to the target control only if it is a valid match.

The DRAGID() function detects the successful drop. The DROPID()
function can also detect a successful drop, or can pass the exchanged data as
a string, if its value is set by the SETDROPID procedure. The actual data
exchange between the controls can be accomplished several ways:

       • If the two controls are in the same window, you can
exchange data using local or global variables, the
DROPID function can exchange the data, or you can use
the Windows clipboard.

       • If the two controls are in the same application, you can
exchange data using global variables, the DROPID
function can exchange the data, or you can use the
Windows clipboard.

       • If the controls are in separate Clarion applications, you
must use SETDROPID to have the DROPID function
exchange the data, or use the Windows clipboard.



CHAPTER 7 WINDOW COMMANDS 7-57

You can copy or move the data to the target control, depending upon how
you write the data exchange code. Also, you should write the data exchange
code for the most difficult coding circumstance. Therefore, if the drag host
might be an external program’s control, you could pass the data through the
DROPID() function (using SETDROPID), or through the Windows
clipboard. If the drag host could be a control in any window within the
program, you should either pass the data through the DROPID() function, or
use global variables. Only for those instances where the drag host and drop
target are always going to be in the same procedure should you use local
variables.



7-58 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CLIPBOARD (return windows clipboard contents)

CLIPBOARD( )

The CLIPBOARD  function returns the current contents of the windows
clipboard.

Return Data Type:  STRING

Example:

Que1 QUEUE
STRING(30)

END

Que2 QUEUE
STRING(30)

END

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(‘List1’)

!Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(‘List1’,’~FILE’)

!Allows drops from List1, but no drags
END

CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETCLIPBOARD(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = CLIPBOARD() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also: SETCLIPBOARD



CHAPTER 7 WINDOW COMMANDS 7-59

DRAGID (return matching drag-and-drop signature)

DRAGID( [thread] [, control] )

DRAGID Returns matching host and target signatures on a suc-
cessful drag-and-drop operation.

thread The label of a numeric variable to receive the thread
number of the host control. If the host control is in an
external program, thread receives zero (0).

control The label of a numeric variable to receive the field
equate label of the host control.

The DRAGID  function returns the matching host and target control
signatures on a successful drag-and-drop operation. If the user aborted the
operation, DRAGID returns an empty string (‘’), otherwise it returns the first
signature that matched between the two controls.

Return Data Type:  STRING

Example:

Que1 QUEUE
STRING(30)

END
Que2 QUEUE

STRING(30)
END

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(‘List1’)

!Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(‘List1’)

!Allows drops from List1, but no drags
END

CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also: DROPID, SETDROPID



7-60 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DROPID (return drag-and-drop string)

DROPID( [thread] [, control] )

DROPID Returns matching host and target signatures on a suc-
cessful drag-and-drop operation.

thread The label of a numeric variable to receive the thread
number of the target control. If the target control is in an
external program, thread receives zero (0).

control The label of a numeric variable to receive the field
equate label of the target control.

The DROPID  function returns the matching host and target control
signatures on a successful drag-and-drop operation (just as DRAGID does),
or the specific string set by the SETDROPID procedure. The DROPID
function returns a comma-delimited list of filenames dragged from the
Windows File Manager when ‘~FILE’ is the DROPID attribute.

Return Data Type:  STRING

Example:

DragDrop    PROCEDURE
Que1 QUEUE

STRING(90)
END

Que2 QUEUE
STRING(90)

END
WinOne WINDOW('Test Drag Drop'),AT(10,10,240,320),SYSTEM,MDI

LIST,AT(12,0,200,80),USE(?List1),FROM(Que1),DRAGID('List1')
!Allows drags, but not drops

LIST,AT(12,120,200,80),USE(?List2),FROM(Que2),DROPID('List1','~FILE')
!Allows drops from List1 or the Windows File Manager,

END ! but no drags
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
GET(Que1,CHOICE())
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
IF INSTRING(',',DROPID(),1,1) !Check for multiple files from File Manager
Que2 = SUB(DROPID(),1,INSTRING(',',DROPID(),1,1)-1) ! and only get first
ADD(Que2) ! and add it to the queue

ELSE
  Que2 = DROPID() ! get dropped info, from List1 or File Manager
  ADD(Que2) ! and add it to the queue
END

END
END

See Also: DRAGID, SETDROPID



CHAPTER 7 WINDOW COMMANDS 7-61

SETCLIPBOARD (set windows clipboard contents)

SETCLIPBOARD( string )

SETCLIPBOARD Puts information in the Windows clipboard.

string A string constant or variable containing the information
to place in the Windows clipboard.

The SETCLIPBOARD  procedure places the contents of the string into the
Windows clipboard, overwriting any previous contents.

Example:

Que1 QUEUE
STRING(30)

END
Que2 QUEUE

STRING(30)
END

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(‘List1’)

!Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(‘List1’)

!Allows drops from List1, but no drags
END

CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETCLIPBOARD(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = CLIPBOARD() ! get dropped info
ADD(Que2) ! and add it to the queue

END
END

See Also: CLIPBOARD



7-62 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SETDROPID (set DROPID return string)

SETDROPID( string )

SETDROPID Sets the DROPID function’s return value.

string A string constant or variable containing the value the
DROPID function will return.

The SETDROPID procedure sets the DROPID function’s return value. This
allows the DROPID function to pass the data in a drag-and-drop operation.
When drag-and-drop operations are performed between separate Clarion
applications, this is the mechanism to use to pass the data.

Example:

Que1 QUEUE
STRING(30)

END
Que2 QUEUE

STRING(30)
END

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?List1),FROM(Que1),DRAGID(‘List1’)

!Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(‘List1’)

!Allows drops from List1 or the Windows File Manager,
! but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag !When a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Que1) ! and setup info to pass

END
OF EVENT:Drop !When drop event is successful
Que2 = DROPID() ! get dropped info, from List1 or File Manager
ADD(Que2) ! and add it to the queue

END
END

See Also: DRAGID, DROPID



CHAPTER 7 WINDOW COMMANDS 7-63

Maintaining INI FilesMaintaining INI FilesMaintaining INI FilesMaintaining INI FilesMaintaining INI Files

GETINI (return INI file entry)

GETINI( section ,entry [,default] [,file] )

GETINI Returns the value for an INI file entry.

section A string constant or variable containing the name of the
portion of the INI file which contains the entry.

entry A string constant or variable containing the name of the
specific setting for which to return the value.

default A string constant or variable containing the default value
to return if the entry does not exist. If omitted and the
entry does not exist, GETINI returns an empty string.

file A string constant or variable containing the name of the
INI file to search (looks for the file in the Windows
directory unless a full path is specified). If omitted,
GETINI searches the WIN.INI file.

The GETINI  function returns the value of an entry in a Windows-standard
INI file. A Windows-standard INI file is an ASCII text file with the
following format:

[some section name]
entry=value
next entry=another value

For example, WIN.INI contains entries such as:

[intl]
sLanguage=enu
sCountry=United States
iCountry=1

The GETINI function searches the specified file for the entry within the
section you specify. It returns everything on the entry’s line of text that
appears to the right of the equal sign (=).

Return Data Type: STRING

Example:

Value STRING(30)
CODE
Value = GETINI(‘intl’,’sLanguage’) !Get the language entry

See Also: PUTINI



7-64 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PUTINI (set INI file entry)

PUTINI( section ,entry [,value] [,file] )

PUTINI Sets the value for an INI file entry.

section A string constant or variable containing the name of the
portion of the INI file which contains the entry.

entry A string constant or variable containing the name of the
specific entry to set.

value A string constant or variable containing the setting to
place in the entry. An empty string (‘’) leaves the entry
empty. If omitted, the entry is deleted.

file A string constant or variable containing the name of the
INI file to search (looks for the file in the Windows
directory unless a full path is specified). If omitted,
PUTINI places the entry in the WIN.INI file.

The PUTINI  procedure places the value into an entry in a Windows-
standard .INI file. A Windows-standard .INI file is an ASCII text file with
the following format:

[some section name]
entry=value
next entry=another value

For example, WIN.INI contains entries such as:

[windows]
spooler=yes
load=nwpopup.exe
[intl]
sLanguage=enu
sCountry=United States
iCountry=1

The PUTINI function searches the specified file for the entry within the
section you specify. It replaces the current entry value with the value you
specify. If necessary, the section and entry are created.

Example:

CODE
PUTINI(‘MyApp’,’SomeSetting’,’Initialized’) !Place setting in WIN.INI
PUTINI(‘MyApp’,’ASetting’,’2’,’MYAPP.INI’) !Place setting in MYAPP.INI

See Also: GETINI



CHAPTER 8 REPORTS 8-1

ReporReporReporReporReports in Windots in Windots in Windots in Windots in Windowswswswsws
Clarion for Windows reports use a page-based printing paradigm instead of a
line-based paradigm. Instead of printing each line as it’s values are
generated, nothing is sent to the printer until an entire page is ready to print.
This means that the ”print engine” in the Clarion runtime library can do a lot
of work for you, based on the attributes you specify in the REPORT
structure.

Some of the things that the “print engine” in the Clarion runtime library
does for you are:

     • Prints “pre-printed” forms on each page, that are then
filled in by the data

     • Calculates totals (count, sum, average, minimum,
maximum)

     • Provides automatic page break handling, including page
headers and footers

     • Provides automatic group break handling, including
group headers and footers

     • Provides complete widow/orphan control.

This automatic functionality makes the executable code required to print a
complex report very small, making your programming job easier.

Since the “print engine” is page-based, the concepts of headers and footers
lose their context indicating both page positioning and print sequence, and
only retain their meaning of print sequence. Headers are printed at the
beginning of a print sequence, and footers are printed at the end—their
actual positioning on the page is irrelevant. For example, you could position
the page footer, containing page totals, to print at the top of the page.

Page Overflow

Page Overflow occurs when the PRINT statement cannot fit a DETAIL
structure on a page. This may be due to a lack of space, or the presence of
the PAGEBEFORE or PAGEAFTER attribute on a DETAIL structure. The
following steps occur during page overflow, in this sequence:

       1 If the REPORT has a page FOOTER, it is printed at the
position specified by its AT attribute.

       2 The page counter is incremented.

       3 If the REPORT has a FORM structure, it is printed at
the position specified by its AT attribute.

       4 If the REPORT has a page HEADER, it is printed at the
position specified by its AT attribute.



8-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ReporReporReporReporReport Structurt Structurt Structurt Structurt Structureeeee

REPORT (declare a report structure)

label REPORT([jobname]), AT( ) [, FONT( )] [, PRE( )] [, LANDSCAPE ] [, PREVIEW] [, PAPER]
[ |  THOUS | ]

| MM |
| POINTS |

[FORM
    controls
 END ]
[HEADER
    controls
 END ]

label  DETAIL
    controls
 END

label [BREAK( )
    group break structures
 END ]
[FOOTER
    controls
 END ]

END

REPORT Declares the beginning of a report data structure.

label The name by which the structure is addressed in execut-
able code.

jobname Names the print job for the Windows Print Manager. If
omitted, the REPORT’s label is used.

AT Specifies the size and location, relative to the top left
corner of the page, of the area devoted to printing report
detail.

FONT Specifies the default font for all controls in this report. If
omitted, the printer’s default font is used.

PRE Specifies the label prefix for the report or structure.

LANDSCAPE Specifies printing in landscape mode. If omitted, print-
ing defaults to portrait mode.

PREVIEW Specifies report output to Windows metafiles (.WMF);
one file per report page.

PAPER Specifies the paper size for the report output. If omitted,
the default printer’s paper size is used.

THOUS Specifies thousandths of an inch as the measurement
unit used for all attributes which use coordinates.

MM Specifies millimeters as the measurement unit used for
all attributes which use coordinates.



CHAPTER 8 REPORTS 8-3

POINTS Specifies points as the measurement unit used for all
attributes which use coordinates. There are 72 points per
inch, vertically and horizontally.

FORM Page layout structure defining pre-printed items on every
page.

controls Report output controls.

HEADER Page header structure, printed at the beginning of each
page.

DETAIL Report detail structure.

BREAK A group break structure, defining the variable which
causes a group break to occur when its value changes.

group break structures
Group break HEADER, FOOTER, and DETAIL struc-
tures, and/or other nested BREAK structures.

FOOTER Page footer structure, printed at the end of each page.

The REPORT statement declares the beginning of a report data structure. A
REPORT structure must be terminated with a period or END statement.
Within the REPORT, the FORM, HEADER, DETAIL, FOOTER, and
BREAK structures are the components that format the output of the report.
A REPORT must be explicitly opened with the OPEN statement.

A REPORT with the PREVIEW attribute sends the report output to
Windows metafiles (.WMF) containing one report page per file. The
PREVIEW attribute names a QUEUE to receive the names of the metafiles.
You can then create a window to display the report in an IMAGE control,
using the QUEUE field contents (the file names) to set the IMAGE control’s
{PROP:text} property. This allows the end user to view the report before
printing.

Only DETAIL structures can (and must) be printed with the PRINT
statement. All other report structures (HEADER, FOOTER, and FORM) are
automatically printed for you at the appropriate place in the report.

The REPORT’s AT attribute defines the area of each page devoted to
printing DETAIL structures. This includes any HEADERs and FOOTERs
that are contained within a BREAK structure (group headers and footers).

The FORM structure is printed on every page except pages containing
DETAIL structures with the ALONE attribute. Its format is determined once
at the beginning of the report. This makes it the logical place to design a
pre-printed form template, which is filled in by the subsequent HEADER,
DETAIL, and FOOTER structures.

The page HEADER and FOOTER structures are not within a BREAK
structure. They are automatically printed whenever a page break occurs.



8-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The BREAK structure defines a group break. It may contain its own
HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK
structures. It may also contain multiple DETAIL structures. The HEADER
and FOOTER structures that are within a BREAK structure are the group
header and footer. They are automatically printed when the value in a
specified group break variable changes.

A REPORT data structure never defaults as the current target for runtime
property assignment the way the most recently opened WINDOW or
APPLICATION structure does. Therefore, the REPORT label must be
explicitly named as the target, or the SETTARGET statement must be used
to make the REPORT the current target, before using runtime property
assignment to a REPORT control. Since the graphics commands draw
graphics only to the current target, the SETTARGET statement must be used
to make the REPORT the current target before using the graphics functions
on a REPORT.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS,FONT(‘Arial’,12),PRE(Rpt)
FORM,AT(1000,1000,6500,9000)
IMAGE(‘LOGO.BMP’),AT(0,0,1200,1200),USE(?I1)
STRING(@n3),AT(6000,500,500,500),PAGENO

END
HEADER,AT(1000,1000,6500,1000)
STRING(‘ABC Company’),AT(3000,500,1500,500),FONT(‘Arial’,18)

END
Break1 BREAK(Pre:Key1)

HEADER,AT(0,0,6500,1000)
STRING(‘Group Head’),AT(3000,500,1500,500),FONT(‘Arial’,18)

END
Detail DETAIL,AT(0,0,6500,1000)

STRING(@N$11.2'),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000)
STRING(‘Group Total:’),AT(5500,500,1500,500)
STRING(@N$11.2'),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Break1)

END
END
FOOTER,AT(1000,1000,6500,1000)
STRING(‘Page Total:’),AT(5500,1500,1500,500)
STRING(@N$11.2'),AT(6000,1500,500,500),USE(Pre:F1),SUM,PAGE

END
END !End report declaration

CODE
OPEN(CustReport)
SET(DataFile)
LOOP
NEXT(DataFile)
IF ERRORCODE() THEN BREAK.

PRINT(Rpt:Detail)
END
CLOSE(CustReport)



CHAPTER 8 REPORTS 8-5

AT (set detail print area)

AT([x] [,y] [,width] [,height])

AT Defines the position and size of the area of the page
devoted to printing report detail.

x An integer constant or constant expression that specifies
the horizontal position of the top left corner of the detail
area.

y An integer constant or constant expression that specifies
the vertical position of the top left corner of the detail
area.

width An integer constant or constant expression that specifies
the width of the detail area.

height An integer constant or constant expression that specifies
the height of the detail area.

The AT  attribute on a REPORT structure defines the position and size of the
area of the page devoted to printing report detail. This includes the area to
print all DETAIL structures and any group HEADER and FOOTER
structures contained within BREAK structures.

The values contained in the x, y, width, and height parameters default to
dialog units unless the THOUS, MM, or POINTS attribute is also present.
Dialog units are defined as one-quarter the average character width by one-
eighth the average character height. The size of a dialog unit is dependent
upon the size of the default font for the report. This measurement is based
on the font specified in the FONT attribute of the report, or the printer’s
system default font.

Example:

CustRpt1 REPORT,AT(1000,1000,6500,9000),THOUS !1" margins all around for detail
! area on 8.5" x 11" paper

!report declarations
END

CustRpt2 REPORT,AT(72,72,468,648),POINTS !1" margins all around for detail
! area on 8.5" x 11" paper

!report declarations
END



8-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FONT (set report default f ont)

FONT([typeface] [,size] [,color] [,style])

FONT Specifies the default print font.

typeface A string constant containing the name of the font. If
omitted, the printer’s default font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the printer’s default font size is used.

color A LONG integer constant containing the red, green, and
blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, black is used.

style An integer constant or constant expression or EQUATE
specifying the strike weight and style of the font. If
omitted, the weight is normal.

The FONT attribute on a REPORT structure specifies the default print font
for all controls in the REPORT. This font is used when the control does not
have a FONT attribute or its own, and the print structure it is in also has no
FONT attribute.

The typeface may name any font registered in the Windows system which
the printer driver supports. This includes the TrueType fonts for most
printers. The EQUATES.CLW file contains EQUATE values for standard
style values. A style on the range zero (0) to one thousand (1000) specifies
the strike weight of the font. You may add to that values that indicate italic,
underline, or strikeout text. The following EQUATES are in
EQUATES.CLW:

  FONT:thin EQUATE (100)
  FONT:regular EQUATE (400)
  FONT:bold EQUATE (700)
  FONT:italic EQUATE (01000H)
  FONT:underline EQUATE (02000H)
  FONT:strikeout EQUATE (04000H)

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS, |
FONT(‘Arial’,12,,FONT:Bold+FONT:Italic)

!report declarations
END



CHAPTER 8 REPORTS 8-7

PRE (set report label prefix)

PRE( [ prefix ] )

PRE Provides a label prefix for structures in the report.

prefix A string constant containing the prefix for labels within
the REPORT. Acceptable characters are alphabet letters,
numerals 0 through 9, and the underscore character. A
prefix must start with an alphabet character and must not
be a reserved word. By convention, a prefix is 1-3
characters, although it can be longer.

The PRE attribute on a REPORT provides a label prefix for DETAIL and
BREAK structures. It is used to distinguish between identical names that
occur in different structures. When referenced in executable statements, the
prefix is attached to a label by a colon (Pre:Label). You can also use the
Field Qualification syntax to reference DETAIL and BREAK strutcures.

Example:

Report REPORT,PRE(‘Rpt’)
DetailOne DETAIL !Always referenced as Rpt:DetailOne

!Report controls
END ! in executable code

END

See Also: Reserved Words



8-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PREVIEW (set report output to metafiles)

PREVIEW(queue)

PREVIEW Specifies report output goes to Windows metafiles
(.WMF) containing one report page per file.

queue The label of a QUEUE or a field in a QUEUE to receive
the names of the metafiles.

The PREVIEW  attribute on a REPORT sends the report output to Windows
metafiles (.WMF) containing one report page per file. The PREVIEW
attribute names a queue to receive the names of the metafiles. The filenames
are temporary filenames internally created by the Clarion library and are
complete file specifications (up to 64 characters, including drive and path).
These temporary files are deleted from disk when you CLOSE the REPORT.

You can create a window to display the report in an IMAGE control, using
the queue containing the file names to set the IMAGE control’s {PROP:text}
property. This allows the end user to view the report before printing. A
runtime-only property, {PROP:flushpreview}, when set to ON, flushes the
metafiles to the printer.



CHAPTER 8 REPORTS 8-9

Example:

SomeReport PROCEDURE

WMFQue QUEUE !Queue to contain .WMF filenames
STRING(64)

END

NextEntry  BYTE(1) !Queue entry counter variable

Report REPORT,PREVIEW(WMFQue) !Report with PREVIEW attribute
DetailOne DETAIL

!Report controls
END

 END

ViewReport WINDOW(‘View Report’),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(‘’),AT(0,0,320,180),USE(?ImageField)
BUTTON(‘View Next Page’),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON(‘Print Report’),AT(80,180,60,20),USE(?PrintReport)
BUTTON(‘Exit Without Printing’),AT(160,180,60,20),USE(?ExitReport)

END

CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report
LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

PRINT(DetailOne)
END
ENDPAGE(Report)
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) THEN CYCLE. !Check for end of report
GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue !Load next report page
DISPLAY ! and display it

OF ?PrintReport
Report{PROP:flushpreview} = ON !Flush files to printer
BREAK ! and exit procedure

OF ?ExitReport
BREAK !Exit procedure

END
END
CLOSE(ViewReport) !Close window
FREE(WMFQue) !Free the queue memory
CLOSE(Report) !Close report (deleting all .WMF files)
RETURN ! and return to caller



8-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PAPER (set report paper size)

PAPER( [type] [,width] [,height])

PAPER Defines the paper size for the report.

type An integer constant or EQUATE that specifies a standard
Windows paper size. EQUATES for these are contained
in the EQUATES.CLW file.

width An integer constant or constant expression that specifies
the width of the paper.

height An integer constant or constant expression that specifies
the height of the paper.

The PAPER attribute on a REPORT structure defines the paper size for the
report. The width and height parameters are only required when
PAPER:Custom is selected as the type.

The values contained in the width, and height parameters default to dialog
units unless the THOUS, MM, or POINTS attribute is also present. Dialog
units are defined as one-quarter the average character width by one-eighth
the average character height. The size of a dialog unit is dependent upon the
size of the default font for the report. This measurement is based on the font
specified in the FONT attribute of the report, or the printer’s default font.

Example:

CustRpt1 REPORT,AT(1000,1000,6500,9000),THOUS,PAPER(PAPER:Custom,8500,7000)
! print on 8.5" x 7" paper

!report declarations
END

CustRpt2 REPORT,AT(72,72,468,648),POINTS,PAPER(PAPER:A4)
! print on A4 size paper

!report declarations
END



CHAPTER 8 REPORTS 8-11

LANDSCAPE (set page orientation)

LANDSCAPE

The LANDSCAPE attribute on a REPORT indicates the report is to print in
landscape mode by default. If the LANDSCAPE attribute is omitted,
printing defaults to portrait mode.

Example:

Report REPORT,PRE(‘Rpt’),LANDSCAPE !Defaults to landscape mode
!Report structure declarations

END

THOUS, MM, POINTS (set report coordinate measure)

THOUS
MM
POINTS

The THOUS, MM , and POINTS attributes specify the coordinate measures
used to position controls on the REPORT.

THOUS specifies thousandths of an inch, MM  specifies millimeters, and
POINTS specifies points (there are seventy-two points per inch, both
vertically and horizontally).

If all these attributes are omitted, the measurements default to dialog units.
Dialog units are defined as one-quarter the average character width by one-
eighth the average character height. The size of a dialog unit is dependent
upon the size of the default font for the report. This measurement is based
on the font specified in the FONT attribute of the REPORT, or the system
default font specified by Windows.



8-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PPPPPrint Structurrint Structurrint Structurrint Structurrint Structureseseseses

BREAK (declare group break structure)

label BREAK( variable)
group break structures

END

BREAK Declares a group break structure.

label The name by which the structure is addressed in execut-
able code.

variable The variable whose change in value signals the group
break.

group break structures
Group break HEADER, FOOTER, and DETAIL struc-
tures, and/or other nested BREAK structures.

The BREAK  structure declares the variable which signals a group break
when the value in the variable changes. A BREAK structure must be
terminated with a period or END statement. It may contain its own
HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK
structures. Only one HEADER and FOOTER are allowed in a BREAK
structure; it may contain multiple DETAIL and/or BREAK structures.

The HEADER and FOOTER structures that are within a BREAK structure
are the group header and footer. They are automatically printed when the
value in the group break variable changes.

Example:

CustRpt REPORT !Declare customer report
Break1 BREAK(SomeVariable)

HEADER ! begin group header declaration
!report controls

END ! end header declaration
GroupDet DETAIL

!report controls
END ! end detail declaration
FOOTER ! begin group footer declaration
!report controls

END ! end footer declaration
END ! end group break declaration

END !End report declaration



CHAPTER 8 REPORTS 8-13

DETAIL (report detail line structure)

label DETAIL  ,AT( ) [,FONT( )] [,ALONE ] [,ABSOLUTE ] [,PAGEBEFORE( )] [,PAGEAFTER( ) ]
[,WITHPRIOR( )] [,WITHNEXT( )] [,USE( )]

    controls
END

DETAIL Declares items to be printed as the body of the report.

label The name by which the structure is addressed in execut-
able code.

AT Specifies the offset and minimum width and height of
the DETAIL, relative to the size of the area specified by
the REPORT’s AT attribute.

FONT Specifies the default font for all controls in this struc-
ture. If omitted, the REPORT’s FONT attribute (if
present) is used, or else the printer’s default font is used.

ALONE Declares the DETAIL structure must be printed on a
page without FORM, (page) HEADER, or (page)
FOOTER structures.

ABSOLUTE Declares the DETAIL prints at a fixed position relative
to the page.

PAGEBEFORE Declares the DETAIL prints at the start of a new page,
after normal page overflow actions.

PAGEAFTER Declares the DETAIL prints, and then starts a new page
by activating normal page overflow actions.

WITHPRIOR Declares the DETAIL prints on the same page as the
DETAIL, group HEADER, or FOOTER that immedi-
ately precedes it.

WITHNEXT Declares the DETAIL prints on the same page as the
DETAIL, group HEADER, or FOOTER that immedi-
ately follows it.

USE A field equate label to reference the DETAIL structure in
executable code.

controls Report output control fields.

The DETAIL  structure declares items to be printed as the body of the
report. A DETAIL structure must be terminated with a period or END
statement. A REPORT may have multiple DETAIL structures.

A DETAIL structure is never automatically printed, therefore DETAIL
structures are always explicitly printed by the PRINT statement. This means
that a label is required for each DETAIL you wish to PRINT.

The DETAIL structure may be printed whenever necessary. Since you may
have multiple DETAIL structures, they provide the ability to optionally print



8-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

alternate print formats. This is determined by the logic in the executable
code which prints the report.

Example:

CustRpt REPORT !Declare customer report
HEADER ! begin page header declaration
!structure elements

END ! end header declaration
CustDetail1 DETAIL ! begin detail declaration

!structure elements
END ! end detail declaration

CustDetail2 DETAIL ! begin detail declaration
!structure elements

END ! end detail declaration
END !End report declaration

CODE
OPEN(CustRpt)
SET(SomeFile)
LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

IF SomeCondition
PRINT(CustDetail1)

ELSE
PRINT(CustDetail2)

END
END
CLOSE(CustRpt)

See Also: PRINT



CHAPTER 8 REPORTS 8-15

FOOTER (page or group footer structure)

FOOTER ,AT( ) [,FONT( )] [,ABSOLUTE ] [,PAGEBEFORE( ) ] [,PAGEAFTER( ) ]
[,WITHPRIOR( )] [,WITHNEXT( )] [,ALONE] [,USE( )]

    controls
END

FOOTER Declares a page or group footer structure.

AT Specifies the size and location of the FOOTER.

FONT Specifies the default font for all controls in this struc-
ture. If omitted, the REPORT’s FONT attribute (if
present) is used, or else the printer’s default font is used.

ABSOLUTE Declares the FOOTER prints at a fixed position relative
to the page. Valid only on a FOOTER within a BREAK
structure (page FOOTER position is always fixed).

PAGEBEFORE Declares the FOOTER prints at the start of a new page,
after normal page overflow actions. Valid only on a
FOOTER within a BREAK structure.

PAGEAFTER Declares the FOOTER prints, and then starts a new page
by activating normal page overflow actions. Valid only
on a FOOTER within a BREAK structure.

WITHPRIOR Declares the FOOTER prints on the same page as the
DETAIL, group HEADER, or FOOTER that immedi-
ately precedes it. Valid only on a FOOTER within a
BREAK structure.

WITHNEXT Declares the FOOTER prints on the same page as the
DETAIL, group HEADER, or FOOTER that immedi-
ately follows it. Valid only on a FOOTER within a
BREAK structure.

ALONE Declares the (group) FOOTER structure must be printed
on a page without FORM, (page) HEADER, or (page)
FOOTER structures.

USE A field equate label to reference the FOOTER structure
in executable code.

controls Report output control fields.

The FOOTER  structure declares the output which prints at the end of each
page or group. A FOOTER structure must be terminated with a period or
END statement.

A FOOTER structure that is not within a BREAK structure is a page footer.
Only one page FOOTER is allowed in a REPORT. The page FOOTER is
automatically printed whenever a page break occurs, at the page-relative
position specified by its AT attribute.



8-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The BREAK structure defines a group break. It may contain its own
HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK
structures. It may also contain multiple DETAIL structures. The HEADER
and FOOTER structures that are within a BREAK structure are the group
header and footer. They are automatically printed when the value in a
specified group break variable changes, at the next position available in the
detail print area (specified by the REPORT’s AT attribute). Only one
FOOTER is allowed in a BREAK structure.

Example:

CustRpt REPORT !Declare customer report
FOOTER ! begin page FOOTER declaration
!report controls

END ! end FOOTER declaration
Break1 BREAK(SomeVariable)
GroupDet DETAIL

!report controls
END ! end detail declaration
FOOTER ! begin group footer declaration
!report controls

END ! end footer declaration
END ! end group break declaration

END !End report declaration



CHAPTER 8 REPORTS 8-17

FORM (page layout structure)

FORM ,AT( ) [,FONT( )] [,USE( )]
  controls
END

FORM Declares a report structure which prints on each page.

AT Specifies the size and location, relative to the top left
corner of the page, of the FORM.

FONT Specifies the default font for all controls in this report
structure. If omitted, the REPORT’s FONT attribute (if
present) is used, or else the printer’s default font is used.

USE A field equate label to reference the FORM structure in
executable code.

controls Report output control fields.

FORM  declares a report structure which prints on every page of the report
(except pages containing DETAIL structures with the ALONE attribute). A
FORM structure must be terminated with a period or END statement. Only
one FORM is allowed in a REPORT structure. The FORM structure
automatically prints during page overflow.

The printed output of the FORM is determined only once at the beginning of
the report. The page positioning of the FORM does not affect the page
positioning of any other report structure. Once printed, all other structures
may “overwrite” the FORM. Therefore, FORM is most aften used to design
pre-printed forms which are filled in by the subsequent HEADER, DETAIL,
and FOOTER structures. It may also be used to generate “watermarks” or
page border graphics.

Example:

CustRpt REPORT !Declare customer report
FORM
 IMAGE(‘LOGO.BMP’),AT(0,0,1200,1200),USE(?I1)
 STRING(@N3),AT(6000,500,500,500),PAGENO

END
GroupDet DETAIL

 !report controls
END

END !End report declaration



8-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

HEADER (page or group header structure)

HEADER ,AT( ) [,FONT( )] [,ABSOLUTE ] [,PAGEBEFORE( )] [,PAGEAFTER( ) ]
[,WITHPRIOR( )] [,WITHNEXT( )] [,ALONE] [,USE( )]

    controls
END

HEADER Declares a page or group header structure.

AT Specifies the size and location of the HEADER.

FONT Specifies the default font for all controls in this struc-
ture. If omitted, the REPORT’s FONT attribute (if
present) is used, or else the printer’s default font is used.

ABSOLUTE Declares the HEADER prints at a fixed position relative
to the page. Valid only on a HEADER within a BREAK
structure (page HEADER position is always fixed).

PAGEBEFORE Declares the HEADER prints at the start of a new page
after normal page overflow actions. Valid only on a
HEADER within a BREAK structure.

PAGEAFTER Declares the HEADER prints, and then starts a new page
by activating normal page overflow actions. Valid only
on a HEADER within a BREAK structure.

WITHPRIOR Declares the HEADER prints on the same page as the
DETAIL, group HEADER, or FOOTER that immedi-
ately precedes it. Valid only on a HEADER within a
BREAK structure.

WITHNEXT Declares the HEADER prints on the same page as the
DETAIL, group HEADER, or FOOTER that immedi-
ately follows it. Valid only on a HEADER within a
BREAK structure.

ALONE Declares the (group) HEADER structure must be printed
on a page without FORM, (page) HEADER, or (page)
FOOTER structures.

USE A field equate label to reference the HEADER structure
in executable code.

controls Report output control fields.

The HEADER  structure declares the output which prints at the beginning of
each page or group. A HEADER structure must be terminated with a period
or END statement.

A HEADER structure that is not within a BREAK structure is a page header.
Only one page HEADER is allowed in a REPORT. The page HEADER is
automatically printed whenever a page break occurs, at the page-relative
position specified by its AT attribute.



CHAPTER 8 REPORTS 8-19

The BREAK structure defines a group break. It may contain its own
HEADER, FOOTER, and DETAIL structures, and/or other nested BREAK
structures. It may also contain multiple DETAIL structures. The HEADER
and FOOTER structures that are within a BREAK structure are the group
header and footer. They are automatically printed when the value in a
specified group break variable changes, at the next position available in the
detail print area (specified by the REPORT’s AT attribute). Only one
HEADER is allowed in a BREAK structure.

Example:

CustRpt REPORT !Declare customer report
HEADER ! begin page header declaration
 !report controls

END ! end header declaration
Break1 BREAK(SomeVariable)

HEADER ! begin group header declaration
 !report controls

END ! end header declaration
GroupDet DETAIL

 !report controls
END ! end detail declaration

END ! end group break declaration
END !End report declaration



8-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PPPPPrint Structurrint Structurrint Structurrint Structurrint Structure Ate Ate Ate Ate Attributestributestributestributestributes

ABSOLUTE (set fixed-position printing)

ABSOLUTE

The ABSOLUTE  attribute ensures that the DETAIL, or group HEADER or
FOOTER structure (contained within a BREAK structure), always prints at a
fixed position on the page. When ABSOLUTE is present, the position
specified by the x and y parameters of the structure’s AT attribute is relative
to the top left corner of the page.

Example:

CustRpt REPORT
HEADER
!structure elements

END
CustDetail1 DETAIL

!structure elements
END

CustDetail2 DETAIL,ABSOLUTE ! fixed position detail
!structure elements

END
FOOTER
!structure elements

END
END

ALONE (set to print without page header, footer, or form)

ALONE

The ALONE  attribute specifies that the DETAIL, or group HEADER or
FOOTER structure (contained within a BREAK structure), is to be printed
on the page without any FORM, page HEADER or FOOTER (not within a
BREAK structure). The normal use is for report title and grand total pages.

Example:

CustRpt REPORT
TitlePage DETAIL,ALONE !Title page detail structure

!structure elements
END

CustDetail DETAIL
!structure elements

END
FOOTER
!structure elements

END
END



CHAPTER 8 REPORTS 8-21

AT (set print structure position and size)

AT([x] [,y] [,width] [,height])

AT Defines the position and size at which the structure
prints.

x An integer constant or constant expression that specifies
the horizontal position of the top left corner of the print
structure.

y An integer constant or constant expression that specifies
the vertical position of the top left corner of the print
structure.

width An integer constant or constant expression that specifies
the minumum width of the print structure.

height An integer constant or constant expression that specifies
the minimum height of the print structure.

The AT  attribute on print structures performs two different functions,
depending upon the structure on which it is placed.

When placed on a FORM, or page HEADER or FOOTER (not within a
BREAK structure), the AT attribute defines the position and size on the page
at which the structure is printed. The position specified by the x and y
parameters is relative to the top left corner of the page.

When placed on a DETAIL, or group HEADER or FOOTER (contained
within a BREAK structure) the print structure is printed according to the
following rules (unless the ABSOLUTE attribute is also present):

     • The width and height parameters of the AT attribute
specify the minimum print size of the structure.

     • The structure is actually printed at the next available
position within the detail print area (specified by the
REPORT’s AT attribute).

     • The position specified by the x and y parameters of the
structure’s AT attribute is an offset from the next avail-
able print position within the detail print area.

     • The first print structure on the page is printed at the top
left corner of the detail print area (at the offset specified
by its AT attribute).

     • Next and subsequent print structures are printed relative
to the ending position of the previous print structure:

     • If there is room to print the next structure beside the
previous structure, it is printed there.

     • If not, it is printed below the previous.



8-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The values contained in the x, y, width, and height parameters default to
dialog units unless the THOUS, MM, or POINTS attribute is also present.
Dialog units are defined as one-quarter the average character width by one-
eighth the average character height. The size of a dialog unit is dependent
upon the size of the default font for the report. This measurement is based
on the font specified in the FONT attribute of the report, or the printer’s
default font.

Example:

CustRpt REPORT,AT(1000,2000,6500,7000),THOUS !1" margins all around
HEADER,AT(1000,1000,6500,1000) !Page relative position
!structure elements !1" band across top of page

END
CustDetail1 DETAIL,AT(0,0,6500,1000) !Detail relative position

!structure elements !1" band across page
END

CustDetail2 DETAIL,ABSOLUTE,AT(1000,8000,6500,1000) !Page relative position
!structure elements !1" band near page bottom

END
FOOTER,AT(1000,9000,6500,1000) !Page relative position
!structure elements !1" band across page bottom

END
END



CHAPTER 8 REPORTS 8-23

FONT (set print structure default f ont)

FONT([typeface] [,size] [,color] [,style])

FONT Specifies the default print font.

typeface A string constant containing the name of the font. If
omitted, the printer’s default font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the printer’s default font size is used.

color A LONG integer constant containing the red, green, and
blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, black is used.

style An integer constant or constant expression or EQUATE
specifying the strike weight and style of the font. If
omitted, the weight is normal.

The FONT  attribute on FORM, DETAIL, HEADER, and FOOTER
structures specifies the default print font for all controls in the structures that
do not have a FONT attribute.

The typeface may name any font registered in the Windows system which
the printer driver supports. This includes the TrueType fonts for most
printers. The EQUATES.CLW file contains EQUATE values for standard
style values. A style on the range zero (0) to one thousand (1000) specifies
the strike weight of the font. You may add to that values that indicate italic,
underline, or strikeout text. The following EQUATES are in
EQUATES.CLW:

  FONT:thin EQUATE (100)
  FONT:regular EQUATE (400)
  FONT:bold EQUATE (700)
  FONT:italic EQUATE (01000H)
  FONT:underline EQUATE (02000H)
  FONT:strikeout EQUATE (04000H)

Example:

CustRpt REPORT,FONT(‘Arial’,12) !Default font: 12 point Arial
HEADER,FONT(‘Arial’,18,,FONT:bold) !18 point bold Arial for the header
 !structure elements

END
CustDetail1 DETAIL !Detail uses the default font

 !structure elements
END
FOOTER,FONT(‘Arial’,12,00FF0000h) !12 point Red Arial for the footer

!structure elements
END

END



8-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PAGEAFTER (set page break after)

PAGEAFTER(  [newpage] )

PAGEAFTER Specifies the structure is printed, then initiates page
overflow.

newpage An integer constant or constant expression that specifies
the page number to print on the next page. If omitted,
the current page number is incremented during page
overflow.

The PAGEAFTER  attribute specifies that the DETAIL, or group HEADER
or FOOTER structure (contained within a BREAK structure), initiates page
overflow after it is printed. This means that the print structure on which the
PAGEAFTER attribute is present is printed, followed by the page FOOTER,
and then the FORM and page HEADER.

The newpage parameter, if present, resets automatic page numbering at the
number specified.

Example:

CustRpt REPORT
HEADER
!structure elements

END
Break1 BREAK(SomeVariable)

HEADER
!structure elements

END
CustDetail DETAIL

!structure elements
END
FOOTER,PAGEAFTER !Group Footer, initiates page overflow
!structure elements

END
END
FOOTER
!structure elements

END
END



CHAPTER 8 REPORTS 8-25

PAGEBEFORE (set page break first)

PAGEBEFORE(  [newpage] )

PAGEBEFORE Specifies the structure is printed on a new page, after
page overflow.

newpage An integer constant or constant expression that specifies
the page number to print on the new page. If omitted, the
current page number is incremented during page over-
flow.

The PAGEBEFORE attribute specifies that the DETAIL, or group
HEADER or FOOTER structure (contained within a BREAK structure), is
printed on a new page, after page overflow. This means that first, the page
FOOTER is printed, then the FORM and page HEADER. The print structure
on which the PAGEBEFORE attribute is present is printed only after these
page overflow actions are complete.

The newpage parameter, if present, resets automatic page numbering at the
number specified.

Example:

CustRpt REPORT
HEADER
!structure elements

END
Break1 BREAK(SomeVariable)

HEADER,PAGERBEFORE !Group Header, initiates page overflow
!structure elements

END
CustDetail DETAIL

!structure elements
END
FOOTER
!structure elements

END
END
FOOTER
!structure elements

END
END



8-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

USE (set structure equate label)

USE( label [,number] )

USE Specifies a field equate label for the structure.

label A field equate label to reference the structure in execut-
able code.

number An integer constant that specifies the number the com-
piler equates to the field equate label for the structure.

The USE attribute on a FORM, DETAIL, HEADER, or FOOTER structure
specifies a field equate label for the structure. This provides a mechanism for
executable source code statements to reference the structure.

The print structures in a REPORT are treated just as controls in a
WINDOW; they are automatically assigned positive numbers by the
compiler.

The USE attribute’s number parameter allows you to specify the actual field
number the compiler assigns to the structure. This number also is used as the
new starting point for subsequent field equate numbering for all structures
and controls without a number parameter in their USE attribute. Subsequent
structures or controls without a number parameter in their USE attribute are
incremented (or decremented) relative to the last number assigned.

Example:

BuildRpt PROCEDURE
CustRpt REPORT

HEADER,USE(?PageHeader) !Page header
!structure elements

END
CustDetail DETAIL,USE(?Detail) !Line item detail

!structure elements
END !
FOOTER,USE(?PageFooter) !Page footer
!structure elements

END
END

CODE
PrintRpt(CustRpt,?Detail) !Pass report and detail equate to print proc

PrintRpt PROCEDURE(RptToPrint,DetailNumber)
CODE
OPEN(RptToPrint) !Open passed report
PRINT(RptToPrint,DetailNumber) !Print its detail
CLOSE(RptToPrint) !Close passed report



CHAPTER 8 REPORTS 8-27

WITHNEXT (set widow elimination)

WITHNEXT( [siblings] )

WITHNEXT Specifies the structure is always printed on the same
page as print structures PRINTed immediately following
it.

siblings An integer constant or constant expression that specifies
the number of following print structures to print on the
same page. If omitted, the default value is one.

The WITHNEXT  attribute specifies that the DETAIL, or group HEADER
or FOOTER structure (contained within a BREAK structure), is always
printed on the same page as the specified number of print structures
PRINTed immediately following it. This ensures that the structure is never
printed on a page by itself, eliminating “widow” print structures. A “widow”
print structure is defined as a group header, or first detail item in a related
group of items, printed on the preceding page, separated from the rest of its
related items.

The siblings parameter, if present, sets the number of following print
structures that must be printed on the same page with the structure. To be
counted, the following print structures must come from the same, or nested,
BREAK structures. They must be related items. Any print structures not
within the same, or nested, BREAK structures are printed but not counted as
part of the required number of siblings.

Example:

CustRpt REPORT
Break1 BREAK(SomeVariable)

HEADER,WITHNEXT(2) !Always print with 2 siblings
!structure elements

END
CustDetail DETAIL,WITHNEXT() !Always print with 1 sibling

!structure elements
END
FOOTER
!structure elements

END
END

END



8-28 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

WITHPRIOR (set orphan elimination)

WITHPRIOR( [siblings] )

WITHPRIOR Specifies the structure is always printed on the same
page as print structures PRINTed immediately preceding
it.

siblings An integer constant or constant expression that specifies
the number of preceding print structures to print on the
same page. If omitted, the default value is one.

The WITHPRIOR  attribute specifies that the DETAIL, or group HEADER
or FOOTER structure (contained within a BREAK structure), is always
printed on the same page as the specified number of print structures
PRINTed immediately preceding it. This ensures that the structure is never
printed on a page by itself, eliminating “orphan” print structures. An
“orphan” print structure is defined as a group footer, or last detail item in a
related group of items, that is printed on the following page separated from
the rest of its related items.

The siblings parameter, if present, sets the number of preceding print
structures that must be printed on the same page with the structure. To be
counted, the preceding print structures must come from the same, or nested,
BREAK structures. They must be related items. Any print structures not
within the same, or nested, BREAK structures are printed, but not counted
as part of the required number of siblings.

Example:

CustRpt REPORT
Break1 BREAK(SomeVariable)

HEADER
 !structure elements
END

CustDetail DETAIL,WITHPRIOR() !Always print with 1 sibling
 !structure elements
END
FOOTER,WITHPRIOR(2) !Always print with 2 siblings
 !structure elements
END

END
END



CHAPTER 8 REPORTS 8-29

ReporReporReporReporReport Contrt Contrt Contrt Contrt Controlsolsolsolsols

BOX (declare a report box control)

BOX  ,AT( ) [,USE( )] [,COLOR( ) ] [,FILL( ) ] [,ROUND] [,HIDE]

BOX Places a rectangular box in the REPORT.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

USE Specifies a field equate label for the control.

COLOR Specifies the color for the border of the control. If
omitted, the border is black.

FILL Specifies the fill color for the control. If omitted, the box
is not filled with color.

ROUND Specifies the box corners are rounded. If omitted, the
corners are square.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

The BOX control places a rectangular box in the REPORT at the position
and size specified by its AT attribute, relative to the top left corner of the
print structure containing the BOX.

Example:

CustRpt  REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

BOX,AT(0,0,20,20),USE(?B1) !Unfilled, black border
BOX,AT(20,20,20,20),ROUND !Unfilled, rounded, black border
BOX,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

!Filled, black border
BOX,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)

!Unfilled, active border color border
END

END



8-30 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CHECK (declare a report checkbox control)

CHECK(text) ,AT( ) [,USE( )] [,FONT( )] [,HIDE] [,DISABLE ] [, | LEFT | ]
| RIGHT |

CHECK Places a check box in the REPORT.

text A string constant containing the text to display for the
check box.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

USE The label of a numeric variable containing the value of
the check box, zero (0 = OFF) or one (1 = ON).

FONT Specifies the display font for the control.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

DISABLE Specifies the control appears dimmed in the REPORT.

LEFT Specifies that the text appears to the left of the check
box.

RIGHT Specifies that the text appears to the right of the check
box (the default position).

The CHECK  control places a check box in the REPORT at the position and
size specified by its AT attribute, relative to the top left corner of the print
structure containing the CHECK.

Example:

CustRpt  REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

CHECK(‘1’),AT(0,0,20,20),USE(C1)
CHECK(‘2’),AT(20,80,20,20),USE(C2),LEFT
CHECK(‘3’),AT(0,100,20,20),USE(C3),FONT(‘Arial’,12)

END
END



CHAPTER 8 REPORTS 8-31

CUSTOM (declare a report .VBX custom control)

CUSTOM(text) ,AT( ) [,CLASS( ) ] [,USE( )] [,DISABLE ] [,FONT( )] [,META]
[,property( value )]

CUSTOM Places a Visual Basic .VBX control on the REPORT.

text A string constant containing the title for the control.

AT Specifies the size and location of the control. If omitted,
default values are selected by the library.

CLASS Specifies the .VBX filename and type of control.

USE The label of a variable to supply the value of the control.

DISABLE Specifies the control appears dimmed in the REPORT.

FONT Specifies the display font for the control.

META Specifies printing as a Windows metafile (.WMF).

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

property A string constant containing the name of a custom
property setting for the control.

value A string constant containing the property value number
or EQUATE for the property.

The CUSTOM control places a Visual Basic .VBX control in the report at
the position and size specified by its AT attribute.

The property attribute allows you to specify any additional property settings
the .VBX control may require. These are properties that need to be set for
the .VBX control to properly function, and are not standard Clarion
properties (such as AT or USE). The custom control should only receive
values for these properties that are defined for that control. Valid properties
and values for those properties would be defined in the custom control’s
documentation. You may have multiple property attributes on a single
CUSTOM control.

Example:

Report REPORT
DetailOne DETAIL

CUSTOM,AT(0,0,120,320),CLASS(‘graph.vbx’,’graph’),’graphstyle’(‘2’)
END

END



8-32 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ELLIPSE (declare a report ellipse control)

ELLIPSE  ,AT( ) [,USE( )] [,COLOR( )] [,FILL( ) ] [,HIDE]

ELLIPSE Places a “circular” figure in the REPORT.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

USE Specifies a field equate label for the control.

COLOR Specifies the color for the border of the ellipse. If
omitted, the ellipse has a black border.

FILL Specifies the fill color for the control. If omitted, the
ellipse is not filled with color.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

The ELLIPSE  control places a “circular” figure in the REPORT at the
position and size specified by its AT attribute. The ellipse is drawn inside a
“bounding box” defined by the x, y, width, and height parameters of its AT
attribute. The x and y parameters specify the starting point, relative to the top
left corner of the print structure containing it, and the width and height
parameters specify the horizontal and vertical size of the “bounding box.”

Example:

CustRpt  REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

ELLIPSE,AT(0,0,20,20) !Unfilled, black border
ELLIPSE,AT(0,20,20,20),USE(?Ellipse1),DISABLE

!Unfilled, black border, dimmed
ELLIPSE,AT(20,20,20,20),ROUND !Unfilled, rounded, black border
ELLIPSE,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

!Filled, black border
ELLIPSE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)

!Unfilled, active border color border
 END

 END



CHAPTER 8 REPORTS 8-33

GROUP (declare a group of report controls)

GROUP(text) ,AT( ) [,USE( )] [,FONT( )] [,BOXED] [,HIDE]
  controls

END

GROUP Declares a group of controls that may be referenced as
one entity.

text A string constant containing the prompt for the group of
controls. The text is printed only if the BOXED attribute
is also present.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

USE Specifies a field equate label for the control.

FONT Specifies the display font for the control and the default
for all the controls in the GROUP.

BOXED Specifies a single-track border around the group of
controls with the text at the top of the border.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

controls Control declarations that may be referenced as the
GROUP.

The GROUP control declares a group of controls that may be referenced as
one entity. This control allows you to design reports that look the same on
paper as on the screen.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

GROUP(‘Group 1’),USE(!G1),AT(80,0,20,20),BOXED
STRING(@S8),AT(80,0,20,20),USE(E5)
STRING(@S8),AT(100,0,20,20),USE(E6)

END
GROUP(‘Group 2’),USE(?G2),FONT(‘Arial’,12)
STRING(@S8),AT(120,0,20,20),USE(E7)
STRING(@S8),AT(140,0,20,20),USE(E8)

END
END

END



8-34 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

IMAGE (declare a report graphic image control)

IMAGE( file) ,AT( ) [,USE( )] [,HIDE]

IMAGE Places a graphic image on the REPORT.

file A string constant containing the name of the file to print.
The file is linked into the .EXE as a resource.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

USE Specifies a field equate label for the control.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

The IMAGE  control places a graphic image on the REPORT at the position
and size specified by its AT attribute. This may be a bitmap (.BMP),
PaintBrush (.PCX), Graphic Interchange Format (.GIF), JPEG (.JPG), or
windows metafile (.WMF). This may not be an icon (.ICO) because
Windows does not support printing icons.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

IMAGE(‘PIC.BMP’),AT(0,0,20,20),USE(?I1)
IMAGE(‘PIC.WMF’),AT(40,0,20,20),USE(?I2)
IMAGE(‘PIC.JPG’),AT(60,0,20,20),USE(?I3)

END
END



CHAPTER 8 REPORTS 8-35

LINE (declare a report line control)

LINE  ,AT( ) [,USE( )] [,COLOR( )] [,HIDE]

LINE Places a straight line in the REPORT.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

USE Specifies a field equate label for the control.

COLOR Specifies the color for the line. If omitted, the color is
black.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

The LINE  control places a straight line in the REPORT at the position and
size specified by its AT attribute.

The x and y parameters of the AT attribute specify the starting point of the
line. The width and height parameters of the AT attribute specify the
horizontal and vertical distance to the end point of the line. If these are both
positive numbers, the line slopes to the right and down from its starting
point. If the width parameter is negative, the line slopes left; if the height
parameter is negative, the line slopes left. If either the width or height
parameter is zero, the line is horizontal or vertical.

 Width Height Result
 positive positive right and down from start point
 negative positive left and down from start point
 positive negative right and up from start point
 negative negative left and up from start point
 zero positive vertical, down from start point
 zero negative vertical, up from start point
 positive zero horizontal, right from start point
 negative zero horizontal, left from start point

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LINE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER) !Border color
LINE,AT(480,180,20,20),USE(?L2)

END
END



8-36 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LIST (declare a report list control)

LIST ,FROM( ) ,AT( ) [,FONT( )] [,USE( )] [,HIDE] [, | FORMAT( ) | ]
| LEFT |
| RIGHT |
| CENTER |
| DECIMAL |

LIST Places the current item of a list of data items in the
REPORT.

FROM Specifies the origin of the data displayed in the list.

AT Specifies the size and location of the control. If omitted,
the runtime library chooses a value.

FONT Specifies the display font for the control.

USE Specifies a field equate label for the control.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

FORMAT Specifies the print format of the data.

LEFT Specifies that the data is left justified within the LIST.

RIGHT Specifies that the data is right justified within the LIST.

CENTER Specifies that the data is centered within the LIST.

DECIMAL Specifies that the data is aligned on the decimal point
within the LIST.

The LIST  control places the current item of a list of data items in the
REPORT at the position and size specified by its AT attribute. LIST is valid
only in a DETAIL structure. Its purpose is to allow the report format to
duplicate the screen appearance of the LIST’s FORMAT setting. When the
first instance of the DETAIL structure containing the LIST is printed, any
headers in the FORMAT attribute are printed along with the current FROM
attribute entry. When the last DETAIL structure containing the LIST is
printed, the LIST footers are printed along with the current FROM attribute
entry.

Example:

Q QUEUE
F1 STRING(1)
F2 STRING(4)

END

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LIST,AT(80,0,20,20),USE(?L1),FROM(Q),FORMAT(‘5C~List~15L~Box~’)
END

END



CHAPTER 8 REPORTS 8-37

OPTION (declare a group of report RADIO controls)

OPTION(text) ,AT( ) [,USE( )] [,BOXED]  [,HIDE]
  radios
END

OPTION Prints a group of RADIO controls.

text A string constant containing the prompt for the group of
controls. The text is printed only if the BOXED attribute
is also present.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

USE The label of a string variable containing the value of the
RADIO selected by the user.

BOXED Specifies a single-track border around the RADIO
controls with the text at the top of the border.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

radios Multiple RADIO control declarations.

The OPTION  control prints a group of RADIO controls that display a list
of choices. The multiple RADIO controls in the OPTION structure define
the choices. The selected choice is identified by a filled RADIO button.

No RADIO button selected is a valid option. This occurs only when the
OPTION structure’s USE variable does not contain a value duplicated in a
RADIO text parameter.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

OPTION(‘Option’),USE(OptVar),AT(80,0,20,20),BOXED
RADIO(‘Radio 1’),AT(80,0,20,20),USE(?R1)
RADIO(‘Radio 2’),AT(100,0,20,20),USE(?R2)

 END
 END

 END



8-38 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RADIO (declare a report radio button control)

RADIO(text) ,AT( ) [,FONT( )] [, | LEFT | ] [,USE( )]  [,HIDE]
| RIGHT |

RADIO Places a radio button in the REPORT.

text A string constant containing the text to display for the
radio button.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

FONT Specifies the display font for the control.

LEFT Specifies that the text appears to the left of the radio
button.

RIGHT Specifies that the text appears to the right of the radio
button (the default position).

USE Specifies a field equate label for the control.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

The RADIO  control places a radio button in the REPORT at the position
and size specified by its AT attribute. A RADIO control may only be placed
within an OPTION control. The RADIO selected by the user (the value in
the OPTION’s USE variable) is displayed as a filled RADIO button.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

OPTION(‘Option’),USE(OptVar),AT(80,0,20,20),BOXED
RADIO(‘Radio 1’),AT(80,0,20,20),USE(?R1)
RADIO(‘Radio 2’),AT(100,0,20,20),USE(?R2)
RADIO(‘Radio 3’),AT(100,0,20,20),USE(?R2),LEFT

END
END

END



CHAPTER 8 REPORTS 8-39

STRING (declare a report string control)

STRING(text),AT( ) [,FONT( )] [,HIDE] [,TRN] [,USE( )]
[, | LEFT | ] [, | PAGENO | ]

| RIGHT | | CNT [, RESET( ) / PAGE ] |
| CENTER | | SUM [, RESET( ) / PAGE ] |
| DECIMAL | | AVE [, RESET( ) / PAGE ] |

| MIN [, RESET( ) / PAGE ] |
| MAX [, RESET( ) / PAGE ] |

STRING Places the text in the REPORT.

text A string constant containing the text to display, or a
display picture token to format the variable specified in
the USE attribute.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

FONT Specifies the font used to display the text.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

TRN Specifies the text or USE variable characters transpar-
ently print over the background.

USE Specifies a variable whose contents are printed in the
format of the picture token declared instead of string
text.

LEFT Specifies that the text is left justified within the area
specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area
specified by the AT attribute.

CENTER Specifies that the text is centered within the area speci-
fied by the AT attribute.

DECIMAL Specifies that the text is aligned on the decimal point
within the area specified by the AT attribute.

PAGENO Specifies the current page number is printed in the
format of the picture token declared instead of string
text.

CNT Specifies the number of details printed is printed in the
format of the picture token declared instead of string
text.

SUM Specifies the sum of the USE variable is printed in the
format of the picture token declared instead of string
text.

AVE Specifies the average value of the USE variable is
printed in the format of the picture token declared



8-40 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

instead of string text.

MIN Specifies the mimimum value of the USE variable is
printed in the format of the picture token declared
instead of string text.

MAX Specifies the maximum value of the USE variable is
printed in the format of the picture token declared
instead of string text.

RESET Specifies the CNT, SUM, AVE, MIN, or MAX is reset
when the specified group break occurs.

PAGE Specifies the CNT, SUM, AVE, MIN, or MAX is reset to
zero when the page break occurs.

The STRING control places the text in the REPORT at the position and size
specified by its AT attribute. If the text parameter is a picture token instead
of a string constant or variable, the contents of the variable named in the
USE attribute are formatted to that display picture, at the position and size
specified by the AT attribute.

A STRING with the TRN attribute prints characters transparently, without
obliterating the background. This means only the dots required to create
each character are printed. This allows the STRING to be placed directly on
top of an IMAGE without destroying the background picture.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(Pre:Key1)

HEADER,AT(0,0,6500,1000)
STRING(‘Group Head’),AT(3000,500,1500,500),FONT(‘Arial’,18)

END
Detail DETAIL,AT(0,0,6500,1000)

STRING(@N$11.2'),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000)
STRING(‘Group Total:’),AT(5500,500,1500,500)
STRING(@N$11.2'),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Pre:Key1)

END
END

END



CHAPTER 8 REPORTS 8-41

TEXT (declare a multi-line text control)

TEXT ,AT( )  [,USE( )] ,FONT( )] [, | CAP | ] [, | LEFT | ]  [,HIDE]
| UPR | | RIGHT |

| CENTER |

TEXT Places a multi-line print field in the REPORT.

AT Specifies the size and location of the control. If omitted,
default values are selected by the runtime library.

USE The label of the variable that contains the value to print.

FONT Specifies the display font for the control.

UPR / CAP Specifies all upper case or proper name capitalization
(First Letter Of Each Word Capitalized).

LEFT Specifies that the text is left justified within the area
specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area
specified by the AT attribute.

CENTER Specifies that the text is centered within the area speci-
fied by the AT attribute.

HIDE Specifies the control is not printed unless UNHIDE is
used to allow it to print.

The TEXT  control places a multi-line print field in the REPORT at the
position and size specified by its AT attribute. The variable specified in the
USE attribute contains the data to print.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000)

TEXT,AT(0,0,40,40),USE(E1)
TEXT,AT(100,0,40,40),USE(E6),FONT(‘Arial’,12)
TEXT,AT(120,0,40,40),USE(E7),CAP
TEXT,AT(140,0,40,40),USE(E8),UPR
TEXT,AT(160,0,40,40),USE(E9),LEFT
TEXT,AT(180,0,40,40),USE(E10),RIGHT
TEXT,AT(200,0,40,40),USE(E11),CENTER

END
END



8-42 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ContrContrContrContrControl Atol Atol Atol Atol At tributestributestributestributestributes

AT (set control position and size in report)

AT( [x] [,y] [,width] [,height])

AT Defines the position and size of a control.

x An integer constant or constant expression that specifies
the initial horizontal position of the top left corner of the
control, relative to the top left corner of the print struc-
ture containing it. If omitted, the runtime library pro-
vides a default value.

y An integer constant or constant expression that specifies
the initial vertical position of the top left corner of the
control, relative to the top left corner of the print struc-
ture containing it. If omitted, the runtime library pro-
vides a default value.

width An integer constant or constant expression that specifies
the width of the control. If omitted, the runtime library
provides a default value.

height An integer constant or constant expression that specifies
the height of the control. If omitted, the runtime library
provides a default value.

The AT  attribute defines the position and size of a control, relative to the top
left corner of the print structure containing it. If any parameter is omitted,
the runtime library provides a default value.

The values contained in the x, y, width, and height parameters default to
dialog units unless the THOUS, MM, or POINTS attribute is also present.
Dialog units are defined as one-quarter the average character width by one-
eighth the average character height. The size of a dialog unit is dependent
upon the size of the default font for the report. This measurement is based
on the font specified in the FONT attribute of the REPORT, or the printer’s
default font.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS !AT specifies detail print area
Detail DETAIL,AT(0,0,6500,1000) !AT specifies band size and

! relative position offset from
! last printed detail

STRING(‘String Constant’),AT(500,500,1500,500)
!AT specifies control size and
! offset within the detail band

END
END



CHAPTER 8 REPORTS 8-43

AVE (set total average)

AVE

The AVE attribute specifies the average (arithmetic mean) of the STRING
controls’ USE variable is printed.

     • An AVE field in a DETAIL structure is calculated each
time the DETAIL structure containing the control is
PRINTed.

     • An AVE field in a group FOOTER structure is calculated
each time any DETAIL structure in the BREAK struc-
ture containing the control is PRINTed.

     • An AVE field in a page FOOTER structure is calculated
each time any DETAIL structure in any BREAK struc-
ture is PRINTed.

     • An AVE field in a HEADER is meaningless, since no
DETAIL structures will have been printed at the time the
HEADER is printed.

The average is reset only if the RESET or PAGE attribute is also specified.
The STRING control using this attribute would usually be placed in a group
or page FOOTER.

BOXED (set report controls group border)

BOXED

The BOXED attribute specifies a single-track border around a GROUP or
OPTION structure. The text parameter of the GROUP or OPTION control
appears in a gap at the top of the border box. If BOXED is omitted, the text
parameter of the GROUP or OPTION control is not printed.

CAP, UPR (set print case)

CAP
UPR

The CAP and UPR attributes specify the automatic case of text printed in a
TEXT control. UPR specifies all upper case;  CAP specifies “Proper Name
Capitalization,” where the first letter of each word is capitalized and all other
letters are lower case.



8-44 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CNT (set total count)

CNT

The CNT attribute specifies an automatic count of the number of times
DETAIL structures have been printed.

     • A CNT field in a DETAIL structure is incremented each
time the DETAIL structure containing the control is
PRINTed. This provides a “running” count.

     • A CNT field in a group FOOTER structure is
incremented each time any DETAIL structure in the
BREAK structure containing the control is PRINTed.
This provides a total of the number of DETAIL struc-
tures printed in the group.

     • A CNT field in a page FOOTER structure is
incremented each time any DETAIL structure in any
BREAK structure is PRINTed. This provides a total of
the number of DETAIL structures printed on the page (or
report).

     • A CNT field in a HEADER is meaningless, since no
DETAIL structures will have been printed at the time the
HEADER is printed.

The CNT is reset only if the RESET or PAGE attribute is also specified.

COLOR (set color)

COLOR(rgb)

COLOR Specifies the print color of a BOX, LINE, or ELLIPSE
control.

rgb A LONG or ULONG integer constant containing the
red, green, and blue components that create the color in
the three low-order bytes (bytes 0, 1, and 2), or an
EQUATE for a standard Windows color value.

The COLOR  attribute specifies the print color of a BOX, LINE, or
ELLIPSE control. On a BOX or ELLIPSE, the color specified is the color
used for the border. EQUATEs for Windows’ standard colors are contained
in the EQUATES.CLW file.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

ELLIPSE,AT(60,60,200,200),COLOR(COLOR:ACTIVEBORDER) !Color EQUATE
BOX,AT(360,60,200,200),COLOR(00FF0000h) !Pure Red

END
END



CHAPTER 8 REPORTS 8-45

FILL (set print fill color)

FILL( rgb)

FILL Specifies the print fill color of a BOX or ELLIPSE
control.

rgb A LONG or ULONG integer constant containing the
red, green, and blue components that create the color in
the three low-order bytes (bytes 0, 1, and 2) or an
EQUATE for a standard Windows color value.

The FILL  attribute specifies the print fill color of a BOX or ELLIPSE
control. If omitted, the control is not filled with color.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

ELLIPSE,AT(60,60,200,200),FILL(COLOR:ACTIVEBORDER)
!Color EQUATE

BOX,AT(360,60,200,200),FILL(00FF0000h) !Pure Red
END

END



8-46 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FONT (set default f ont)

FONT([typeface] [,size] [,color] [,style])

FONT Specifies the print font for the control.

typeface A string constant containing the name of the font. If
omitted, the print structure’s FONT attribute is used (if
present), or the REPORT structure’s FONT attribute is
used (if present), or else the printer’s default font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the printer’s default font size is used.

color A LONG integer constant containing the red, green, and
blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, black is used.

style An integer constant, constant expression, or EQUATE
specifying the strike weight and style of the font. If
omitted, the weight is normal.

The FONT attribute specifies the print font for the control, overriding any
FONT specified on the REPORT or print structure.

The typeface may name any font registered in the Windows system which
the printer driver supports. This includes the TrueType fonts for most
printers. The EQUATES.CLW file contains EQUATE values for standard
style values. A style on the range zero (0) to one thousand (1000) specifies
the strike weight of the font. You may add to that values that indicate italic,
underline, or strikeout text. The following EQUATES are in
EQUATES.CLW:

  FONT:thin EQUATE (100)
  FONT:regular EQUATE (400)
  FONT:bold EQUATE (700)
  FONT:italic EQUATE (01000H)
  FONT:underline EQUATE (02000H)
  FONT:strikeout EQUATE (04000H)

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

STRING(‘Text’),AT(0,0),FONT(‘Arial’,14,00FF0000h)
STRING(‘Text’),AT(160,160),FONT(‘Arial’,12,,FONT:italic)

END
END



CHAPTER 8 REPORTS 8-47

FORMAT (set LIST print format)

FORMAT( format string)

FORMAT Specifies the print format for the data.

format string A string constant specifying the column or multi-column
print format.

The FORMAT  attribute specifies the print format for the data in the LIST
control. The format string contains the information for single or multi-
column formatting of the data.

The format string contains “field-specifiers” which map to the fields of the
QUEUE. Multiple “field-specifiers” may be grouped together as a “field-
group” in square brackets ([ ]) to display as a single unit.

Only the fields in the QUEUE for which there are “field-specifiers” are
printed. This means that, if there are two fields specified in the format string
and three fields in the QUEUE, only the two specified in the format string
are printed in the LIST control.

Field-specifier” format:width  justification  [ (indent) ]  [  modifiers ]

width A required integer defining the width of the field.
Specified in dialog units unless overridden by the
THOUS, MM, or POINTS attribute.

justification A single capital letter (L , R , C , or D) that specifies
Left, Right, Center, or Decimal justification. One is
required.

indent An optional integer, enclosed in parentheses, that
specifies the indent from the justification. This may be
negative. With left (L ) justification, indent defines a left
margin; with right (R) or decimal (D), it defines a right
margin; and with center (C), it defines an indent from
the center of the field.

modifiers: Optional special characters (listed below) to modify the print format of the
field or group. Multiple modifiers may be used on one field or group.

~header~ [ justification [ (indent) ] ]
A header string enclosed in tildes, followed by optional
justification and/or indent, prints the header at the top of
the list.  The header uses the same justification and
indent as the field, if not specifically overidden.

@picture@ The picture formats the field for printing. The trailing @
is required to define the end of the picture, so that
display pictures like @N12~Kr~ can be used in the
format string without creating ambiguity.



8-48 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

#number# The number enclosed in pound signs (#) indicates the
QUEUE field to print. Following fields in the format
string without an explicit #number# are taken in order
from the fields following the #number# field. For
example, #2# on the first field in the format string
indicates starting with the second field in the QUEUE,
skipping the first. If the number of fields specified in the
format string are >= the number of fields in the QUEUE,
the format “wraps around” to the start of the QUEUE.

_ An underscore underlines the field.

/ A slash causes the next field to appear on a new line
(only used on a field within a group).

| A vertical bar places a vertical line to the right of the
field.

“Field-group” format: [ multiple field-specifiers ]  [ (size) ] [ modifiers ]

multiple field-specifiers
A list of field-specifiers contained in square brackets ( [ ]
) that cause them to be treated as a single display unit.

size An optional integer, enclosed in parentheses, that
specifies the default width of the group. If omitted, the
size is calculated from the enclosed fields.

modifiers The “field-group” modifiers act on the entire group of
fields.  These are the same modifiers listed above.

Example:

TD QUEUE,AUTO
FName STRING(20)
LName STRING(20)
Init STRING(4)
Wage REAL

END
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LIST,AT(0,34,366,146),FORMAT(‘’),FROM(TD),USE(?Show)
END

END
CODE
OPEN(CustRpt)
SETTARGET(CustRpt)
IF SomeCondition
?Show{PROP:format} = ’80C~First Name~80C~Last Name~16L~Intls~60R~Wage~|’

ELSE
?Show{PROP:format} = ’80C~First Name~80C~Last Name~16L~Intls~60D(10)~Wage~|’

END



CHAPTER 8 REPORTS 8-49

FROM (set report listbox data source)

FROM(source)

FROM Specifies the source of the data printed in a LIST
control.

source The label of a QUEUE, or any variable (normally a
GROUP) containing the data items to print in the LIST.

The FROM  attribute specifies the source of the data elements printed in a
LIST control. The data elements are formatted for display according to the
information in the FORMAT attribute.

If the label of a QUEUE is specified as the source, all fields in the QUEUE
are printed. If the label of one field in a QUEUE is specified as the source,
only that field is printed. Only the current QUEUE entry in the queue’s data
buffer is printed in the LIST.

If a string constant or variable is specified as the source, the entire string is
printed in the LIST.

Example:

TD QUEUE,AUTO
FName STRING(20)
LName STRING(20)
Init STRING(4)
Wage REAL

END
CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
CustDetail DETAIL,AT(0,0,6500,1000)

LIST,AT(0,34,366,146),FORMAT(’80L80L16L60L’),FROM(TD),USE(?Show1)
LIST,AT(0,200,100,146),FORMAT(’80L’),FROM(Fname),USE(?Show2)

END
END

HIDE (set control non-print)

HIDE

The HIDE  attribute specifies the control does not print unless the UNHIDE
statement is used to allow it to print.



8-50 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LEFT, RIGHT, CENTER, DECIMAL (set print justification)

LEFT( [indent] )
RIGHT( [indent] )
CENTER( [indent] )
DECIMAL(  [indent] )

indent An integer constant specifying the amount of margin left
after justification. This is in dialog units unless overrid-
den by the THOUS, MM, or POINTS attribute.

The LEFT , RIGHT , CENTER, and DECIMAL  attributes specify the
justification of data printed. LEFT specifies left justification, RIGHT
specifies right justification, CENTER specifies centered text, and
DECIMAL specifies numeric data aligned on the decimal point.

The indent parameter on the CENTER attribute specifies an offset from the
center. On the DECIMAL attribute, indent specifies the position of the
decimal point.

The following controls allow LEFT or RIGHT only (without an indent
parameter):

CHECK
GROUP
OPTION
RADIO

The following controls allow LEFT(indent), RIGHT(indent),
CENTER(indent), or DECIMAL(indent):

LIST
STRING

The TEXT control allows LEFT, RIGHT, and CENTER (without an indent
parameter).

Example:

Rpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000)

LIST,AT(0,20,100,146),FORMAT(‘800L’),FROM(Fname),USE(?Show2),LEFT(100)
END

END



CHAPTER 8 REPORTS 8-51

MAX (set total maximum)

MAX

The MAX  attribute specifies printing the maximum value the STRING
control’s USE variable has contained so far.

     • A MAX field in a DETAIL structure is evaluated each
time the DETAIL structure containing the control is
PRINTed. This provides a “running” maximum value.

     • A MAX field in a group FOOTER structure is evaluated
each time any DETAIL structure in the BREAK struc-
ture containing the control is PRINTed. This provides
the maximum value of the variable in the group.

     • A MAX field in a page FOOTER structure is evaluated
each time any DETAIL structure in any BREAK struc-
ture is PRINTed. This is the maximum value of the
variable in the page (or report to date).

     • A MAX field in a HEADER is meaningless, since no
DETAIL structures will have been printed at the time the
HEADER is printed.

The MAX value is reset only if the RESET or PAGE attribute is also
specified.

META (set .VBX to print as .WMF)

META

The META  attribute specifies printing a .VBX custom control as a .WMF
windows metafile. This will print the control as a graphic image on the
report.



8-52 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MIN (set total minimum)

MIN

The MIN  attribute specifies printing the minimum value the STRING
control’s USE variable has contained so far.

     • A MIN field in a DETAIL structure is evaluated each
time the DETAIL structure containing the control is
PRINTed. This provides a “running” minimum value.

     • A MIN field in a group FOOTER structure is evaluated
each time any DETAIL structure in the BREAK struc-
ture containing the control is PRINTed. This provides
the minimum value of the variable in the group.

     • A MIN field in a page FOOTER structure is evaluated
each time any DETAIL structure in any BREAK struc-
ture is PRINTed. This is the minimum value of the
variable in the page (or report to date).

     • A MIN field in a HEADER is meaningless, since no
DETAIL structures will have been printed at the time the
HEADER is printed.

The MIN value is reset only if the RESET or PAGE attribute is also
specified.

PAGE (set page total reset)

PAGE

The PAGE attribute specifies the CNT, SUM, AVE, MIN, or MAX is reset
to zero (0) when page break occurs.

PAGENO (set page number print)

PAGENO

The PAGENO attribute specifies the STRING control prints the current
page number.



CHAPTER 8 REPORTS 8-53

RESET (set total reset)

RESET(breaklevel)

RESET Resets the CNT, SUM, AVE, MIN, or MAX to zero (0).

breaklevel The label of a BREAK structure.

The RESET attribute specifies the group break at which the CNT, SUM,
AVE, MIN, or MAX is reset to zero (0).

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Break1 BREAK(Pre:Key1)

HEADER,AT(0,0,6500,1000)
STRING(‘Group Head’),AT(3000,500,1500,500),FONT(‘Arial’,18)

END
Detail DETAIL,AT(0,0,6500,1000)

STRING(@N$11.2'),AT(6000,1500,500,500),USE(Pre:F1)
END
FOOTER,AT(0,0,6500,1000)
STRING(‘Group Total:’),AT(5500,500,1500,500)
STRING(@N$11.2'),AT(6000,500,500,500),USE(Pre:F1),SUM,RESET(Break1)

END
END

END

ROUND (set round-cornered report BOX)

ROUND

The ROUND attribute specifies a BOX control with rounded corners.



8-54 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SUM (set total)

SUM

The SUM attribute specifies printing the sum of the values contained in the
STRING control’s USE variable.

     • A SUM field in a DETAIL structure is incremented each
time the DETAIL structure containing the control is
PRINTed. This provides a “running” total.

     • A SUM field in a group FOOTER structure is
incremented each time any DETAIL structure in the
BREAK structure containing the control is PRINTed.
This provides the sum of the value contained in the
variable in the group.

     • A SUM field in a page FOOTER structure is
incremented each time any DETAIL structure in any
BREAK structure is PRINTed. This is the sum of the
values contained in the variable in the page.

     • A SUM field in a HEADER is meaningless, since no
DETAIL structures will have been printed at the time the
HEADER is printed.

The SUM value is reset only if the RESET or PAGE attribute is also
specified.

TRN (set transparent report string)

TRN

The TRN attribute on a STRING control specifies the characters print
transparently, without obliterating the background over which the STRING
is placed. Only the dots required to create each character are printed. This
allows the STRING to be placed directly on top of an IMAGE without
destroying the background picture.

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
FORM,AT(0,0,6500,9000)
IMAGE(‘PIC.BMP’),USE(?I1)AT(0,0,6500,9000) !Full page image
STRING(‘String Constant’),AT(10,0,20,20),USE(?S1),TRN

!Transparent string on the image
END

END



CHAPTER 8 REPORTS 8-55

USE (set code reference name)

USE( | label | [,number] [,equate] )
| variable |

USE Specifies a variable or field equate label for the control.

label A field equate label to reference the control in executable
code.

variable The variable containing the value to print in the control.
This label (with a ? prepended) becomes the field equate
label for the control, unless the equate parameter is used.

number An integer constant that specifies the number the com-
piler equates to the field equate label for the control.

equate A field equate label to reference the control in executable
code when the named variable has already been used in
the same structure. This provides a mechanism to
provide a unique field equate when the variable would
not.

The USE attribute specifies a variable or field equate label for the control.
USE with a label parameter simply provides a mechanism for executable
source code statements to reference the control. Some controls only allow a
field equate label as the USE parameter, not a variable. These controls are:
IMAGE, LINE, BOX, ELLIPSE, GROUP, and RADIO. USE with a
variable parameter supplies the control with a variable to update by operator
entry. This is applicable to an OPTION, TEXT, LIST, CHECK, or
CUSTOM. STRING controls may use either a field equate label or variable

All controls in a REPORT are automatically assigned numbers by the
compiler. These numbers start at one (1) and increment by one (1) for each
control in the REPORT. The USE attribute’s number parameter allows you
to specify the actual field number the compiler assigns to the control. This
number also is used as the new starting point for subsequent field numbering
for fields without a number parameter in their USE attribute. Subsequent
controls without a number parameter in their USE attribute are incremented
relative to the last number assigned.

Two or more controls with the same USE variable in one REPORT structure
would create the same field equate label for all. Therefore, when the
compiler encounters this condition, all field equate labels for that USE
variable are discarded. This makes it impossible to reference any of these
controls in executable code, preventing confusion about which control you
really want to reference (unless you know the field numbers assigned by the
compiler or assign a number of your own). You can deliberately create this
condition to display the contents of the variable in multiple controls with
different display pictures, or for totaling.



8-56 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail DETAIL,AT(0,0,6500,1000)

STRING(‘Group Total:’),AT(5500,500,1500,500),USE(?Constant)
!Field equate label

STRING(@N$11.2'),AT(6000,1500,500,500),USE(Pre:F1)
!USE variable

END
END



CHAPTER 8 REPORTS 8-57

ReporReporReporReporReport Pt Pt Pt Pt Prrrrrocedurocedurocedurocedurocedureseseseses

CLOSE (close an active report structure)

CLOSE(report)

CLOSE Deactivates a REPORT structure.

report The label of a REPORT structure.

CLOSE prints the last page FOOTER, (unless the last structure printed has
the ALONE attribute), and closes the REPORT. If the REPORT has the
PREVIEW attribute, all the temporary metafiles are deleted.

RETURN from a procedure in which a REPORT is opened automatically
closes the REPORT.

Example:

CLOSE(CustRpt)  !Close the report



8-58 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ENDPAGE (force page overflow)

ENDPAGE(report)

ENDPAGE Forces page overflow.

report The label of a REPORT structure.

The ENDPAGE statement initiates page overflow and flushes the print
engine’s print structure buffer. If the REPORT has the PREVIEW attribute,
this has the effect of ensuring that the entire report is available to view.

Example:

SomeReport PROCEDURE
WMFQue QUEUE !Queue to contain .WMF filenames

STRING(64)
END

NextEntry BYTE(1) !Queue entry counter variable
Report REPORT,PREVIEW(WMFQue) !Report with PREVIEW attribute
DetailOne DETAIL

!Report controls
. .

ViewReport WINDOW(‘View Report’),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(‘’),AT(0,0,320,180),USE(?ImageField)
BUTTON(‘View Next Page’),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON(‘Print Report’),AT(80,180,60,20),USE(?PrintReport)
BUTTON(‘Exit Without Printing’),AT(160,180,60,20),USE(?ExitReport)

END
CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report
LOOP
NEXT(SomeFile)
PRINT(DetailOne)

END
ENDPAGE(Report) !Flush the buffer
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) THEN CYCLE. !Check for end of report
GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue !Load next report page
DISPLAY ! and display it

OF ?PrintReport
Report{PROP:flushpreview} = ON !Flush files to printer
BREAK ! and exit procedure

OF ?ExitReport
BREAK !Exit procedure

. .
CLOSE(ViewReport) !Close window
FREE(WMFQue) !Free the queue memory
CLOSE(Report) !Close report (deleting all .WMF files)
RETURN ! and return to caller

See Also: Page Overflow, PREVIEW



CHAPTER 8 REPORTS 8-59

OPEN (open a report structure for processing)

OPEN(repor t)

OPEN Activates a REPORT structure.

report The label of a REPORT structure.

OPEN activates a REPORT structure. You must OPEN a REPORT before
any of the structures may be printed.

Example:

OPEN(CustRpt) !Open the report

PRINT (print a report structure)

PRINT( | structure | )
| report ,number |

PRINT Prints a report DETAIL, HEADER, or FOOTER struc-
ture.

structure The label of a DETAIL structure.

report The label of a REPORT structure.

number The number or EQUATE label of a report structure to
print (only valid with a report parameter).

The PRINT  statement prints a report structure to the destination specified
by the user in the Windows Print... dialog. PRINT automatically activates
group breaks and page overflow as needed.

Example:

BuildRpt PROCEDURE
CustRpt REPORT

HEADER,USE(?PageHeader) !Page header
!structure elements

END
CustDetail DETAIL,USE(?Detail) !Line item detail

!structure elements
END !

END
CODE
PRINT(CustDetail) !Print order detail line
PrintRpt(CustRpt,?PageHeader) !Pass report and equate to print proc

PrintRpt PROCEDURE(RptToPrint,DetailNumber)
CODE
PRINT(RptToPrint,DetailNumber) !Print its structure

See Also: Page Overflow, BREAK



CHAPTER 9 GRAPHICS COMMANDS 9-1

Graphics OverGraphics OverGraphics OverGraphics OverGraphics Over viewviewviewviewview
Clarion supplies the set of “graphics primitives” defined in this chapter to
allow drawing in windows and reports.

Controls always appear on top of any graphics drawn to the window. This
means the graphics appear to underly any controls in the window, so they
don’t get in the way of the controls the user needs to access.

The Current Target

Graphics are always drawn to the “current target.”  Unless overridden with
SETTARGET, the “current target” is the last window opened (and not yet
closed) on the current execution thread and is the window with input focus.
Drawings in a window are persistent—redraws are handled automatically by
the runtime library.

Graphics can also be drawn to a report. To do this, SETTARGET must be
used to nominate the REPORT as the “current target.”

Every window or report has its own current pen width, color, and style.
Therefore, to consistently use the same pen (which does not use the default
settings) across multiple windows, the SETPENWIDTH, SETPENCOLOR,
and SETPENSTYLE statements should be issued for each window.

Graphics Coordinates

The graphics coordinate system starts with the x,y coordinates (0,0) at the
top left corner of the window. The coordinates are specified in dialog units
(unless overridden by the THOUS, MM, or POINTS attributes when used on
graphics placed in a REPORT). A dialog unit is defined as one-quarter the
average character width and one-eighth the average character height of the
font specified in the window’s FONT attribute (or the system font, if no
FONT attribute is specified on the window).

Graphics drawn outside the currently visible portion of the window will
appear if the window is scrolled. The size of the virtual screen over which
the window may scroll automatically expands to include all graphics drawn
to the window. Drawing graphics outside the visible portion of the window
automatically causes the scroll bars to appear (if the window has the
HSCROLL, VSCROLL, or HVSCROLL attribute).



9-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Graphics PGraphics PGraphics PGraphics PGraphics Prrrrrocedurocedurocedurocedurocedureseseseses

ARC (draw an arc of an ellipse)

ARC(  x ,y ,width ,height ,startangle ,endangle )

ARC Draws an arc of an ellipse on the current window or
report.

x An integer expression that specifies the horizontal
position of the starting point.

y An integer expression that specifies the vertical position
of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

startangle An integer expression that specifies the starting point of
the arc, in tenths of degrees (10 = 1 degree) measured
counter-clockwise from three o’clock.

endangle An integer expression that specifies the ending point of
the arc, in tenths of degrees (10 = 1 degree) measured
counter-clockwise from three o’clock.

The ARC procedure places an arc of an ellipse on the current window or
report.

The ellipse is drawn inside a “bounding box” defined by the x, y, width, and
height parameters. The x and y parameters specify the starting point, and the
width and height parameters specify the horizontal and vertical size of the
“bounding box.”

The startangle and endangle parameters specify what sector of the ellipse
will be drawn, as an arc.

The border color is the current pen color set by SETPENCOLOR; the
default color is the Windows system color for window text. The border
width is the current width set by SETPENWIDTH; the default width is one
pixel. The border style is the current pen style set by SETPENSTYLE; the
default style is a solid line.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
ARC(100,50,100,50,0,900) !Draw 90 degree arc from 3 to 12 o’clock, as

! the top-right quadrant of ellipse



CHAPTER 9 GRAPHICS COMMANDS 9-3

BLANK (erase graphics)

BLANK(  [x] [,y] [,width] [,height] )

BLANK Erases all graphics written to the specified area of the
current window or report.

x An integer expression that specifies the horizontal
position of the starting point. If omitted, the default is
zero.

y An integer expression that specifies the vertical position
of the starting point. If omitted, the default is zero.

width An integer expression that specifies the width. If omit-
ted, the default is the width of the window.

height An integer expression that specifies the height. If
omitted, the default is the height of the window.

The BLANK  procedure erases all graphics written to the specified area of
the current window or report. Controls are not erased. BLANK with no
parameters erases the entire window or report.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
ARC(100,50,100,50,0,900) !Draw arc
BLANK !Then erase it



9-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BOX (draw a rectangle)

BOX(  x ,y ,width ,height [,fill] )

BOX Draws a rectangular box on the current window or
report.

x An integer expression that specifies the horizontal
position of the starting point.

y An integer expression that specifies the vertical position
of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG or ULONG integer constant, constant
EQUATE, or variable containing the red, green, and blue
components that create the color in the three low-order
bytes (bytes 0, 1, and 2) or an EQUATE for a standard
Windows color value.

The BOX procedure places a rectangular box on the current window or
report. The position and size of the box are specified by x, y, width, and
height parameters.

The x and y parameters specify the starting point, and the width and height
parameters specify the horizontal and vertical size of the box. The box
extends to the right and down from its starting point.

The border color is the current pen color set by SETPENCOLOR; the
default color is the Windows system color for window text. The border
width is the current width set by SETPENWIDTH; the default width is one
pixel. The border style is the current pen style set by SETPENSTYLE; the
default style is a solid line.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
BOX(100,50,100,50,00FF0000h) !Red box



CHAPTER 9 GRAPHICS COMMANDS 9-5

CHORD (draw a section of an ellipse)

CHORD( x ,y ,width ,height ,startangle ,endangle [,fill] )

CHORD Draws a closed sector of an ellipse on the current
window or report.

x An integer expression that specifies the horizontal
position of the starting point.

y An integer expression that specifies the vertical position
of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

startangle An integer expression that specifies the starting point of
the chord, in tenths of degrees (10 = 1 degree) measured
counter-clockwise from three o’clock.

endangle An integer expression that specifies the ending point of
the chord, in tenths of degrees (10 = 1 degree) measured
counter-clockwise from three o’clock.

fill A LONG or ULONG integer constant, constant
EQUATE, or variable containing the red, green, and blue
components that create the color in the three low-order
bytes (bytes 0, 1, and 2) or an EQUATE for a standard
Windows color value.

The CHORD procedure places a closed sector of an ellipse on the current
window or report. The ellipse is drawn inside a “bounding box” defined by
the x, y, width, and height parameters. The x and y parameters specify the
starting point, and the width and height parameters specify the horizontal
and vertical size of the “bounding box.”  The startangle and endangle
parameters specify what sector of the ellipse will be drawn, as an arc. The
two end points of the arc are also connected with a straight line.

The border color is the current pen color set by SETPENCOLOR; the
default color is the Windows system color for window text. The border
width is the current width set by SETPENWIDTH; the default width is one
pixel. The border style is the current pen style set by SETPENSTYLE; the
default style is a solid line.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
CHORD(100,50,100,50,0,900,00FF0000h) !Red 90 degree crescent



9-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ELLIPSE (draw an ellipse)

ELLIPSE(  x ,y ,width ,height [,fill] )

ELLIPSE Draws an ellipse on the current window or report.

x An integer expression that specifies the horizontal
position of the starting point.

y An integer expression that specifies the vertical position
of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG or ULONG integer constant, constant
EQUATE, or variable containing the red, green, and blue
components that create the color in the three low-order
bytes (bytes 0, 1, and 2) or an EQUATE for a standard
Windows color value.

The ELLIPSE  procedure places an ellipse on the current window or report.
The ellipse is drawn inside a “bounding box” defined by the x, y, width, and
height parameters. The x and y parameters specify the starting point, and the
width and height parameters specify the horizontal and vertical size of the
“bounding box.”

The border color is the current pen color set by SETPENCOLOR; the
default color is the Windows system color for window text. The border
width is the current width set by SETPENWIDTH; the default width is one
pixel. The border style is the current pen style set by SETPENSTYLE; the
default style is a solid line.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
ELLIPSE(100,50,100,50,00FF0000h) !Red ellipse



CHAPTER 9 GRAPHICS COMMANDS 9-7

IMAGE (draw a graphic image)

IMAGE( x ,y ,width ,height ,filename )

IMAGE Places a graphic image on the current window or report.

x An integer expression that specifies the horizontal
position of the starting point.

y An integer expression that specifies the vertical position
of the starting point.

width An integer expression that specifies the width. This may
be a negative number.

height An integer expression that specifies the height. This may
be a negative number.

filename A string constant or variable containing the name of the
file to display.

The IMAGE  procedure places a graphic image on the current window or
report at the position and size specified by its x, y, width, and height
parameters. This may be a bitmap (.BMP), icon (.ICO), PaintBrush (.PCX),
Graphic Interchange Format (.GIF), JPEG (.JPG), or Windows metafile
(.WMF).

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
IMAGE(100,50,100,50,’LOGO.BMP’) !Draw graphic image



9-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LINE (draw a straight line)

LINE( x ,y ,width ,height )

LINE Draws a straight line on the current window or report.

x An integer expression specifying the horizontal position
of the starting point.

y An integer expression specifying the vertical position of
the starting point.

width An integer expression specifying the width. This may be
a negative number.

height An integer expression specifying the height. This may be
a negative number.

The LINE  procedure places a straight line on the current window or report.
The starting position, slope, and length of the line are specified by x, y,
width, and height parameters. The x and y parameters specify the starting
point of the line. The width and height parameters specify the horizontal and
vertical distance to the end point of the line. If these are both positive
numbers, the line slopes to the right and down from its starting point. If the
width parameter is negative, the line slopes left; if the height parameter is
negative, the line slopes left. If either the width or height parameter is zero,
the line is horizontal or vertical.

 Width Height Result
 positive positive right and down from start point
 negative positive left and down from start point
 positive negative right and up from start point
 negative negative left and up from start point
 zero positive vertical, down from start point
 zero negative vertical, up from start point
 positive zero horizontal, right from start point
 negative zero horizontal, left from start point

The line color is the current pen color set by SETPENCOLOR; the default
color is the Windows system color for window text. The width is the current
width set by SETPENWIDTH; the default width is one pixel. The line’s
style is the current pen style set by SETPENSTYLE; the default style is a
solid line.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
LINE(100,50,100,50) !Draw line



CHAPTER 9 GRAPHICS COMMANDS 9-9

PIE (draw a pie chart)

PIE( x ,y ,width ,height ,slices ,colors [,depth] [,wholevalue] [,startangle] )

PIE Draws a pie chart on the current window or report.

x An integer expression that specifies the horizontal
position of the starting point.

y An integer expression that specifies the vertical position
of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

slices A SHORT array of values that specify the relative size of
each slice of the pie.

colors A LONG array that specifies the fill color for each slice.

depth An integer expression that specifies the depth of the
three-dimensional pie chart. If omitted, the chart is two-
dimensional.

wholevalue A numeric constant or variable that specifies the total
value required to create a complete pie chart. If omitted,
the sum of the slices array is used.

startangle A numeric constant or variable that specifies the starting
point of the first slice of the pie, measured as a fraction
of the wholevalue. If omitted (or zero), the first slice
starts at the twelve o’clock position.

The PIE procedure creates a pie chart on the current window or report. The
pie (an ellipse) is drawn inside a “bounding box” defined by the x, y, width,
and height parameters. The x and y parameters specify the starting point, and
the width and height parameters specify the horizontal and vertical size of
the “bounding box.”

The slices of the pie are created clockwise from the startangle parameter as
a fraction of the wholevalue. Supplying a wholevalue parameter that is
greater than the sum of all the slices array elements creates a pie chart with a
piece missing.

The color of the lines is the current pen color set by SETPENCOLOR; the
default color is the Windows system color for window text. The width of the
lines is the current width set by SETPENWIDTH; the default width is one
pixel. The line style is the current pen style set by SETPENSTYLE; the
default style is a solid line.



9-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END

SliceSize SHORT,DIM(4)
SliceColor LONG,DIM(4)

CODE
SliceSize[1] = 90
SliceColor[1] = 0 !Black
SliceSize[2] = 90
SliceColor[2] = 00FF0000h !Red
SliceSize[3] = 90
SliceColor[3] = 0000FF00h !Green
SliceSize[4] = 90
SliceColor[4] = 000000FFh !Blue
OPEN(MDIChild)
PIE(100,50,100,50,SliceSize,SliceColor)

!Draw pie chart containing
! four equal slices, starting at 12 o’clock
! drawn counter-clockwise - Black, Red, Green, and Blue



CHAPTER 9 GRAPHICS COMMANDS 9-11

POLYGON (draw a multi-sided figure)

POLYGON( array [,fill] )

POLYGON Draws a multi-sided figure on the current window or
report.

array An array of SHORT integers that specify the x and y
coordinates of each “corner point” of the polygon.

fill A LONG or ULONG integer constant, constant
EQUATE, or variable containing the red, green, and blue
components that create the color in the three low-order
bytes (bytes 0, 1, and 2) or an EQUATE for a standard
Windows color value.

The POLYGON  procedure places a multi-sided figure on the current
window or report. The polygon is always closed.

The array parameter contains the x and y coordinates of each “corner point”
of the polygon. The polygon will have as many corner points as the total
number of array elements divided by two. For each corner point in turn, its x
coordinate is taken from the odd-numbered array element and the y
coordinate from the immediately following even-numbered element.

The border color is the current pen color set by SETPENCOLOR; the
default color is the Windows system color for window text. The border
width is the current width set by SETPENWIDTH; the default width is one
pixel. The line’s style is the current pen style set by SETPENSTYLE; the
default style is a solid line.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
Corners SHORT,DIM(8)

CODE
Corners[1] = 0 !1st x position
Corners[2] = 90 !1st y position
Corners[3] = 90 !2nd x position
Corners[4] = 190 !2nd y position
Corners[5] = 100 !3rd x position
Corners[6] = 200 !3rd y position
Corners[7] = 50 !4th x position
Corners[8] = 60 !4th y position
OPEN(MDIChild)
POLYGON(Corners,000000FFh) !Blue filled four-sided polygon



9-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ROUNDBOX (draw a box with round corners)

ROUNDBOX( x ,y ,width ,height [,fill] )

ROUNDBOX Draws a rectangular box with rounded corners on the
current window or report.

x An integer expression that specifies the horizontal
position of the starting point.

y An integer expression that specifies the vertical position
of the starting point.

width An integer expression that specifies the width.

height An integer expression that specifies the height.

fill A LONG or ULONG integer constant, constant
EQUATE, or variable containing the red, green, and blue
components that create the color in the three low-order
bytes (bytes 0, 1, and 2) or an EQUATE for a standard
Windows color value.

The ROUNDBOX procedure places a rectangular box with rounded corners
on the current window or report. The position and size of the box are
specified by x, y, width, and height parameters.

The x and y parameters specify the starting point, and the width and height
parameters specify the horizontal and vertical size of the box. The box
extends to the right and down from its starting point.

The border color is the current pen color set by SETPENCOLOR; the
default color is the Windows system color for window text. The border
width is the current width set by SETPENWIDTH; the default width is one
pixel. The border style is the current pen style set by SETPENSTYLE; the
default style is a solid line.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
ROUNDBOX(100,50,100,50,00FF0000h) !Red round-cornered box



CHAPTER 9 GRAPHICS COMMANDS 9-13

SETPENCOLOR (set line draw color)

SETPENCOLOR( [color] )

SETPENCOLOR Sets the current pen color.

color A LONG or ULONG integer constant, constant
EQUATE, or variable containing the red, green, and blue
components that create the color in the three low-order
bytes (bytes 0, 1, and 2) or an EQUATE for a standard
Windows color value. If omitted, the Windows system
color for window text is set.

The SETPENCOLOR procedure sets the current pen color for use by all
graphics procedures. The default color is the Windows system color for
window text.

Every window has its own current pen color. Therefore, to consistently use
the same pen (which does not use the default color setting) across multiple
windows, the SETPENCOLOR statement should be issued for each window.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
ROUNDBOX(100,50,100,50,00FF0000h) !Red round-cornered box with blue border



9-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SETPENSTYLE (set line draw style)

SETPENSTYLE( [style] )

SETPENSTYLE Sets the current pen style.

style An integer constant, constant EQUATE, or variable that
specifies the pen’s style. If omitted, a solid line is set.

The SETPENSTYLE procedure sets the current line draw style for use by
all graphics procedures. The default is a solid line.

Every window has its own current pen style. Therefore, to consistently use
the same pen (which does not use the default style setting) across multiple
windows, the SETPENSTYLE statement should be issued for each window.

EQUATE statements for the pen styles are contained in the EQUATES.CLW
file. The following list is a representative sample of these (see
EQUATES.CLW for the complete list):

 PEN:solid Solid line
 PEN:dash Dashed line
 PEN:dot Dotted line
 PEN:dashdot Mixed dashes and dots

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
ROUNDBOX(100,50,100,50,00FF0000h)

!Red round-cornered box with blue dashed border



CHAPTER 9 GRAPHICS COMMANDS 9-15

SETPENWIDTH (set line draw thickness)

SETPENWIDTH( [width] )

SETPENWIDTH Sets the current pen width.

width An integer expression that specifies the pen’s thickness,
measured in dialog units (unless overridden by the
THOUS, MM, or POINTS attribute on a REPORT). If
omitted, the default (one pixel) is set.

The SETPENWIDTH  procedure sets the current line draw thickness for use
by all graphics procedures. The default is one pixel, which may be set with a
width of zero (0).

Every window has its own current pen width. Therefore, to consistently use
the same pen (which does not use the default width setting) across multiple
windows, the SETPENWIDTH statement should be issued for each window.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border



9-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SHOW (write to screen)

SHOW( x ,y ,string )

SHOW Writes a string to the current window or report.

x An integer expression that specifies the horizontal
position of the starting point, in dialog units.

y An integer expression that specifies the vertical position
of the starting point, in dialog units.

string A string constant, variable, or expression containing the
formatted text to place on the current window or report.

SHOW writes the string text to the current window or report. The font used
is the current font for the window or report.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
DISPLAY
SHOW(100,100,FORMAT(TODAY(),@D3)) !Display the date
SHOW(20,20,’Press Any Key to Continue’) !Display a message

TYPE (write string to screen)

TYPE(string)

TYPE Writes a string to the current window or report.

string A string constant, variable, or expression.

TYPE writes a string to the current window or report. The string appears on
the window or report at the current cursor position, and “wraps around” if
the string length extends beyond the right edge. The font used is the current
font for the window or report. The SHOW statement may be used to position
the cursor before output from TYPE.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
!window controls

END
CODE
OPEN(MDIChild)
DISPLAY
TYPE(Cus:Notes) !Type the notes field



CHAPTER 9 GRAPHICS COMMANDS 9-17

Graphics FGraphics FGraphics FGraphics FGraphics Functionsunctionsunctionsunctionsunctions

PENCOLOR (return line draw color)

PENCOLOR( )

The PENCOLOR function returns the current pen color set by
SETPENCOLOR.

Return Data Type: LONG

Example:

Proc1 PROCEDURE
MDIChild1 WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW(‘Child Two’),AT(0,0,320,200),MDI,MAX,HVSCROLL

!window controls
END

ColorNow LONG
CODE
ColorNow = PENCOLOR() !Get current pen color
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border



9-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PENSTYLE (return line draw style)

PENSTYLE( )

The PENSTYLE function returns the current line draw style set by
SETPENSTYLE.

EQUATE statements for the pen styles are contained in the EQUATES.CLW
file. The following list is a representative sample of these (see
EQUATES.CLW for the complete list):

 PEN:solid Solid line
 PEN:dash Dashed line
 PEN:dot Dotted line
 PEN:dashdot Mixed dashes and dots

Return Data Type: LONG

Example:

Proc1 PROCEDURE
MDIChild1 WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL

 !window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW(‘Child Two’),AT(0,0,320,200),MDI,MAX,HVSCROLL

 !window controls
END

ColorNow LONG
StyleNow LONG
CODE
ColorNow = PENCOLOR() !Get current pen color
StyleNow = PENSTYLE() !Get current pen style
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(StyleNow) !Set same pen style
SETPENWIDTH(2) !Set two dialog unit thickness
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border



CHAPTER 9 GRAPHICS COMMANDS 9-19

PENWIDTH (return line draw thic kness)

PENWIDTH( )

The PENWIDTH  function returns the current line draw thickness set by
SETPENWIDTH. The return value is in dialog units (unless overridden by
the THOUS, MM, or POINTS attributes on a REPORT).

Return Data Type: LONG

Example:

Proc1 PROCEDURE
MDIChild1 WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL

 !window controls
END

CODE
OPEN(MDIChild1)
SETPENCOLOR(000000FFh) !Set blue pen color
SETPENSTYLE(PEN:dash) !Set dashes for line style
SETPENWIDTH(2) !Set two dialog unit thickness
Proc2 !Call another procedure

Proc2 PROCEDURE
MDIChild2 WINDOW(‘Child Two’),AT(0,0,320,200),MDI,MAX,HVSCROLL

 !window controls
END

ColorNow LONG
StyleNow LONG
WidthNow LONG
CODE
ColorNow = PENCOLOR() !Get current pen color
StyleNow = PENSTYLE() !Get current pen style
WidthNow = PENWIDTH() !Get current pen width
OPEN(MDIChild2)
SETPENCOLOR(ColorNow) !Set same pen color
SETPENSTYLE(StyleNow) !Set same pen style
SETPENWIDTH(WidthNow) !Set same pen width
BOX(100,50,100,50,00FF0000h) !Red box with thick blue dashed border



CHAPTER 10 DATA FILES 10-1

Data File StructurData File StructurData File StructurData File StructurData File Structureseseseses

FILE (declare a data file structure)

label FILE ,DRIVER( ) [,CREATE] [,RECLAIM ] [,OWNER( )] [,ENCRYPT] [,NAME()] [,PRE( )]
[,BINDABLE ] [,THREAD] [,EXTERNAL ] [,DLL ] [,OEM]

label   [INDEX( )]
label   [KEY( )]
label   [MEMO( )]
label   [BLOB ]
[label]   RECORD

    fields
  END
END

FILE Declares a data file.

DRIVER Specifies the data file type. The DRIVER attribute is
required on all FILE structure declarations.

CREATE Allows the file to be created with the CREATE state-
ment during program execution.

RECLAIM Specifies reuse of deleted record space.

OWNER Specifies the password for data encryption.

ENCRYPT Encrypt the data file.

NAME Set DOS filename specification.

PRE Declare a label prefix for the structure.

BINDABLE Specify all variables in the RECORD structure may be
used in dynamic expressions.

THREAD Specify memory for the record buffer is separately
allocated for each execution thread, when the file is
opened on the thread.

EXTERNAL Specify the FILE is defined, and the memory for its
record buffer is allocated, in an external library.

DLL Specify the FILE is defined in a .DLL. This is required
in addition to the EXTERNAL attribute.

OEM Specify string data is converted from OEM ASCII to
ANSI when read from disk and ANSI to OEM ASCII
before writing to disk.

INDEX Declare a static file access index which must be built at
run time.

KEY Declare a dynamically updated file access index.

MEMO Declare a variable length text field up to 64K in length.



10-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BLOB Declare a variable length memo field which may be
greater than 64K in length.

RECORD Declare a record structure for the fields. A RECORD
structure is required in all FILE structure declarations.

fields Data elements in the RECORD structure.

FILE  declares a data file structure which is an exact description of a data
file residing on disk. The label of the FILE structure is used in file
processing statements and functions to effect operations on the disk file. The
FILE structure must be terminated by a period or the END statement.

All attributes of the FILE, KEY, INDEX, MEMO, data declaration
statements, and the data types which a FILE may contain, are dependent
upon the support of the file driver. Anything in the FILE declaration which
is not supported by the file system specified in the DRIVER attribute will
cause a file driver error message when the FILE is opened. Attribute and/or
data type exclusions for a specific file system are listed in the file driver’s
documentation.

At run-time, the RECORD structure is assigned memory for a data buffer
where records from the disk file may be processed by executable statements.
A RECORD structure is required in a FILE structure. Memory for a data
buffer for any MEMO fields is allocated only when the FILE is opened, and
de-allocated when the FILE is closed.

A FILE with the BINDABLE attribute declares all the variables within the
RECORD structure as available for use in a dynamic expression, without
requiring a separate BIND statement for each (allowing BIND(file) to enable
all the fields in the file). The contents of each variable’s NAME attribute is
the logical name used in the dynamic expression. If no NAME attribute is
present, the label of the variable (including prefix) is used. Space is
allocated in the .EXE for the names of all of the variables in the structure.
This creates a larger program that uses more memory than it normally
would. Therefore, the BINDABLE attribute should only be used when a
large proportion of the constituent fields are going to be used.

A FILE with the THREAD attribute declares a separate record buffer (and
file control block) for each execution thread that OPENs the FILE. If the
thread does not OPEN the file, no record buffer is allocated for the file on
that thread. A FILE with the EXTERNAL attribute is declared and may be
referenced in Clarion code, but is not allocated memory. The memory for the
FILE’s record buffer is allocated by the external library. This allows a
Clarion program access to FILEs declared as public in external libraries.

Example:

Names FILE,DRIVER(‘Clarion’) !Declare a file structure
Rec RECORD !Required record structure
Name STRING(20) ! containing one or more data elements

. . !End file and record declaration



CHAPTER 10 DATA FILES 10-3

CREATE (allow data file creation)

CREATE

The CREATE  attribute of a FILE declaration allows a disk file to be created
by the CREATE statement from within the PROGRAM where the FILE is
declared. This adds some overhead, as all the file information must be
contained in the excutable program.

Example:

Names FILE,DRIVER(‘Clarion’),CREATE !Declare a file, allow create
Rec RECORD
Name STRING(20)

. .

DRIVER (specify data file type)

DRIVER(filetype [,driver string])

DRIVER Specifies the file system the file uses.

filetype A string constant containing the name of the file man-
ager (Btrieve, Clarion, etc.).

driver string A string constant or variable containing any additional
instructions to the file driver.

The DRIVER  attribute specifies which file driver is used to access the data
file. DRIVER is a required attribute of all FILE declarations.

Clarion programs use file drivers for physical file access. A file driver acts as
a translator between a Clarion program and the file system, eliminating
different access commands for each file system. File drivers allow access to
files from different file systems without changes in the Clarion syntax.

The specific implementation method of each Clarion file access command is
dependent on the file driver. Some commands may not be available in a file
driver due to limitations in the file system. Each file driver is documented
separately. Any unsupported file access commands, FILE declaration
attributes, data types, and/or file system idiosyncracies are listed there.

Example:

Names FILE,DRIVER(‘Clarion’) !Begin file declaration
Record RECORD
Name STRING(20)

 . .



10-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

NAME (set filename)

NAME( [ | constant | ])
| variable |

NAME Specifies the DOS filename of the file.

constant A string constant.

variable The label of a static string variable. This may be de-
clared as Global data, Module data, or Local data with
the STATIC attribute.

The NAME  attribute on a FILE statement specifies the DOS filename for
the file driver. If the constant or variable does not contain a drive and path,
the current drive and directory are assumed. If the extension is omitted, the
directory entry assumes the file driver’s default value.

Some file drivers require that KEYs, INDEXes, or MEMOs be in separate
files. Therefore, a NAME may also be placed on a KEY, INDEX, or
MEMO. A NAME attribute without a constant or variable defaults to the
label of the declaration statement on which it is placed (including any
specified prefix).

NAME(constant) may be used on any field declared within the RECORD
structure. This provides the file driver with the name of a field as it may be
used in that driver’s file system.

Example:

Cust FILE,PRE(Cus),NAME(CustName) !Filename in CustName variable
CustKey KEY(‘Name’),NAME(‘c:\data\cust.idx’) !Declare key, cust.idx
Record RECORD
Name STRING(20) !Default NAME to ‘Cus:Name’

 . .

See Also: FILE, KEY, INDEX



CHAPTER 10 DATA FILES 10-5

ENCRYPT (encrypt data file)

ENCRYPT

The ENCRYPT attribute is used in conjunction with the OWNER attribute
to disguise the information in a data file. ENCRYPT is only valid with an
OWNER attribute. Even with a “hex-dump” utility, the data in an encrypted
file is extremely difficult to decipher.

Example:

Names FILE,DRIVER(‘Clarion’),OWNER(‘Clarion’),ENCRYPT
Record RECORD
Name STRING(20)

 . .

See Also: OWNER

OWNER (declare password for data encryption)

OWNER(password)

OWNER Specifies a file encryption password.

password A string constant or variable.

The OWNER attribute specifies the password which is used by the
ENCRYPT attribute to encrypt the data.

An OWNER attribute without an accompanying ENCRYPT attribute is
allowed by some file systems. The exact implementation of this attribute is
file driver dependent.

Example:

Customer FILE,DRIVER(‘Clarion’),OWNER(‘abCdeF’),ENCRYPT
!Encrypt data password “abCdeF”

Record  RECORD
Name  STRING(20)

. .

See Also: ENCRYPT



10-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RECLAIM (reuse deleted record space)

RECLAIM

The RECLAIM  attribute specifies that the file driver adds new records to
the file in the space previously used by a record that has been deleted, if
available. Otherwise, the record is added at the end of the file.
Implementation of RECLAIM is file driver specific and may not be
supported in all file systems.

Example:

Names FILE,DRIVER(‘Clarion’),RECLAIM !Reuse deleted record space
Record RECORD
Name STRING(20)

. .



CHAPTER 10 DATA FILES 10-7

PRE (set file label)

PRE( [ prefix ] )

PRE Provides a label prefix for complex data structures.

prefix Acceptable characters are alphabet letters, numerals 0
through 9, and the underscore character. A prefix must
start with an alpha character (or underscore) and must
not be a reserved word. By convention, a prefix is 1-3
characters, although it can be longer.

The PRE attribute provides a label prefix for the file. It is used to
distinguish between identical variable names that occur in different
structures. When a data element from the file is referenced in executable
statements, assignments, and parameter lists, the prefix is attached to its
label by a colon (Pre:Label).

Another method to distinguish between identical variable names that occur
in different structures does not use the PRE attribute, but instead uses the
Field Qualification syntax. When referenced in executable statements,
assignments, and parameter lists, the label of the structure containing the
field is attached to the field label by a colon (GroupName:Label). In the case
of a file that also contains a RECORD structure (that has a label), the
individual fields are addressed as FileLabel:RecordLabel:FieldName. If the
file contains a RECORD structure without a label, the individual fields are
addressed as FileLabel:FieldName.

Example:

MasterFile FILE,DRIVER(‘Clarion’),PRE(Mst) !Declare master file layout
Record RECORD
AcctNumber LONG

. .
Detail FILE,DRIVER(‘Clarion’),PRE(Dtl) !Declare detail file layout
Record RECORD
AcctNumber LONG

. .
GROUP,PRE(Mem) !Declare memory variables

Message STRING(30)
END

CODE
IF Dtl:AcctNumber <> Mst:AcctNumber !Is it a new account
Mem:Message = ‘New Account’ ! display message
DO MatchMaster ! get new record

END

IF Detail:Record:AcctNumber <> Mssterfile:Record:AcctNumber !Same expression
Mem:Message = ‘New Account’ ! display message
DO MatchMaster ! get new record

END

See Also: Reserved Words, Field Qualification



10-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BINDABLE (set runtime expression string RECORD variables)

BINDABLE

The BINDABLE  attribute on a FILE statement declares a RECORD
structure whose constituent variables are all available for use in a dynamic
expression. The contents of each variable’s NAME attribute is the logical
name used in the dynamic expression. If no NAME attribute is present, the
label of the variable (including prefix) is used. Space is allocated in the
.EXE for the names of all of the variables in the structure. This creates a
larger program that uses more memory than it normally would. Therefore,
the BINDABLE attribute should only be used when a large proportion of the
constituent fields are going to be used.

The BIND(group) form of the BIND statement must still be used in the
executable code before the individual fields in the RECORD structure may
be used.

Example:

Names FILE,DRIVER(‘Clarion’),BINDABLE !Bindable Record structure
Record RECORD
Name STRING(20)
FileName STRING(8),NAME(‘FName’) !Dynamic name: FName
Dot STRING(1) !Dynamic name: Dot
Extension STRING(3),NAME(‘EXT’) !Dynamic name: EXT

. .
CODE
OPEN(Names)
BIND(Names)

See Also: BIND, UNBIND, EVALUATE



CHAPTER 10 DATA FILES 10-9

THREAD (set thread-specific record buffer)

THREAD

The THREAD  attribute declares a FILE which is allocated memory for its
record buffer (and file control block) separately for each execution thread in
the program. This makes the values contained in the record buffer dependent
upon which thread is executing.

Whenever a new execution thread is started, the FILE must be OPENed
again to receive a new instance of the record buffer.

Example:

PROGRAM
MAP
Thread1
Thread2

END
Names FILE,DRIVER(‘Clarion’),PRE(Nam),THREAD !Threaded file
NbrNdx INDEX(Nam:Number),OPT
Rec RECORD
Name STRING(20)
Number SHORT

. .
  CODE
  START(Thread1)
START(Thread2)

Thread1 PROCEDURE
  CODE
  OPEN(Names) !OPEN creates new record buffer instance
GET(Names,1) ! containing the 1st record in the file

Thread2 PROCEDURE
  CODE
  OPEN(Names) !OPEN creates another new record buffer instance
GET(Names,5) ! containing the 5th record in the file

See Also: START, Data Declarations and Memory Allocation



10-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EXTERNAL (set file defined externally)

EXTERNAL(  member )

EXTERNAL Specifies the FILE is defined in an external library.

member A string constant. Valid only on a FILE declaration. It
contains the filename (without extension) of the MEM-
BER module containing the FILE definition without the
EXTERNAL attribute. If the FILE is defined in a
PROGRAM module, an empty member string (‘’) is
required.

The EXTERNAL  attribute specifies that the FILE on which it is placed is
defined in an external library. Therefore, a FILE with the EXTERNAL
attribute is declared and may be referenced in the Clarion code, but is not
allocated memory for a record buffer. The memory for the FILE’s record
buffer is allocated by the external library. This allows the Clarion program
access to FILEs declared as public in external libraries.

When using EXTERNAL(member) to declare a FILE shared by multiple
libraries (.LIBs, or .DLLs and .EXE), only one library should define the
FILE without the EXTERNAL attribute. All the other libraries (and the
.EXE) should declare the FILE with the EXTERNAL attribute. This ensures
that there is only one record buffer allocated for the FILE and all the
libraries and the .EXE will reference the same memory when referring to
data elements from that FILE.

The FILE declarations in all libraries (or .EXEs) that reference common files
must be EXACTLY the same (with the appropriate addition of the
EXTERNAL attribute). If they are not exactly the same, data corruption
could occur. The actual consequence of incompatible FILE declarations is
dependent upon the file driver for that file system. Any incompatibilities
between libraries cannot be detected by the compiler or linker, therefore it is
the programmer’s responsibility to ensure that consistency is maintained.

One suggested way of coding large systems using many .DLLs and/or
.EXEs that share the same files would have one .DLL containing the actual
FILE definition that only contains FILE and global variable definitions that
are shared among all (or most) of the .DLLs and .EXEs. This makes one
central library in which the actual file definitions are maintained. This one
central .DLL is linked into all .EXEs that use those common files. All other
.DLLs and/or .EXEs in the system would declare the common FILEs with
the EXTERNAL attribute.



CHAPTER 10 DATA FILES 10-11

Example:

PROGRAM
MAP
 MODULE(‘LIB.LIB’)
 AddCount !External library procedure

. .

TotalCount LONG,EXTERNAL !A variable declared in an external library

Cust FILE,PRE(Cus),EXTERNAL(‘’) !A File defined in a PROGRAM module
CustKey KEY(‘Cus:Name’) ! whose .LIB is linked into this program
Record RECORD
Name STRING(20)

. .

Contact FILE,PRE(Con),EXTERNAL(‘LIB01’) !A File defined in a MEMBER module
ContactKey KEY(‘Con:Name’) ! whose .LIB is linked into this program
Record RECORD
Name STRING(20)

. .

! The LIB.CLW file contains:
PROGRAM
MAP
 MODULE(‘LIB01’)
 AddCount  !

. .

TotalCount LONG !The TotalCount variable definition

Cust FILE,PRE(Cus) !The Cust File definition where the
CustKey KEY(‘Cus:Name’) ! record buffer is allocated
Record RECORD
Name STRING(20)

. .

CODE
!Executable code ...

! The LIB01.CLW file contains:
 MEMBER(‘LIB’)

Contact FILE,PRE(Con) !The Contact File definition where the
ContactKey KEY(‘Con:Name’) ! record buffer is allocated
Record RECORD
Name STRING(20)

. .

AddCount PROCEDURE
CODE
TotalCount += 1



10-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DLL (set file defined externally in .DLL)

DLL( [ flag ] )

DLL Declares a FILE defined externally in a .DLL.

flag A numeric constant, equate, or Project system define
which specifies the attribute as active or not. If the flag
is zero, the attribute is not active, just as if it were not
present. If the flag is any value other than zero, the
attribute is active.

The DLL  attribute specifies that the FILE on which it is placed is defined in
a .DLL. A FILE with DLL attribute must also have the EXTERNAL
attribute. The DLL attribute is required for 32-bit applications because
.DLLs are relocatable in a 32-bit flat address space, which requires one extra
dereference by the compiler to address the FILE.

The FILE declarations in all libraries (or .EXEs) that reference common
FILEs must be EXACTLY the same (with the appropriate addition of the
EXTERNAL and DLL attributes). If they are not exactly the same, data
corruption could occur. Any incompatibilities between libraries cannot be
detected by the compiler or linker, therefore it is the programmer’s
responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL to declare a FILE shared by .DLLs and
.EXE, only one .DLL should define the FILE without the EXTERNAL and
DLL attributes. All the other .DLLs (and the .EXE) should declare the FILE
with the EXTERNAL and DLL attributes. This ensures that there is only one
memory allocation for the FILE and all the .DLLs and the .EXE will
reference the same memory when referring to that FILE.

One suggested way of coding large systems using many .DLLs and/or
.EXEs that share the same FILEs would have one .DLL containing the
actual file definition that only contains FILE and global data definitions that
are shared among all (or most) of the .DLLs and .EXEs. This makes one
central library in which the actual file definitions are maintained. This one
central .DLL is linked into all .EXEs that use those common files. All other
.DLLs and/or .EXEs in the system would declare the common variables with
the EXTERNAL and DLL attributes.

Example:

Cust FILE,PRE(Cus),EXTERNAL(‘’),DLL !File defined in PROGRAM module of a .DLL
CustKey KEY(‘Cus:Name’)
Record RECORD
Name STRING(20)

. .

See Also: EXTERNAL



CHAPTER 10 DATA FILES 10-13

OEM (set international string support)

OEM

The OEM  attribute specifies that the FILE on which it is placed contains
non-English language string data. These strings are automatically translated
from the OEM ASCII character set data contained in the file to the ANSI
character set for display in Windows. All string data in the record is
automatically translated from the ANSI character set to the OEM ASCII
character set before the record is written to disk.

The specific OEM ASCII character set used for the translation comes from
the DOS code page loaded by the country.SYS file. This makes the data file
specific to the language used for that code page, and means the data may not
be useable on a computer with a different code page loaded. This attribute
may not be supported by all file systems; consult the specific file driver’s
documentation.

Example:

Cust FILE,DRIVER(‘TopSpeed’),PRE(Cus),OEM !Contains international strings
CustKey KEY(‘Cus:Name’)
Record RECORD
Name STRING(20)

. .

Screen WINDOW(‘Window’)
ENTRY(@S20),USE(Cus:Name)
BUTTON(‘&OK’),USE(?Ok),DEFAULT
BUTTON(‘&Cancel’),USE(?Cancel)

END

CODE
OPEN(Cust) !Open Cust file
SET(Cust)
NEXT(Cust) !Get record, ASCII strings are automatically

! translated to ANSI character set
OPEN(Screen) !Open window and display ANSI data
ACCEPT
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
PUT(Cust) !Put record, ANSIstrings are automatically

! translated to the OEM ASCII character set
! per the loaded DOS code page

BREAK
END

END
END
CLOSE(Screen)
CLOSE(Cust)



10-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

File StructurFile StructurFile StructurFile StructurFile Structure Statementse Statementse Statementse Statementse Statements

INDEX (declare static file access index)

label INDEX([-/+][field],...,[-/+][field]) [,NAME( )] [,NOCASE] [,OPT]

INDEX Declares a static index into the data file.

-/+ The - (minus sign) preceding an index component field
specifies descending order for that component. If omit-
ted, or + (plus sign) the component is sorted in ascend-
ing order.

field The label of a field in the RECORD structure of the
FILE in which the INDEX is declared. The field is an
index component. A field declared with the DIM at-
tribute (an array) may not be used as an index compo-
nent.

NAME Specifies the disk file specification for the INDEX.

OPT Excludes, from the INDEX, those records with null
values (zero or blank) in all index component fields.

NOCASE Specifies case insensitive sort order.

INDEX  declares a “static key” for a FILE structure. An INDEX is updated
only by the BUILD statement. It is used to access records in a different
logical order than the “physical order” of the file. An INDEX may be used
for either sequential file processing or direct random access. An INDEX
always allows duplicate entries. An INDEX may have more than one
component field. The order of the components determines the sort sequence
of the index. The first component is the most general, and the last
component is the most specific. Generally, a data file may have up to 255
indexes (and/or keys) and each index may be up to 255 bytes, but the exact
numbers are file driver dependent. An INDEX declared without a field
creates a “dynamic index.”  A dynamic index may use any field (or fields) in
the RECORD as components (except arrays). The component fields of a
dynamic index are defined at run time in the second parameter of the
BUILD statement. The same dynamic index declaration may be built and re-
built using different component fields each time.

Example:

Names FILE,DRIVER(‘Clarion’),PRE(Nam)
NameNdx INDEX(Nam:Name),NOCASE !Declare the name index
NbrNdx INDEX(Nam:Number),OPT !Declare the number index
DynamicNdx INDEX() !Declare a dynamic index
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also: KEY, BUILD



CHAPTER 10 DATA FILES 10-15

KEY (declare dynamic file access index)

label KEY( [-/+]field,...,[-/+][field]) [,DUP] [,NAME( ) ] [,NOCASE] [,OPT] [,PRIMARY ]

KEY Declares a dynamically maintained index into the data
file.

-/+ The - (minus sign) preceding a key component field
specifies descending order for that component. If omit-
ted, or + (plus sign), the component is sorted in ascend-
ing order.

field The label of a field in the RECORD structure of the
FILE in which the KEY is declared. The field is a key
component. A field declared with the DIM attribute (an
array) may not be used as a key component.

NAME Specifies the disk file specification of the KEY.

DUP Allows multiple records with duplicate values in their
key component fields.

NOCASE Specifies case insensitive sort order.

OPT Excludes, from the KEY, those records with null (zero or
blank) values in all key component fields.

PRIMARY Specifies the KEY is the file’s relational primary key (a
unique key containing all records in the file).

A KEY  is an index into the data file which is automatically updated
whenever records are added, changed, or deleted. It is used to access records
in a different logical order than the “physical order” of the file. A KEY may
be used for either sequential file processing or direct random access.

A KEY may have more than one component field. The order of the
components determines the sort sequence of the key. The first component is
the most general, and the last component is the most specific. Generally, a
data file may have up to 255 keys (and indexes) and each key may be up to
255 bytes, but the exact numbers are file driver dependent.

Example:

Names FILE,DRIVER(‘Clarion’),PRE(Nam)
NameKey KEY(Nam:Name),NOCASE,DUP !Declare the name key
NbrKey KEY(Nam:Number),OPT !Declare the number key
Rec RECORD
Name STRING(20)
Number SHORT

. .
CODE
Nam:Name = ‘Clarion Software’ !Initialize key field
GET(Names,Nam:NameKey) !Get the record
SET(Nam:NbrKey) !Set sequential by number

See Also: SET, GET, INDEX



10-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MEMO (declare a text field)

label MEMO(length) [,BINARY ] [,NAME( )]

MEMO Declares a fixed-length string which is stored variable-
length on disk.

length A numeric constant that determines the maximum
number of characters. The range is from 1 to 65,520
bytes in 16-bit applications, unlimited in 32-bit applica-
tions.

BINARY Declares the MEMO a storage area for binary data.

NAME Specifies the disk filename for the MEMO field. (Use of
this parameter is file driver dependent.)

MEMO  declares a fixed-length string field which is stored variable-length
on disk. The length parameter defines the maximum size of a memo. A
MEMO must be declared before the RECORD structure. Memory is
allocated for a MEMO field’s buffer when the file is opened, and is de-
allocated when the file is closed.

Generally, up to 255 MEMO fields may be declared in a FILE structure. The
exact number of MEMO fields and their manner of storage on disk is file
driver dependent. MEMO fields are usually displayed in TEXT fields in
SCREEN and REPORT structures.

Example:

Names FILE,DRIVER(‘Clarion’),PRE(Nam)
NameKey KEY(Nam:Name)
NbrKey KEY(Nam:Number)
Notes MEMO(4800) !Memo, 4800 bytes
Rec RECORD
Name STRING(20)
Number SHORT

. .



CHAPTER 10 DATA FILES 10-17

BLOB (declare a variable-length memo field)

label BLOB  [,BINARY ] [,NAME( ) ]

BLOB Declares a variable-length string which may be greater
than 64K (in both 16 and 32-bit applications).

BINARY Declares the BLOB a storage area for binary data.

NAME Specifies the disk filename for the BLOB field. (Use of
this parameter is file driver dependent.)

BLOB  (Binary Large OBject) declares a string field which is completely
variable-length and may be greater than 64K in size (in both 16 and 32-bit
applications). A BLOB must be declared before the RECORD structure.
Memory for a BLOB is dynamically allocated and de-allocated as necessary.
Generally, up to 255 BLOB fields may be declared in a FILE structure. The
exact number of BLOB fields and their manner of storage on disk is file
driver dependent.

A BLOB may not be accessed “as a whole;” you must use “string slicing”
syntax to access one piece (up to 64K) at a time. A BLOB may not be used
in the same manner as a variable (may not be named as a control’s USE
attribute, etc.).You can use PROP:Handle to get the windows handle to the
BLOB entity. This provides the only mechanism to assign one BLOB to
another: get the handle of both BLOB entities and then assign one BLOB’s
handle to the other BLOB’s handle. The SIZE function returns the number
of bytes contained in the BLOB field for the current record in memory. You
can also get (and set) the size of a BLOB using PROP:BlobSize.

Example:

Names FILE,DRIVER(‘TopSpeed’)
NbrKey KEY(Names:Number)
Notes BLOB !Can be larger than 64K
Rec RECORD
Name STRING(20)
Number SHORT

. .
ArcNames FILE,DRIVER(‘TopSpeed’)
NbrKey KEY(ArcNames:Number)
Notes BLOB
Rec RECORD
Name STRING(20)
Number SHORT

. .
CODE
OPEN(Names)
CREATE(ArcNames)
SET(Names)
LOOP
NEXT(Names)
IF ERRORCODE() THEN BREAK.
ArcNames:Rec = Names:Rec !Assign record data to Archive file
ArcNames:Notes{PROP:Handle} = Names:Notes{PROP:Handle} !Assign BLOB to Archive
ADD(ArcNames)

END



10-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RECORD (declare record structure)

[label] RECORD [,PRE( )] [,NAME( )]
  fields
END

RECORD Declares the beginning of the data structure within the
FILE declaration.

fields Multiple variable declarations.

PRE Specify a label prefix for the structure.

NAME Specifies an external name for the RECORD structure.
(Use of this parameter is file driver dependent.)

The RECORD statement declares the beginning of the data structure within
the FILE declaration. A RECORD structure is required in a FILE
declaration. Each field is an element of the RECORD structure. The length
of a RECORD structure is the sum of the length of its fields. When the label
of a RECORD structure is used in an assignment statement, expression, or
parameter list, it is treated as a GROUP data type.

At run time, static memory is allocated as a data buffer for the RECORD
structure. The fields in the record buffer are available whether the file is open
or closed.

If the fields contain variable declarations with initial values, that initial value
is only used to determine the size of the variable, the record buffer is not
initialized to the value. For example, a STRING(‘abc’) field declaration
creates a three-byte string, but it’s value is not automatically initialized to
‘abc’ unless the program’s executable code assigns it that value.

Records from the data file on disk are read into the data buffer with the
NEXT, PREVIOUS, or GET statements. Data in the fields are processed,
then written to the data file as a single RECORD unit by the ADD, PUT, or
DELETE statements.

Example:

Names FILE,DRIVER(‘Clarion’) !Declare a file structure
Record RECORD ! begin record declaration
Name STRING(20) ! declare name field
Number SHORT ! declare number field

. . !End file, end record declaration



CHAPTER 10 DATA FILES 10-19

INDEX, KEY and MEMO AtINDEX, KEY and MEMO AtINDEX, KEY and MEMO AtINDEX, KEY and MEMO AtINDEX, KEY and MEMO Attributestributestributestributestributes

BINARY (MEMO contains binary data)

BINARY

The BINARY  attribute of a MEMO declaration specifies the MEMO field
will receive data that is not just ASCII characters. This attribute is normally
used to store small graphic images for display in an IMAGE field on screen.

Example:

Names FILE,DRIVER(‘Clarion’),PRE(Nam)
NameKey KEY(Nam:Name)
NbrKey KEY(Nam:Number)
Picture MEMO(48000),BINARY !Binary memo - 48,000 bytes
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also: MEMO, IMAGE

DUP (allow duplicate KEY entries)

DUP

The DUP attribute of a KEY declaration allows multiple records with the
same key value to occur in a file. If the DUP attribute is omitted, attempting
to ADD or PUT records with duplicate key values will cause the “Creates
Duplicate Key” error, and the record will not be written to the file. During
sequential processing using the KEY, records with duplicate key values are
accessed in the physical order their entries appear in the KEY file. The GET
and SET statements access the first record in a set of duplicates. The DUP
attribute is unnecessary on INDEX declarations because an INDEX always
allows duplicate entries.

Example:

Names FILE,DRIVER(‘Clarion’),PRE(Nam)
NameKey KEY(Nam:Name),DUP !Declare name key, allow duplicate names
NbrKey KEY(Nam:Number) !Declare number key, no duplicates allowed
Rec RECORD
Name STRING(20)
Number SHORT

. .



10-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

NOCASE (case insensitive KEY or INDEX)

NOCASE

The NOCASE attribute of a KEY or INDEX declaration makes the sorted
sequence of alphabetic characters insensitive to the ASCII upper/lower case
sorting convention. All alphabetic characters in key fields are converted to
upper case as they are written to the KEY. This case conversion has no affect
on the case of the stored data. The NOCASE attribute has no effect on non-
alphabetic characters.

Example:

Names FILE,DRIVER(‘Clarion’),PRE(Nam)
NameKey KEY(Nam:Name),NOCASE !Declare name key, make case insensitive
NbrKey KEY(Nam:Number) !Declare number key
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also: INDEX, KEY

OPT (exclude null KEY or INDEX entries)

OPT

The OPT attribute excludes entries in the KEY or INDEX for records with
“null” values in all fields comprising the KEY or INDEX. For the purpose
of this attribute, a “null” value is defined as zero in a numeric field or all
blank spaces in a string field.

Example:

Names FILE,DRIVER(‘Clarion’),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key, exclude blanks
NbrKey KEY(Nam:Number),OPT !Declare number key, exclude zeroes
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also: INDEX, KEY



CHAPTER 10 DATA FILES 10-21

PRIMARY (set relational primary key)

PRIMARY

The PRIMARY  attribute specifies the KEY is unique, includes all records
in the file, and does not allow “null” values in any of the fields comprising
the KEY. This is the definition of a file’s “Primary Key” per the relational
database theory as expressed by E. F. Codd.

Example:

Names FILE,DRIVER(‘TopSpeed’),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key, exclude blanks
NbrKey KEY(Nam:Number),OPT,PRIMARY !Declare number key, exclude zeroes
Rec RECORD
Name STRING(20)
Number SHORT

. .

See Also: KEY



10-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

NAME (set e xternal name)

NAME( [ | constant | ])
| variable |

NAME Specifies an “external” name for the file driver.

constant A string constant.

variable The label of a static string variable. This may be de-
clared as Global data, Module data, or Local data with
the STATIC attribute.

The NAME  attribute on a KEY or INDEX or MEMO statement specifies an
“external” name for the key or memo for the file driver. Some file drivers
require that KEYs, INDEXes, or MEMOs be in separate files, which is
specified in the NAME attribute.

NAME(constant) may be used on any field declared within the RECORD
structure. This provides the file driver with the name of a field as it may be
used in that driver’s file system.

A NAME attribute without a constant or variable defaults to the label of the
declaration statement on which it is placed (including any specified prefix).

Example:

Cust FILE,PRE(Cus),NAME(CustName) !Filename in CustName variable
CustKey KEY(‘Cus:Name’),NAME(‘c:\data\cust.idx’) !Declare key, cust.idx
Record RECORD
Name STRING(20)

. .

See Also: FILE, KEY, INDEX



CHAPTER 10 DATA FILES 10-23

File CommandsFile CommandsFile CommandsFile CommandsFile Commands

BUILD (build keys and indexes)

| key |
BUILD( |index | [, components [,filter ] ] )

| file |

BUILD Builds keys and indexes.

key The label of a KEY declaration.

index The label of an INDEX declaration.

file The label of a FILE declaration.

components A string constant or variable containing the list of the
component fields on which to BUILD the dynamic
INDEX. If the file has the CREATE attribute, field
labels may be used in the components parameter. With-
out the CREATE attribute, the contents of each field’s
NAME attribute must be used. The fields must be
separated by commas, with leading plus (+) or minus (-)
to indicate ascending or descending sequence (if sup-
ported by the file driver).

filter A string constant, variable, or expression containing a
logical expression with which to filter out unneeded
records from the dynamic index. This requires that you
name components for the index. You must BIND all
variables used in the filter expression.

The BUILD  statement builds keys and indexes. BUILD(key),
BUILD( index), and BUILD(file) require exclusive access to the file.
Therefore, the file must closed, LOCKed, or opened with access mode set to
12h (Read/Write Deny All) or 22h (Read/Write Deny Write).
BUILD( index,components) does not require exclusive access to the file.

  BUILD(key) or BUILD(index)
Builds only that KEY or INDEX. The file must be
closed, LOCKed, or opened with access mode set to 12h
or 22h.

  BUILD(file) Builds all the KEYs declared for the file. The file must
be closed, LOCKed, or opened with access mode set to
12h or 22h.

  BUILD(index,components)
Allows you to BUILD a dynamic INDEX. This form of
BUILD does not require exclusive access to the file,
however, the file must be open (with any valid access
mode). The dynamic INDEX is created as a temporary
file, exclusive to the user who BUILDs it. The temporary



10-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

file is automatically deleted when the file is closed.

  BUILD(index,components,filter)
Allows you to BUILD a dynamic INDEX containing
only those records whch meet the filter criteria. The
filter must be in a form that is supported by the file
driver.

Errors Posted: 37  File Not Open
40  Creates Duplicate Key
63  Exclusive Access Required
76  Invalid Index String

Example:

Names  FILE,DRIVER(‘TopSpeed’),PRE(Nam) !Declare a file structure
NameKey KEY(Nam:Name),OPT !Declare name key
NbrNdx INDEX(Nam:Number),OPT !Declare number index
DynNdx INDEX() !Declare a dynamic index
Rec RECORD
Name STRING(20),NAME(‘Nam:Name’)
Number SHORT,NAME(‘Nam:Number’)

. .

CODE
OPEN(Names,12h) !Open file, exclusive read/write

BUILD(Names) !Build all keys on Names file

BUILD(Nam:NbrNdx) !Build the number index

BUILD(Nam:DynNdx,’+Nam:Number,+Nam:Name’)
!Build dynamic index ascending number, ascending name

BIND(‘Nam:Name’,Nam:Name) !BIND the filter variable
BUILD(Nam:DynNdx,’+Nam:Name’,’UPPER(Nam:Name[1]) = A’)

!Build dynamic index of names that start with A
UNBIND(‘Nam:Name’) !UNBIND the filter variable

See Also: OPEN, SHARE



CHAPTER 10 DATA FILES 10-25

CLOSE (close a data file)

CLOSE(file)

CLOSE Closes a FILE.

file The label of a FILE.

The CLOSE statement closes a FILE. Generally, this flushes DOS buffers
and frees any memory used by the open file other than the RECORD
structure’s data buffer. The exact action CLOSE takes is file driver
dependent.

Example:

CLOSE(Customer) !Close the customer file

COPY (copy a data file)

COPY(file,new file)

COPY Duplicates a FILE.

file The label of the FILE to copy.

new file A string constant or a STRING variable containing a
DOS directory file specification. If the file specification
does not contain a drive and path, the current drive and
directory are assumed. If only the path is specified, the
filename and extension of the original file are used for
the new file.

The COPY statement duplicates a FILE and enters the specification for the
new file in the DOS directory. The file to be copied must be closed, or the
“File Already Open” error is posted. If the file specification of the new file is
identical to the original file, the COPY statement is ignored.

Since some file drivers use multiple physical disk files for one logical FILE
structure, the default filename and extension assumptions are file driver
dependent. If any error is posted, the file is not copied.

Errors Posted: 02  File Not Found
03  Path Not Found
05  Access Denied
52  File Already Open

Example:

COPY(Names,’A:\’) !Copy Names file to floppy
COPY(CompText,Filename) !Copy the text file to another file



10-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CREATE (create an empty data file)

CREATE(file)

CREATE Creates an empty data file.

file The label of the FILE to be created.

The CREATE  statement adds an empty data file to the DOS directory. If the
file already exists, it is deleted and recreated as an empty file. The file must
be closed, or the “File Already Open” error is posted. CREATE does not
open the file for access.

Errors Posted: 03  Path Not Found
04  Too Many Open Files
05  Access Denied
52  File Already Open
54  No Create Attribute

Example:

CREATE(Master)  !Create a new master file
CREATE(Detail)  !Create a new detail file

EMPTY (empty a data file)

EMPTY(file)

EMPTY Deletes all records from a FILE.

file The label of a FILE.

EMPTY  deletes all records from the specified file. EMPTY requires
exclusive access to the file. Therefore, the file must be opened with access
mode set to 12h (Read/Write Deny All) or 22h (Read/Write Deny Write).

Errors Posted:  63  Exclusive Access Required

Example:

OPEN(Master,18) !Open the master file
EMPTY(Master) ! and start a new one

See Also: OPEN, SHARE



CHAPTER 10 DATA FILES 10-27

FLUSH (flush DOS buffers)

FLUSH(file)

FLUSH Terminates a STREAM operation, flushing the DOS
buffers.

file The label of a FILE.

The FLUSH statement terminates a STREAM operation. It flushes the DOS
buffers, which updates the DOS directory entry for that file. Support for this
statement is dependent upon the file system and its specific action is
described in the file driver documentation.

Example:

STREAM(History) !Use DOS buffering
SET(Current) !Set to top of current file
LOOP
NEXT(Current)
IF ERRORCODE() THEN BREAK.
His:Record = Cur:Record
ADD(History)

END
FLUSH(History) !End streaming, flush buffers

See Also: STREAM



10-28 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LOCK (exc lusive file access)

LOCK( file [,seconds])

LOCK Locks a data file.

file The label of a FILE opened for shared access.

seconds A numeric constant or variable which specifies the
maximum wait time in seconds.

The LOCK  statement locks a file against access by other workstations in a
multi-user environment. Generally, this excludes other users from writing to
or reading from the file. The specific action LOCK takes is file driver
dependent.

  LOCK(file) Attempts to lock the file until it is successful. If it is
already locked by another workstation, LOCK will wait
until the other workstation unlocks it.

  LOCK(file,seconds)
Posts the “File Is Already Locked” error after unsuccess-
fully trying to lock the file for the specified number of
seconds.

The most common problem to avoid when locking files is referred to as
“deadly embrace.”  This condition occurs when two workstations attempt to
lock the same set of files in two different orders and both are using the
LOCK(file) form of LOCK. One workstation has already locked a file that
the other is trying to LOCK, and vice versa. This problem may be avoided
by using the LOCK(file,seconds) form of LOCK, and always locking files in
the same order.

Errors Posted: 32  File Is Already Locked

Example:

LOOP !Loop to avoid “deadly embrace”
LOCK(Master,1) !Lock the master file, try 1 second
IF ERRORCODE() = 32 !If someone else has it
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

END
LOCK(Detail,1) !Lock the detail file, try 1 second
IF ERRORCODE() = 32 !If someone else has it
UNLOCK(Master) ! unlock the locked file
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

. .



CHAPTER 10 DATA FILES 10-29

OPEN (open a data file)

OPEN(file [,access mode])

OPEN Opens a FILE structure for processing.

file The label of a FILE declaration.

access mode A numeric constant, variable, or expression which
determines the level of access granted to both the user
opening the file, and other users in a multi-user system.
If omitted, the default value is 22h (Read/Write + Deny
Write).

The OPEN statement opens a FILE structure for processing and sets the
access mode. Support for various access modes are file driver dependent. All
files must be explicitly opened before they may be accessed. The access
mode is a bitmap which tells the operating system what access to grant the
user opening the file and what access to deny to others using the file. The
actual values for each access level are:

Dec. Hex. Access
User Access: 0 0h Read Only

1 1h Write Only
2 2h Read/Write

Other’s Access: 0 0h Any Access (FCB compatibility mode)
16 10h Deny All
32 20h Deny Write
48 30h Deny Read
64 40h Deny None

Errors Posted: 02  File Not Found
04  Too Many Open Files
05  Access Denied
52  File Already Open
75  Invalid Field Type Descriptor

Example:

ReadOnly EQUATE(0) !Access mode equates
WriteOnly EQUATE(1)
ReadWrite EQUATE(2)
DenyAll EQUATE(10h)
DenyWrite EQUATE(20h)
DenyRead EQUATE(30h)
DenyNone EQUATE(40h)
CODE
OPEN(Names,ReadWrite+DenyNone) !Open fully shared access

See Also: SHARE



10-30 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PACK (remove deleted records)

PACK( file)

PACK Removes deleted records from a data file and rebuilds its
keys.

file The label of a FILE declaration.

The PACK  statement removes deleted records from a data file and rebuilds
its keys. The resulting data files are as compact as possible. PACK requires
at least twice the disk space that the file, keys, and memos occupy to
perform the process. New files are created from the old, and the old files are
deleted only after the process is complete. PACK requires exclusive access
to the file. Therefore, the file must be opened with access mode set to 12h
(Read/Write Deny All) or 22h (Read/Write Deny Write).

Errors Posted: 63  Exclusive Access Required

Example:

OPEN(Trans,12h) !Open the file in exclusive mode
PACK(Trans) ! and pack it

See Also: OPEN, SHARE

REMOVE (erase the data file)

REMOVE(file)

REMOVE Deletes a FILE.

file The label of the FILE to be removed.

The REMOVE  statement erases a file specification from the DOS directory
in the same manner as the DOS Delete command. The file must be closed,
or the “File Already Open” error is posted. If any error is posted, the file is
not removed.

Errors Posted: 02  File Not Found
05  Access Denied
52  File Already Open

Example:

REMOVE(OldFile) !Delete the old file
REMOVE(Changes) !Delete the changes file



CHAPTER 10 DATA FILES 10-31

RENAME (change data file directory name)

RENAME(file,new file)

RENAME Renames a FILE.

file The label of the FILE to be renamed.

new file A string constant or a STRING variable containing a
DOS directory file specification. If the file specification
does not contain a drive and path, the current drive and
directory are assumed. If only the path is specified, the
filename and extension of the original file are used for
the new file. Files cannot be renamed to a new drive.

The RENAME  statement changes the file specification to the specification
for the new file in the directory. The file to be renamed must be closed, or
the “File Already Open” error is posted. If the file specification of the new
file is identical to the original file, the RENAME statement is ignored. If any
error is posted, the file is not renamed.

Since some file drivers use multiple physical disk files for one logical FILE
structure, the default filename and extension assumptions are file driver
dependent.

Errors Posted: 02  File Not Found
03  Path Not Found
05  Access Denied
52  File Already Open

Example:

RENAME(Text,’text.bak’) !Make it the backup
RENAME(Master,’\newdir’) !Move it to another directory



10-32 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SHARE (open a data file)

SHARE(file [,access mode])

SHARE Opens a FILE structure for processing.

file The label of a FILE declaration.

access mode A numeric constant, variable, or expression which
determines the level of access granted to both the user
opening the file, and other users in a multi-user system.
If omitted, the default value is 42h (Read/Write, Deny
None).

The SHARE statement opens a FILE structure for processing and sets the
access mode. The SHARE statement is the same as the OPEN statement,
with the exception of the default value of access mode. The access mode is a
bitmap which tells the operating system what access to grant the user
opening the file and what access to deny to others using the file. The actual
values for each access level are:

Dec. Hex. Access
User Access: 0 0h Read Only

1 1h Write Only
2 2h Read/Write

Other’s Access: 0 0h Any Access (FCB compatibility mode)
16 10h Deny All
32 20h Deny Write
48 30h Deny Read
64 40h Deny None

Errors Posted: 02  File Not Found
04  Too Many Open Files
05  Access Denied
52  File Already Open
75  Invalid Field Type Descriptor

Example:

ReadOnly EQUATE(0) !Access mode equates
WriteOnly EQUATE(1)
ReadWrite EQUATE(2)
DenyAll EQUATE(10h)
DenyWrite EQUATE(20h)
DenyRead EQUATE(30h)
DenyNone EQUATE(40h)
CODE
SHARE(Master,ReadOnly+DenyWrite) !Open read only mode

See Also: OPEN



CHAPTER 10 DATA FILES 10-33

STREAM (enable DOS buffering)

STREAM( file)

STREAM Disables automatic FILE flushing.

file The label of a FILE.

Some file systems flush the DOS buffers on each disk write. The STREAM
statement disables this automatic flushing operation. DOS buffers are
allocated by the BUFFERS= statement in the Config.Sys file. They store
disk writes until the buffers are full, then write the buffers to disk all at once.
The directory entries for the file are updated only when the buffers are
written to disk (flushed). A STREAM operation is terminated by closing the
file, which automatically flushes the buffers, or by issuing a FLUSH
statement.

Support for this statement is dependent upon the file system and is described
in its file driver’s documentation.

Example:

STREAM(History) !Use DOS buffering
SET(Current) !Set to top of current file
LOOP
NEXT(Current)
IF ERRORCODE() THEN BREAK.
His:Record = Cur:Record
ADD(History)

END
FLUSH(History) !End streaming, flush buffers

See Also: FLUSH



10-34 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

UNLOCK (unlock a locked data file)

UNLOCK( file)

UNLOCK Unlocks a previously locked data file.

file The label of a FILE declaration.

The UNLOCK  statement unlocks a previously LOCKed data file. It will not
unlock a file locked by another user. If the file is not locked, or is locked by
another user, UNLOCK is ignored. UNLOCK posts no errors. The specific
action UNLOCK takes is file driver dependent.

Example:

LOOP !Loop to avoid “deadly embrace”
LOCK(Master,1) !Lock the master file, try for 1 second
IF ERRORCODE() = 32 !If someone else has it
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

END
LOCK(Detail,1) !Lock the detail file, try for 1 second
IF ERRORCODE() = 32 !If someone else has it
UNLOCK(Master) ! unlock the locked file
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

. . !End if, end loop



CHAPTER 10 DATA FILES 10-35

RecorRecorRecorRecorRecord Access Commandsd Access Commandsd Access Commandsd Access Commandsd Access Commands

ADD (add a new file record)

ADD( file [,length])

ADD Writes a new record to a FILE.

file The label of a FILE declaration.

length An integer constant, variable, or expression which
contains the number of bytes to write to the file. The
length must be greater than zero and not greater than the
length of the RECORD. If omitted or out of range,
length defaults to the length of the RECORD structure.

The ADD statement writes a new record from the RECORD structure data
buffer to the data file. All KEYs associated with the file are also updated
during each ADD. If an error is posted, no record is added to the file. The
specific action ADD takes is file driver dependent.

If there is no room for the record on disk, the “Access Denied” error is
posted.

Errors Posted: 05  Access Denied
37  File Not Open
40  Creates Duplicate Key

Example:

ADD(Customer) !Add a new customer record
IF ERRORCODE() THEN STOP(ERROR()). ! and check for errors



10-36 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

APPEND (add a new file record)

APPEND(file [,length])

APPEND Writes a new record to a FILE.

file The label of a FILE declaration.

length An integer constant, variable, or expression which
contains the number of bytes to write to the file. The
length must be greater than zero and not greater than the
length of the RECORD. If omitted or out of range,
length defaults to the length of the RECORD structure.

The APPEND statement writes a new record from the RECORD structure
data buffer to the data file. No KEYs associated with the file are updated
during an APPEND. After APPENDing records, the KEYs must be rebuilt
with the BUILD command. APPEND is usually used in batch adding a
number of records at one time.

If an error is posted, no record is added to the file. The specific action
APPEND takes is file driver dependent. If there is no room for the record on
disk, the “Access Denied” error is posted.

Errors Posted: 05  Access Denied
37  File Not Open

Example:

LOOP !Process an input file
NEXT(InFile) ! getting each record in turn
IF ERRORCODE() THEN BREAK. ! break loop on error

Cus:Record = Inf:Record !Copy the data to Customer file
APPEND(Customer) ! and APPEND a customer record
IF ERRORCODE() THEN STOP(ERROR()). !  check for errors

END
BUILD(Customer) !Re-build Keys

See Also: BUILD



CHAPTER 10 DATA FILES 10-37

DELETE (delete a file record)

DELETE(file)

DELETE Removes a record from a FILE.

file The label of a FILE declaration.

The DELETE  statement removes the last record accessed by NEXT,
PREVIOUS, GET, ADD, or PUT. The key entries for that record are also
removed from the KEYs. DELETE does not clear the record buffer.
Therefore, data values from the record just deleted still exist and are
available for use until the record buffer is overwritten.

If no record was previously accessed, or the record is held by another
workstation, DELETE posts the “Record Not Available” error and no record
is deleted. The specific action DELETE takes is file driver dependent.

Errors Posted: 05  Access Denied
33  Record Not Available

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus)
NameKey KEY(Cus:Name),OPT
NbrKey KEY(Cus:Number),OPT
Rec RECORD
Name STRING(20)
Number SHORT

. .
CODE
Cus:Number = 12345 !Initialize key field
GET(Customer,Cus:NbrKey) !Get that record
IF ERRORCODE() THEN STOP(ERROR()).

DELETE(Customer) !Delete the customer record

See Also: ADD, GET, HOLD, NEXT, PREVIOUS, PUT



10-38 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

GET (read a file record by direct access)

| file,key |
GET( | file,filepointer [, length ] |)

| key,keypointer |

GET Retrieves a specific record from a FILE.

file The label of a FILE declaration.

key The label of a KEY or INDEX declaration.

filepointer A numeric constant, variable, or expression for the value
returned by the POINTER(file) function. The specific
value is file driver dependent.

keypointer A numeric constant, variable, or expression for the value
returned by the POINTER(key) function. The specific
value is file driver dependent.

length An integer constant, variable, or expression which
contains the number of bytes to read from the file. The
length must be greater than zero and not greater than the
RECORD length. If omitted or out of range, length
defaults to the length of the RECORD structure.

The GET statement locates a specific record in the data file and reads it into
the RECORD structure data buffer. Direct access to the record is achieved by
relative record position within the file, or by matching key values.

  GET(file,key) Gets the first record from the file (as listed in the key)
which contains values matching the values in the compo-
nent fields of the key.

  GET(file,filepointer [,length])
Gets a record from the file based on the filepointer
relative position within the file. If filepointer is zero, the
current record pointer is cleared and no record is re-
trieved.

  GET(key,keypointer)
Gets a record from the file based on the keypointer
relative position within the key.

The values for filepointer and keypointer are file driver dependent. They
could be: record number; relative byte position within the file; or, some
other kind of “seek position” within the file. If the filepointer or keypointer
value is out of range, or there are no matching key values in the data file, the
“Record Not Found” error is posted.

Errors Posted: 35  Record Not Found
37  File Not Open
43  Record Is Already Held



CHAPTER 10 DATA FILES 10-39

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus)
NameKey KEY(Cus:Name),OPT
NbrKey KEY(Cus:Number),OPT
Rec RECORD
Name STRING(20)
Number SHORT

. .
CODE

Cus:Name = ‘Clarion’ !Initialize key field
GET(Customer,Cus:NameKey) ! get record with matching value
IF ERRORCODE() THEN STOP(ERROR()).

GET(Customer,3) !Get 3rd rec in physical file order
IF ERRORCODE() THEN STOP(ERROR()).

GET(Cus:NameKey,3) !Get 3rd rec in keyed order
IF ERRORCODE() THEN STOP(ERROR()).

See Also: POINTER, DUPLICATE



10-40 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

HOLD (exclusive file record access)

HOLD(file [,seconds])

HOLD Arms record locking.

file The label of a FILE opened for shared access.

seconds A numeric constant or variable which specifies the
maximum wait time in seconds.

The HOLD  statement arms record locking for a following GET, NEXT, or
PREVIOUS statement in a multi-user environment. The GET, NEXT, or
PREVIOUS flags the record as “held” when it successfully gets the record.
Generally, this excludes other users from writing to, but not reading, the
record. The specific action HOLD takes is file driver dependent.

  HOLD(file) Arms the process so that the following GET, NEXT, or
PREVIOUS attempts to hold the record until it is
successful. If it is held by another workstation, GET,
NEXT, or PREVIOUS will wait until the other worksta-
tion releases it.

  HOLD(file,seconds)
Arms the process for the following GET, NEXT, or
PREVIOUS to post the “Record Is Already Held” error
after unsuccessfully trying to hold the record for sec-
onds.

A user may HOLD one record at a time in each file. If a second record is
accessed in the same file, the previously held record in that file is
automatically released. A common problem to avoid is “deadly embrace.”
This occurs when two workstations attempt to hold the same set of records
in two different orders and both are using the HOLD(file) form of HOLD.
One workstation has already held a record that the other is trying to HOLD,
and vice versa. You can avoid this problem by using the HOLD(file,seconds)
form of HOLD, and trapping for the “Record Is Already Held” error.

Example:

LOOP !Loop to avoid “deadly embrace”
HOLD(Master,1) !Arm Hold on master file, try for 1 second
GET(Master,1) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
BEEP(0,100); CYCLE ! pause for 1 second and try again

END
HOLD(Detail,1) !Lock the detail file, try for 1 second
GET(Detail,1) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
RELEASE(Master) ! release the held record
BEEP(0,100); CYCLE ! pause for 1 second and try again

END
BREAK

END

See Also: RELEASE, GET, NEXT, PREVIOUS



CHAPTER 10 DATA FILES 10-41

NEXT (read next file record in sequence)

NEXT(file)

NEXT Reads the next record in sequence from a FILE.

file The label of a FILE declaration.

NEXT  reads the next record in sequence from a data file and places it in the
RECORD structure data buffer. The SET statement determines the sequence
in which records are read. The first NEXT following a SET reads the record
at the position specified by the SET statement. Subsequent NEXT
statements read subsequent records in that sequence. The sequence is not
effected by any GET, ADD, PUT, or DELETE.

Executing NEXT without a preceding SET, or attempting to read past the
end of file posts the “Record Not Available” error.

Errors Posted: 33  Record Not Available
37  File Not Open
43  Record Is Already Held

Example:

SET(Cus:NameKey) !Beginning of file in keyed sequence
LOOP !Read all records through end of file
NEXT(Customer) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break on end of file

DO PostTrans ! call transaction posting routine
END

See Also: SET, PREVIOUS, EOF, HOLD



10-42 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

NOMEMO (read file record without reading memo)

NOMEMO(file)

NOMEMO Arms “memoless” record retrieval.

file The label of a FILE.

The NOMEMO  statement arms “memoless” record retrieval for the next
GET, NEXT, or PREVIOUS statement encountered. The following GET,
NEXT, or PREVIOUS gets the record but does not get any associated
MEMO field(s) for the record. Generally, this speeds up access to the record
when the contents of the MEMO field(s) are not needed by the procedure.

Example:

SET(Master)
LOOP
NOMEMO(Master) !Arm “memoless” access
NEXT(Master) !Get record without memo
IF ERRORCODE() THEN BREAK.

Queue = Mst:Record !Fill memory queue
ADD(Queue)
IF ERRORCODE() THEN STOP(ERROR()).

. .
DISPLAY(?ListBox) !Display the queue

See Also: GET, NEXT, PREVIOUS



CHAPTER 10 DATA FILES 10-43

PREVIOUS (read previous file record in sequence)

PREVIOUS(file)

PREVIOUS Reads the previous record in sequence from a FILE.

file The label of a FILE declaration.

PREVIOUS reads the previous record in sequence from a data file and
places it in the RECORD structure data buffer. The SET statement
determines the sequence in which records are read. The first PREVIOUS
following a SET reads the record at the position specified by the SET
statement. Subsequent PREVIOUS statements read subsequent records in
reverse sequence. The sequence is not effected by any GET, ADD, PUT, or
DELETE.

Executing PREVIOUS without a preceding SET, or attempting to read past
the beginning of file posts the “Record Not Available” error.

Errors Posted: 33  Record Not Available
37  File Not Open
43  Record Is Already Held

Example:

SET(Trn:DateKey) !End/Beginning of file in keyed sequence
LOOP !Read all records in reverse order
PREVIOUS(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break at beginning of file

DO LastInFirstOut ! call last in first out routine
END

See Also: SET, NEXT, BOF, HOLD



10-44 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PUT (write record back to file)

PUT(file [,filepointer] [,length])

PUT Writes a record back to a FILE.

file The label of a FILE declaration.

filepointer A numeric constant, variable, or expression for the value
returned by the POINTER(file) function. The specific
value is file driver dependent.

length An integer constant, variable, or expression containing
the number of bytes to write to the file. This must be
greater than zero and not greater than the RECORD
length. If omitted or out of range, the RECORD length
is used.

The PUT statement writes the current values in the RECORD structure data
buffer to a previously accessed record in the file.

  PUT(file) Writes back the last record accessed with NEXT, PRE-
VIOUS, GET, or ADD. If the values in the key variables
were changed, the KEYs are updated.

  PUT(file,filepointer)
Writes the record to the filepointer location in the file
and the KEYs are updated.

  PUT(file,filepointer,length)
Writes length bytes to the filepointer location in the file
and the KEYs are updated.

If a record was not accessed with NEXT, PREVIOUS, GET, ADD, or was
deleted, the “Record Not Available” error is posted. PUT also posts the
“Creates Duplicate Key” error. If any error is posted, the record is not
written to the file.

Errors Posted: 05  Access Denied
33  Record Not Available
40  Creates Duplicate Key

Example:

SET(Trn:DateKey) !End/Beginning of file in keyed sequence
LOOP !Read all records in reverse order
PREVIOUS(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break at beginning of file

DO LastInFirstOut !Call last in first out routine
PUT(Trans) !Write transaction record back to the file
IF ERRORCODE() THEN STOP(ERROR()).

END

See Also: NEXT, PREVIOUS, GET, ADD



CHAPTER 10 DATA FILES 10-45

RELEASE (release a held file record)

RELEASE( file)

RELEASE Releases the held record.

file The label of a FILE declaration.

The RELEASE  statement releases a previously held record. It will not
release a record held by another user. If the record is not held, or is held by
another user, RELEASE is ignored.

Example:

LOOP !Loop to avoid “deadly embrace”
HOLD(Master,1) !Arm Hold on master file, try for 1 second
GET(Master,1) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

END
HOLD(Detail,1) !Hold the detail file, try for 1 second
GET(Detail,1) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
RELEASE(Master) ! release the held record
BEEP(0,100) ! pause for 1 second
CYCLE ! and try again

END
BREAK

END

See Also: HOLD



10-46 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

REGET (reget file record)

REGET(file,string)

REGET Regets a specific record in the FILE.

file The label of a FILE declaration.

string The string returned by the POSITION function.

The REGET reads the record identified by the string returned by the
POSITION function. The value contained in the string returned by the
POSITION function, and its length, are file driver dependent.

Errors Posted: 33 Record Not Available

Example:

RecordQue QUEUE,PRE(Dsp)
QueFields LIKE(Trn:Record),PRE(Dsp)

END
SavPosition STRING(260)
CODE
SET(Trn:DateKey) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK.

RecordQue = Trn:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 OR EOF(Trans) !20 records in queue or end of file?
SavPosition = POSITION(Trn:DateKey) !Save record position
DO DisplayQue !Display the queue
FREE(RecordQue) ! and free it
REGET(Trans,SavPosition) ! and get the record again

. .

See Also: POSITION, RESET



CHAPTER 10 DATA FILES 10-47

RESET (reset file record sequence position)

RESET(sequence,string)

RESET Resets the sequential processing pointer to a specific
record in the FILE.

sequence The label of a FILE, KEY, or INDEX declaration.

string The string returned by the POSITION function.

RESET restores the record pointer to the record identified by the string
returned by the POSITION function. Once RESET has restored the record
pointer, either NEXT or PREVIOUS will read that record.

The value contained in the string returned by the POSITION function, and
its length, are file driver dependent. RESET is used in conjunction with
POSITION to temporarily suspend and resume sequential file processing.

Example:

RecordQue QUEUE,PRE(Dsp)
QueFields LIKE(Trn:Record),PRE(Dsp)

END
SavPosition STRING(260)
CODE
SET(Trn:DateKey) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK.

RecordQue = Trn:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 OR EOF(Trans) !20 records in queue or end of file?
SavPosition = POSITION(Trn:DateKey) !Save record position
DO DisplayQue !Display the queue
FREE(RecordQue) ! and free it
RESET(Trn:DateKey,SavPosition) !Reset the record pointer
NEXT(Trans) ! and get the record again

. .

See Also: POSITION, NEXT, PREVIOUS



10-48 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SET (initiate sequential file processing)

| file |
SET( | file,key | )

| file,filepointer |
| key |
| key,key |
| key,keypointer |
| key,key,filepointer |

SET Initializes sequential processing of a FILE.

file The label of a FILE declaration. This parameter specifies
processing in the physical order in which records occur
in the data file.

key The label of a KEY or INDEX declaration. When used
in the first parameter position, key specifies processing
in the sort sequence of the KEY or INDEX.

filepointer A numeric constant, variable, or expression for the value
returned by the POINTER(file) function. The specific
value is file driver dependent.

keypointer A numeric constant, variable, or expression for the value
returned by the POINTER(key) function. The specific
value is file driver dependent.

SET initializes sequential processing of a data file. SET does not get a
record, but only sets up processing order and starting point for the following
NEXT or PREVIOUS statements. The first parameter determines the order
in which records are processed. The second and third parameters determine
the starting point within the file. If the second and third parameters are
omitted, processing begins at the beginning (or end) of the file.

  SET(file) Specifies physical record order processing and positions
to the beginning (SET...NEXT) or end
(SET...PREVIOUS) of the file.

  SET(file,key) Specifies physical record order processing and positions
to the first record which contains values matching the
values in the component fields of the key.

  SET(file,filepointer)
Specifies physical record order processing and positions
to the filepointer record within the file.

  SET(key) Specifies keyed sequence processing and positions to the
beginning (SET...NEXT) or end (SET...PREVIOUS) of
the file in that sequence.

  SET(key,key) Specifies keyed sequence processing and positions to the
first or last record which contains values matching the
values in the component fields of the key. Both key
parameters must be the same.



CHAPTER 10 DATA FILES 10-49

  SET(key,keypointer)
Specifies keyed sequence processing and positions to the
keypointer record within the key.

  SET(key,key,filepointer)
Specifies keyed sequence processing and positions to a
record which contains values matching the values in the
component fields of the key at the exact record number
specified by filepointer. Both key parameters must be the
same.

When key is the second parameter, processing begins at the first or last
record containing values matching the values in the component fields of the
KEY or INDEX. If an exact match is found, NEXT will read the first
matching record while PREVIOUS will read the last matching record. If no
exact match is found, the record with the next greater value is read by
NEXT, the record with next lesser value is read by PREVIOUS.

The values for filepointer and keypointer are file driver dependent. They
could be a record number, the relative byte position within the file, or some
other kind of “seek position” within the file. These parameters are used to
begin processing at a specific record within the file.

For all file drivers, an attempt to SET past the end of the file will set the
EOF function to true, and an attempt to SET before the beginning of the file
will set the BOF function to true.

Example:

SET(Customer) !Physical file order, beginning of file

Cus:Name = ‘Smith’
SET(Customer,Cus:NameKey) !Physical file order, first record where Name = ‘Smith’

SavePtr = POINTER(Customer)
SET(Customer,SavePtr) !Physical file order, physical record number = SavePtr

SET(Cus:NameKey) !NameKey order, beginning of file (relative to the key)

SavePtr = POINTER(Cus:NameKey)
SET(Cus:NameKey,SavePtr) !NameKey order, key-relative record number = SavePtr

Cus:Name = ‘Smith’
SET(Cus:NameKey,Cus:NameKey)

!NameKey order, first record where Name = ‘Smith’

Cus:Name = ‘Smith’
SavePtr = POINTER(Customer)
SET(Cus:NameKey,Cus:NameKey,SavePtr)

!NameKey order, Name = ‘Smith’ and rec number = SavePtr

See Also: NEXT, PREVIOUS, KEY, RECORD, POINTER



10-50 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SKIP (bypass file records in sequence)

SKIP(file,count)

SKIP Bypasses records during sequential file processing.

file The label of a FILE declaration.

count A numeric constant or variable. The count specifies the
number of records to bypass. If the value is positive,
records are skipped in forward (NEXT) sequence. If
count is negative, records are skipped in reverse (PRE-
VIOUS) sequence.

The SKIP statement is used to bypass records during sequential file
processing. It bypasses records, in the sequence specified by the SET
statement, by moving the file pointer count records. SKIP is more efficient
than NEXT or PREVIOUS for skipping past records because it does not
move records into the RECORD structure data buffer.

If SKIP reads past the end or beginning of file, the EOF( ) and BOF( )
functions return true. If no SET has been issued, SKIP is ignored.

Example:

SET(Itm:InvoiceKey) !Start at beginning of Items file
LOOP !Process all records
NEXT(Items) ! Get a record
IF ERRORCODE() THEN BREAK.

IF Itm:InvoiceNo <> SavInvNo ! Check for first item in order
Hea:InvoiceNo = Itm:InvoiceNo ! Initialize key field
GET(Header,Hea:InvoiceKey) ! Get the associated header record
IF ERRORCODE() THEN STOP(ERROR()).

IF Hea:InvoiceStatus = ‘Cancel’ ! Is it a canceled order?
SKIP(Items,Hea:ItemCount-1) ! SKIP rest of the items
CYCLE ! and process next order

. .
DO ItemProcess ! process the item
SavInvNo = Itm:InvoiceNo ! save the invoice number

END



CHAPTER 10 DATA FILES 10-51

WATCH (automatic file concurrency check)

WATCH(file)

WATCH Arms automatic optimistic concurrency checking.

file The label of a FILE declaration.

The WATCH  statement arms automatic optimistic concurrency checking by
the file driver for a following GET, NEXT, or PREVIOUS statement in a
multi-user environment. Generally, the file driver retains a copy of the
retrieved record on the GET, NEXT, or PREVIOUS when it successfully
gets the record. When the retrieved record is PUT to the file, the record on
disk is compared to the original record retrieved. An error is returned by the
PUT statement if the record has been changed by another user. The specific
action WATCH takes is file driver dependent.

Example:

SET(Itm:InvoiceKey) !Start at beginning of Items file
LOOP !Process all records
WATCH(Items) !Arm concurrency check
NEXT(Items) ! Get a record
IF ERRORCODE() THEN BREAK.

DO ItemProcess ! process the item
PUT(Items) ! and put it back
IF ERRORCODE() THEN STOP(ERROR()). !Stop on any error, including

! record changed by another user
END



10-52 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

File FFile FFile FFile FFile Functionsunctionsunctionsunctionsunctions

BOF (beginning of file function)

BOF(file)

BOF Flags the beginning of the FILE during sequential
processing.

file The label of a FILE declaration.

The BOF function returns a non-zero value (true) when the first record in
relative file sequence has been read by PREVIOUS or passed by SKIP.
Otherwise, the return value is zero (false).

The BOF function is most often used as a LOOP UNTIL condition. Since a
LOOP condition is evaluated at the top of the LOOP, BOF returns true after
the last record has been read and processed in reverse order.

The BOF function may not be supported by all file drivers (or may be
inefficient). Check the driver documentation before using this function.

Return Data Type: LONG

Example:

SET(Trn:DateKey) !End/Beginning of file in keyed sequence
LOOP UNTIL BOF(Trans) !Process file backwards
PREVIOUS(Trans) ! read a record sequentially
IF ERRORCODE() THEN STOP(ERROR()).

DO LastInFirstOut ! call last in first out routine
END

See Also: PREVIOUS, SKIP, LOOP



CHAPTER 10 DATA FILES 10-53

BYTES (return size in bytes)

BYTES(file)

BYTES Returns number of bytes in FILE, or most recently read.

file The label of a FILE.

The BYTES function returns the size of a FILE in bytes or the number of
bytes in the last record accessed. Following an OPEN statement, BYTES
returns the size of the file. After the file has been accessed by GET, NEXT,
ADD, or PUT, the BYTES function returns the number of bytes accessed in
the RECORD. The BYTES function may be used to return the number of
bytes read in a variable length record.

Return Data Type: LONG

Example:

OPEN(DosFile) !Open the file
IF (BYTES(DosFile) % 80) > 0 !Check for short record
SavPtr = INT(BYTES(DosFile) % 80) + 1 ! compute short record pointer

ELSE
SavPtr = BYTES(DosFile) / 80 ! compute last record pointer

END
GET(DosFile,SavPtr) !Get the last record
LastRec = BYTES(DosFile) !Save size of the short record



10-54 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DUPLICATE (check for duplicate key entries)

DUPLICATE( | key | )
| file |

DUPLICATE Checks duplicate entries in unique keys.

key The label of a KEY declaration.

file The label of a FILE declaration.

The DUPLICATE  function returns a non-zero value (true) if writing the
current record to the data file would post the “Creates Duplicate Key” error.
With a key parameter, the specified KEY is checked. With a file parameter,
all KEYs declared without a DUP attribute are checked.

The DUPLICATE function assumes that the contents of the RECORD
structure data buffer are duplicated at the current record pointer location.
Therefore, when using DUPLICATE prior to ADDing a record, the record
pointer should be cleared with: GET(file,0).

Return Data Type: LONG

Example:

IF Action = ‘ADD’ THEN GET(Vendor,0). !If adding, clear the file pointer
IF DUPLICATE(Vendor) !If this vendor already exists
SCR:MESSAGE = ‘Vendor Number already assigned’ ! display message
SELECT(?) ! and stay on the field

END

See Also: GET



CHAPTER 10 DATA FILES 10-55

EOF (end of file function)

EOF(file)

EOF Flags the end of the FILE during sequential processing.

file The label of a FILE declaration.

The EOF function returns a non-zero value (true) when the last record in
relative file sequence has been read by NEXT or passed by SKIP. Otherwise,
the return value is zero (false). The EOF function is most often used as a
LOOP UNTIL condition. Since a LOOP condition is evaluated at the top of
the LOOP, EOF returns true after the last record has been read and
processed.

The EOF function may not be supported by all file drivers (or may be
inefficient). Check the driver documentation before using this function.

Return Data Type: LONG

Example:

SET(Trn:DateKey) !Beginning of file in keyed sequence
LOOP UNTIL EOF(Trans) !Process all records
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN STOP(ERROR()).

DO LastInFirstOut ! call last in first out routine
END

See Also: NEXT, SKIP, LOOP



10-56 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

POINTER (return relative record position)

POINTER( | file | )
| key |

POINTER Returns relative record position.

file The label of a FILE declaration. This specifies physical
record order within the file.

key The label of a KEY or INDEX declaration. This speci-
fies the entry order within the KEY or INDEX file.

POINTER  returns the relative record position within the data file (in file
sequence), or the relative record position within the KEY or INDEX file (in
key sequence) of the last record accessed. The value returned by the
POINTER function is file driver dependent. It may be a record number, the
relative byte position within the file, or some other kind of “seek position”
within the file.

Return Data Type:  LONG

Example:

SavePtr# = POINTER(Customer)  !Save file pointer

See Also: SET



CHAPTER 10 DATA FILES 10-57

POSITION (return file record sequence position)

POSITION(sequence)

POSITION Identifies a record’s unique position in the FILE.

sequence The label of a FILE, KEY, or INDEX declaration.

POSITION  returns a STRING which identifies a record’s unique position
within the sequence. POSITION returns the position of the last record
accessed in the file (the record currently in the file’s record buffer).
POSITION is used in conjunction with RESET to temporarily suspend and
resume sequential file processing.

The value contained in the returned STRING and the length of that STRING
are file driver dependent. As a general rule, for file systems that have record
numbers, the size of the STRING returned by POSITION(file) is 4 bytes.
The return string from POSITION(key) is 4 bytes plus the sum of the sizes
of the fields in the key. For file systems that do not have record numbers the
size of the STRING returned by POSITION(file) is the sum of the sizes of
the fields in the Primary Key (the first KEY on the FILE that does not have
the DUP or OPT attribute). The return string from POSITION(key) is the
sum of the sizes of the fields in the Primary Key plus the sum of the sizes of
the fields in the key.

Return Data Type: STRING

Example:

RecordQue QUEUE,PRE(Dsp)
QueFields LIKE(Trn:Record),PRE(Dsp)

END
SavPosition STRING(260)
CODE
SET(Trn:DateKey) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(Trans) ! read a record sequentially
IF ERRORCODE() THEN BREAK.

RecordQue = Trn:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 OR EOF(Trans)
!20 records in queue?

SavPosition = POSITION(Trn:DateKey) !Save record position
DO DisplayQue !Display the queue
FREE(RecordQue) ! and free it
RESET(Trn:DateKey,SavPosition) !Reset the record pointer
NEXT(Trans) ! and get record

. .

See Also: RESET, REGET



10-58 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RECORDS (return number of file or key records)

RECORDS( | file | )
| key |

RECORDS Returns the number of records.

file The label of a FILE declaration.

key The label of a KEY or INDEX declaration.

The RECORDS function returns the number of records in a file or key.
Since the OPT attribute of a KEY or INDEX excludes “null” entries,
RECORDS may return a smaller number for the KEY or INDEX than the
FILE.

Return Data Type: LONG

Example:

SaveCount = RECORDS(Master) !Save the record count
SaveNameCount = RECORDS(Nam:NameKey) !Number of records with names filled in

See Also: KEY, INDEX, OPT

SEND (send message to file driver)

SEND(file,message)

SEND Sends a message to the file driver.

file The label of a FILE declaration. The FILE’s DRIVER
attribute identifies the file driver to receive the message.

message A string constant or variable containing the information
to supply to the file driver.

The SEND function allows the program to pass any parameters specific to a
file driver during program execution. Specific examples of valid SEND
messages are listed in the file driver’s documentation.

Return Data Type: STRING

Example:

FileCheck = SEND(ClarionFile,’RECOVER=120')
!Arm recovery process for a Clarion data file



CHAPTER 10 DATA FILES 10-59

TTTTTransaction Pransaction Pransaction Pransaction Pransaction Prrrrrocessingocessingocessingocessingocessing
A database has integrity when its data records contain valid data (data
integrity) and its key fields accurately express the relationships between
records and files (referential integrity). Database integrity can only be
maintained through careful design and programming. If a particular data
element’s value is important, its entry field edit code must be written to
detect and exclude bad data. If a Primary Key (Parent) record must not be
deleted while related Foreign Key (Child) records exist, the program code
must prevent the deletion.

Transaction Processing is one of the Clarion language tools that help
programmers maintain database integrity. Transaction Processing is also
commonly called “Transaction Tracking,” “Transaction Logging,” or an
implementation of “commit boundaries.”  No matter what it is called, it is a
programming technique that can significantly contribute to your
maintenance of database integrity.

Clarion supports multiple file systems through its file driver technology.
Some file systems do not support Transaction Processing, and others
implement it using slightly different methods. Therefore, this discussion is
about “generic” Transaction Processing. Each file driver’s documentation
should be consulted regarding support for, and implementation differences in
its Transaction Processing.

Transaction Definition

A transaction may be defined as:

A single logical event where multiple records are written
to disk, and during which, any failure in those disk
writes would compromise the integrity of the database.

A transaction can involve several records in one file, or one or more records
in multiple files. The most important requirement of a transaction is: all of
the records must be successfully written to disk, or none of them should be
written at all. Therefore, Transaction Processing is “all or nothing.”

Transaction Frame

A transaction always has an explicit beginning and ending, which defines
the “transaction frame.”  One of the cardinal rules of Transaction Processing
is to keep the transaction frame as small as possible. There are several
reasons for this. Any system failure during a transaction would leave
database integrity compromised. Therefore, the period of time during which
database integrity could be compromised should be kept as small as possible
to reduce the chances of this happening. A second reason is that for some



10-60 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

file systems in multi-user environments, exclusive access to the files is
required for Transaction Processing. This means other users are denied
access to the files during the transaction frame. Obviously, this is a strong
argument for keeping the transaction frame small.

During the transaction frame, changes to the files included in the transaction
are “tracked” or “logged” in Pre-Image files. Pre-Image files store just
enough information about the transaction to restore the files to the state they
were in before the transaction began, if necessary.

A transaction ends when it is either “rolled back” or “committed.”

   • If some error occurs during the transaction, the changes
to the database stored in the Pre-Image files are rolled
back. Once the changes have been rolled back, the state
of the database is once again as it was before the transac-
tion began.

   • If no errors occur during the transaction, it is successful.
Therefore, the transaction is committed and the changes
are allowed to remain in the database.

Either way, the internal integrity of the database is still intact at the end of
the transaction.

If a transaction is interrupted by a power outage or general system failure,
the partially completed transaction must be rolled back, else the database
integrity would be compromised. Each file system detects the need to roll
back an incomplete transaction differently. File systems with the Client/
Server type of architecture usually detect incomplete transactions when the
file system’s Server module is loaded on the network file server. Other types
of file systems usually detect them when the data files that were in the
transaction set are opened. However detected, any incomplete transaction
is rolled back automatically as soon as it is detected, either by the file
system’s engine or the Clarion driver for that file system.

LOGOUT, COMMIT, ROLLBACK

There are three Clarion language statements which implement Transaction
Processing: LOGOUT, COMMIT, and ROLLBACK.

The LOGOUT statement begins a transaction. It lists all the files that will be
included in the transaction set—they all must use the same file driver. There
is a very good reason for this.

Internally in each file system, the mechanics of transaction processing
support have been designed in such a manner that there are no “windows of
vulnerability.”  A ”window of vulnerability” is an opening in the internal
code where, if disaster (power outage or general system failure) were to



CHAPTER 10 DATA FILES 10-61

strike during that window, database integrity could be compromised without
possibility of recovery. Each file system’s support for transaction processing
has been specifically designed to eliminate any such windows.

If you were allowed to include files from multiple file systems in a
transaction set, a “window of vulnerability” would be created between the
file drivers. Each file driver is a separate entity which internally handles
transaction processing for its own files. If disaster were to strike during the
COMMIT of such a transaction, any file driver in the transaction set that had
not yet committed its transaction would think it had left an incomplete
transaction. Incomplete transactions are automatically detected and rolled
back. If this were to happen, the database integrity would be corrupted
because part of the transaction would have been committed and part rolled
back. Therefore, all files in the transaction set must use the same file
driver .

COMMIT terminates a successful transaction. Only an explicit COMMIT
statement terminates a successful transaction, there is no such thing as an
“implied commit.”  If a file is closed, either explicitly (CLOSE) or implicitly
(RUN, CHAIN, RUNSMALL, etc.) before the transaction is committed, the
transaction is assumed to be incomplete. In most file systems, COMMIT
deletes the Pre-Image files that would allow the transaction to be rolled
back.

ROLLBACK terminates an unsuccessful transaction. It uses the information
stored in the Pre-Image files to restore the files in the transaction set to their
former state. In most file systems, ROLLBACK deletes the Pre-Image files
after it has rolled back the transaction.

Multi-User Considerations

There are some considerations that must be taken into account when using
Transaction Processing in a multi-user environment. The first thing to realize
is that an Uninterruptable Power Supply (UPS) is absolutely required on the
network’s file server. This is because network operating systems “lie” to
applications when they are told to write a record to disk. The operating
system tells the application that the disk write was successful, when in fact,
the record is still in the operating system’s cache/buffer and has not yet
physically made it to the disk.

Without a UPS on the file server, any power outage while the record is
waiting in the cache/buffer disk could cause a loss of database integrity. The
waiting period in the cache/buffer could be as long as thirty seconds,
depending upon how the network is configured. This is an unconscionable
length of time to allow as a “window of vulnerability.”  Therefore, a UPS on
the file server is a requirement for Transaction Processing in a multi-user
environment.



10-62 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Some file systems require exclusive access (LOCK) for all the files in the
transaction set. This is not a problem, because the LOGOUT statement
automatically locks the files if necessary. The necessity of a file lock is
determined by the access mode with which the file was opened. Any file
opened with “Other’s Access” set for Deny None or Deny Read is a shared
resource for disk writes, and will be locked if the file system requires file
locks. If the files are locked by LOGOUT, either ROLLBACK or COMMIT
will UNLOCK them. This makes the Transaction Processing code exactly
the same, whether used on single-user or multi-user systems.

It is important to know whether or not LOGOUT is automatically locking
the files for you. If the files are automatically locked, and any program
which accesses those same files also uses the HOLD statement, you could
encounter the second form of ”deadly embrace” discussed in the essay on
Sharing Files. Your code must be written to detect any held records in the
transaction, roll back the transaction, and allow the user a chance to re-try
the transaction. You also need to do the same kind of concurrency checking
discussed in the essay on Multi-User Considerations. If you are changing
existing records in the transaction, you must detect any changes made by
others to the records in the transaction.



CHAPTER 10 DATA FILES 10-63

COMMIT (terminate successful transaction)

COMMIT

The COMMIT  statement terminates an active transaction. Execution of a
COMMIT statement assumes that the transaction was completely successful
and no ROLLBACK is necessary. Once COMMIT has been executed,
ROLLBACK of the transaction is impossible.

COMMIT informs the file driver involved in the transaction that the
temporary files containing the information necessary to restore the database
to its previous state may be deleted. The file driver then performs the actions
necessary to its file system to successfully terminate a transaction.

Example:

LOGOUT(.1,OrderHeader,OrderDetail) !Begin Transaction
DO ErrHandler ! always check for errors

ADD(OrderHeader) !Add Parent record
DO ErrHandler ! always check for errors

LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) ! Get one from the QUEUE
DO ErrHandler ! always check for errors

Det:Record = DetailQue ! Assign to record buffer
ADD(OrderDetail) ! and add it to the file
DO ErrHandler ! always check for errors

END
COMMIT !Terminate successful transaction

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
ROLLBACK !Rollback the aborted transaction
BEEP !Alert the user
MESSAGE(‘Transaction Error - ‘ & ERROR())
RETURN ! and get out

See Also: LOGOUT, ROLLBACK



10-64 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LOGOUT (begin transaction)

LOGOUT(timeout ,file [,file,...,file])

LOGOUT Initiates transaction processing.

timeout A numeric constant or variable which specifies the
number of seconds to attempt to begin the transaction
for a file before aborting the transaction and returning an
error.

file The label of a FILE declaration. There may be multiple
file parameters, separated by commas, in the parameter
list. All files that will be in the transaction set must be
listed.

The LOGOUT  statement initiates transaction processing for a specified set
of files. All files in the transaction set must have the same file driver.
LOGOUT informs the file driver that a transaction is beginning. The file
driver then performs the actions necessary to that file system to initiate
transaction processing for the specified set of files. If the file system requires
that the files be locked for transaction processing, LOGOUT automatically
locks the files.

Only one LOGOUT transaction may be active at a time. A second LOGOUT
statement without a prior COMMIT or ROLLBACK halts the program with
an error message, returning the user to DOS.

Errors Posted: 32  File Is Already Locked

Example:

LOGOUT(.1,OrderHeader,OrderDetail) !Begin Transaction
DO ErrHandler ! always check for errors

ADD(OrderHeader) !Add Parent record
DO ErrHandler ! always check for errors

LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) ! Get one from the QUEUE
DO ErrHandler ! always check for errors

Det:Record = DetailQue ! Assign to record buffer
ADD(OrderDetail) ! and add it to the file
DO ErrHandler ! always check for errors

END
COMMIT !Terminate successful transaction

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
ROLLBACK !Rollback the aborted transaction
BEEP !Alert the user
MESSAGE(‘Transaction Error - ‘ & ERROR())
RETURN ! and get out

See Also: COMMIT, ROLLBACK



CHAPTER 10 DATA FILES 10-65

ROLLBACK (terminate unsuccessful transaction)

ROLLBACK

The ROLLBACK  statement terminates an active transaction. Execution of a
ROLLBACK statement assumes that the transaction was unsuccessful and
the database must be restored to the state it was in before the transaction
began.

ROLLBACK informs the file driver involved in the transaction that the
temporary files containing the information necessary to restore the database
to its previous state must be used to restore the database. The file driver then
performs the actions necessary to its file system to roll back the transaction.

Example:

LOGOUT(.1,OrderHeader,OrderDetail) !Begin Transaction
DO ErrHandler ! always check for errors

ADD(OrderHeader) !Add Parent record
DO ErrHandler ! always check for errors

LOOP X# = 1 TO RECORDS(DetailQue) !Process stored detail records
GET(DetailQue,X#) ! Get one from the QUEUE
DO ErrHandler ! always check for errors

Det:Record = DetailQue ! Assign to record buffer
ADD(OrderDetail) ! and add it to the file
DO ErrHandler ! always check for errors

END
COMMIT !Terminate successful transaction

ErrHandler ROUTINE !Error routine
IF NOT ERRORCODE() THEN EXIT. !Bail out if no error
ROLLBACK !Rollback the aborted transaction
BEEP !Alert the user
MESSAGE(‘Transaction Error - ‘ & ERROR())
RETURN ! and get out

See Also: LOGOUT, COMMIT



10-66 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Null Data PNull Data PNull Data PNull Data PNull Data Prrrrrocessingocessingocessingocessingocessing
The concept of a null “value” in a field of a FILE or VIEW indicates that the
user has never entered data into the field. Null actually means “value not
known” for the field. This is completely different from a blank or zero value,
and makes it possible to detect the difference between a field which has
never had data, and a field which has a (true) blank or zero value.

In expressions, null does not equal blank or zero. Therefore, any expression
which compares the value of a field from a FILE or VIEW with another
value will always evaluate as unknown if the field is null. This is true even if
the value of both elements in the expression are unknown (null) values. For
example, the conditional expression Pre:Field1 = Pre:Field2 will evaluate as
true only if both fields contain known values. If both fields are null, the
result of the expression is also unknown.

Known = Known !Evaluates as True or False
Known = Unknown !Evaluates as unknown
Unknown = Unknown !Evaluates as unknown
Unknown <> 10 !Evaluates as unknown
1 + Unknown !Evaluates as unknown

The only four exceptions to this rule are boolean expressions using OR and
AND where only one portion of the entire expression in unknown and the
other protion of the expression meets the expression criteria:

Unknown OR True !Evaluates as True
True OR Unknown !Evaluates as True
Unknown AND False !Evaluates as False
False AND Unknown !Evaluates as False

Support for null “values” in a FILE or VIEW is entirely dependent upon the
file driver. Some file drivers support the null field concept (SQL drivers, for
the most part), while others do not. Consult the documentation for the
specific file driver to determine whether or not your file system’s driver
supports nulls.



CHAPTER 10 DATA FILES 10-67

NULL (return null file field)

NULL( field)

NULL Determines null “value” of a field.

field The label (including prefix) of a field in a FILE or
VIEW structure.

The NULL  function returns a non-zero value (true) if the field is null, and
zero (false) if the field contains any known value (including blank or zero).
Support for null “values” in a FILE or VIEW is entirely dependent upon the
file driver.

Return Data Type: LONG

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
CSZ STRING(35)

. .

Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCSZ STRING(35)

. .

CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE() THEN BREAK.

IF NULL(Hea:ShipToName) !Check for null ship-to address
Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record
IF ERRORCODE() THEN CLEAR(Cus:Record).

Hea:ShipToName = Cus:Name ! and assign customer address
Hea:ShipToAddr = Cus:Addr ! as the ship-to address
Hea:ShipToCSZ  = Cus:CSZ

END
PUT(Header) !Put Header record back

END



10-68 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SETNULL (set file field null)

SETNULL( field)

SETNULL Assigns null “value” to a field.

field The label (including prefix) of a field in a FILE or
VIEW structure.

The SETNULL  statement assigns a null “value” to a field in a FILE or
VIEW structure. Support for null “values” in a FILE or VIEW is entirely
dependent upon the file driver.

Return Data Type: LONG

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
CSZ STRING(35)

. .

Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCSZ STRING(35)

. .

CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE() THEN BREAK.

Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record
IF ERRORCODE() THEN CLEAR(Cus:Record).

IF NOT NULL(Hea:ShipToName) AND Hea:ShipToName = Cus:Name
!Check ship-to address

SETNULL(Hea:ShipToName) ! and assign null “values”
SETNULL(Hea:ShipToAddr) ! to ship-to address
SETNULL(Hea:ShipToCSZ)

END
PUT(Header) !Put Header record back

END



CHAPTER 10 DATA FILES 10-69

SETNONNULL (set file field non-null)

SETNONNULL( field)

SETNONNULL Assigns non-null value (blank or zero) to a field.

field The label (including prefix) of a field in a FILE or
VIEW structure.

The SETNONNULL  statement assigns a non-null value (blank or zero) to a
field in a FILE or VIEW structure. Support for null “values” in a FILE or
VIEW is entirely dependent upon the file driver.

Return Data Type: LONG

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

. .

Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)

. .

CODE
OPEN(Header)
OPEN(Customer)
SET(Hea:AcctKey)
LOOP
NEXT(Header)
IF ERRORCODE() THEN BREAK.

Cus:AcctNumber = Hea:AcctNumber
GET(Customer,Cus:AcctKey) !Get Customer record
IF ERRORCODE() THEN CLEAR(Cus:Record).

IF NULL(Hea:ShipToName) OR Hea:ShipToName = Cus:Name
!Check same ship-to address

Hea:ShipToName = ‘Same as Customer Address’ ! flag the record
SETNONNULL(Hea:ShipToAddr) ! and blank out ship-to address
SETNONNULL(Hea:ShipToCSZ)

END
PUT(Header) !Put Header record back

END

See Also:  NULL, SETNULL



10-70 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

InternationalizationInternationalizationInternationalizationInternationalizationInternationalization

Environment Files

An environment file contains internationalization settings for an application.
On program initialization, the Clarion run-time library attempts to locate an
environment file with the same name and location as your application’s
program file (appname.ENV).  If an environment file is not found, the run-
time library defaults to standard English/ASCII. You can also use these
settings to specify internationalization issues for the Clarion environment by
creating a CW.ENV file (the Database Manager uses these settings when
displaying data files).

 The .ENV file is compatible with the .INI files used by Clarion for DOS
(both versions 3 and 3.1) if the CLACHARSET is set to OEM, because
Clarion for DOS .INI files are generally written using OEM ASCII, not the
ANSI character set.

The LOCALE procedure can be used to load environment files at run-time
to dynamically change the international settings. LOCALE can also be used
to set individual entries. International support is dependent on support in the
File Driver (generally for the OEM attribute); consult the File Driver
documentation for information on international support in specific drivers.

The following settings can be set in an environment file:

CLACHARSET=WINDOWS
CLACHARSET=OEM

This determines the character set used by the entries in
the .ENV file. WINDOWS is the default if this setting is
omitted from the environment file. Use the OEM setting
if you are using a DOS editor to edit the .ENV file, or if
it has to be compatible with Clarion for DOS.  Other-
wise, specify WINDOWS or omit the entry. This should
always be the first setting in the environment file.

CLACOLSEQ=WINDOWS
CLACOLSEQ=” string”

Specifies a specific collating sequence for use at run-
time. This collating sequence is used for building KEY
and INDEX files, as well as for sorting QUEUEs and all
string/character comparisons.

If the WINDOWS setting is used, then the default
collation sequence is defined by Windows’ Country
setting (in the Control Panel). If this entry is omitted
from the environment file, then the default ANSI order-
ing is used, not the windows default.



CHAPTER 10 DATA FILES 10-71

Using the WINDOWS setting, the ordering can ‘inter-
leave’ characters of differing case (AaBbCc ...), so code
such as

CASE SomeString[1]
OF ‘A’ TO ‘Z’

includes ‘a’ TO ‘y’ as well. Use the ISUPPER and
ISLOWER functions in preference to this kind of code if
WINDOWS (or other non-default) collation sequences
are used.

In addition to the WINDOWS setting, you may specify a
string of characters (in double quotes) to explicitly
define the collation sequence to use. Only those charac-
ters that need to have their sort order specified need be
included; all other characters not listed remain in their
same relative order. For example, if
CLACOLSEQ=“CA” is specified for the standard
English sort (ABCD ...) the resulting sort order is
“CBAD.” This is a change from the Clarion for DOS
versions of this setting that needed exactly 222 charac-
ters, but it is backward compatible.

NOTE:  You should always read and write files using
the same collation sequence. Using a different se-
quence may result in keys becoming out of order and
records becoming inaccessible. Specifying
CLACOLSEQ=WINDOWS means that the collation
sequence may change if the user changes the Country in
Windows’ Control Panel.

CLAAMPM=WINDOWS
CLAAMPM=” AMstring”,” PMstring”

This specifies the text used to indicate AM or PM as a
part of a time display field. The WINDOWS setting
specifies use of the AM/PM strings set up in the Win-
dows Control Panel. The AMstring and PMstring
settings are the same as in Clarion for DOS, except that
they take notice of the setting of CLACHARSET.

CLAMONTH=”Month1",”Month2", ... ,”Month12"
Specifies the text returned by functions and picture
formats involving the month full name.

CLAMON=”AbbrevMonth1",”AbbrevMonth2", ... ,”AbbrevMonth12"
Specifies the text returned by functions and picture
formats involving the abbreviated month name.

CLADIGRAPH=" DigraphChar1Char2, ... "
This allows Digraph characters to collate correctly. A
Digraph is a single logical character that is a combina-
tion of two characters (Char1 and Char2). The Digraph
is collated as the two characters that combine to create



10-72 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

it. They are more common in non-English languages.
For example, with CLADIGRAPH="ÆAe,æae" speci-
fied, the word “Jæger” sorts before “Jager” (since “Jae”
comes before “Jag”).

Multiple DigraphChar1Char2 combinations may be
defined, separated by commas. This setting takes notice
of the CLACHARSET setting.

CLACASE=WINDOWS
CLACASE=” UpperString”,” LowerString”

Allows you to specify upper and lower case letter pairs.

The WINDOWS setting uses the default upper/lower
case pair sets as defined by the Windows Country setting
(in the Control Panel). If this entry is omitted from the
environment file, then the default ANSI ordering is used,
not the windows default.

The UpperString and LowerString parameters specify a
set of uppercase characters and each one’s lowercase
equivalent. The length of the UpperString and
LowerString parameters must be equal.  CLACASE
takes notice of the setting of CLACHARSET. ANSI
characters less than 127 are not affected.

CLABUTT ON=”OK”,”&Yes”,”&No”,”&Abort”,”&Ignore”,”&Retry”,”Cancel”,”&Help”
This defines the text used by the buttons of the MES-
SAGE function. The text is specified as a list of comma
separated strings in the following order: OK, YES, NO,
ABORT, RETRY, IGNORE, CANCEL, HELP. The
default is as specified above.

CLAMSG errornumber=” ErrorMessage”
This allows run-time error messages to be overridden
with translated strings. The errornumber is a standard
Clarion error code number appended to CLAMSG.
ErrorMessage is the string value used to replace that
error number’s default message. For example,
CLAMSG2=”No File Found” makes ”No File Found”
the return value of the ERROR() function when
ERRORCODE() = 2.

Example:

CLACHARSET=WINDOWS
CLACOLSEQ=”AÄÅÆaàáâäåæBbCÇcçDdEÉeèéêëFfGgHhIiìíîïJjKkLlMmNÑnñOÖoòóôöPpQqRrSsßTtUÜuùúûüVvWwXxYyZzÿ”
CLAAMPM=”AM”,”PM”
CLAMONTH=”January”,”February”,”March”,”April”,”May”,”June”,”July”,”August”,”September”,”October”,”November”,”December”
CLAMON=”Jan”,”Feb”,”Mar”,”Apr”,”May”,”Jun”,”Jul”,”Aug”,”Sep”,”Oct”,”Nov”,”Dec”
CLADIGRAPH="ÆAe,æae"
CLACASE=”ÄÅÆÇÉÑÖÜ”,”äåæçéñòü”
CLABUTTON=”OK”,”&Si”,”&No”,”&Abortar”,”&Ignora”,”&Volveratratar”,”Cancelar”,”&Ayuda”
CLAMSG2=“No File Found”



CHAPTER 10 DATA FILES 10-73

CONVERTANSITOOEM (convert ANSI strings to ASCII)

CONVERTANSITOOEM( string )

CONVERTANSITOOEM
Translates ANSI strings to OEM ASCII.

string The label of the string to convert. This may be a single
variable or a any structure that is treated as a GROUP
(RECORD, QUEUE, etc.).

The CONVERTANSITOOEM  statement translates either a single string or
the strings within a GROUP from the ANSI (Windows display) character set
into the OEM character set (ASCII with extra characters defined by the
active code page).

This procedure is not required on data files if the OEM attribute is set on the
file.

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare file without OEM attribute
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

. .
Win WINDOW,SYSTEM

STRING(@s20),USE(Cus:Name)
END

CODE
OPEN(Customer)
SET(Customer)
NEXT(Customer)
CONVERTOEMTOANSI(Cus:Record) !Convert all strings from ASCII to ANSI
OPEN(Win)
ACCEPT
!Process window controls

END
CONVERTANSITOOEM(Cus:Record) !Convert back to ASCII from ANSI
PUT(Customer)

See Also:  CONVERTOEMTOANSI



10-74 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CONVERTOEMTOANSI (convert ASCII strings to ANSI)

CONVERTOEMTOANSI( string )

CONVERTOEMTO ANSI
Translates OEM ASCII strings to ANSI.

string The label of the string to convert. This may be a single
variable or a any structure that is treated as a GROUP
(RECORD, QUEUE, etc.).

The CONVERTOEMTOANSI  statement translates either a single string or
the strings within a GROUP from the the OEM character set (ASCII with
extra characters defined by the active code page) into ANSI (Windows
display) character set.

This procedure is not required on data files if the OEM attribute is set on the
file.

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare file without OEM attribute
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)

. .
Win WINDOW,SYSTEM

STRING(@s20),USE(Cus:Name)
END

CODE
OPEN(Customer)
SET(Customer)
NEXT(Customer)
CONVERTOEMTOANSI(Cus:Record) !Convert all strings from ASCII to ANSI
OPEN(Win)
ACCEPT
!Process window controls

END
CONVERTANSITOOEM(Cus:Record) !Convert back to ASCII from ANSI
PUT(Customer)

See Also:  CONVERTANSITOOEM



CHAPTER 10 DATA FILES 10-75

ISALPHA (return alphabetic character)

ISALPHA(  string )

ISALPHA Returns whether the string passed to it contains an
alphabetic character.

string The label of the character string to test. If the string
contains more than one character, only the first character
is tested.

The ISALPHA function returns TRUE if the string passed to it is alphabetic
(an upper or lower case letter) and false otherwise. This is independent of
the language and collation sequence.

Return Data Type: LONG

Example:

SomeString STRING(1)
CODE
SomeString = ‘A’ !ISALPHA returns true
IF ISALPHA(SomeString)
X#= MESSAGE(‘Alpha string’)

END
SomeString = ‘1’ !ISALPHA returns false
IF ISALPHA(SomeString)
X#= MESSAGE(‘Alpha string’)

ELSE
X#= MESSAGE(‘Not Alpha string’)

END

See Also:  ISUPPER, ISLOWER



10-76 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ISLOWER (return lower case character)

ISLOWER( string )

ISLOWER Returns whether the string passed to it contains a lower
case alphabetic character.

string The label of the string to test. If the string contains more
than one character, only the first character is tested.

The ISLOWER function returns TRUE if the string passed to it is a lower
case letter and false otherwise. This is independent of the language and collation
sequence.

Return Data Type: LONG

Example:

SomeString STRING(1)
CODE
SomeString = ‘a’ !ISLOWER returns true
IF ISLOWER(SomeString)
X#= MESSAGE(‘Lower case string’)

END
SomeString = ‘A’ !ISLOWER returns false
IF ISLOWER(SomeString)
X#= MESSAGE(‘Lower case string’)

ELSE
X#= MESSAGE(‘Not lower case string’)

END

See Also:  ISUPPER, ISALPHA



CHAPTER 10 DATA FILES 10-77

ISUPPER (return upper case character)

ISUPPER( string )

ISUPPER Returns whether the string passed to it contains an upper
case alphabetic character.

string The label of the string to test. If the string contains more
than one character, only the first character is tested.

The ISUPPER function returns TRUE if the string passed to it is an upper
case letter and false otherwise. This is independent of the language and
collation sequence.

Return Data Type: LONG

Example:

SomeString STRING(1)
CODE
SomeString = ‘A’ !ISUPPER returns true
IF ISUPPER(SomeString)
X#= MESSAGE(‘Upper case string’)

END
SomeString = ‘a’ !ISUPPER returns false
IF ISUPPER(SomeString)
X#= MESSAGE(‘Upper case string’)

ELSE
X#= MESSAGE(‘Not upper case string’)

END

See Also:  ISLOWER, ISALPHA



10-78 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LOCALE (load environment file)

LOCALE(  | file | )
| setting, value |

LOCALE Allows the user to load a specific environment file (.ENV) at run-
time and also to set individual environment settings.

file A string constant or variable containing the name
(including extension) of the environment file (.ENV) to
load, or the keyword WINDOWS. This may be a fully-
qualified DOS pathname.

setting A string constant or variable containing the name of the
environment variable to set. Valid choices are listed
under the Environment Files section.

value A string constant or variable containing the environment
variable setting.

The LOCALE  procedure allows the user to load a specific environment file
(.ENV) at run-time and also to set individual environment settings. This
allows an application to load another file to override the default
appname.ENV file, or to specify individual environment file settings when
no environment file exists.

The WINDOWS keyword as the file parameter specifies use of Windows’
default values for CLACOLSEQ, CLACASE and CLAAMPM. When
specifying individual settings, the value parameter does not require double
quotes around each individual item in the value string, unlike the syntax
required in an .ENV file.

Errors Posted:
02 File Not Found
05 Access Denied

Example:

LOCALE(‘MY.ENV’) !Load an environment file
LOCALE(‘WINDOWS’) !Set default CLACOLSEQ, CLACASE and CLAAMPM
LOCALE(‘CLABUTTON’,’OK,&Si,&No,&Abortar,&Ignora,&Volveratratar,Cancelar,&Ayuda’)

!Set CLABUTTON to Spanish
LOCALE(‘CLACOLSEQ’,’AÄÅÆaàáâäåæBbCÇcçDdEÉeèéêëFfGgHhIiìíîïJjKkLlMmNÑnñOÖoòóôöPpQqRrSsßTtUÜuùúûüVvWwXxYyZzÿ’)

!Set the collating sequence
LOCALE(‘CLACASE’,’ÄÅÆÇÉÑÖÜ,äåæçéñòü’) !Set upper/lower case pairs
LOCALE(‘CLAMSG2’,’No File Found’) !Set ERROR() message for ERRORCODE()=2

See Also:  Environment Files



CHAPTER 10 DATA FILES 10-79

Data File PData File PData File PData File PData File Prrrrrocessingocessingocessingocessingocessing
Custom database applications, by definition, store data in files. Getting data
into those files, and processing it for some kind of meaningful output, is the
primary purpose of any database application. This essay is a discussion of
the Clarion language tools which allow the programmer to access and
process data files.

File Access Methods

Generally speaking, records are put into data files at the end of the file in the
sequence in which they are added (this is not always true, but is usually
true). This creates the “physical, record-number order” of the file—the
physical order in which the records appear within the file. This physical
order does not necessarily correspond to any meaningful or useful sequence.

There are two ways to access records within a file: sequential access, and
random access. Sequential access means you retrieve a number of records in
some specified sequence, processing each record in order. Random access
means you retrieve and process one specific record. Both of these access
methods are used in almost every business database application.

If you only need to access records sequentially in their physical, record-
number order, nothing more than the data file is needed. If you need to
randomly access a record, and you know exactly which position it occupies
in the file (its record number), the same thing is true. However, for most
applications, these constraints would be too limiting.

KEY and INDEX

The Clarion KEY and INDEX declarations create alternate sort orders for
the records in the file. These allow sequential or random access to a data file
in some order other than the physical, record-number order. The order is
determined by the component fields that make up the KEY or INDEX. Each
KEY or INDEX component may be in ascending or descending order.

The main difference between KEY and INDEX lies in the fact that a KEY is
dynamically maintained. Every time a record is added, changed, or deleted,
the KEY is also updated. Since it is always kept current, a KEY should be
used for sort orders that are frequently used in the application.

An INDEX is not maintained and must be rebuilt immediately before it is
used to ensure that it accurately reflects the current state of the file. The
BUILD statement is used to rebuild an INDEX. Because of the time factor
in rebuilding, and the fact that exclusive file access is required for the
BUILD, an INDEX should be used for sort orders that are infrequently used.



10-80 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

One special form of INDEX is the ”dynamic” INDEX. This is an INDEX
whose component fields are not declared in the file definition. The
component fields of a “dynamic” INDEX are declared at run-time in the
BUILD statement. Unlike a “static” INDEX, you may BUILD a “dynamic”
INDEX with the file open in any access mode. The advantage should be
immediately obvious: end-user-definable sort orders.

Sample FILE,DRIVER(‘Clarion’),PRE(Sam)
Field1Key KEY(Sam:Field1) !KEY on Field 1
Field2Ndx INDEX(Sam:Field2) !Static INDEX on Field2
DynNdx INDEX() !Dynamic INDEX
Record RECORD
Field1 LONG
Field2 STRING(10)
Field3 DECIMAL(7,2)

. .
CODE
OPEN(Sample,42h) !Open read/write deny none
LOCK(Sample) !Lock for exclusive access
BUILD(Sam:Field2Ndx) !  to Build the INDEX
UNLOCK(Sample) !    then Unlock the file
BUILD(Sam:DynNdx,’-Sam:Field1,+Sam:Field2') !Build the dynamic INDEX

In this example, the KEY on Sam:Field1 will always be current, the INDEX
on Sam:Field2 is built when the file is opened and LOCKed (exclusive
access is required). The “dynamic” INDEX is built at run-time in descending
Sam:Field1 and ascending Sam:Field2 sort order. Of course, it could be built
in any sort order possible for the file.

Other than their maintenance, KEY and INDEX are functionally equivalent.
They share the same type of file format and may be used interchangeably in
all executable file access statements which require a KEY or INDEX
parameter. To simplify this discussion, wherever the phrase “KEY and/or
INDEX” would be appropriate, it is replaced with the generic term index. All
references to index apply equally to both KEYs and INDEXes, unless
otherwise noted.

Sequential File Access

There are three Clarion statements which perform sequential file access: 
SET, NEXT, and PREVIOUS. The SET statement initializes the sequential
processing—it does not read a record. The NEXT and PREVIOUS
statements read the records in ascending (NEXT) or descending
(PREVIOUS) order within the sequence established by SET.

The SET statement is the ruling element in sequential file processing. A
SET statement must come before NEXT or PREVIOUS to initialize the
starting point and sequence in which the records will be read. Usually, the
SET statement is the last executable statement before the LOOP structure
which sequentially processes the records in the file. The NEXT or
PREVIOUS is then the first statement within the LOOP, as in this example
code using the previous example file definition:



CHAPTER 10 DATA FILES 10-81

SET(Sam:Field1Key) !Set to top of file in KEY order
LOOP !Loop until end of the Sample file
NEXT(Sample) !Read each record in turn
IF ERRORCODE() THEN BREAK. !Break at end of file
!record processing statements

END !End loop

There are seven forms of the SET statement listed in the Language
Reference Manual. These essentially break down into two categories: three
starting points for physical record-number order access, and four starting
points for indexed order access.

 Physical Order Indexed Order
 Top/Bottom of File Top/Bottom of File
 Physical Record Number Index Record Number
 Index Value Index Value

Index Value and Physical Record Number

SET initializes the sequential processing record pointer, and it employs a
type of “fuzzy logic.”  When you SET to the Top/Bottom of the file, the
record pointer is not actually pointing at either. If you issue a NEXT after
the SET, you read records forward from the beginning of the file. If you
issue a PREVIOUS instead, you read records backwards from the end of the
file. Once you have issued the NEXT or PREVIOUS to begin reading
records in one direction, you cannot go back across the Top/Bottom of the
file without another SET.

The same “fuzzy logic” is active when you SET to an index value. If SET
finds a record containing an exact match to that index value, it points to that
specific record. In this case, either NEXT or PREVIOUS would read the
same record. If, however, there is no exact match to the index value, SET
points “between” the last record in sequence containing a value less than (or
greater than, in a descending index) the index value and the next record in
sequence containing a value greater than (or less than, in a descending index)
the index value. In this case, NEXT and PREVIOUS would not read the
same record. NEXT would read the following record in the index sequence,
PREVIOUS would read the prior record in the index sequence.

The advantage of this “fuzzy logic” lies in its use with a multiple component
index, as in this example.

Sample FILE,DRIVER(‘Clarion’),PRE(Sam)
FieldsKey KEY(Sam:Field1,Sam:Field2),DUP !KEY on Field 1 and Field 2
Record RECORD
Field1 LONG
Field2 STRING(10)
Field3 DECIMAL(7,2)

. .
CODE
OPEN(Sample,42h) !Open read/write deny none
CLEAR(Sam:Record) !Clear the record buffer
Sam:Field1 = 10 !Initialize first KEY component
SET(Sam:FieldsKey,Sam:FieldsKey) !KEY sequence, start at 10-blank
LOOP !Process each record
NEXT(Sample) !   one at a time
IF ERRORCODE() THEN BREAK. !Break at end of file
IF Sam:Field1 <> 10 !Check for end of group



10-82 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BREAK !  if so, get out of process loop
END

      !record processing statements
END !End process loop

This code first clears the record buffer, assigning zeroes to Sam:Field1 and
Sam:Field3, and blanks to Sam:Field2. The first component field of
Sam:FieldsKey is initialized to the value that must be in the records you
need to process. The SET statement sets up sequential processing in indexed
order, starting at the index value—in this case a value of 10 in Sam:Field1
and blanks in Sam:Field2.

Sample File Records:  Index Record # Field1 Field2 Field3
1 5 ABC 14.52
2 5 DEF 14.52

Record Pointer After SET >>
3 10 ABC 14.52
4 10 ABC 29.04
5 10 DEF 14.52
6 15 ABC 14.52
7 15 DEF 14.52

SET leaves the record pointer positioned as shown above because there is no
exact match. Record 2’s value 5-DEF is less than 10-blank, and record 3’s
value 10-ABC is greater than 10-blank, therefore the record pointer is left
“between” the two. The first time through the LOOP, NEXT reads record
number 3. The IF statement terminates the processing loop after NEXT
reads record 6.

There is a distinct difference between the Physical Record Number and the
Index Record Number. The Physical Record Number is the relative physical
position within the data file as returned by the POINTER(Label of a File)
function. The Index Record Number is the relative record position within the
index sequence as returned by the POINTER(Label of an Index) function.

In physical order, the same file might look like this (of course, the physical
and index record numbers are not stored in the data file):

Sample File: Physical Record # Index Record # Field1 Field2 Field3
1 3 10 ABC 14.52
2 6 15 ABC 14.52
3 5 10 DEF 14.52
4 2  5 DEF 14.52
5 4 10 ABC 29.04
6 7 15 DEF 14.52
7 1  5 ABC 14.52

The forms of SET that use Record Numbers as the starting point look very
similar, therefore you need to be very clear about which you are using
(Physical vs. Index).

SET(Sample,1) !Physical Order, SETs to physical rec 1, index rec 3

SET(Sam:FieldsKey,1)
!Index order, SETs to index rec 1, physical rec 7



CHAPTER 10 DATA FILES 10-83

Sam:Field1 = 10
Sam:Field2 = ‘ABC’
SET(Sam:FieldsKey,Sam:FieldsKey,5)

!Index order, SETs to index rec 4, physical rec 5

This last form of SET allows you to SET to a specific record within a
sequence of records which contain duplicate index field values. It searches
the duplicate index entries for an index entry which points to the Physical
Record Number specified as the third parameter. This is useful in files where
there are multiple records with duplicate index values and you need to begin
processing at one specific record within those duplicates.

Random File Access

There is only one Clarion statement which performs random access to
individual records within a file—the GET statement. Unlike SET, GET
either reads the record you attempt to retrieve, or returns an error. There is
no “fuzzy logic” with GET.

There are three forms of the GET statement. They allow you to retrieve a
record based on an index value, Physical Record Number, or Index Record
Number.

Sam:Field1 = 15
Sam:Field2 = ‘ABC’
GET(Sample,Sam:FieldsKey) !GETs index rec 6, physical rec 2
GET(Sample,1) !GETs physical rec 1, index rec 3
GET(Sam:FieldsKey,1) !GETs index rec 1, physical rec 7

The first GET example retrieves the first record in the index order which
contains the values in the index component fields at the time the GET is
issued. The second example retrieves the first record in the file in Physical
Record Number order. The third retrieves the first record in the file in Index
Record Number order.

GET always looks for an exact match to the index value and returns an error
if it does not find one. Therefore, all component fields of a multiple
component index must be initialized before issuing a GET.

GET is completely independent of SET/NEXT or SET/PREVIOUS
sequential processing. This means that a GET into a file which is being
sequentially processed does not change the record pointer for sequential
processing.

SET(Sam:FieldsKey) !Set to top of file
LOOP !Process each record in index order
  NEXT(Sample) !Gets each sequential record
IF ERRORCODE() THEN BREAK. !Break at end of file

     !sequential record processing statements
  GET(Sam:FieldsKey,1) !Gets the first record in index order
     !random access record processing statements
END



10-84 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

This example code processes through the entire file in index order. After
each sequential record is processed, the first record in index order is
retrieved and processed. This does not affect the sequence, therefore NEXT
will progress through the file, despite the GET of the first record every time
through the loop.

Summary

   • Sequential Access and Random Access are the two
methods used to retrieve records from a file.

   • The Clarion KEY and INDEX declarations define
alternate sort orders of the file in which they are de-
clared.

   • A KEY is dynamically maintained and is always ready
for use. An INDEX is not maintained and must be built
before use.

   • A “dynamic” INDEX allows sort orders to be defined at
run-time.

   • The SET statement initializes the order and starting
point of sequential processing. A SET is required before
the first NEXT or PREVIOUS.

   • SET employs “fuzzy logic” to determine the starting
point. It either points to a specific record, or “between”
records at the position where it determined no record fit
the starting point parameters it was given.

   • Physical and Index Record Numbers are very different
and must not be confused with each other.

   • The GET statement performs random record access
within a file.

   • GET is completely independent of the SET/NEXT and
SET/PREVIOUS sequential record processing.



CHAPTER 10 DATA FILES 10-85

Multi-User ConsiderationsMulti-User ConsiderationsMulti-User ConsiderationsMulti-User ConsiderationsMulti-User Considerations
The world of database applications programming is rapidly heading towards
networking. Stand-alone applications are expanding into multi-user
environments as more companies connect their PCs to Local Area Networks
(LANs). Mainframe applications in large companies are being “right-sized”
and re-written for LAN operation. With the emergence of multi-threading,
multi-tasking operating systems for PCs, even standalone computers need
applications that are written with multi-user shared-access considerations in
mind. This essay is a discussion of the Clarion language tools provided to
write applications specifically designed for use in multi-user environments.

Opening Files

Before any data file can be processed, it must first be opened. The OPEN
and SHARE statements provide this function. OPEN and SHARE are
functionally equivalent, the only difference between the two is the default
value of the second (access mode) parameter of each.

The access mode specifies the type of access the user opening the file
receives, and the type of access allowed to other users of the file. These two
values are added together to create the DOS Access Code for the file. The
access mode values are:

Access Dec. Hex.
User’s Access: Read Only 0 0h
` Write Only 1 1h

Read/Write 2 2h

Other’s Access: Deny All 16 10h
Deny Write 32 20h
Deny Read 48 30h
Deny None 64 40h

The OPEN statement’s default access mode is Read/Write Deny Write (22h),
which only allows exclusive (single-user) disk write access to the user
opening the file. The SHARE statement’s default access mode is Read/Write
Deny None (42h), allowing non-exclusive (multi-user) access to anybody
who opens the file. Either OPEN or SHARE may open the file in any of the
possible access modes.

OPEN(file) !Open Read/Write Deny Write
OPEN(file,22h) !Open Read/Write Deny Write
SHARE(file,22h) !Open Read/Write Deny Write

SHARE(file) !Open Read/Write Deny None
SHARE(file,42h) !Open Read/Write Deny None
OPEN(file,42h) !Open Read/Write Deny None

OPEN(file,40h) !Open Read Only Deny None
SHARE(file,40h) !Open Read Only Deny None

These examples demonstrate the three most commonly used access modes.
For multi-user applications, the most common access mode is Read/Write



10-86 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Deny None (42h), which permits all users complete access to the file. Read
Only Deny None (40h) is usually used in multi-user situations where the
user will not update the file (a lookup-only file) but there may be some other
user who may need to write to that file.

Concurrency Checking

The biggest consideration to keep in mind about multi-user access to files is
the possibility that several users could be updating the same record at the
same time. A process known as “concurrency checking” prevents the data
file from being corrupted by multiple user updates to the same record.
Concurrency checking means determining that the record on disk, which is
about to be overwritten, still contains the same values it did when it was
retrieved for update.

Obviously, there is no need for any kind of concurrency checking when a
record is being added. If the file has a unique KEY, two users adding the
same record twice is impossible because the second ADD returns a “Creates
Duplicate Key” error without adding the record. If duplicate KEYs are
allowed, there is no generic way for the program code to check for
inadvertent (incorrect) duplicates as opposed to deliberate (correct) duplicate
records. There is also no need for concurrency checking when a record is
being deleted. Once the first user has deleted the record, it is gone. Any
subsequent user that attempts to delete that record will not be able to get it
in the first place.

Concurrency checking is necessary when a user is making a change to a
record. The process of changing a record is: get the record, make the
changes, and write the changes back to the file. The problem is, during the
time it takes the first user to make changes to the record, a second user (a
faster typist) could: get the same record, make some change, and write the
changed record back to disk. When the time comes for the first user to write
his/her changes to disk, the record on disk is no longer the same as when it
was first retrieved. Does the first user simply overwrite the second (faster)
user’s changes?  If both users are changing different data elements within
that record and both changes are valid, overwriting the second user’s
changes cannot be allowed. Even if they are both making the same change,
the first user needs to know that someone else has already made that change.

For the simplest concurrency checking method, your program code should:

           11111 Save a copy of the record before any changes are made.

           22222 Re-read the record immediately before writing the
changes to disk, and compare it with the saved original.

           33333 If the two are the same, allow the user’s changes to be
written to disk. If not, alert the user and display the
record, as changed by the other user.



CHAPTER 10 DATA FILES 10-87

Assume the following global declarations and compiler equates:

Sample FILE,DRIVER(‘Clarion’),PRE(Sam) !A data file declaration
Field1Key KEY(Sam:Field1)
Record RECORD
Field1 LONG
Field2 STRING(10)

. .
Action LONG !Record update action variable
AddRec EQUATE(1)
ChangeRec EQUATE(2)

Assume that some procedure allows the user to select a record from the file,
define the expected Action (Add, Change, or Delete the record), then calls an
update procedure. The update procedure operates only on that selected
record and accomplishes the Action the user set in the previous procedure.
The update procedure code would look similar to this:

Update PROCEDURE !An update procedure
Screen WINDOW

!data entry screen declarations go here
END

SaveQue QUEUE,PRE(Sav) !Record save queue is a copy
SaveRecord LIKE(Sam:Record),PRE(Sav) !  of the file’s record buffer

END !    with a different prefix
SavRecPtr LONG !Record pointer save variable
CODE
OPEN(Screen)
Sav:SaveRecord = Sam:Record !Save copy of record
ADD(SaveQue,1) !  to QUEUE entry 1
SavRecPtr = POINTER(Sample) !Save record number
DISPLAY !Display the record on screen
ACCEPT !Screen field process loop
CASE ACCEPTED()

!Individual screen field edit code goes here
OF ?OKButton !Screen completion field
IF Action = ChangeRec !If changing an existing record
Sav:SaveRecord = Sam:Record !Save changes made
ADD(SaveQue,2) !  to QUEUE entry 2
GET(SaveQue,1) !Get original record from QUEUE
GET(Sample,SavRecPtr) !Get record from FILE again
IF ERROR()
IF ERROR() = ‘RECORD NOT FOUND’ !Did someone else delete it?
Action = AddRec ! change Action to add it back
GET(SaveQue,2) !Get this user’s changes
Sam:Record = Sav:SaveRecord ! put them in record buffer

ELSE
STOP(ERROR()) !Stop on any other error

END
ELSIF Sav:SaveRecord <> Sam:Record !Compare for other’s changes
Sav:SaveRecord = Sam:Record ! Save new disk record
ADD(SaveQue,1) !    to QUEUE entry 1
DISPLAY ! Display other’s changes
BEEP ! Alert the user
IF MESSAGE(’Changed by another station’).
SELECT(1) !   and start over
CYCLE !    at first field

ELSE !If nobody changed it
GET(SaveQue,2) ! Get this user’s changes
Sam:Record = Sav:SaveRecord  ! put them back in record buffer

. .



10-88 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EXECUTE Action !Execute disk write
ADD(Sample) !If Action = 1 (AddRec)
PUT(Sample) !If Action = 2 (ChangeRec)
DELETE(Sample) !If Action = 3 (DeleteRec)

END
ErrorCheck !A generic error checking procedure
FREE(SaveQue) !Free memory used by queue entries
BREAK !  and break out of process loop

. . !End loop and case

This example code demonstrates the simplest type of concurrency checking.
It saves the original record in memory QUEUE entry one, and the pointer to
that record in a LONG variable. After that, the user is allowed to make the
changes to the screen data. The code to check for other user’s changes is
contained in the CASE FIELD() OF ?OKButton. This would be the field
which the user completes when he/she is done making changes and is ready
to write the record to disk.

To check for other user’s changes, the code first saves this user’s changes to
a second memory QUEUE entry, then gets the saved original record from the
QUEUE. The saved record pointer is used to get the record from the data file
again. If the record is not found in the file, someone else has deleted it.
Therefore, since this user is changing it, simply add the changed record back
into the file. If the record was not deleted, it is compared against the original
saved copy. If they are not the same, the changed record is saved to the same
memory QUEUE entry (one) which contained the original record. Then the
user is alerted to the problem and sent back to the first field on the screen to
re-enter the changes (if necessary). If the record is still the same, the user’s
changes are retrieved from the second memory QUEUE entry and put into
the record buffer for the disk write. This method is fairly straight-forward
and logical. However, it uses three extra chunks of memory the size of the
record buffer: the memory QUEUE’s buffer, and the two entries in that
QUEUE (plus each QUEUE entry’s 28-byte overhead). If you are dealing
with a file that has many fields, the record buffer could be very large and this
could use a significant amount of memory.

Another method of concurrency checking does not copy and save the
original record, but instead calculates a Checksum or Cyclical Redundancy
Check (CRC) value. The calculation is performed on the record before
changes are made, then the record is retrieved from disk and the calculation
is performed again. If the two values are not the same, the record has been
changed. This method still requires a save area for the user’s changes,
because the record must be read again for the second calculation, and all
disk reads are placed in the record buffer. Without a save area, the user’s
changes would be overwritten.

Here is an example of a 16-bit CRC function, and its prototype for the MAP
structure. This is similar to the CRC calculations used in some serial
communications protocols. An array of BYTE fields is passed to the
function, it calculates a 16-bit CRC value for that array, and returns it to a
USHORT (16-bit unsigned) variable.



CHAPTER 10 DATA FILES 10-89

MAP !The function prototype for the MAP.
CRC16(*BYTE[]),USHORT !CRC16 expects an array of BYTEs to be

END !  passed to it, returns a USHORT value
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CRC16 FUNCTION(Array) !16 Bit CRC Check
CRC ULONG !Work variable
CODE
LOOP X# = 1 TO MAXIMUM(Array,1) !Loop through whole array
CRC = BOR(CRC,Array[X#]) !Concatenate an array byte to CRC
LOOP 8 TIMES !Loop through each bit
CRC = BSHIFT(CRC,1) !Shift CRC left one bit
IF BAND(CRC,1000000h) !Was CRC 24th bit on before shift?
CRC = BXOR(CRC,102100h) ! XOR shifted value with CRC mask

. . .    !End both loops
RETURN(BAND(BSHIFT(CRC,-8),0000FFFFh)) !Shift and mask return value

Using this CRC check function, the previous example code would be
changed to look like:

Update PROCEDURE !An update procedure
Screen WINDOW

!data entry screen declarations go here
END

Sav:SaveRecord LIKE(Sam:Record),PRE(Sav),STATIC
!Record buffer save area
!  with a different prefix

PassArray BYTE,DIM(SIZE(Sam:Record),OVER(Sam:Record)
!Declare array OVER Sam:Record

SavRecPtr LONG !Record pointer save variable
SavCRC USHORT !CRC value save variable
CODE
OPEN(Screen)
SavCRC = CRC16(PassArray) !Save original CRC value
SavRecPtr = POINTER(Sample) !Save record number
DISPLAY !Display the record on screen
ACCEPT !Screen field process loop
CASE ACCEPTED()
!Individual screen field edit code goes here

OF ?OKButton !Screen completion field
IF Action = ChangeRec !If changing an existing record
Sav:SaveRecord = Sam:Record !Save changes made
GET(Sample,SavRecPtr) !Get record from FILE again
IF ERROR()
IF ERROR() = ‘RECORD NOT FOUND’ !Did someone else delete it?
Action = AddRec ! change Action to add it back
Sam:Record = Sav:SaveRecord ! put them in record buffer

ELSE
STOP(ERROR()) !Stop on any other error

END
ELSIF SavCRC <> CRC16(PassArray) !Compare CRCs for changes
SavCRC = CRC16(PassArray) ! Save new CRC value
DISPLAY ! Display other’s changes
BEEP ! Alert the user
IF MESSAGE(’Changed by another station’).
SELECT(1) !   and start over
CYCLE !    at first field

ELSE !If nobody changed it
Sam:Record = Sav:SaveRecord ! put changes back in buffer

. .
EXECUTE Action !Execute disk write
ADD(Sample) !If Action = 1 (AddRec)
PUT(Sample) !If Action = 2 (ChangeRec)



10-90 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DELETE(Sample) !If Action = 3 (DeleteRec)
END
ErrorCheck !A generic error checking procedure
BREAK !  and break out of process loop

. . !End loop and case

You can see that the update procedure code using this method is a bit
smaller, and easier to follow logically. There are two new data declarations:
SavCRC is declared to save the original CRC calculation, and PassArray is
an array declared OVER the file’s record buffer. The PassArray declaration
simply provides a way to pass the CRC16 function the entire record as an
array of BYTEs, it does not allocate any memory.

A valid question at this point would be, “Why is the Sav:SaveRecord
declared in this code with a STATIC attribute?”  There are four reasons:

   • A save area is still needed to temporarily keep the user’s
changes while concurrency checking calculations are
being performed.

   • Variables declared locally in a PROCEDURE or FUNC-
TION are assigned memory on the stack when the
PROCEDURE or FUNCTION is called.

   • The save area for a large record buffer could easily take
more memory than is available on the stack. Therefore,
the save area should be in static memory.

   • In a PROCEDURE or FUNCTION, only data structures
(SCREEN, PULLDOWN, REPORT, FILE, and
QUEUE) and variables with ther STATIC attribute are
assigned static memory.

Of course, if the save area were declared in the global data section (between
the keywords PROGRAM and CODE), or a MEMBER module’s data
section (between the keywords MEMBER and PROCEDURE, or
FUNCTION), it would not need to be declared with the STATIC attribute—
it would automatically be assigned static memory.

HOLD and RELEASE

A tool to prevent other users from making changes to a record while it is
being updated is the HOLD statement. HOLD tells the following GET,
NEXT, or PREVIOUS statement to get the record and set a flag that tells
any other user attempting to get that record that it is in use—a ”record lock.”
The record remains held until it is: explicitly released with a RELEASE
statement; implicitly released by a PUT, or DELETE, of that record; or,
implicitly released by retrieving another record from the same file.

The Clarion language supports multiple file systems through its file driver
technology. Each file system may implement record locking in a different



CHAPTER 10 DATA FILES 10-91

manner. Therefore, the actual effect of HOLD is dependent upon the file
driver, which takes whatever action is appropriate to the file system. In some
file systems, a HOLD on a record allows other users to read the record, but
not to write to it. In others, HOLD blocks other users from any access to the
record. Some file systems release the HOLD automatically if the system
crashes, others don’t and leave it flagged as held. The specific action of
HOLD is described in each file driver’s documentation.

If you HOLD a record when it is retrieved, and RELEASE it when you write
it back, you can eliminate the need for the type of concurrency checking
previously described. Is this a good idea, though?  Depending upon the
actual implementation of HOLD in the file system being used, the answer
may be either Yes or No.

If your file system blocks other users from all access to the record, or there
is the possibility a “system crash” could leave it in a HOLD state, the
answer is probably No. This does not mean that you should not use HOLD
at all. It does mean that you should not use HOLD where a record would be
held during user input (an indeterminate amount of time). More likely, you
would use HOLD during the concurrency check described above. This is to
make sure that nobody changes the record between the second GET (for
concurrency checking) and the PUT that writes the user’s changes to disk.

Using HOLD in this manner only changes the code in the CASE
ACCEPTED() OF ?OKButton.

OF ?OKButton !Screen completion field
IF Action = ChangeRec !If changing an existing record
Sav:SaveRecord = Sam:Record !Save changes made
HOLD(Sample,1) !Hold while checking for changes
GET(Sample,SavRecPtr) !Get record from FILE again
IF ERROR()
IF ERROR() = ‘RECORD ALREADY HELD’ !Has someone else got it?
BEEP ! Alert the user
SHOW(25,1,’Held by another station’)
SELECT(1) !   and start over
CYCLE !    at first field

ELSIF ERROR() = ‘RECORD NOT FOUND’ !Did someone else delete it?
Action = AddRec ! change Action to add it back
Sam:Record = Sav:SaveRecord ! put them back in record buffer

ELSE
STOP(ERROR()) !Stop on any other error

END
ELSIF SavCRC <> CRC16(PassArray) !Compare CRC values for changes
RELEASE(Sample) !Release the hold
SavCRC = CRC16(PassArray) ! Save new CRC value
DISPLAY ! Display other’s changes
BEEP ! Alert the user
IF MESSAGE(’Changed by another station’).
SELECT(1) !   and start over
CYCLE !    at first field

ELSE !If nobody changed it
Sam:Record = Sav:SaveRecord ! put these changes back in buffer

. .
EXECUTE Action !Execute disk write
ADD(Sample) !If Action = 1 (AddRec)



10-92 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PUT(Sample) !If Action = 2 (ChangeRec)
DELETE(Sample) !If Action = 3 (DeleteRec)

END
ErrorCheck !A generic error checking procedure
BREAK !  and break out of process loop

This change puts a HOLD on the record only long enough to determine if it
is the same record the user started with and write the changes to disk. If
someone else has a HOLD on the record, the user is alerted to that fact and
allowed to try again. If the record continually comes up as held by another
station, then it has probably been left in a HOLD state by a system crash. In
that case, the hold should be released by whatever action is appropriate for
that file system. Code could be written to handle this eventuality, but it
would be specific to the file system and this is “generic” example code.

If the prevention of record update conflicts is a “mission-critical” concern,
then HOLD could be used to keep control of the record during user data
entry. One trade-off with this use of HOLD is the nuisance of dealing with
records that are left locked when users’ systems crash while records are
held. Correcting that situation could involve some manual work with file
system utilities, or could simply be a matter of specific coding
considerations for the file system being used. Another concern with using
HOLD this way comes when the file system being used does not allow other
users to read the held records. The held records would seem to “disappear”
then “reappear” from time to time as users HOLD records. Either way, this
method should probably not be used unless the application really requires it.

To utilize this technique, the HOLD would have to be in the procedure
which actually retrieves the record from the file. In most cases, that
procedure would display some kind of scrolling list of records, usually
displayed in a LIST box. The following example code demonstrates this.

OF ?List !LIST
CASE EVENT()
OF EVENT:Accepted !An existing record was selected
GET(TableQue,CHOICE()) !Get record number from the QUEUE
HOLD(Sample,1) !Arm the HOLD
GET(Sample,Que:RecPointer) !  and get the record from the file
IF ERROR() = ‘RECORD ALREADY HELD’ !Has someone else got it?
BEEP ! Alert the user
IF MESSAGE(’Held by another station’).
SELECT(?List) !   to try again
CYCLE

ELSE !If no one else has it
Action = ChangeRec !Set up disk action for change
Update ! and call the update procedure

END
!Code to handle other keycodes goes here

END

This technique grossly simplifies the update procedure code, as in this
example:

Update PROCEDURE    !An update procedure
Screen SCREEN

!data entry screen declarations go here
END



CHAPTER 10 DATA FILES 10-93

CODE
OPEN(Screen)
DISPLAY !Display the record on screen
ACCEPT !Screen field process loop
CASE FIELD()
!Individual screen field edit code goes here

OF ?OKButton !Screen completion field
CASE EVENT()
OF EVENT:Accepted
EXECUTE Action !Execute disk write
ADD(Sample) !If Action = 1 (AddRec)
PUT(Sample) !If Action = 2 (ChangeRec)
DELETE(Sample) !If Action = 3 (DeleteRec)

END
ErrorCheck !A generic error checking procedure
BREAK !  and break out of process loop

. . . !End loop and case

The HOLD statement only allows each user to HOLD one record in each
file. If you need to update multiple records in one file and you must be sure
that no other user makes changes to those records while they are being
updated, then you must LOCK the file.

LOCK and UNLOCK

The LOCK statement prevents other users from accessing any records in a
file, until you UNLOCK it. Just like HOLD, the effect of LOCK is
dependent upon the file driver which takes whatever action is appropriate to
the file system. In some file systems, a system crash automatically unlocks
the file, and in others it is left locked. The specific action LOCK takes is
described in each file driver’s documentation.

Because other users are completely barred from accessing records in the
LOCKed file, LOCK is not commonly used. The most common use of
LOCK would be to BUILD an INDEX prior to using it (and that is not even
necessary if it is a “dynamic” INDEX). The type of “batch update
processing” that would require a file to be LOCKed for a significant period
of time is generally best left until after hours, when all users are gone. Other
than to BUILD an INDEX, a file LOCK is usually only needed during
Transaction Processing, which is the subject of a separate essay.

If an application truly demands a file LOCK, then the period of time during
which the other users are denied access should be kept to an absolute
minimum. The code between the file LOCK and its subsequent UNLOCK
statement should not require any user input. This means that the code should
be written such that an end-user cannot go to lunch leaving a file LOCKed.
Specifically, LOCK should come immediately before the BUILD occurs,
and the file should be UNLOCKed as soon as it is complete.

ReportProc PROCEDURE
Sample FILE,DRIVER(‘Clarion’),PRE(Sam)  !A data file declaration
Field1Key KEY(Sam:Field1)
Field2Ndx INDEX(Sam:Field2)   !An INDEX



10-94 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Record RECORD
Field1 LONG
Field2 STRING(10)

. .
Report REPORT

!Report declaration statements go here
END

CODE
OPEN(Sample,42h) !Open Read/Write Deny None
LOCK(Sample,1) !Lock the file
IF ERROR() = ‘FILE IS ALREADY LOCKED’ !Check for other locks
BEEP !Alert the user
IF MESSAGE(’Locked by another station’).
RETURN !  and get out

END
BUILD(Sam:Field2Ndx) !Build the index
UNLOCK(Sample) !Unlock the file
OPEN(Report)
SET(Sam:Field2Ndx) !Use the index
LOOP
NEXT(Sample)
IF ERRORCODE() THEN BREAK.
!Report processing code goes here

END

This code opens the file in access mode 42h (Read/Write Deny None) for
fully shared access. The LOCK is attempted for one second. If it is
successful, the BUILD immediately executes. If the LOCK was
unsuccessful, the user is alerted and returned to the procedure that called the
report. Once the BUILD is complete, UNLOCK once again allows other
users access to the file, and the report is run based on the sort order of the
INDEX.

”Deadly Embrace”

There are two forms of “deadly embrace.”  The first occurs when two users
attempt to LOCK the same set of files in separate orders of sequence. The
scenario is:

User A locks file A
User B locks file B at the same time
User A attempts to LOCK file B and cannot because User B has it LOCKed
User B attempts to LOCK file A and cannot because User A has it LOCKed

This leaves both users “hung up” attempting to gain control of the files. The
solution to this dilemma is the adoption of a simple coding convention:
Always LOCK files in the same order (alphabetical works just fine) and trap
for other users’ LOCKs. This example demonstrates the principle:



CHAPTER 10 DATA FILES 10-95

LOOP
LOCK(FileA,1) !Attempt LOCK for 1 second
IF ERROR() = ‘FILE IS ALREADY LOCKED’
BEEP(0,100) !Wait 1 second
CYCLE !  and try again

END
LOCK(FileB,1) !Attempt LOCK for 1 second
IF ERROR() = ‘FILE IS ALREADY LOCKED’
UNLOCK(FileA) !Unlock the locked file
BEEP(0,100) !Wait 1 second
CYCLE !  and try again

END
BREAK !Break from loop when both locked

END

This code will eventually LOCK both files. If FileA is already locked by
another user, the loop will pause for one second while BEEP puts out a zero-
frequency beep (no sound is generated), then try again. The one second
pause allows the other user a chance to complete their action. If the first
LOCK is successful, the LOCK on FileB is attempted. If FileB is already
locked by another user, FileA is immediately unlocked for other user’s use,
then the pause and re-try sequence occurs again. The BREAK from the
LOOP in this example is only allowed after both files are successfully
LOCKed.

Mixing the use of HOLD and LOCK can result in the second form of
“deadly embrace.”  In some file systems, LOCK and HOLD are completely
independent, therefore it is possible for one user to HOLD a record in a file,
and another user to LOCK that same file. The user with the HOLD cannot
write the record back, or even RELEASE it, and the user with the LOCK
cannot write to that held record.

This situation may be resolved in one of two ways:

   • You may choose to never mix HOLD and LOCK on the
same file. This limits you to the use of HOLD only (the
most common solution), or LOCK only. This solution
must be used in all applications that write to a common
set of files.

   • You may choose to always trap for held records while
the file is LOCKed. This implies that you know how you
want to deal with the “deadly embrace” record when it is
detected.

The first solution is by far the more commonly used. The second takes you
into an area of programming that is probably better served by Transaction
Processing, which would include held record trapping.



10-96 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Summary

   • A File must be opened before its records may be ac-
cessed.

   • The access mode determines the type of access DOS
grants to the user opening the file and any other users.

   • Multi-user programming must always take into consider-
ation the possibility of multiple users accessing the same
record at the same time.

   • Concurrency checking is done to ensure that user
updates don’t overwrite other user’s changes to the
records.

   • HOLD is most commonly used in conjunction with
concurrency checking to ensure that no other user
changes the record while it is being compared for
changes.

   • LOCK is most commonly used to gain exclusive control
of a file while you BUILD an INDEX.

   • The “deadly embrace” is a programming consideration
most easily dealt with through the adoption of consistent
program coding conventions.



CHAPTER 11 FILE VIEWS 11-1

View StructurView StructurView StructurView StructurView Structureseseseses

VIEW (declare a “virtual” file)

label VIEW(primary file) [,FILTER( ) ]
[PROJECT( )]
[JOIN( )

[PROJECT( )]
[JOIN( )

[PROJECT( )]
 END]

 END]
END

VIEW Declares a “virtual” file as a composite of related files.

label The name of the VIEW.

primary file The label of the primary FILE of the VIEW.

FILTER Declares an expression used to filter valid records for the
VIEW.

PROJECT Specifies the fields from the primary file, or the second-
ary related file specified by a JOIN structure, that the
VIEW will retrieve. If omitted, all fields from the file are
retrieved.

JOIN Declares a secondary related file.

VIEW  declares a “virtual” file as a composite of related data files. The data
elements declared in a VIEW do not physically exist in the VIEW, because
the VIEW structure is a logical construct. VIEW is a separate method of
addressing data physically residing in multiple, related FILE structures. At
run-time, the VIEW structure is not assigned memory for a data buffer, so
the fields used in the VIEW are placed in their respective FILE structure’s
record buffer.

A VIEW structure must be explicitly OPENed before use, and all primary
and secondary related files used in the VIEW must have been previously
OPENed. File I/O operations that operate directly on the primary or any
secondary related file in the VIEW are not permitted while the VIEW is
OPEN.

The VIEW data structure allows sequential access, only.  A SET statement
on the VIEW’s primary file must be issued before the OPEN(view) to set the
VIEW’s processing order and starting point, then NEXT(view) or
PREVIOUS(view) allow sequential access to the VIEW. The REGET
statement is also available for VIEW, but only to specify the primary and
secondary related file records that should be current in their respective
record buffers after the VIEW is CLOSEd. If no REGET statement is issued
immediately before the CLOSE(view) statement, the primary and secondary



11-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

related file record buffers are set to no current record. The processing
sequence of the primary and secondary related files is undefined after the
VIEW is CLOSEd.  Therefore, SET or RESET must be used to establish
sequential file processing order, if necessary, after closing the VIEW.

The VIEW data structure is designed to facilitate database access on client-
server systems. It accomplishes two relational operations at once: the
relational “Join” and “Project” operations. On client-server systems, these
operations are performed on the file server, and only the result of the
operation is sent to the client. This can dramatically improve performance of
network applications.

A relational “Join” retrieves data from multiple files, based upon the
relationships defined between the files. The JOIN structure in a VIEW
structure defines the relational “Join” operation. There may be multiple
JOIN structures within a VIEW, and they may be nested within each other to
perform multiple-level “Join” operations.

A relational “Project” operation retrieves only specified data elements from
the files involved, not their entire record structure. Only those fields
explicitly declared in PROJECT statements in the VIEW structure are
retrieved. Therefore, the relational “Project” operation is automatically
implemented by the VIEW structure. The contents of fields that are not
contained in the PROJECT are undefined.

The FILTER attribute restricts the VIEW to a sub-set of records. The
FILTER expression may include any of the fields explicitly declared in the
VIEW structure and restrict the VIEW based upon the contents of any of the
fields. This makes the FILTER operate across all levels of the “Join”
operation.



CHAPTER 11 FILE VIEWS 11-3

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .

Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .

Detail FILE,DRIVER(‘Clarion’),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

. .

Product FILE,DRIVER(‘Clarion’),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20)
Price DECIMAL(9,2)

. .

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END



11-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FILTER (set view filter e xpression)

FILTER(expression)

FILTER Specifies a filter expression used to evaluate records to
include in the VIEW.

expression A string constant containing a logical expression.

The FILTER  attribute specifies a filter expression used to evaluate records
to include in the VIEW.

The expression may reference any field in the VIEW, at all levels of JOIN
structures. The entire expression must evaluate as true for a record to be
included in the VIEW. The expression may contain any valid Clarion
language logical expression. You must BIND all variables used in the
expression.

Example:

 !Get only orders for customer 9999 since order number 100
ViewOrder VIEW(Customer),FILTER(‘Cus:AcctNumber = 9999 AND Hea:OrderNumber > 100’)

PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

CODE
OPEN((Customer,22h)
OPEN((Header,22h)
OPEN((Product,22h)
OPEN(Detail,22h)
BIND(‘Cus:AcctNumber’,Cus:AcctNumber)
BIND(‘Hea:AcctNumber’,Hea:AcctNumber)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP
NEXT(ViewOrder)
IF ERRORCODE() THEN BREAK.
!Process the valid record

END
UNBIND(‘Cus:AcctNumber’,Cus:AcctNumber)
UNBIND(‘Hea:AcctNumber’,Hea:AcctNumber)
CLOSE(Header)
CLOSE(Customer)
CLOSE(Product)
CLOSE(Detail)



CHAPTER 11 FILE VIEWS 11-5

PROJECT (set view fields)

PROJECT( fields )

PROJECT Declares the fields retrieved for the VIEW.

fields A comma delimited list of fields (including prefixes)
from the primary file of the VIEW, or the secondary
related file named in the JOIN structure, containing the
PROJECT declaration.

The PROJECT statement in a VIEW structure declares fields retrieved for a
relational “Project” operation. A relational “Project” operation retrieves only
the specified fields from the file, not the entire record structure. Only those
fields explicitly declared in PROJECT declarations in the VIEW structure
are retrieved.

A PROJECT statement may be declared in the VIEW, or within one of its
component JOIN structures. If there is no PROJECT declaration in the
VIEW or JOIN structure, all fields in the relevant file are retrieved.

Example:

Detail FILE,DRIVER(‘Clarion’),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT
Description STRING(20) !Line item comment

. .

Product FILE,DRIVER(‘Clarion’),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20) !Product description
Price DECIMAL(9,2)

. .

ViewOrder VIEW(Detail)
PROJECT(Det:OrderNumber,Det:Item,Det:Description)
JOIN(Pro:ItemKey,Det:Item)
PROJECT(Pro:Description,Pro:Price)

END
END



11-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

JOIN (declare a “join” operation)

JOIN(secondary key,linking fields)
[PROJECT( )]
[JOIN( )

[PROJECT( )]
 END]

END

JOIN Declares a secondary file for a relational “Join” opera-
tion.

secondary key The label of a KEY which defines the secondary FILE
and its access key.

linking fields A comma-delimited list of fields in the related file that
contain the values the secondary key uses to access
records.

PROJECT Specifies the fields from the secondary related file
specified by a JOIN structure that the VIEW will re-
trieve. If omitted, all fields from the file are retrieved.

The JOIN  structure declares a secondary file for a relational “Join”
operation. A relational “Join” retrieves data from multiple files, based upon
the relationships defined between the files. There may be multiple JOIN
structures within a VIEW, and they may be nested within each other to
perform multiple-level “Join” operations.

The secondary key defines the access key for the secondary file. The linking
fields name the fields in the file to which the secondary file is related, that
contain the values used to retrieve the related records. For a JOIN directly
within the VIEW, these fields come from the VIEW’s primary file. For a
JOIN nested within another JOIN, these fields come from the secondary file
of the JOIN in which it is nested. Non-linking fields in the secondary key are
allowed as long as they appear in the list of the key’s component fields after
all the linking fields.

When data is retrieved, if there are no matching secondary file records for a
primary file record, null values are supplied in the fields specified in the
PROJECT. This type of relational “Join” operation is known as an “outer
join.”  The FILTER attribute of the VIEW can be used to accomplish all
other forms of the relational “Join” operation.



CHAPTER 11 FILE VIEWS 11-7

Example:

Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:AcctNumber,Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .
Detail FILE,DRIVER(‘Clarion’),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:AcctNumber,Dtl:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Item LONG
Quantity SHORT

. .
Product FILE,DRIVER(‘Clarion’),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20)
Price DECIMAL(9,2)

. .
ViewOrder VIEW(Header) !Declare VIEW structure

PROJECT(Hea:AcctNumber,Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:AcctNumber,Hea:OrderNumber) !Join Detail file
PROJECT(Dtl:ItemDtl:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END



11-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

View CommandsView CommandsView CommandsView CommandsView Commands

CLOSE (close a VIEW)

CLOSE(view)

CLOSE Closes a VIEW.

view The label of a VIEW.

The CLOSE statement closes a VIEW. A VIEW declared within a procedure
is implicitly closed upon RETURN from the procedure, if it has not already
been explicitly CLOSEd.

If the CLOSE(view) statement is not immediately preceded by a REGET
statement, the primary and secondary related files in the VIEW are set to no
current record.  This means the contents of their record buffers are undefined
and a SET or RESET statement must be issued before performing sequential
processing on the file.

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
ViewCust VIEW(Customer)  !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
END

CODE
OPEN(Customer,22h)
SET(Cus:AcctKey)
OPEN(ViewCust) !Open the customer view
 !executable statements
CLOSE(ViewCust) !and close it again



CHAPTER 11 FILE VIEWS 11-9

OPEN (open a VIEW)

OPEN(view)

OPEN Opens a VIEW structure for processing.

view The label of a VIEW declaration.

The OPEN statement opens a VIEW structure for processing. A VIEW must
be explicitly opened before it may be accessed. The files used in the VIEW
must already be open.

Immediately before the OPEN(view) statement, you must issue a SET
statement on the VIEW structure’s primary file to setup sequential
processing for the VIEW. You cannot issue a SET statement to the primary
file while the VIEW is OPEN; you must CLOSE(view) then issue the SET
before a subsequent OPEN(view).

Example:

Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:OrderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)

. .
Detail FILE,DRIVER(‘Clarion’),PRE(Dtl) !Declare detail file layout
OrderKey KEY(Dtl:OrderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT

. .
Product FILE,DRIVER(‘Clarion’),PRE(Pro) !Declare product file layout
ItemKey KEY(Pro:Item)
Record RECORD
Item LONG
Description STRING(20)
Price DECIMAL(9,2)

. .
ViewOrder VIEW(Header) !Declare VIEW structure

PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

. . .
CODE
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Open



11-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DELETE (delete a view primary file record)

DELETE(view)

DELETE Removes a primary file record from a VIEW.

view The label of a VIEW declaration.

The DELETE  statement removes the last VIEW primary file record that
was accessed by a NEXTor PREVIOUS statement. The key entries for that
record are also removed from the KEYs. DELETE does not remove records
from any secondary JOIN files in the VIEW.

DELETE only deletes the primary file record in the VIEW because the
VIEW structure performs both relational Project and Join operations at the
same time. Therefore, it is possible to create a VIEW structure that, if all its
component files were updated, would violate the Referential Integrity rules
set for the database. The common solution to this problem in SQL-based
database products is to write only to the Primary file. Therefore, Clarion has
adopted this same industry standard solution.

If no record was previously accessed, or the record is held by another
workstation, DELETE posts the “Record Not Available” error and no record
is deleted. The specific disk action DELETE performs in the file is file
driver dependent.

Errors Posted: 05  Access Denied
33  Record Not Available

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
CustView VIEW(Customer) !Declare VIEW structure

PROJECT(Cus:AcctNumber,Cus:Name)
END

CODE
OPEN(Customer)
Cus:AcctNumber = 12345 !Initialize key field
SET(Cus:AcctKey,Cus:AcctKey)
OPEN(CustView)
NEXT(CustView) !Get that record
IF ERRORCODE() THEN STOP(ERROR()).

DELETE(CustView) !Delete the customer record

See Also: HOLD, NEXT, PREVIOUS, PUT



CHAPTER 11 FILE VIEWS 11-11

HOLD (exclusive view record access)

HOLD(view [,seconds])

HOLD Arms record locking.

view The label of a VIEW opened for shared access.

seconds A numeric constant or variable which specifies the
maximum wait time in seconds.

The HOLD  statement arms record locking for the primary file in the VIEW
in a multi-user environment. The following NEXT or PREVIOUS statement
flags the primary file record as “held” when it successfully gets the record.
Generally, this excludes other users from writing to the record, although it
does not prevent them from reading the record. The specific action HOLD
takes is file driver dependent.

  HOLD(view) Arms the process so that the following NEXT or PRE-
VIOUS attempts to hold the record until it is successful.
If it is held by another workstation, GET, NEXT, or
PREVIOUS will wait until the other workstation re-
leases it.

  HOLD(view,seconds)
Arms the process so that the following NEXT or PRE-
VIOUS statement posts the “Record Is Already Held”
error after unsuccessfully trying to hold the record for
seconds.

A user may only HOLD one record at a time in the VIEW. If a second record
is to be accessed in the same file, the previously held record must be
released (see RELEASE).

As with LOCK, a common problem to avoid when holding records is
“deadly embrace.”  This condition occurs when two workstations attempt to
hold the same set of records in two different orders and both are using the
HOLD(view) form of HOLD. One workstation has already held a record that
the other is trying to HOLD, and vice versa. This problem may be avoided
by using the HOLD(view,seconds) form of HOLD, and trapping for the
“Record Is Already Held” error.



11-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP !Process records Loop
LOOP !Loop to avoid “deadly embrace”
HOLD(ViewOrder,1) !Arm Hold on view, try for 1 second
NEXT(ViewOrder) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
CYCLE ! try again

ELSE
BREAK !Break if not held

END
END
IF ERRORCODE() THEN BREAK. !Check for end of file
!Process the records

RELEASE(ViewOrder) !release held records
END
CLOSE(ViewOrder)

See Also: RELEASE, NEXT, PREVIOUS



CHAPTER 11 FILE VIEWS 11-13

NEXT (read next view record in sequence)

NEXT(view)

NEXT Reads the next record(s) in sequence for a VIEW.

view The label of a VIEW declaration.

NEXT  reads the next record(s) in sequence from a VIEW and places the
appropriate fields in the VIEW structure component files’ data buffer(s). If
the VIEW contains JOIN structures, NEXT retrieves the appropriate next set
of related records.

The SET statement issued on the VIEW’s primary file before the
OPEN(view) statement determines the sequence in which records are read.
The first NEXT(view) reads the record at the position specified by the SET
statement. Subsequent NEXT statements read subsequent records in that
sequence. The sequence is not affected by PUT or DELETE statements.

Executing NEXT without a preceding SET, or attempting to read past the
end of the primary file in the VIEW posts the “Record Not Available” error.

Errors Posted: 33  Record Not Available
37  File Not Open
43  Record Is Already Held

Example:

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
 LOOP !Read all records through end of primary file
NEXT(ViewOrder) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break on end of file

DO PostTrans ! call transaction posting routine
END !End loop

See Also: PREVIOUS, HOLD



11-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

NOMEMO (read view record without reading memos)

NOMEMO(view)

NOMEMO Arms “memoless” record retrieval.

view The label of a VIEW.

The NOMEMO  statement arms “memoless” record retrieval for the next
NEXT or PREVIOUS statement encountered. The following NEXT or
PREVIOUS gets the record but does not get any associated MEMO field(s)
for the record. Generally, this speeds up access to the record when the
contents of the MEMO field(s) are not needed by the procedure.

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Notes MEMO(1024)
Record RECORD
AcctNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
CustView VIEW(Customer) !Declare VIEW structure

END
CODE
OPEN(Customer)
Cus:AcctNumber = 12345 !Initialize key field
SET(Cus:AcctKey,Cus:AcctKey)
OPEN(CustView)
LOOP
NOMEMO(CustView)
NEXT(CustView) !Get that record
IF ERRORCODE() THEN BREAK.

!Process the record
END
CLOSE(CustView)

See Also: GET, NEXT, PREVIOUS



CHAPTER 11 FILE VIEWS 11-15

PREVIOUS (read previous view record in sequence)

PREVIOUS(view)

PREVIOUS Reads the previous record in sequence from a VIEW.

view The label of a VIEW declaration.

PREVIOUS reads the previous record(s) in sequence from a VIEW and
places the appropriate fields in the VIEW structure component files’ data
buffer(s). If the VIEW contains JOIN structures, PREVIOUS retrieves the
appropriate previous set of related records.

The SET statement issued on the VIEW’s primary file before the
OPEN(view) statement determines the sequence in which records are read.
The first PREVIOUS(view) reads the record at the position specified by the
SET statement. Subsequent PREVIOUS statements read subsequent records
in that sequence. The sequence is not affected by PUT or DELETE
statements.

Executing PREVIOUS without a preceding SET, or attempting to read past
the beginning of the primary file in the VIEW posts the “Record Not
Available” error.

Errors Posted: 33  Record Not Available
37  VIEW Not Open
43  Record Is Already Held

Example:

ViewOrder VIEW(Header)
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
CODE
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
 LOOP !Read all records through beginning of primary file
PREViOUS(ViewOrder) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break on end of file

DO PostTrans ! call transaction posting routine
END !End loop

See Also: NEXT, HOLD



11-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PUT (write VIEW primary file record back)

PUT(view)

PUT Writes the VIEW’s primary file record back to disk.

view The label of a VIEW declaration.

The PUT statement writes the current values in the VIEW structure’s
primary file’s data buffer to a previously accessed primary file record in the
view. If the record was held, it is automatically released. PUT writes to the
last record accessed with the NEXT or PREVIOUS statements. If the values
in the key variables were changed, then the KEYs are updated.

PUT only writes to the primary file in the VIEW because the VIEW
structure performs both relational Project and Join operations at the same
time. Therefore, it is possible to create a VIEW structure that, if all its
component files were updated, would violate the Referential Integrity rules
set for the database. The common solution to this problem in SQL-based
database products is to write only to the Primary file. Therefore, Clarion has
adopted this same industry standard solution.

If a record was not accessed with NEXT or PREVIOUS statements, or was
deleted, then the “Record Not Available” error is posted. PUT also posts the
“Creates Duplicate Key” error. If any error is posted, then the record is not
written to disk.

Errors Posted: 05  Access Denied
33  Record Not Available
40  Creates Duplicate Key

Example:

ViewOrder VIEW(Header)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)

END
END

CODE
OPEN((Header,22h)
OPEN(Detail,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
LOOP !Read all records in reverse order
PREVIOUS(ViewOrder) ! read a record sequentially
IF ERRORCODE() THEN BREAK. ! break at beginning of file
DO LastInFirstOut !Call last in first out routine
PUT(ViewOrder) !Write transaction record back to the file
IF ERRORCODE() THEN STOP(ERROR()).

END !End loop

See Also: NEXT, PREVIOUS



CHAPTER 11 FILE VIEWS 11-17

REGET (reget view record)

REGET(view,string)

REGET Re-gets a specific record in the VIEW.

view The label of a VIEW declaration.

string A string constant or variable containing the string
returned by the POSITION function.

The REGET  reads the VIEW record identified by the string returned by the
POSITION(view) function. The value contained in the string returned by the
POSITION function, and its length, are file driver dependent. If the VIEW
contains JOIN structures, REGET retrieves the appropriate set of related
records.

REGET re-loads all the VIEW component files’ record buffers with
complete records.  It does not perform the relational “Project” operation.
REGET(view) is explicitly designed to reset the record buffers to the
appropriate records immediately prior to a CLOSE(view) statement.
However, the processing sequence of the files must be reset with a SET or
RESET statement.

Errors Posted: 33 Record Not Available



11-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)
SavPosition STRING(260)

END
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)

  OPEN(ViewOrder)
LOOP !Read all records in file
NEXT(ViewOrder) ! read a record sequentially
IF ERRORCODE()
DO DisplayQue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue
RecordQue :=: Pro:Record !Move record into queue
SavPosition = POSITION(ViewOrder) !Save record position
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

END
ACCEPT
CASE ACCEPTED()
OF ?ListBox
GET(RecordQue,CHOICE())
REGET(ViewOrder,Que:SavPosition) !Reset the record buffers
CLOSE(ViewOrder) ! and get the record again
FREE(RecordQue)
UpdateProc !Call Update Procedure
BREAK

END
END

See Also: POSITION, RESET



CHAPTER 11 FILE VIEWS 11-19

RELEASE (release a held view record)

RELEASE(view)

RELEASE Releases the held record(s).

view The label of a VIEW declaration.

The RELEASE statement releases a previously held record in a VIEW. It
will not release a record held by another user in a multi-user environment. If
the record is not held, or is held by another user, RELEASE is ignored.

Example:

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder)
 LOOP !Process records Loop
LOOP !Loop to avoid “deadly embrace”
HOLD(ViewOrder,1) !Arm Hold on view, try for 1 second
NEXT(ViewOrder) !Get and hold the record
IF ERRORCODE() = 43 !If someone else has it
CYCLE ! and try again

ELSE
BREAK !Break if not held

END
END
IF ERRORCODE() THEN BREAK. !Check for end of file
!Process the records

RELEASE(ViewOrder) !release held records
END

See Also: HOLD



11-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RESET (reset view record sequence position)

RESET(view,string)

RESET Resets the sequential processing pointer to a specific
record in the VIEW.

view The label of a VIEW.

string The string returned by the POSITION function.

RESET restores the record pointer to the record identified by the string that
was returned by the POSITION function. Once RESET has restored the
record pointer, either NEXT or PREVIOUS will read that record.

The value contained in the string (returned by the POSITION function) and
its length, are file driver dependent. RESET is used in conjunction with
POSITION to temporarily suspend and resume sequential VIEW processing.



CHAPTER 11 FILE VIEWS 11-21

Example:

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)

END
SavPosition STRING(260)
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(ViewOrder) ! read a record sequentially
IF ERRORCODE()
DO DisplayQue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue
RecordQue :=: Pro:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 !20 records in queue?
 DO DisplayQue !Display the queue

 . . !End loop

DisplayQue ROUTINE
SavPosition = POSITION(ViewOrder) !Save record position
DO ProcessQue !Display the queue
FREE(RecordQue) ! and free it
RESET(ViewOrder,SavPosition) !Reset the record pointer
NEXT(ViewOrder) ! and get the record again

See Also: POSITION, NEXT, PREVIOUS



11-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SKIP (bypass view records in sequence)

SKIP(view,count)

SKIP Bypasses records during sequential VIEW processing.

view The label of a VIEW declaration.

count A numeric constant or variable. The count specifies the
number of records to bypass. If the value is positive,
records are skipped in forward (NEXT) sequence; if
count is negative, records are skipped in reverse (PRE-
VIOUS) sequence.

The SKIP statement is used to bypass records during sequential VIEW
processing. It bypasses records (in the sequence specified by the SET
statement) by moving the file pointer count records. SKIP is more efficient
than NEXT or PREVIOUS for skipping past records because it does not
move records into the data buffer(s).

If SKIP reads past the end or beginning of VIEW, the EOF and BOF
functions return true (if supported by the file system in use). If no SET has
been issued, SKIP is ignored.

Example:

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)

 JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

SavOrderNo LONG
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Process all records
NEXT(ViewOrder) ! Get a record
IF ERRORCODE() THEN BREAK.

IF Hea:OrderNumber <> SavOrderNo ! Check for first item in order
IF Hea:OrderStatus = ‘Cancel’ ! Is it a canceled order?
SKIP(Items,Vew:ItemCount-1) ! SKIP rest of the items
CYCLE ! and process next order

. . ! end ifs
DO ItemProcess ! process the item
SavInvNo = Hea:OrderNUmber ! save the invoice number

END !End loop



CHAPTER 11 FILE VIEWS 11-23

WATCH (automatic view concurrency check)

WATCH(view)

WATCH Arms automatic optimistic concurrency checking.

view The label of a VIEW declaration.

The WATCH  statement arms automatic optimistic concurrency checking by
the file driver for a following NEXT or PREVIOUS statement in a multi-
user environment. Generally, the file driver retains a copy of the retrieved
fields from each file on the NEXT or PREVIOUS when it successfully gets
the view. When the fields are PUT to the view, the fields on disk are
compared to the original data retrieved. An error is returned by the PUT
statement if the data has been changed by another user. The specific action
WATCH performs is file driver dependent.

Example:

Customer FILE,DRIVER(‘Clarion’),PRE(Cus) !Declare customer file layout
AcctKey KEY(Cus:AcctNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
Name STRING(20)
Addr STRING(20)
City STRING(20)
State STRING(20)
Zip STRING(20)

. .
CustView VIEW(Customer) !Declare VIEW structure

END
CODE
OPEN(Customer,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Process all records
WATCH(ViewOrder) !Arm concurrency check
NEXT(ViewOrder) ! Get a record
IF ERRORCODE() THEN BREAK.

DO ItemProcess ! process the item
PUT(ViewOrder) ! and put it back
IF ERRORCODE() THEN STOP(ERROR()). !Stop on any error, including

! record changed by another user
END



11-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

View FView FView FView FView Functionsunctionsunctionsunctionsunctions

POSITION (return view record sequence position)

POSITION(sequence)

POSITION Identifies a record’s unique position in the VIEW.

sequence The label of a VIEW declaration.

POSITION  returns a STRING which identifies a record’s unique position
within the sequence. POSITION returns the position of the last record
accessed in the VIEW. The POSITION function is used with RESET to
temporarily suspend and resume sequential processing.

The return string for POSITION(view) contains the sequence set by the SET
statement on the primary file issued immediately before the OPEN(view)
statement. It also contains the file system’s POSITION return value for the
primary file key and all secondary file linking keys. This allows
POSITION(view) to accurately define a position for all related records in the
VIEW.

As a general rule, for file systems that have record numbers, the size of the
STRING returned by POSITION(file) is 4 bytes. The return string from
POSITION(key) is 4 bytes plus the sum of the sizes of the fields in the key.
For file systems that do not have record numbers, the size of the STRING
returned by POSITION(file) is usually the sum of the sizes of the fields in
the Primary Key (the first KEY on the FILE that does not have the DUP or
OPT attribute). The return string from POSITION(key) is the sum of the
sizes of the fields in the Primary Key plus the sum of the sizes of the fields
in the key.

Return Data Type: STRING



CHAPTER 11 FILE VIEWS 11-25

Example:

ViewOrder VIEW(Customer) !Declare VIEW structure
PROJECT(Cus:AcctNumber,Cus:Name)
JOIN(Hea:AcctKey,Cus:AcctNumber) !Join Header file
PROJECT(Hea:OrderNumber)
JOIN(Dtl:OrderKey,Hea:OrderNumber) !Join Detail file
PROJECT(Det:Item,Det:Quantity)
JOIN(Pro:ItemKey,Dtl:Item) !Join Product file
PROJECT(Pro:Description,Pro:Price)

END
END

END
END

RecordQue QUEUE,PRE(Que)
AcctNumber LIKE(Cus:AcctNumber)
Name LIKE(Cus:Name)
OrderNumber LIKE(Hea:OrderNumber)
Item LIKE(Det:Item)
Quantity LIKE(Det:Quantity)
Description LIKE(Pro:Description)
Price LIKE(Pro:Price)

END
SavPosition STRING(260)
CODE
OPEN(Customer,22h)
OPEN((Header,22h)
OPEN(Detail,22h)
OPEN(Product,22h)
SET(Cus:AcctKey)
OPEN(ViewOrder) !Top of file in keyed sequence
LOOP !Read all records in file
NEXT(ViewOrder) ! read a record sequentially
IF ERRORCODE()
DO DisplayQue !Display the queue
BREAK

END
RecordQue :=: Cus:Record !Move record into queue
RecordQue :=: Hea:Record !Move record into queue
RecordQue :=: Dtl:Record !Move record into queue
RecordQue :=: Pro:Record !Move record into queue
ADD(RecordQue) ! and add it
IF ERRORCODE() THEN STOP(ERROR()).

IF RECORDS(RecordQue) = 20 !20 records in queue?
DO DisplayQue !Display the queue

 . .

DisplayQue ROUTINE
SavPosition = POSITION(ViewOrder) !Save record position
DO ProcessQue !Display the queue
FREE(RecordQue) ! and free it
RESET(ViewOrder,SavPosition) !Reset the record pointer
NEXT(ViewOrder) ! and get the record again

See Also: RESET



CHAPTER  12 MEMORY QUEUES 12-1

Queue StructurQueue StructurQueue StructurQueue StructurQueue Structur eeeee

QUEUE (declare a memory QUEUE structure)

label QUEUE( [ group ] ) [,PRE] [,STATIC] [,THREAD ] [,TYPE] [,BINDABLE ] [,EXTERNAL ]  [,DLL ]
fieldlabel   variable [,NAME( ) ]

END

QUEUE Declares a memory queue structure.

label The name of the QUEUE.

group The label of a previously declared GROUP, QUEUE, or
RECORD structure from which it will inherit its struc-
ture. This may be a GROUP or QUEUE with the TYPE
attribute.

PRE Declare a fieldlabel prefix for the structure.

STATIC Declares a QUEUE, local to a PROCEDURE or FUNC-
TION, whose buffer is allocated in static memory.

THREAD Specify memory for the queue is allocated once for each
execution thread. Must be used with the STATIC at-
tribute on Procedure Local data.

TYPE Specify the QUEUE is a type definition for QUEUEs
passed as parameters.

BINDABLE Specify all variables in the queue may be used in dy-
namic expressions.

EXTERNAL Specify the QUEUE is defined, and its memory is
allocated, in an external library.

DLL Specify the QUEUE is defined in a .DLL. This is
required in addition to the EXTERNAL attribute.

fieldlabel The name of the variables in the queue.

variable Data declaration. The sum of the memory required for
all declared variables in the QUEUE must not be greater
than 65,000 bytes in 16-bit applications and 4MB in 32-
bit applications.

QUEUE declares a memory QUEUE structure.  The label of the QUEUE
structure is used in queue processing statements and functions. When used
in assignment statements, expressions, or parameter lists, a QUEUE is
treated like a GROUP data type.

The structure of a QUEUE declared with the group parameter begins with
the same structure as the named group; the QUEUE inherits the fields of the
named group. The QUEUE may also contain its own declarations that
follow the inherited fields.



12-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

A QUEUE may be thought of as a “memory file” which is internally
implemented as a dynamic array of the QUEUE entries.  When a QUEUE is
declared, a data buffer is allocated (just as with a file). Each entry in the
QUEUE occupies exactly the same amount of memory as the data buffer
with no per-entry overhead (also no data compression or clipping).

The data buffer for a Procedure local QUEUE (declared in the data section
of a PROCEDURE or FUNCTION) is allocated on the stack (unless it has
the STATIC attribute or is too large). The memory allocated to the entries in
a procedure-local QUEUE without the STATIC attribute is allocated only
until you FREE the QUEUE, or you RETURN from the PROCEDURE or
FUNCTION—the QUEUE is automatically FREEd upon RETURN.

For a Global data, Module data, or Local data QUEUE with the STATIC
attribute, the data buffer is allocated static memory and the data in the buffer
is persistent between procedure calls. The memory allocated to the entries in
the QUEUE remains allocated until you FREE the QUEUE.

The variables in the QUEUE’s data buffer are not automatically initialized
to any value, they must be explicitly assigned values. Do not assume that
they contain blanks or zero before your program’s first assignment to them.

As entries are added to the QUEUE, memory for the entry is dynamically
allocated and the data is copied from the buffer to the entry. As entries are
deleted from the QUEUE, the memory used by the deleted entry is freed.
The maximum number of entries in a QUEUE is 1,000,000. The memory
used by each entry in the QUEUE is equal to the total of the field sizes.

A QUEUE with the BINDABLE attribute makes all the variables within the
QUEUE available for use in a dynamic expression, without requiring a
separate BIND statement for each (allowing BIND(queue) to enable all the
fields in the queue). The contents of each variable’s NAME attribute is the
logical name used in the dynamic expression. If no NAME attribute is
present, the label of the variable (including prefix) is used. Space is
allocated in the .EXE for the names of all of the variables in the structure.
This creates a larger program that uses more memory than it normally
would. Therefore, the BINDABLE attribute should only be used when a
large proportion of the constituent fields are going to be used.

A QUEUE with the TYPE attribute is not allocated any memory; it is only a
type definition for QUEUEs that are passed as parameters to PROCEDUREs
or FUNCTIONs. This allows the receiving procedure to directly address
component fields in the passed QUEUE. The parameter declaration on the
PROCEDURE or FUNCTION statement instantiates a local prefix for the
passed QUEUE as it names the passed QUEUE for the procedure. For
example, PROCEDURE(LOC:PassedGroup) declares the procedure uses the
LOC: prefix (along with the individual field names used in the type
declaration) to directly address component fields of the QUEUE actually
passed as the parameter.



CHAPTER 12 MEMORY QUEUES 12-3

Example:

NameQue QUEUE,PRE(Nam) !Declare a queue
Name STRING(20)
Zip DECIMAL(5,0),NAME(‘SortField’)

END !End queue structure

NameQue2 QUEUE(NameQue),PRE(Nam2) !Queue that inherits Name and Zip fields
Phone STRING(10) ! and adds a Phone field

END !End queue structure

See Also: PRE, STATIC, NAME, FREE, THREAD



12-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PRE (set label prefix)

PRE( [ prefix ] )

PRE Provides a label prefix for variables declared in the
QUEUE.

prefix Acceptable characters are alphabet letters, numerals 0
through 9, and the underscore character. A prefix must
start with an alphabet character and must not be a
reserved word.

The PRE attribute provides a label prefix for variables declared in the
QUEUE. It is used to distinguish between identical variable names that
occur in different structures. When referenced in executable statements,
assignments, and parameter lists, a prefix is attached to a label by a colon
(Pre:Label).

Another method to distinguish between identical variable names that occur
in different structures does not use the PRE attribute, but instead uses the
Field Qualification syntax. When referenced in executable statements,
assignments, and parameter lists, the label of the structure containing the
field is attached to the field label by a colon (QueueName:Label).

Example:

SaveQueue QUEUE,PRE(Sav)
Field1 LONG !Referenced as Sav:Field1 or SaveQueue:Field1
Field2 STRING !Referenced as Sav:Field2 or SaveQueue:Field2

END

See Also: Reserved Words, Field Qualification

STATIC (set local queue static)

STATIC

The STATIC  attribute allows the data buffer of a QUEUE declared within a
PROCEDURE or FUNCTION to be allocated static memory instead of
stack memory. This makes any value contained in the data buffer
“persistent” from one instance of the procedure to the next.

Example:

SomeProc PROCEDURE
SaveQueue QUEUE,STATIC !Static QUEUE data buffer
Field1 LONG !Value retained between
Field2 STRING ! procedure calls

END

See Also: Data Declarations and Memory Allocation



CHAPTER 12 MEMORY QUEUES 12-5

THREAD (set thread-specific static queue)

THREAD

The THREAD  attribute declares a static QUEUE which is allocated
memory separately for each execution thread in the program. This makes the
values contained in the QUEUE dependent upon which thread is executing.
Whenever a new execution thread is begun, a new instance of the QUEUE,
specific to that thread, is created.

The THREAD attribute implies a static QUEUE, so the STATIC attribute is
unnecessary on a Procedure Local QUEUE. This attribute creates a lot of
runtime “overhead,” particularly on Global or Module data. Therefore, it
should be used only when absolutely necessary.

Example:

SomeProc PROCEDURE
SaveQueue QUEUE,THREAD !Static QUEUE data buffer
Field1 LONG !Thread-specific QUEUE
Field2 STRING

END

See Also: Data Declarations and Memory Allocation

NAME (set queue variable e xternal name)

NAME( [name] )

NAME Specifies an “external” name for queue processing.

name A string constant containing the “external” name
of the variable.

The NAME  attribute on a variable declared in a QUEUE structure specifies
an “external” name for queue processing. The name is an alternate method
of addressing the variables in the QUEUE used by the SORT, GET, PUT,
and ADD statements.

Example:

SortQue QUEUE,PRE(Que)
Field1 STRING(10),NAME(‘FirstField’) !QUEUE SORT NAME
Field2 LONG,NAME(‘SecondField’) !QUEUE SORT NAME

END

See Also: QUEUE, SORT, GET, PUT, ADD



12-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TYPE (QUEUE type definition)

TYPE

The TYPE attribute creates a QUEUE that is not allocated any memory; it is
only a type definition for QUEUEs that are passed as parameters to
PROCEDUREs or FUNCTIONs. This allows the receiving procedure to
directly address component fields in the passed QUEUE. The parameter
declaration on the PROCEDURE or FUNCTION statement instantiates a
local prefix for the passed QUEUE as it names the passed QUEUE for ther
procedure. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used
in the type definition) to directly address component fields of the QUEUE
passed as the parameter.

Example:

PassQue QUEUE,TYPE !Type-definition for passed QUEUE parameters
F1 STRING(20) ! first field
F2 STRING(1) ! middle field
F3 STRING(20) ! last field

END

MAP
MyProc1(PassQue) !Passes a QUEUE defined the same as PassGroup

END

NameQue QUEUE,PRE(Nme) !Name queue
First STRING(20) ! first name
Middle STRING(1) ! middle initial
Last STRING(20) ! last name

END !End queue declaration

CODE
MyProc1(NameQue) !Call proc passing NameQue as parameter

MyProc1 PROCEDURE(LOC:PassedGroup) !Proc to receive QUEUE parameter
LocalVar STRING(20)
CODE
LocalVar = LOC:F1 !Assign value in Nme:First to LocalVar

!  from passed parameter



CHAPTER 12 MEMORY QUEUES 12-7

BINDABLE (set runtime expression string QUEUE variables)

BINDABLE

The BINDABLE  attribute on a QUEUE statement declares a structure
whose constituent variables are all available for use in a dynamic expression.
The contents of each variable’s NAME attribute is the logical name used in
the dynamic expression. If no NAME attribute is present, the label of the
variable (including prefix) is used. Space is allocated in the .EXE for the
names of all of the variables in the structure. This creates a larger program
that uses more memory than it normally would. Therefore, the BINDABLE
attribute should only be used when a large proportion of the constituent
fields are going to be used.

The BIND(group) form of the BIND statement must still be used in the
executable code before the individual fields in the QUEUE structure may be
used.

Example:

Names QUEUE,BINDABLE !Bindable Record structure
Name STRING(20)
FileName STRING(8),NAME(‘FName’) !Dynamic name: FName
Dot STRING(1) !Dynamic name: Dot
Extension STRING(3),NAME(‘EXT’) !Dynamic name: EXT

END
CODE
OPEN(Names)
BIND(Names)

See Also: BIND, UNBIND, EVALUATE



12-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EXTERNAL (set queue defined externally)

EXTERNAL

The EXTERNAL  attribute specifies that the QUEUE on which it is placed
is defined in an external library. Therefore, a QUEUE with the EXTERNAL
attribute is declared and may be referenced in the Clarion code, but is not
allocated memory. The memory for the QUEUE is allocated by the external
library. This allows the Clarion program access to QUEUEs declared as
public in external libraries.

When using EXTERNAL to declare a QUEUE shared by multiple libraries
(.LIBs, or .DLLs and .EXE), only one library should define the QUEUE
without the EXTERNAL attribute. All the other libraries (and the .EXE)
should declare the QUEUE with the EXTERNAL attribute. This ensures that
there is only one memory allocation for the QUEUE and all the libraries and
the .EXE will reference the same memory when referring to that QUEUE.

The QUEUE declarations in all libraries (or .EXEs) that reference common
QUEUEs must be EXACTLY the same (with the appropriate addition of the
EXTERNAL attribute). If they are not exactly the same, data corruption
could occur. Any incompatibilities between libraries cannot be detected by
the compiler or linker, therefore it is the programmer’s responsibility to
ensure that consistency is maintained.

One suggested way of coding large systems using many .DLLs and/or
.EXEs that share the same variables would have one .DLL containing the
actual data definition that only contains FILE and global variable and
QUEUE definitions that are shared among all (or most) of the .DLLs and
.EXEs. This makes one central library in which the actual file definitions are
maintained. This one central .DLL is linked into all .EXEs that use those
common files. All other .DLLs and/or .EXEs in the system would declare
the common FILEs, QUEUEs, and variables with the EXTERNAL attribute.

Example:

Names QUEUE,EXTERNAL !A queue declared in an external library
Name STRING(20)
FileName STRING(8),NAME(‘FName’) !Dynamic name: FName
Dot STRING(1) !Dynamic name: Dot
Extension STRING(3),NAME(‘EXT’) !Dynamic name: EXT

END



CHAPTER 12 MEMORY QUEUES 12-9

DLL (set queue defined externally in .DLL)

DLL( [ flag ] )

DLL Declares a QUEUE defined externally in a .DLL.

flag A numeric constant, equate, or Project system define
which specifies the attribute as active or not. If the flag
is zero, the attribute is not active, just as if it were not
present. If the flag is any value other than zero, the
attribute is active.

The DLL  attribute specifies that the QUEUE on which it is placed is defined
in a .DLL. A QUEUE with DLL attribute must also have the EXTERNAL
attribute. The DLL attribute is required for 32-bit applications because
.DLLs are relocatable in a 32-bit flat address space, which requires one extra
dereference by the compiler to address the QUEUE.

The QUEUE declarations in all libraries (or .EXEs) that reference common
QUEUEs must be EXACTLY the same (with the appropriate addition of the
EXTERNAL and DLL attributes). If they are not exactly the same, data
corruption could occur. Any incompatibilities between libraries cannot be
detected by the compiler or linker, therefore it is the programmer’s
responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL to declare a QUEUE shared by .DLLs
and .EXE, only one .DLL should define the QUEUE without the
EXTERNAL and DLL attributes. All the other .DLLs (and the .EXE) should
declare the QUEUE with the EXTERNAL and DLL attributes. This ensures
that there is only one memory allocation for the QUEUE and all the .DLLs
and the .EXE will reference the same memory when referring to that
QUEUE.

One suggested way of coding large systems using many .DLLs and/or
.EXEs that share the same QUEUEs would have one .DLL containing the
actual data definition that only contains FILE and global QUEUE and
variable definitions that are shared among all (or most) of the .DLLs and
.EXEs. This makes one central library in which the actual file definitions are
maintained. This one central .DLL is linked into all .EXEs that use those
common files. All other .DLLs and/or .EXEs in the system would declare
the common variables with the EXTERNAL and DLL attributes.

Example:

DLLQueue QUEUE,PRE(Que),EXTERNAL,DLL !A queue declared in an external .DLL
TotalCount LONG

END

See Also: EXTERNAL



12-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Queue PQueue PQueue PQueue PQueue Prrrrrocedurocedurocedurocedurocedureseseseses

ADD (add an entry)

| pointer |
ADD(queue [, | [+]key,...,[-]key] | ] )

| name |

ADD Writes a new entry to the QUEUE.

queue The label of a QUEUE structure, or the label of a passed
QUEUE parameter.

pointer A numeric constant, variable, or numeric expression.
The pointer must be in the range from 1 to the number
of entries in the memory queue.

+ - The leading plus or minus sign specifies the key is sorted
in ascending or descending sequence.

key The label of a field declared within the QUEUE struc-
ture. If the QUEUE has a PRE attribute, the key must
include the prefix.

name A string constant, variable, or expression containing the
NAME attribute of QUEUE fields, separated by com-
mas, and optional leading + or - signs for each attribute.
This parameter is case sensitive.

ADD writes a new entry from the QUEUE structure data buffer to the
QUEUE. If there is not enough memory to ADD a new entry, the
“Insufficient Memory” error is posted.

  ADD(queue) Appends a new entry to the end of the QUEUE.

  ADD(queue,pointer)
Places a new entry at the relative position specified by
the pointer parameter. If there is an entry already at the
relative pointer position, it is “pushed down” to make
room for the new entry. All following pointers are
readjusted to account for the new entry. For example, an
entry added at position 10 pushes entry 10 to position
11, entry 11 to position 12, etc. If pointer is zero or
greater than the number of entries in the QUEUE, the
entry is added at the end.

  ADD(queue,key) Inserts a new entry in a sorted memory queue. Multiple
key parameters may be used (up to 16), separated by
commas, with optional leading plus or minus signs to
indicate ascending or descending sequence. The entry is
inserted immediately after all other entries with match-
ing key values. If there are no entries, ADD(queue,key)
may be used to build the QUEUE in sorted order.



CHAPTER 12 MEMORY QUEUES 12-11

  ADD(queue,name)
Inserts a new queue entry in a sorted memory queue.
The name string must contain the NAME attributes of
the fields, separated by commas, with optional leading
plus or minus signs to indicate ascending or descending
sequence. The entry is inserted immediately after all
other entries with matching field values. If there are no
entries, ADD(queue,name) may be used to build the
QUEUE in sorted order.

Errors Posted: 08  Insufficient Memory
75  Invalid Field Type Descriptor

Example:

NameQue QUEUE,PRE(Que)
Name STRING(20),NAME(‘FirstField’)
Zip DECIMAL(5,0),NAME(‘SecondField’)

END
CODE
ADD(NameQue) !Add an entry at the end of the QUEUE
ADD(NameQue,1) !Add an entry at position 1
Que:Name = ‘Jones’ !Initialize fields
Que:Zip = 12345
ADD(NameQue,+Que:Name,-Que:Zip) !Ascending name, descending zip order
Que:Name = ‘Smith’ !Initialize fields
Que:Zip = 12345
ADD(NameQue,’+FirstField,-SecondField’)

!Add in name, descending zip order



12-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DELETE (delete an entry)

DELETE(queue)

DELETE Removes a QUEUE entry.

queue The label of a QUEUE structure, or the label of a passed
QUEUE parameter.

DELETE  removes the QUEUE entry at the position of the last successful
GET or ADD and de-allocates its memory. If no previous GET or ADD was
executed, the “Entry Not Found” error is posted. DELETE does not affect
the curent POINTER function return value.

Errors Posted: 08  Insufficient Memory
30  Entry Not Found

Example:

Que:Name = ‘Jones’ !Initialize the key
GET(NameQue,Que:Name) !Get the matching record
DELETE(NameQue) !Delete the entry

FREE (delete all entries)

FREE(queue)

FREE Deletes all entries from a QUEUE.

queue The label of a QUEUE structure, or the label of a passed
QUEUE parameter.

FREE deletes all entries from a QUEUE and de-allocates the memory they
occupied. It also de-allocates the memory used by the QUEUE’s “overhead.”
FREE does not clear the QUEUE’s data buffer.

Errors Posted: 08  Insufficient Memory

Example:

FREE(Location) !Free the location queue
FREE(NameQue) !Free the name queue



CHAPTER 12 MEMORY QUEUES 12-13

GET (read an entry)

| pointer |
GET(queue , | [+]key,...,[-]key] | )

| name |

GET Retrieves a specific QUEUE entry.

queue The label of a QUEUE structure, or the label of a passed
QUEUE parameter.

pointer A numeric constant, variable, or numeric expression.
The pointer must be in the range from 1 to the number
of entries in the memory queue.

+ - The leading plus or minus sign specifies the key is sorted
in ascending or descending sequence.

key The label of a field declared within the QUEUE struc-
ture. If the QUEUE has a PRE attribute, the key must
include the prefix.

name A string constant, variable, or expression containing the
NAME attribute of QUEUE fields, separated by com-
mas, and optional leading + or - signs for each attribute.
This parameter is case sensitive.

GET reads an entry into the QUEUE structure data buffer for processing. If
GET does not find a match, the “Entry Not Found” error is posted.

  GET(queue,pointer)
Retrieves the entry at the relative entry position specified
by the pointer value. If pointer is zero, the value re-
turned by the POINTER function is set to zero.

  GET(queue,key) Searches for a QUEUE entry that matches the value in
the key field(s). Multiple key parameters may be used (up
to 16), separated by commas. The QUEUE must already
be sorted on the field(s) used as the key parameter(s).

  GET(queue,name) Searches for a QUEUE entry that matches the value in
the name field(s).  The name string must contain the
NAME attributes of the fields, separated by commas,
with optional leading plus or minus signs to indicate
ascending or descending sequence. The QUEUE must
already be sorted on the field(s) listed in the name
parameter.

Errors Posted: 08  Insufficient Memory
30  Entry Not Found
75  Invalid Field Type Descriptor



12-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

NameQue QUEUE,PRE(Que)
Name STRING(20),NAME(‘FirstField’)
Zip DECIMAL(5,0),NAME(‘SecondField’)

END
CODE
DO BuildQue !Call routine to build the queue
GET(NameQue,1) !Get the first entry
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ‘Jones’ !Initialize key field
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = Fil:Name !Initialize to value in Fil:Name
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ‘Smith’ !Initialize the key fields
Que:Zip = 12345
GET(NameQue,’FirstField,SecondField’) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

See Also: SORT



CHAPTER 12 MEMORY QUEUES 12-15

PUT (write an entry)

PUT(queue , | [+]key,...,[-]key] | )
| name |

PUT Writes an entry back to the QUEUE.

queue The label of a QUEUE structure, or the label of a passed
QUEUE parameter.

+ - The leading plus or minus sign specifies the key is sorted
in ascending or descending sequence.

key The label of a field declared within the QUEUE struc-
ture. If a the QUEUE has a PRE attribute, the key must
include the prefix.

name A string constant, variable, or expression containing the
NAME attribute of QUEUE fields, separated by com-
mas, and optional leading + or - signs for each attribute.
This parameter is case sensitive.

PUT writes the contents of the data buffer back to the QUEUE (after a
successful GET or ADD) to the position returned by the POINTER function.
If no previous GET or ADD was executed, the “Entry Not Found” error is
posted.

  PUT(queue) Writes the data buffer back to the same relative position
within the QUEUE of the last successful GET or ADD.

  PUT(queue,key) Returns an entry to a sorted memory queue after a
successful GET or ADD, maintaining the sort order if
any key fields have changed value. Multiple key param-
eters may be used (up to 16), separated by commas, with
optional leading plus or minus signs to indicate ascend-
ing or descending sequence. The entry is inserted
immediately after all other entries with matching key
values.

  PUT(queue,name) Returns an entry to a sorted memory queue after a
successful GET or ADD, maintaining the sort order if
any key fields have changed value. The name string must
contain the NAME attributes of the fields, separated by
commas, with optional leading plus or minus signs to
indicate ascending or descending sequence. The entry is
inserted immediately after all other entries with match-
ing field values.

Errors Posted: 08  Insufficient Memory
30  Entry Not Found
75  Invalid Field Type Descriptor



12-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

NameQue QUEUE,PRE(Que)
Name STRING(20),NAME(‘FirstField’)
Zip DECIMAL(5,0),NAME(‘SecondField’)

EBD
CODE
DO BuildQue !Call routine to build the queue

Que:Name = ‘Jones’ !Initialize key field
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Zip = 12345 !Change the zip
PUT(NameQue) !Write the changes to the queue
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ‘Jones’ !Initialize key field
GET(NameQue,Que:Name) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ‘Smith’ !Change key field
PUT(NameQue,Que:Name) !Write changes to the queue
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ‘Smith’ !Initialize key field
GET(NameQue,’FirstField’) !Get the matching record
IF ERRORCODE() THEN STOP(ERROR()).

Que:Name = ‘Jones’ !Change key field
PUT(NameQue,’FirstField’) !Write changes to the queue
IF ERRORCODE() THEN STOP(ERROR()).



CHAPTER 12 MEMORY QUEUES 12-17

SORT (sort entries)

SORT(queue, | [+]key,...,[-]key] | )
| name |

SORT Reorders entries in a QUEUE.

queue The label of a QUEUE structure, or the label of a passed
QUEUE parameter.

+ - The leading plus or minus sign specifies the key will be
sorted in ascending or descending sequence.

key The label of a field declared within the QUEUE struc-
ture. If the QUEUE has a PRE attribute, the key must
include the prefix.

name A string constant, variable, or expression containing the
NAME attribute of QUEUE fields, separated by com-
mas, and optional leading + or - signs for each attribute.
This parameter is case sensitive.

SORT reorders the entries in a QUEUE. QUEUE entries with identical key
values maintain their relative position.

  SORT(queue,key) Reorders the QUEUE in the sequence specified by the
key. Multiple key parameters may be used (up to 16),
separated by commas, with optional leading plus or
minus signs to indicate ascending or descending se-
quence.

  SORT(queue,name)
Reorders the QUEUE in the sequence specified by the
name string. The name string must contain the NAME
attributes of the fields, separated by commas, with
leading plus or minus signs to indicate ascending or
descending sequence.

Errors Posted: 08  Insufficient Memory
75  Invalid Field Type Descriptor

Example:

Location QUEUE,PRE(Loc)
Name STRING(20),NAME(‘FirstField’)
City STRING(10),NAME(‘SecondField’)
State STRING(2)
Zip DECIMAL(5,0)

END
CODE
SORT(Location,Loc:State,Loc:City,Loc:Zip) !Sort by zip in city in state
SORT(Location,+Loc:State,-Loc:Zip) !Sort descending by zip in state
SORT(Location,’FirstField,-SecondField’) !Sort descending by city in name



12-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Queue FQueue FQueue FQueue FQueue Functionsunctionsunctionsunctionsunctions

POINTER (return last entry position)

POINTER(queue)

POINTER Returns the entry number of the last entry accessed in a
QUEUE.

queue The label of a QUEUE structure, or the label of a passed
QUEUE parameter.

The POINTER  function returns a LONG integer specifying the entry
number of the last QUEUE entry accessed by ADD, GET, or PUT.

Return Data Type: LONG

Example:

Que:Name = ‘Jones’ !Initialize key field
GET(NameQue,Que:Name) !Get the entry
IF ERRORCODE() THEN STOP(ERROR()). ! and check for errors

SavPoint = POINTER(NameQue) !Save the pointer

RECORDS (return number of entries)

RECORDS(queue)

RECORDS Returns the number of entries in a QUEUE.

queue The label of a QUEUE structure, or the label of a passed
QUEUE parameter.

The RECORDS function returns a LONG integer containing the number of
entries in the queue.

Return Data Type: LONG

Example:

Entries# = RECORDS(Location) !Determine number of entries
LOOP I# = 1 TO Entries# !Loop through QUEUE
GET(Location,I#) ! getting each entry
IF ERRORCODE() THEN STOP(ERROR()).

DO SomeProcess ! process the entry
END



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-1

Mathematical FMathematical FMathematical FMathematical FMathematical Functionsunctionsunctionsunctionsunctions

ABS (return absolute value)

ABS(expression)

ABS Returns absolute value.

expression A constant, variable, or expression.

The ABS function returns the absolute value of an expression. The absolute
value of a number is always positive (or zero).

Return Data Type: REAL or DECIMAL

Example:

C = ABS(A - B) !C is absolute value of the difference
IF B < 0 THEN B = ABS(B). !If b is negative make it positive

See Also: BCD Operations and Functions

INRANGE (check number within range)

INRANGE(expression,low,high)

INRANGE Return number in valid range.

expression A numeric constant, variable, or expression.

low A numeric constant, variable, or expression of the lower
boundary of the range.

high A numeric constant, variable, or expression of the upper
boundary of the range.

The INRANGE  function compares a numeric expression to an inclusive
range of numbers. If the value of the expression is within the range, the
function returns the value 1 for “true.”  If the expression is greater than the
high parameter, or less than the low parameter, the function returns a zero
for “false.”

Return Data Type: LONG

Example:

IF INRANGE(Date % 7,1,5) !If this is a week day
DO WeekdayRate ! use the weekday rate

ELSE !Otherwise
DO WeekendRate ! use the weekend rate

END



13-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

INT (truncate fraction)

INT(expression)

INT Return integer.

expression A numeric constant, variable, or expression.

The INT  function returns the integer portion of a numeric expression. No
rounding is performed, and the sign remains unchanged.

Return Data Type: REAL or DECIMAL

Example:

!INT(8.5) returns 8
!INT(-5.9) returns -5

x = INT(y) !Return integer portion of y variable contents

See Also: BCD Operations and Functions

LOGE (return natural logarithm)

LOGE(expression)

LOGE Returns the natural logarithm.

expression A numeric constant, variable, or expression. If the value
of the expression is less than zero, the return value is
zero. The natural logarithm is undefined for values less
than zero.

The LOGE  (pronounced “log-e”) function returns the natural logarithm of a
numeric expression. The natural logarithm of a value is the power to which e
must be raised to equal that value. The value of e is 2.71828182846.

Return Data Type: REAL

Example:

!LOGE(2.71828182846) returns 1
!LOGE(1) returns 0

LogVal = LOGE(Val)  !Get the natural log of Val



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-3

LOG10 (return base 10 logarithm)

LOG10(expression)

LOG10 Returns base 10 logarithm.

expression A numeric constant, variable, or expression. If the value
of the expression is zero or less, the return value will be
zero. The base 10 logarithm is undefined for values less
than or equal to zero.

The LOG10 (pronounced “log ten”) function returns the base 10 logarithm
of a numeric expression. The base 10 logarithm of a value is the power to
which 10 must be raised to equal that value.

Return Data Type: REAL

Example:

!LOG10(10) returns 1
!LOG10(1) returns 0

LogStore = LOG10(Var) !Store the log 10 of var

RANDOM (return random number)

RANDOM(low,high)

RANDOM Returns random integer.

low A numeric constant, variable, or expression for the lower
boundary of the range.

high A numeric constant, variable, or expression for the upper
boundary of the range.

The RANDOM  function returns a random integer between the low and high
parameter values, inclusively. The low and high parameters may be any
numeric expression, but only their integer portion is used for the inclusive
range.

Return Data Type: LONG

Example:

Num                BYTE,DIM(49)
LottoNbr           BYTE,DIM(6)
CODE
CLEAR(Num)
CLEAR(LottoNbr)
LOOP X# = 1 TO 6
LottoNbr[X#] = RANDOM(1,49) !Pick numbers for Lotto
IF NOT Num[LottoNbr[X#]]
Num[LottoNbr[X#]] = 1

ELSE
X# -= 1

. .



13-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ROUND (return rounded number)

ROUND(expression,order)

ROUND Returns rounded value.

expression A numeric constant, variable, or expression.

order A numeric expression with a value equal to a power of
ten, such as 1, 10, 100, 0.1, 0.001, etc. If the value is not
an even power of ten, the next lowest power is used;
0.55 will use 0.1 and 155 will use 100.

The ROUND function returns the value of an expression rounded to a power
of ten. If the order is a LONG or DECIMAL Base Type, then rounding is
performed as a BCD operation. Note that if you want to round a real number
larger than 1e30, you should use ROUND(num,1.0e0), and not
ROUND(num,1). The ROUND function is very efficient (“cheap”) as a BCD
operation and should be used to compare REALs to DECIMALs at decimal
width.

Return Data Type: DECIMAL or REAL

Example:

!ROUND(5163,100) returns 5200
!ROUND(657.50,1) returns 658
!ROUND(51.63594,.01) returns 51.64

Commission = ROUND(Price / Rate,.01) !Round the commission to the nearest cent

See Also: BCD Operations and Functions

SQRT (return square root)

SQRT(expression)

SQRT Returns square root.

expression A numeric constant, variable, or expression. If the value
of the expression is less than zero, the return value is
zero.

The SQRT function returns the square root of the expression. If X represents
any positive real number, the square root of X is a number that, when
multiplied by itself, produces a product equal to X.

Return Data Type: REAL

Example:

Length = SQRT(X^2 + Y^2) !Find the distance from 0,0 to x,y (pythagorean theorem)



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-5

TTTTTrigonomerigonomerigonomerigonomerigonometric Ftric Ftric Ftric Ftric Functionsunctionsunctionsunctionsunctions
Trigonometric functions return values representing angles and ratios of the
sides of a right triangle (a triangle containing a 90-degree angle). The
hypotenuse is the side of the triangle opposite the right (90-degree) angle.
For either of the other two angles, the adjacent side forms the angle with the
hypotenuse, and the opposite side is opposite the angle. (See any good
Trigonometry text for further explanation of these terms.)

Angles are expressed in radians. PI is a constant which represents the ratio
of the circumference and radius of a circle. There are 2*PI radians (or 360
degrees) in a circle.

The following equates provide high precision constants for PI and the
conversion factors between degrees and radians.

PI EQUATE(3.1415926535898) !The value of PI
Rad2Deg EQUATE(57.295779513082) !Number of degrees in a radian
Deg2Rad EQUATE(.0174532925199) !Number of radians in a degree

SIN (return sine)

SIN(radians)

SIN Returns sine.

radians A numeric constant, variable or expression for the angle
expressed in radians.

The SIN function returns the trigonometric sine of an angle measured in
radians. The sine is the ratio of the length of the angle’s opposite side
divided by the length of the hypotenuse.

Return Data Type: REAL

Example:

Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
SineAngle = SIN(Angle) !Get the sine of 45 degree angle



13-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

COS (return cosine)

COS(radians)

COS Returns cosine.

radians A numeric constant, variable or expression for the angle
in radians.

The COS function returns the trigonometric cosine of an angle measured in
radians. The cosine is the ratio of the length of the angle’s adjacent side
divided by the length of the hypotenuse.

Return Data Type: REAL

Example:

Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
CosineAngle = COS(Angle) !Get the cosine of 45 degree angle

TAN (return tangent)

TAN(radians)

TAN Returns tangent.

radians A numeric constant, variable or expression for the angle
in radians.

The TAN  function returns the trigonometric tangent of an angle measured in
radians. The tangent is the ratio of the angle’s opposite side divided by its
adjacent side.

Return Data Type: REAL

Example:

Angle = 45 * Deg2Rad !Translate 45 degrees to Radians
TangentAngle = TAN(Angle) !Get the tangent of 45 degree angle



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-7

ASIN (return arcsine)

ASIN(expression)

ASIN Returns inverse sine.

expression A numeric constant, variable, or expression for the value
of the sine.

The ASIN function returns the inverse sine. The inverse of a sine is the angle
that produces the sine. The return value is the angle in radians.

Return Data Type: REAL

Example:

InvSine = ASIN(SineAngle)  !Get the Arcsine

See Also: SIN

ACOS (return arccosine)

ACOS(expression)

ACOS Returns inverse cosine.

expression A numeric constant, variable, or expression for the value
of the cosine.

The ACOS function returns the inverse cosine. The inverse of a cosine is the
angle that produces the cosine. The return value is the angle in radians.

Return Data Type: REAL

Example:

InvCosine = ACOS(CosineAngle)  !Get the Arccosine

See Also: COS



13-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ATAN (return arctangent)

ATAN( expression)

ATAN Returns inverse tangent.

expression A numeric constant, variable, or expression for the value
of the tangent.

The ATAN  function returns the inverse tangent. The inverse of a tangent is
the angle that produces the tangent. The return value is the angle in radians.

Return Data Type  REAL

Example:

InvTangent = ATAN(TangentAngle)  !Get the Arctangent

See Also: TAN



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-9

String FString FString FString FString Functionsunctionsunctionsunctionsunctions

ALL (return repeated characters)

ALL( string [,length])

ALL Returns repeated characters.

string A string expression containing the character sequence to
be repeated.

length The length of the return string. If omitted the length of
the return string is 255 characters.

The ALL  function returns a string containing repetitions of the character
sequence string.

Return Data Type: STRING

Example:

Starline = ALL(‘*’,25) !Get 25 asterisks
Dotline = ALL(‘.’) !Get 255 dots

CENTER (return centered string)

CENTER(string [,length])

CENTER Returns centered string.

string A string constant, variable or expression.

length The length of the return string. If omitted, the length of
the string parameter is used.

The CENTER function first removes leading and trailing spaces from a
string, then pads it with leading and trailing spaces to center it within the
length, and returns a centered string.

Return Data Type: STRING

Example:

!CENTER(‘ABC’,5) returns ‘ ABC ‘
!CENTER(‘ABC ‘) returns ‘ ABC ‘
!CENTER(‘ ABC’) returns ‘ ABC ‘

  Message = CENTER(Message) !Center the message
Rpt:Title = CENTER(Name,60) !Center the name



13-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CHR (return character from ASCII)

CHR(code)

CHR Returns the display character.

code A numeric expression containing a numeric ASCII
character code.

The CHR function returns the character represented by the ASCII character
code parameter.

Return Data Type: STRING

Example:

Stringvar = CHR(122) !Get lower case z
Stringvar = CHR(65) !Get upper case A

CLIP (return string without trailing spaces)

CLIP(string)

CLIP Removes trailing spaces.

string A string expression.

The CLIP  function removes trailing spaces from a string. The return string
is a substring with no trailing spaces. CLIP is frequently used with the
concatenation operator in string expressions.

Return Data Type: STRING

Example:

Name = CLIP(Last) & ‘, ‘ & CLIP(First) & Init & ‘.’ !Full name in military order



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-11

DEFORMAT (remove formatting from numeric string)

DEFORMAT(string [,picture])

DEFORMAT Removes formatting characters from a numeric string.

string A string expression containing a numeric string.

picture A picture token or the label of a CSTRING, STRING, or
PSTRING variable containing a picture token
(CSTRING is more efficient than STRING or
PSTRING). If omitted, the picture for the string param-
eter is used. If the string parameter was not declared
with a picture token, the return value will contain only
characters that are valid for a numeric constant.

The DEFORMAT  function removes formatting characters from a numeric
string, returning only the numbers contained in the string. When used with a
dateor time picture (except those containing alphabetic characters), it returns
a STRING containing the Clarion Standard Date or Time.

Return Data Type: STRING

Example:

DialString = ‘ATDT1’ & DEFORMAT(Phone,@P(###)###-####P) & ‘<13,10>’
!Get phone number for modem to dial

ClarionDate = DEFORMAT(dBaseDate,@D1) !Clarion Standard date from mm/dd/yy string

FORMAT (format numbers into a picture)

FORMAT(value,picture)

FORMAT Returns a formatted numeric string.

value A numeric expression for the value to be formatted.

picture A picture token or the label of a STRING, CSTRING, or
PSTRING variable containing a picture token
(CSTRING is more efficient than STRING or
PSTRING).

The FORMAT  function returns a numeric string formatted according to the
picture parameter.

Return Data Type: STRING

Example:

Rpt:SocSecNbr = FORMAT(Emp:SSN,@P###-##-####P) !Format the soc-sec-nbr
Phone = FORMAT(DEFORMAT(Phone,@P###-###-####P),@P(###)###-####P)

!Change phone format from dashes to parens
DateString = FORMAT(DateLong,@D1) !Format a date as a string



13-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

INLIST (search for entry in list)

INLIST(searchstring,liststring,liststring [,liststring...])

INLIST Returns item in a list.

searchstring A constant, variable, or expression that contains the
value for which to search. If the value is numeric, it is
converted to a string before comparisons are made.

liststring The label of a variable or constant value to compare
against the searchstring. If the value is numeric, it is
converted to a string before comparisons are made.
There may be any number of liststring parameters, but
there must be at least two.

The INLIST  function compares the contents of the searchstring against the
values contained in each liststring parameter. If a matching value is found,
the function returns the number of the liststring parameter containing the
matching value (relative to the first liststring parameter). If the searchstring
is not found in any liststring parameter, INLIST  returns zero.

Return Data Type:  LONG

Example:

 !INLIST(‘D’,’A’,’B’,’C’,’D’,’E’) returns 4
 !INLIST(‘B’,’A’,’B’,’C’,’D’,’E’) returns 2

EXECUTE INLIST(Emp:Status,’Fulltime’,’Parttime’,’Retired’,’Consultant’)
Scr:Message = ‘All Benefits’ !Full timer
Scr:Message = ‘Holidays Only’ !Part timer
Scr:Message = ‘Medical/Dental Only’ !Retired
Scr:Message = ‘No Benefits’ !Consultant

END



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-13

INSTRING (search for substring)

INSTRING(substring,string [,step] [,start])

INSTRING Searches for a substring in a string.

substring A string constant, variable, or expression that contains
the string for which to search.  You should CLIP a
variable substring so INSTRING will not look for a
match that contains the trailing spaces in the variable.

string A string constant, or the label of the STRING,
CSTRING, or PSTRING variable to be searched.

step A numeric constant, variable, or expression which
specifies the step length of the search. A step of 1
searches for the substring beginning at every character in
the string, a step of 2 starts at every other character, and
so on. If step is omitted, the step length defaults to the
length of the substring.

start A numeric constant, variable, or expression which
specifies where to begin the search of the string. If
omitted, the search starts at the first character position.

The INSTRING  function steps through a string, searching for the
occurrence of a substring. If the substring is found, the function returns the
step number on which the substring was found. If the substring is not found
in the string, INSTRING  returns zero.

Return Data Type: LONG

Example:

 !INSTRING(‘DEF’,’ABCDEFGHIJ’,1,1) returns 4
 !INSTRING(‘DEF’,’ABCDEFGHIJ’,2,1) returns 0
 !INSTRING(‘DEF’,’ABCDEFGHIJ’,2,2) returns 2
 !INSTRING(‘DEF’,’ABCDEFGHIJ’,3,1) returns 2

Extension = SUB(FileSpec,INSTRING(‘.’,FileSpec) + 1,3)
!Extract extension from file spec

IF INSTRING(CLIP(Search),Cus:Notes,1,1) !If search variable found
Scr:Message = ‘Found’ ! display message

END



13-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

LEFT (return left justified string)

LEFT(string [,length])

LEFT Left justifies a string.

string A string constant, variable, or expression.

length A numeric constant, variable, or expression for the
length of the return string. If omitted, length defaults to
the length of the string.

The LEFT  function returns a left justified string. Leading spaces are
removed from the string.

Return Data Type: STRING

Example:

CompanyName = LEFT(CompanyName) !Left justify the company name

LEN (return length of string)

LEN(string)

LEN Returns length of a string.

string A string constant, variable, or expression.

The LEN  function returns the length of a string. If the string parameter is
the label of a variable, the function will return the declared length of the
variable. Numeric variables are automatically converted to STRING
intermediate values.

Return Data Type: LONG

Example:

IF LEN(CLIP(Title) & ‘ ‘ & CLIP(First) & ‘ ‘ & CLIP(Last)) > 30
!If full name won’t fit

Rpt:Name = CLIP(Title) & ‘ ‘ & SUB(First,1,1) & ‘. ‘ & Last
! use first initial

ELSE
Rpt:Name = CLIP(Title) & ‘ ‘ & CLIP(First) & ‘ ‘ & CLIP(Last)

! else use full name
END
Rpt:Title = CENTER(Cus:Name,LEN(Rpt:Title)) !Center the name in the title



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-15

LOWER (return lower case)

LOWER(string)

LOWER Converts a string to all lower case.

string A string constant, variable, or expression for the string
to be converted.

The LOWER  function returns a string with all letters converted to lower
case.

Return Data Type: STRING

Example:

Name = SUB(Name,1,1) & LOWER(SUB(Name,2,19))
!Make the rest of the name lower case

NUMERIC (check numeric string)

NUMERIC(string)

NUMERIC Validates all numeric string.

string A string constant, variable, or expression.

The NUMERIC  function returns the value 1 (true) if the string contains a
valid numeric value. It returns zero (false) if the string contains non-numeric
characters. Valid numeric characters are the digits 0 through 9, a leading
minus sign, and a decimal point.

Return Data Type: LONG

Example:

IF NOT NUMERIC(PartNumber) !If part number is not numeric
DO ChkValidPart ! check for valid part number

END !End if



13-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RIGHT (return right justified string)

RIGHT(string [,length])

RIGHT Right justifies a string.

string A string constant, variable, or expression.

length A numeric constant, variable, or expression for the
length of the return string. If omitted, the length is set to
the length of the string.

The RIGHT  function returns a right justified string. Trailing spaces are
removed, then the string is right justified and returned with leading spaces.

Return Data Type: STRING

Example:

Message = RIGHT(Message) !Right justify the message



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-17

SUB (return substring of string)

SUB(string,position,length)

SUB Returns a portion of a string.

string A string constant, variable or expression.

position A integer constant, variable, or expression. If positive, it
points to a character position relative to the beginning of
the string. If negative, it points to the character position
relative to the end of the string (i.e., a position value of -
3 points to a position 3 characters from the end of the
string).

length A numeric constant, variable, or expression of number of
characters to return.

The SUB function parses out a sub-string from a string by returning length
characters from the string, starting at position.

The SUB function is similar to the “string slicing” operation on STRING,
CSTRING, and PSTRING variables, but is less flexible and efficient.
“String slicing” is more flexible because it may be used on both the
destination and source sides of an assignment statement, while the SUB
function can only be used as the source. It is more efficient because it takes
less memory than individual character assignments or the SUB function.

To take a “slice” of a string, the beginning and ending character numbers are
separated by a colon (:) and placed in the implicit array dimension position
within the square brackets ([]) of the string. The position numbers may be
integer constants, variables, or expressions. If variables are used, there must
be at least one blank space between the variable name and the colon
separating the beginning and ending number (to prevent PREfix confusion).

Return Data Type: STRING

Example:

 !SUB(‘ABCDEFGHI’,1,1) returns ‘A’
 !SUB(‘ABCDEFGHI’,-1,1) returns ‘I’
 !SUB(‘ABCDEFGHI’,4,3) returns ‘DEF’
Extension = SUB(FileName,INSTRING(‘.’,FileName,1,1)+1,3)

!Get the file extension using SUB function
Extension = FileName[(INSTRING(‘.’,FileName,1,1)+1):(INSTRING(‘.’,FileName,1,1)+3)]

!The same operation using string slicing

See Also: INSTRING, STRING, CSTRING, PSTRING, String Slicing



13-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

UPPER (return upper case)

UPPER(string)

UPPER Returns all upper case string.

string A string constant, variable, or expression for the string
to be converted.

The UPPER function returns a string with all letters converted to upper
case.

Return Data Type: STRING

Example:

Name = UPPER(Name) !Make the name upper case

VAL (return ASCII value)

VAL(character)

VAL Returns ASCII code.

character A one-byte string containing a character.

The VAL  function returns the ASCII code of a character.

Return Data Type: LONG

Example:

!VAL(‘A’) returns 65
!VAT(‘z’) returns 122

CharVal = VAL(StrChar)  !Get the ASCII value of the string character



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-19

Bit Manipulation FBit Manipulation FBit Manipulation FBit Manipulation FBit Manipulation Functionsunctionsunctionsunctionsunctions

BAND (return bitwise AND)

BAND(value,mask)

BAND Performs bitwise AND operation.

value A numeric constant, variable, or expression for the bit
value to be compared to the bit mask. The value is
converted to a LONG data type prior to the operation, if
necessary.

mask A numeric constant, variable, or expression for the bit
mask. The mask is converted to a LONG data type prior
to the operation, if necessary.

The BAND function compares the value to the mask, performing a Boolean
AND operation on each bit. The return value is a LONG integer with a one
(1) in the bit positions where the value and the mask both contain one (1),
and zeroes in all other bit positions.

BAND is usually used to determine whether an individual bit, or multiple
bits, are on (1) or off (0) within a variable.

Return Data Type: LONG

Example:

!BAND(0110b,0010b) returns 0010b !0110b = 6, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
CODE
IF BAND(RateType,Female) | !If female

AND BAND(RateType,Over25) ! and over 25
DO BaseRate ! use base premium

ELSIF BAND(RateType,Male) !If male
DO AdjBase ! adjust base premium

END



13-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BOR (return bitwise OR)

BOR(value,mask)

BOR Performs bitwise OR operation.

value A numeric constant, variable, or expression for the bit
value to be compared to the bit mask. The value is
converted to a LONG data type prior to the operation, if
necessary.

mask A numeric constant, variable, or expression for the bit
mask. The mask is converted to a LONG data type prior
to the operation, if necessary.

The BOR function compares the value to the mask, performing a Boolean
OR operation on each bit. The return value is a LONG integer with a one (1)
in the bit positions where the value, or the mask, or both, contain a one (1),
and zeroes in all other bit positions.

BOR is usually used to unconditionally turn on (set to one), an individual
bit, or multiple bits, within a variable.

Return Data Type: LONG

Example:

!BOR(0110b,0010b) returns 0110b  !0110b = 6, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
CODE
RateType = BOR(RateType,Over25) !Turn on over 25 bit
RateType = BOR(RateType,Male) !Set rate to male



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-21

BXOR (return bitwise exclusive OR)

BXOR(value,mask)

BXOR Performs bitwise exclusive OR operation.

value A numeric constant, variable, or expression for the bit
value to be compared to the bit mask. The value is
converted to a LONG data type prior to the operation, if
necessary.

mask A numeric constant, variable, or expression for the bit
mask. The mask is converted to a LONG data type prior
to the operation, if necessary.

The BXOR function compares the value to the mask, performing a Boolean
XOR operation on each bit. The return value is a LONG integer with a one
(1) in the bit positions where either the value or the mask contain a one (1),
but not both. Zeroes are returned in all bit positions where the bits in the
value and mask are alike.

BXOR is usually used to toggle on (1) or off (0) an individual bit, or
multiple bits, within a variable.

Return Data Type: LONG

Example:

!BXOR(0110b,0010b) returns 0100b  !0110b = 6, 0100b = 4, 0010b = 2

RateType BYTE !Type of rate
Female EQUATE(0001b) !Female mask
Male EQUATE(0010b) !Male mask
Over25 EQUATE(0100b) !Over age 25 mask
Over65 EQUATE(1100b) !Over age 65 mask
CODE
RateType = BXOR(RateType,Over65) !Toggle over 65 bits



13-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BSHIFT (return shifted bits)

BSHIFT(value,count)

BSHIFT Performs the bit shift operation.

value A numeric constant, variable, or expression. The value is
converted to a LONG data type prior to the operation, if
necessary.

count A numeric constant, variable, or expression for the
number of bit positions to be shifted. If count is positive,
value is shifted left. If count is negative, value is shifted
right.

The BSHIFT  function shifts a bit value by a bit count. The bit value may be
shifted left (toward the high order), or right (toward the low order). Zero bits
are supplied to fill vacated bit positions when shifting.

Return Data Type: LONG

Example:

!BSHIFT(0110b,1) returns 1100b
!BSHIFT(0110b,-1) returns 0011b

Varswitch = BSHIFT(20,3) !Multiply by eight
Varswitch = BSHIFT(Varswitch,-2) !Divide by four



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-23

Date / Time PDate / Time PDate / Time PDate / Time PDate / Time Prrrrrocedurocedurocedurocedurocedures and Fes and Fes and Fes and Fes and Functionsunctionsunctionsunctionsunctions

Standard Date

A Clarion standard date is the number of days that have elapsed since
December 28, 1800. The range of accessible dates is from January 1, 1801
(standard date 4) to December 31, 2099 (standard date 109,211). Date
functions will not return correct values outside the limits of this range. The
standard date calendar also adjusts for each leap year within the range of
accessible dates. Dividing a standard date by modulo 7 gives you the day of
the week: zero = Sunday, one = Monday, etc.

The LONG data type with a date format (@D) display picture is normally
used for a standard date. The DATE data type is a data format used in the
Btrieve Record Manager. A DATE field is internally converted to LONG
containing the Clarion standard date before any mathematical or date
function operation is performed. Therefore, DATE should be used for
external Btrieve file compatibility, and LONG should normally be used for
other dates.

Standard Time

A Clarion standard time is the number of hundredths of a second that have
elapsed since midnight, plus one (1). The valid range is from 1 (defined as
midnight) to 8,640,000 (defined as 11:59:59:99). A standard time of one is
exactly equal to midnight (which allows a zero value to be used to detect no
time entered). Although time is expressed to the nearest hundredth of a
second, the system clock is only updated 18.2 times a second
(approximately every 5.5 hundredths of a second).

The LONG data type with a time format (@T) display picture is normally
used for a standard time. The TIME data type is a data format used in the
Btrieve Record Manager. A TIME field is internally converted to LONG
containing the Clarion standard time before any mathematical or time
function operation is performed. Therefore, TIME should be used for
external Btrieve file compatibility, and LONG should normally be used for
other times.



13-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TODAY (return system date)

TODAY( )

The TODAY  function returns the DOS system date as a standard date. The
range of possible dates is from January 1, 1801 (standard date 4) to
December 31, 2099 (standard date 109,211).

Return Data Type: LONG

Example:

OrderDate = TODAY() !Set the order date to system date

SETTODAY (set system date)

SETTODAY(date)

SETTODAY Sets the DOS system date.

date A numeric constant, variable, or expression for a stan-
dard date.

The SETTODAY  statement sets the DOS system date.

Example:

SETTODAY(TODAY() + 1) !Set the date ahead one day

CLOCK (return system time)

CLOCK(  )

The CLOCK  function returns the time of day from the DOS system time in
standard time (expressed as hundredths of a second since midnight).
Although the time is expressed to the nearest hundredth of a second, the
system clock is only updated 18.2 times a second (approximately every 5.5
hundredths of a second).

Return Data Type: LONG

Example:

Time = CLOCK() !Save the system time



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-25

SETCLOCK (set system time)

SETCLOCK( time)

SETCLOCK Sets the DOS system clock.

time A numeric constant, variable, or expression for a stan-
dard time (expressed as hundredths of a second since
midnight plus one).

The SETCLOCK  statement sets the DOS system time of day.

Example:

SETCLOCK(1) !Set clock to midnight

DATE (return standard date)

DATE(month,day,year)

DATE Return standard date.

month A numeric constant, variable, or expression for the
month.

day A numeric constant, variable, or expression for the day
of the month.

year A numeric constant, variable or expression for the year.
The valid range for a year value is 00 through 99 (which
assumes the range 1900 - 1999), or 1801 through 2099.

The DATE  function returns a standard date for a given month, day, and year.
The month and day parameters allow out-of-range values. A month value of
13 is interpreted as January of the next year. A day value of 32 in January is
interpreted as the first of February. Consequently, DATE(12,32,87),
DATE(13,1,87), and DATE(1,1,88) all produce the same result.

Return Data Type: LONG

Example:

HireDate = DATE(Hir:Month,Hir:Day,Hir:Year) !Compute hire date

See Also: Standard Date



13-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DAY (return day of month)

DAY(date)

DAY Returns day of month.

date A numeric constant, variable, expression, or the label of
a STRING, CSTRING, or PSTRING variable declared
with a date picture token. The date must be a standard
date. A variable declared with a date picture token is
automatically converted to a standard date intermediate
value.

The DAY  function computes the day of the month (1 to 31) for a given
standard date.

Return Data Type: LONG

Example:

OutDay = DAY(TODAY()) !Get the day from today’s date
DueDay = DAY(TODAY()+2) !Calculate the return day

See Also: Standard Date

MONTH (return month of date)

MONTH(date)

MONTH Returns month in year.

date A numeric constant, variable, expression, or the label of
a STRING, CSTRING, or PSTRING variable declared
with a date picture token. The date must be a standard
date. A variable declared with a date picture token is
automatically converted to a standard date intermediate
value.

The MONTH  function returns the month of the year (1 to 12) for a given
standard date.

Return Data Type: LONG

Example:

PayMonth = MONTH(DueDate)  !Get the month from the date

See Also: Standard Date



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-27

YEAR (return year of date)

YEAR(date)

YEAR Returns the year.

date A numeric constant, variable, expression, or the label of
a string variable declared with a date picture, containing
a standard date. A variable declared with a date picture is
automatically converted to a standard date intermediate
value.

The YEAR  function returns a four digit number for the year of a standard
date (1801 to 2099).

Return Data Type: LONG

Example:

IF YEAR(LastOrd) < YEAR(TODAY())  !If last order date not from this year
DO StartNewYear  ! start new year to date totals

END

See Also: Standard Date

AGE (return age from base date)

AGE(birthdate [,base date])

AGE Returns elapsed time.

birthdate A numeric expression for a standard date.

base date A numeric expression for a standard date. If this param-
eter is omitted, the system date from DOS is used for the
computation.

The AGE function returns a string containing the time elapsed between two
dates. The age return string is in the following format:

 1 to 60 days - ‘nn DAYS’
 61 days to 24 months - ‘nn MOS’
 2 years to 999 years - ‘nnn YRS’

Return Data Type: STRING

Example:

Message = Emp:Name & ‘is ‘ & AGE(Emp:DOB,TODAY()) & ‘ old today.’



13-28 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Operating SysOperating SysOperating SysOperating SysOperating System Ptem Ptem Ptem Ptem Prrrrrocedurocedurocedurocedurocedures and Fes and Fes and Fes and Fes and Functionsunctionsunctionsunctionsunctions

COMMAND (return command line)

COMMAND( flag )

COMMAND Returns command line parameters.

flag A string constant or variable containing the parameter
for which to search, or the number of the command line
parameter to return.

The COMMAND  function returns the value of the flag parameter from the
command line. If the flag is not found, COMMAND returns an empty
string. If the flag is multiply defined, only the first occurrence encountered
is returned.

COMMAND searches the command line for flag=value and returns value.
There must be no blanks between flag, the equal sign, and value. The
returned value terminates at the first comma or blank space. If a blank or
comma is desired in a command line parameter, everything to the right of
the equal sign must be enclosed in double quotes (flag=”value”).

COMMAND will also search the command line for a flag containing a
leading slash (/). If found, COMMAND returns the value of flag without the
slash. If the flag only contains a number, COMMAND returns the parameter
at that numbered position on the command line. A flag of ‘0’ returns the
minimum path DOS used to find the command. This minimum path always
includes the command (without command line parameters) but may not
include the path (if DOS found it in the current directory). A flag containing
‘1’ returns the first command line parameter. If flag is an empty string (‘’),
all command parameters are returned as entered on the command line,
appended to a leading space.

Return Data Type: STRING

Example:

IF COMMAND(‘/N’) !Was /N on the command line?
DO SomeProcess

END
IF COMMAND(‘Option’) = ‘1’ !Was Option=1 on the command line?
DO OneProcess

END
CommandString = COMMAND(‘’) !Get all command parameters
CommandItself = COMMAND(‘0’) !Get the command itself
SecondParm = COMMAND(‘2’) !Get second parameter from command line

See Also: SETCOMMAND



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-29

DIRECTORY (get file directory)

DIRECTORY( queue, path, attributes )

DIRECTORY Gets a file directory listing (just like the DIR command
in DOS).

queue The label of the QUEUE structure that will receive the
directory listing. This must be exactly the same structure
as the ff_:queue structure in the EQUATES.CLW file.

path A string constant, variable, or expression that specifies
the path and filenames directory listing to get. This may
include the wildcard characters (* and ?).

attributes An integer constant, variable, or expression that specifies
the attributes of the files to place in the queue.

The DIRECTORY  procedure returns a directory listing of all files in the
path with the specified attributes into the specified queue.

The queue parameter must name a QUEUE with a structure that begins the
same as the following structure contained in EQUATES.CLW:

ff_:queue QUEUE,PRE(ff_),TYPE
name STRING(13)
date LONG
time LONG
size LONG
attrib BYTE

END

Your QUEUE may contain more fields, but must begin with these five fields.
It will receive the returned information about each file in the path that has
the attributes you specify.  The date and time fields will contain standard
Clarion date and time information (the conversion from the operating
system’s storage format to Clarion standard format is automatic).

The attributes parameter is a bitmap which specifies what filenames to place
in the queue. The following equates are contained in EQUATES.CLW:

ff_:NORMAL EQUATE(0)
ff_:READONLY EQUATE(1)
ff_:HIDDEN EQUATE(2)
ff_:SYSTEM EQUATE(4)
ff_:DIRECTORY EQUATE(10H)
ff_:ARCHIVE EQUATE(20H)      ! NOT Win95 compatible

The attributes bitmap is a non-exclusive OR filter: if you add the equates,
you get files with any of the attributes you specify. This means that, when
you just set the ff_:NORMAL attribute, you only get files (no sub-
directories) without the read-only, hidden, system, or archive attributes set.
If you add ff_:DIRECTORY to ff_:NORMAL, you will get files AND sub-
directories from the path.



13-30 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Example:

DirectoryList PROCEDURE

AllFiles QUEUE,PRE(FIL)
name STRING(13)
date LONG
time LONG
size LONG
attrib BYTE

END
LP LONG
Recs LONG

CODE
DIRECTORY(AllFiles,'*.*',ff_:DIRECTORY) !Get all files and directories
Recs = RECORDS(AllFiles)
LOOP LP = 1 to Recs
GET(AllFiles,LP)
IF BAND(FIL:Attrib,ff_:DIRECTORY) AND FIL:Name <> '..' AND FIL:Name <> '.'
CYCLE !Let sub-directory entries stay

ELSE
DELETE(AllFiles) !Get rid of all other entries

END
END



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-31

PATH (return current directory)

PATH( )

PATH  returns a string containing the current drive and directory.

Return Data Type: STRING

Example:

IF PATH() = ‘C:\’ !If in the root
MESSAGE(‘You are in the Root Directory’) ! display message

END

See Also: SETPATH

RUNCODE (return program exit code)

RUNCODE( )

The RUNCODE function returns the exit code passed to the operating
system from the command executed by the RUN statement. This is the exit
code passed by the HALT statement in Clarion programs and is the same as
the DOS ERRORLEVEL. RUNCODE returns a LONG integer which may
be any value that is returned to DOS as an exit code by the child program.

The child program may only supply a BYTE value as an exit code, therefore
negative values are not possible as exit codes. This fact allows RUNCODE
to reserve these values to handle situations in which an exit code is not
available:

  0 normal termination
 -1 program terminated with Ctrl-C
 -2 program terminated with Critical error
 -3 TSR exit
 -4 program did not run (check ERROR())

Return Data Type: LONG

Example:

RUN(‘Nextprog.exe’) !Run next program
IF RUNCODE() = -4
IF ERROR() = ‘Not Enough Memory’ !If program didn’t run for lack of memory
MESSAGE(‘Insufficient memory’) ! display a message
RETURN ! and terminate the procedure

ELSE
STOP(ERROR()) ! terminate program

. .

See Also: RUN, HALT



13-32 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SETCOMMAND (set command line parameters)

SETCOMMAND(commandline)

SETCOMMAND Internally sets command line parameters.

commandline A string constant, variable, or expression containing the
new command line parameters.

SETCOMMAND  allows the program to internally specify command line
parameters that may be read by the COMMAND function. SETCOMMAND
overwrites any previous command line flag of the same value. To turn off a
leading slash flag, append an equal sign (=) to it in the commandline.

SETCOMMAND may not be used to set system level switches which must
be specified when the program is loaded. The temporary files directory
switch (CLATMP=) may be set with SETCOMMAND.

Example:

SETCOMMAND(‘ /N’) !Add /N parameter
SETCOMMAND(‘ /N=’) !Turn off /N parameter

See Also: COMMAND

SETPATH (change current drive and directory)

SETPATH(path)

SETPATH Changes the current drive and directory.

path A string constant or the label of a STRING, CSTRING,
or PSTRING variable containing a new drive and/or
directory specification.

SETPATH changes the current drive and directory. If the drive and path
entry is invalid, the “Path Not Found” error is posted, and the current
directory is not changed.

If the drive letter and colon are omitted from the path, the current drive is
assumed. If only a drive letter and colon are in the path, SETPATH changes
to the current directory of that drive.

Errors Posted: 03  Path Not Found

Example:

SETPATH(‘C:\LEDGER’) !Change to the ledger directory
SETPATH(UserPath) !Change to the user’s directory



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-33

ErErErErErrrrrror Reporor Reporor Reporor Reporor Reporting Fting Fting Fting Fting Functionsunctionsunctionsunctionsunctions

ERROR (return error message)

ERROR( )

The ERROR function returns a string containing a description of any error
that was posted. If no error was posted, ERROR returns an empty string.

Return Data Type: STRING

Example:

PUT(NameQueue) !Write the record
IF ERROR() = ‘Queue Entry Not Found’ !If not found
ADD(NameQueue) ! add new entry
IF ERRORCODE() THEN STOP(ERROR()). !Check for unexpected error

END

ERRORCODE (return error code number)

ERRORCODE( )

The ERRORCODE function returns the code number for any error that was
posted. If no error was posted, ERRORCODE returns zero.

Return Data Type: LONG

Example:

ADD(Location) !Add new entry
IF ERRORCODE() = 8 !If not enough memory
MESSAGE(‘Out of Memory’) ! display message

END



13-34 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ERRORFILE (return error filename)

ERRORFILE( )

The ERRORFILE  function returns the name of the file for which an error
was posted. If the file is open, the full DOS file specification is returned. If
the file is not open, the contents of the FILE statement’s NAME attribute is
returned. If the file is not open and the file has no NAME attribute, the label
of the FILE statement is returned. If no error was posted, or the posted error
did not involve a file, ERRORFILE returns an empty string.

Return Data Type: STRING

Example:

ADD(Location)  !Add new entry
IF ERRORCODE()
MESSAGE(‘Error with ‘ & ERRORFILE()) !Display error filename

END

FILEERROR (return file driver error message)

FILEERROR( file )

The FILEERROR  function returns a string containing the “native” error
message from the file system (file driver) being used to access a data file. If
no error was posted, FILEERROR returns an empty string.

Return Data Type: STRING

Example:

PUT(NameFile)  !Write the record
IF FILEERRORCODE()
MESSAGE(FILERROR())
RETURN

END

See Also: FILEERRORCODE



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-35

FILEERRORCODE (return file driver error code number)

FILEERRORCODE( )

The FILEERRORCODE  function returns a string containing the code
number for the “native” error message from the file system (file driver)
being used to access a data file. If no error was posted, FILEERRORCODE
returns an empty string.

Return Data Type: STRING

Example:

PUT(NameFile)  !Write the record
IF FILEERRORCODE()
MESSAGE(FILERROR())
RETURN

END

See Also: FILEERROR

REJECTCODE (return reject code number)

REJECTCODE( )

The REJECTCODE function returns the code number for the reason any
EVENT:Rejected that was posted. If no EVENT:Rejected was posted,
REJECTCODE returns zero. The EQUATES.CLW file contains equates for
the values returned by REJECTCODE:

REJECT:RangeHigh ! Above the top range on a SPIN
REJECT:RangeLow ! Below the bottom range on a SPIN
REJECT:Range ! Other range error
REJECT:Invalid ! Invalid input

Return Data Type: LONG

Example:

CASE EVENT()
OF EVENT:Rejected
EXECUTE REJECTCODE()
MESSAGE(‘Input invalid -- out of range -- too high’)
MESSAGE(‘Input invalid -- out of range -- too low’)
MESSAGE(‘Input invalid -- out of range’)
MESSAGE(‘Input invalid’)

END
END



13-36 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Miscellaneous PMiscellaneous PMiscellaneous PMiscellaneous PMiscellaneous Prrrrrocedurocedurocedurocedurocedures and Fes and Fes and Fes and Fes and Functionsunctionsunctionsunctionsunctions

ADDRESS (return a memory address)

ADDRESS( | segment,offset | )
| variable |
| procedure |

ADDRESS Returns memory address of a variable.

segment The label of a data element, or an integer variable or
constant containing the segment portion of a
segment:offset real-mode absolute memory address.

offset An integer variable or constant containing the offset
portion of a segment:offset real-mode absolute memory
address.

variable The label of a data element.

procedure The label of a PROCEDURE or FUNCTION.

The ADDRESS function returns a LONG integer containing a memory
address in selector:offset format, where the selector is a reference into the
protected mode lookup table.

  ADDRESS(segment,offset)
Returns the protected mode selector:offset for the real
mode address specified by the segment and offset
parameters. This allows protected mode direct memory
access without incurring a protection violation.

  ADDRESS(variable)
Returns the protected mode address of the data element
specified by the variable parameter.

  ADDRESS(procedure)
Returns the protected mode address of the PROCE-
DURE or FUNCTION specified by the procedure
parameter.

Tha ADDRESS function allows you to pass the address of a variable or
procedure to external libraries written in other languages.

Return Data Type: LONG



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-37

Example:

 MAP
 ClarionProc !A Clarion language procedure
 MODULE(‘External.Obj’) !An external library
 ExternVarProc(LONG) !C function receiving variable address
 ExternProc(LONG) !C function receiving procedure address

 . .

Var1 CSTRING(10)  !Define a null-terminated string

CODE
ExternVarProc(ADDRESS(Var1)) !Pass address of Var1 to external procedure
ExternProc(ADDRESS(ClarionProc)) !Pass address of ClarionProc

ClarionProc PROCEDURE !A Clarion language procedure
CODE
RETURN



13-38 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BEEP (sound tone on speaker)

BEEP( [sound] )

BEEP Generates a sound through the system speaker.

sound A numeric constant, variable, expression, or EQUATE
for the Windows sound to issue.

The BEEP statement generates a sound through the system speaker. These
are standard Windows sounds available through the [sounds] section of the
WIN.INI file. Standard EQUATE values similar to these are listed in the
EQUATES.CLW file:

BEEP:SystemDefault
BEEP:SystemHand
BEEP:SystemQuestion
BEEP:SystemExclamation
BEEP:SystemAsterisk

Example:

IF ERRORCODE() !If unexpected error
BEEP(BEEP:SystemDefault) ! sound a standard beep
STOP(ERROR()) ! stop for the error

END



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-39

CALL (call procedure from a DLL)

CALL( file, procedure )

CALL Calls a procedure that has not been prototyped in the
application’s MAP structure from a Windows standard
.DLL.

file A string constant, variable, or expression containing the
name (including extension) of the .DLL to open. This
may include a full path.

procedure A string constant, variable, or expression containing the
name of the procedure to call (which may not receive
parameters or return a value). This can also be the
ordinal number indicating the procedure’s position
within the .DLL.

The CALL  function calls a procedure from a Windows-standard .DLL. The
procedure does not need to be prototyped in the application’s MAP
structure. If it is not already loaded by Windows, the .DLL file is loaded into
memory.

CALL returns zero (0) for a successful procedure call, or one of the
following error values:

2 File not found
3 Path not found
5 Attempted to load a task, not a .DLL
6 Library requires separate data segments for each task
10 Wrong Windows version
11 Invalid .EXE file (DOS file or error in program header)
12 OS/2 application
13 DOS 4.0 application
14 Unknown .EXE type
15 Attempt to load an .EXE created for an earlier version of Windows.

This error will not occur if Windows is run in Real mode.
16 Attempt to load a second instance of an .EXE file containing

multiple, writeable data segments.
17 EMS memory error on the second loading of a .DLL
18 Attempt to load a protected-mode-only application while Windows is

running in Real mode

Return Data Type: LONG

Example:

X# = CALL(‘CUSTOM.DLL’,’1’) !Call first procedure in CUSTOM.DLL
IF X# THEN STOP(X#). !Check for successful execution



13-40 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MAXIMUM (return maximum subscript value)

MAXIMUM(variable,subscript)

MAXIMUM Returns maximum subscript value.

variable The label of a variable declared with a DIM attribute.

subscript A numeric constant, variable, or expression for the
subscript number. The subscript identifies which array
dimension is passed to the function.

The MAXIMUM  function returns the maximum subscript value for an
explicitly dimensioned variable. MAXIMUM does not operate on the
implicit array dimension of STRING, CSTRING, or PSTRING variables.
This is usually used to determine the size of an array passed as a parameter
to a procedure or function.

Return Data Type: LONG

Example:

Array BYTE,DIM(10,12) !Define a two-dimensional array

!For the above Array: MAXIMUM(Array,1) returns 10
! MAXIMUM(Array,2) returns 12

CODE
LOOP X# = 1 TO MAXIMUM(Array,1) !Loop until end of 1st dimension
LOOP Y# = 1 TO MAXIMUM(Array,2) ! Loop until end of 2nd dimension
Array[X#,Y#] = 27 ! Initialize each element to default

. .

See Also: DIM, Arrays as Parameters of PROCEDUREs and FUNCTIONs

NAME (return DOS file or device name)

NAME(label)

NAME Returns name of a file.

label The label of a FILE declaration.

The NAME  function returns a string containing the DOS device name for
the structure identified by the label. For FILE structures, if the file is OPEN,
the complete DOS file specification (drive, path, name, and extension) is
returned. If the FILE is closed, the contents of the NAME attribute on the
FILE are returned.

Return Data Type: STRING

Example:

OpenFile = NAME(Customer) !Save the name of the open file



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-41

OMITTED (check omitted parameters)

OMITTED(position)

OMITTED Tests for unpassed parameters.

position An integer constant or variable which specifies the
parameter to test.

The OMITTED  function tests whether a parameter of a PROCEDURE or
FUNCTION was actually passed. The return value is 1 (true) if the
parameter in the specified position was omitted. The return value is zero
(false) if the parameter was passed. Any position past the last parameter
passed is considered omitted.

A parameter may only be omitted if its data type is enclosed in angle
brackets ( < > ) in the PROCEDURE or FUNCTION prototype in the MAP
structure.

Return Data Type: LONG

Example:

PROGRAM
MAP
 SomeProc(STRING,<LONG>,STRING) !Procedure prototype
 SomeFunction(STRING,<LONG>),STRING !Function prototype
END
CODE
SomeProc(Field1,,Field3)
!For this statement:
! OMITTED(1) returns 0
! OMITTED(2) returns 1
! OMITTED(3) returns 0
! OMITTED(4) returns 1

SomeProc PROCEDURE(Field1,Date,Field3)
CODE
IF OMITTED(2) !If date parameter was omitted
Date = TODAY() ! substitute the system date

END

See Also: FUNCTION and PROCEDURE Prototypes



13-42 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PEEK (read memory address)

PEEK(segment:offset,destination)

PEEK Reads data from a memory address.

segment:offset A numeric constant, variable, or expression which
specifies a memory address. The segment must be in the
high order two bytes, and the offset in the low order two
bytes. The integer portion of a REAL is the data type
used for the intermediate value, to assure 32 bit preci-
sion. This parameter should always use the ADDRESS
function, to ensure the correct protected mode
selector:offset address is used.

destination The label of a variable to receive the contents of the
memory location.

The PEEK statement reads the memory address at segment:offset and copies
the data found there into the destination variable. PEEK reads as many bytes
as are required to fill the destination variable.

It is easily possible to create a General Protection Fault (GPF) if you PEEK
at an address that belongs to another program, so great care should be taken
when using PEEK. There are usually Windows API functions that will do
whatever you require of PEEK and these should be used in preference to
PEEK.

Example:

Segment USHORT
Offset USHORT
Dest1 BYTE
Dest2 SHORT
Dest3 REAL
KeyboardFlag BYTE

CODE
PEEK(ADDRESS(Segment,Offset),Dest1) !Read 1 byte

PEEK(ADDRESS(Segment,Offset),Dest2) !Read 2 bytes

PEEK(ADDRESS(Segment,Offset),Dest3) !Read 8 bytes

PEEK(ADDRESS(0040h,0017h),KeyboardFlag) !Read keyboard status byte

See Also: POKE, ADDRESS



CHAPTER 13 MISCELLANEOUS  PROCEDURES AND FUNCTIONS 13-43

POKE (write to memory address)

POKE(segment:offset,source)

POKE Writes data to a memory address.

segment:offset A numeric constant, variable, or expression which
specifies a memory address. The segment must be in the
high order two bytes, and the offset in the low order two
bytes. The integer portion of a REAL is the data type
used for the intermediate value, to assure 32 bit preci-
sion. This parameter should always use the ADDRESS
function, to ensure the correct protected mode
selector:offset address is used.

source The label of a variable.

The POKE statement writes the contents of the source variable to the
memory address at segment:offset. POKE writes as many bytes as are in the
source variable.

It is easily possible to create a General Protection Fault (GPF) if you POKE
to an address that belongs to another program, so great care should be taken
when using POKE. There are usually Windows API functions that will do
whatever you require of POKE and these should be used in preference to
POKE.

Example:

Segment USHORT
Offset USHORT
Source1 BYTE
Source2 SHORT
Source3 REAL
KeyboardFlag BYTE

CODE
POKE(ADDRESS(Segment,Offset),Source1) !Write 1 byte to the memory location

POKE(ADDRESS(Segment,Offset),Source2) !Write 2 bytes to the memory location

POKE(ADDRESS(Segment,Offset),Source3) !Write 8 bytes to the memory location

PEEK(ADDRESS(0040h,0017h),KeyboardFlag) !Read keyboard status byte
KeyboardFlag = BOR(KeyboardFlag,40h) !  turn on caps lock
POKE(ADDRESS(0040h,0017h),KeyboardFlag) !  and put it back

See Also: PEEK, ADDRESS



APPENDIX A DDE L IBRARY  REFERENCE A-1

Dynamic Data ExDynamic Data ExDynamic Data ExDynamic Data ExDynamic Data Exchangechangechangechangechange

Overview

Dynamic Data Exchange (DDE) is a very powerful Windows tool that allows
a user to access data from another separately executing Windows
application. This allows the user to work with the data in its native format
(in the originating application), while ensuring that the application in which
the data is used always has the most current values.

DDE is based upon establishing “conversations” (links) between two
concurrently executing Windows applications. One of the applications acts
as the DDE server to provide the data, and the other is the DDE client that
receives the data. A single application may be both a DDE client and server,
getting data from other applications and providing data to other applications.
Multiple DDE “conversations” can occur concurrently between any given
DDE server and client.

To be a DDE server, a Clarion application must:

       • Open at least one window, since all DDE servers must
be associated with a window.

       • Register with Windows as a DDE server, using the
DDESERVER function.

       • Provide the requested data to the client, using the
DDEWRITE statement.

       • When DDE is no longer required, terminate the link by
using the DDECLOSE statement. You can also allow it
to terminate automatically when the user closes the
server application or the window that started the link.

To be a DDE client, a Clarion application must:

       • Open a link to a DDE server as its client, using the
DDECLIENT function.

       • Ask the server for data, using the DDEREAD statement,
or ask the server for a service using the DDEEXECUTE
statement.

       • When DDE is no longer required, terminate the link by
using the DDECLOSE statement. You can also allow it
to terminate automatically when the user closes the
client window or application.

The DDE functions are prototyped in the DDE.CLW file, which you must
INCLUDE in your program’s MAP  structure. The DDE process posts DDE-
specific field-independent events to the ACCEPT loop of the window that
opened the link between applications as a server or client.



A-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DDE Events

The DDE process is governed by several field-independent events specific to
DDE. These events are posted to the ACCEPT loop of the window that
opened the link between applications, either as a server or client.

The following events are posted only to a Clarion server application:

 EVENT:DDErequest
A client has requested a data item.

 EVENT:DDEadvise
A client has requested continuous updates of a data item.

 EVENT:DDEexecute
A client has executed a DDEEXECUTE statement.

 EVENT:DDEpoke A client has sent unsolicited data

The following events are posted only to a Clarion client application:

 EVENT:DDEdata A server has supplied an updated data item.

 EVENT:DDEclose A server has terminated the DDE link.

When one of these DDE events occur there are several functions that tell you
what posted the event:

       • DDECHANNEL() returns the handle of the DDE server
or client.

       • DDEITEM() returns the item or command string passed
to the server by the DDEREAD or DDEEXECUTE
statements.

       • DDEAPP() returns the name of the application.

       • DDETOPIC() returns the name of the topic.

When a Clarion program creates a DDE server, external clients can link to
this server and request data. Each data request is accompanied by a string (in
some specific format which the server program knows) indicating the
required data item. If the Clarion server already knows the value for a given
item, it supplies it to the client automatically without generating any events.
If it doesn’t, an EVENT:DDErequest or EVENT:DDEadvise event is posted
to the server window’s ACCEPT loop.

When a Clarion program creates a DDE client, it can link to external servers
which can provide data. When the server first provides the value for a given
item, it supplies it to the client automatically without generating any events.
If the client has established a “hot” link with the server, an
EVENT:DDEdata event is posted to the client window’s ACCEPT loop
whenever the server posts a new value for the data item.



APPENDIX A DDE L IBRARY  REFERENCE A-3

DDE FDDE FDDE FDDE FDDE Functionsunctionsunctionsunctionsunctions

DDESERVER (return DDE server channel)

DDESERVER( [ application ] [, topic ] )

DDESERVER Returns a new DDE server channel number.

application A string constant or variable containing the name of the
application. Usually, this is the name of the application.
If omitted, the filename of the application (without
extension) is used.

topic A string constant or variable containing the name of the
application-specific topic. If omitted, the application
will respond to any data request.

The DDESERVER function returns a new DDE server channel number for
the application and topic. The channel number specifies a topic for which
the application will provide data. This allows a single Clarion application to
register as a DDE server for multiple topics.

Return Data Type: LONG

Example:

DDERetVal STRING(20)
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDERetVal)
END

MyServer LONG
CODE
OPEN(WinOne)
MyServer = DDESERVER(‘MyApp’,’DataEntered’) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest !As server for data requested once
DDEWRITE(MyServer,DDE:manual,’DataEntered’,DDERetVal) !Provide data once

OF EVENT:DDEadvise !As server for constant update request
DDEWRITE(MyServer,15,’DataEntered’,DDERetVal)

!Check for change every 15 seconds
! and provide data whenever changed

END
END

See Also: DDECLIENT, DDEWRITE



A-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DDECLIENT (return DDE client channel)

DDECLIENT( [ application ] [, topic ] )

DDECLIENT Returns a new DDE client channel number.

application A string constant or variable containing the name of the
server application to link to. Usually, this is the name of
the application. If omitted, the first DDE server applica-
tion available is used.

topic A string constant or variable containing the name of the
application-specific topic. If omitted, the first topic
available in the application is used.

The DDECLIENT  function returns a new DDE client channel number for
the application and topic. If the application is not currently executing,
DDECLIENT returns zero (0).

Typically, when opening a DDE channel as the client, the application is the
name of the server application. The topic is a string that the application has
either registered with Windows as a valid topic for the application, or
represents some value that tells the application what data to provide. You
can use the DDEQUERY function to determine the applications and topics
currently registered with Windows.

Return Data Type: LONG

Example:

DDEReadVal REAL
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDEReadVal)
END

ExcelServer LONG
CODE
OPEN(WinOne)
ExcelServer = DDECLIENT(‘Excel’,’MySheet.XLS’)

!Open as client to Excel spreadsheet
IF NOT ExcelServer !If the server is not running
MESSAGE(‘Please start Excel’) !alert the user to start it
RETURN ! and try again

END
DDEREAD(ExcelServer,DDE:auto,’R5C5',DDEReadVal)
ACCEPT
CASE EVENT()
OF EVENT:DDEdata !As changed data comes from Excel
PassedData(DDEReadVal) ! process the new data

END
END

See Also: DDEQUERY, DDEWRITE, DDESERVER



APPENDIX A DDE L IBRARY  REFERENCE A-5

DDEQUERY (return registered DDE servers)

DDEQUERY( [ application ] [, topic ] )

DDEQUERY Returns currently executing DDE servers.

application A string constant or variable containing the name of the
application to query. For most applications, this is the
name of the application. If omitted, all registered
applications registered with the specified topic are
returned.

topic A string constant or variable containing the name of the
application-specific topic to query. If omitted, all topics
for the application are returned.

The DDEQUERY function returns a string containing the names of the
currently available DDE server applications and their topics.

If the topic parameter is omitted, all topics for the specified application are
returned. If the application parameter is omitted, all registered applications
registered with the specified topic are returned. If both parameters are
omitted, DDEQUERY returns all currently available DDE servers.

The format of the data in the return string is application:topic and it can
contain multiple application and topic pairs delimited by commas (for
example, ‘Excel:MySheet.XLS,ClarionApp:DataFile.DAT’).

Return Data Type: STRING

Example:

!This example code does not handle DDEADVISE
WinOne WINDOW,AT(0,0,160,400)

END
SomeServer LONG
ServerString STRING(200)
CODE
OPEN(WinOne)
LOOP
ServerString = DDEQUERY() !Return all registered servers
IF NOT INSTRING(‘SomeApp:MyTopic’,ServerString,1,1)
MESSAGE(‘Open SomeApp, Please’)

ELSE
BREAK

END
END
SomeServer = DDECLIENT(‘SomeApp’,’MyTopic’) !Open as client
ACCEPT
END
DDECLOSE(SomeServer)



A-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DDECHANNEL (return DDE channel number)

DDECHANNEL( )

The DDECHANNEL  function returns a LONG integer containing the
channel number of the DDE client or server application that has just posted
a DDE event. This is the same value returned by the DDESERVER or
DDECLIENT function when the DDE channel is established.

Return Data Type: LONG

Example:

WinOne WINDOW,AT(0,0,160,400)
END

TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)
CODE
OPEN(WinOne)
TimeServer = DDESERVER(‘SomeApp’,’Time’) !Open as server
DateServer = DDESERVER(‘SomeApp’,’Date’) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDECHANNEL() !Check which channel
OF TimeServer
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,’Time’,FormatTime)

OF DateServer
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,’Date’,FormatDate)

END
END

END



APPENDIX A DDE L IBRARY  REFERENCE A-7

DDEAPP (return server application)

DDEAPP( )

The DDEAPP function returns a string containing the application name in
the DDE channel that has just posted a DDE event. This is usually the same
as the first parameter to the DDESERVER or DDECLIENT function when
the DDE channel is established.

Return Data Type: STRING

Example:

ClientApp STRING(20)
WinOne WINDOW,AT(0,0,160,400)

STRING(@S20),AT(5,5,90,20),USE(ClientApp)
END

TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)

CODE
OPEN(WinOne)
TimeServer = DDESERVER(‘SomeApp’,’Time’) !Open as server
DateServer = DDESERVER(‘SomeApp’,’Date’) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDECHANNEL()
OF TimeServer
ClientApp = DDEAPP() !Get client’s name
DISPLAY ! and display on screen
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,’Time’,FormatTime)

OF DateServer
ClientApp = DDEAPP() !Get client’s name
DISPLAY ! and display on screen
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,’Date’,FormatDate)

END
END

END



A-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DDEITEM (return server item)

DDEITEM( )

The DDEITEM  function returns a string containing the name of the item
for the current DDE event. This is the item requested by a DDEREAD, the
data item supplied by DDEPOKE, or the command to execute from a
DDEEXECUTE statement.

Return Data Type: STRING

Example:

WinOne WINDOW,AT(0,0,160,400)
END

Server LONG
FormatTime STRING(5)
FormatDate STRING(8)

CODE
OPEN(WinOne)
Server = DDESERVER(‘SomeApp’,’Clock’) !Open as server for my topic
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDEITEM()
OF ‘Time’
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(Server,DDE:manual,’Time’,FormatTime)

OF ‘Date’
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(Server,DDE:manual,’Date’,FormatDate)

END
OF EVENT:DDEadvise
CASE DDEITEM()
OF ‘Time’
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(Server,1,’Time’,FormatTime)

OF ‘Date’
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(Server,60,’Date’,FormatDate)

END
END

END

See Also: DDEREAD, DDEEXECUTE



APPENDIX A DDE L IBRARY  REFERENCE A-9

DDETOPIC (return server topic)

DDETOPIC( )

The DDETOPIC  function returns a string containing the topic name for the
DDE channel that has just posted a DDE event.

Return Data Type: STRING

Example:

WinOne WINDOW,AT(0,0,160,400)
END

TimeServer LONG
DateServer LONG
FormatTime STRING(5)
FormatDate STRING(8)

CODE
OPEN(WinOne)
TimeServer = DDESERVER(‘SomeApp’) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest
CASE DDETOPIC() !Get requested topic
OF ‘Time’
FormatTime = FORMAT(CLOCK(),@T1)
DDEWRITE(TimeServer,DDE:manual,’Time’,FormatTime)

OF ‘Date’
FormatDate = FORMAT(TODAY(),@D1)
DDEWRITE(DateServer,DDE:manual,’Date’,FormatDate)

END
END

END

See Also: DDEREAD



A-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DDEVALUE (return data value sent to server)

DDEVALUE( )

The DDEVALUE  function returns a string containing the data sent to a
Clarion DDE server by the DDEPOKE statement.

Return Data Type: STRING

Example:

WinOne WINDOW,AT(0,0,160,400)
END

TimeServer LONG

TimeStamp FILE,DRIVER(ASCII),PRE(Tim)
Record RECORD
FormatTime STRING(5)
FormatDate STRING(8)
Message STRING(50)

. .

CODE
OPEN(WinOne)
TimeServer = DDESERVER(‘TimeStamp’) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDEpoke
OPEN(TimeStamp)
Tim:FormatTime = FORMAT(CLOCK(),@T1)
Tim:FormatDate = FORMAT(TODAY(),@D1)
Tim:Message = DDEVALUE() !Get data
ADD(TimeStamp)
CLOSE(TimeStamp)
CYCLE !Ensure acknowledgement

END
END

See Also: DDEPOKE



APPENDIX A DDE L IBRARY  REFERENCE A-11

DDE PDDE PDDE PDDE PDDE Prrrrrocedurocedurocedurocedurocedureseseseses

DDEREAD (get data from DDE server)

DDEREAD( channel, mode, item [, variable ] )

DDEREAD Gets data from a previously opened DDE client channel.

channel A LONG integer constant or variable containing the
client channel—the value returned by the DDECLIENT
function.

mode An EQUATE defining the type of data link: DDE:auto,
DDE:manual, or DDE:remove (defined in
EQUATES.CLW).

item A string constant or variable containing the application-
specific name of the data item to retrieve.

variable The name of the variable to receive the retrieved data. If
omitted and mode is DDE:remove, all links to the item
are canceled.

The DDEREAD procedure allows a DDE client program to read data from
the channel into the variable. The type of update is determined by the mode
parameter. The item parameter supplies some string value to the server
application that tells it what specific data item is being requested. The
format and structure of the item string is dependent upon the server
application.

If the mode is DDE:auto, the variable is continually updated by the server (a
“hot” link). If the mode is DDE:manual, the variable is updated once and
another DDEREAD request must be sent to the server to check for any
changed value (a “cold” link). If the mode is DDE:remove, a previous “hot”
link to the variable is terminated. If the mode is DDE:remove and variable
is omitted, all previous “hot” links to the item are terminated, no matter
what variables were linked. This means the client must send another
DDEREAD request to the server to check for any changed value.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out



A-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

These events are posted to the client application:

 EVENT:DDEdata A server has supplied an updated data item for a hot
link.

 EVENT:DDEclose A server has terminated the DDE link.

Example:

WinOne WINDOW,AT(0,0,160,400)
END

ExcelServer LONG(0)
DDEReadVal REAL

CODE
OPEN(WinOne)
ExcelServer = DDECLIENT(‘Excel’,’MySheet.XLS’)

!Open as client to Excel spreadsheet
IF NOT ExcelServer !If the server is not running
MESSAGE(‘Please start Excel’) ! alert the user to start it
CLOSE(WinOne)
RETURN

END
DDEREAD(ExcelServer,DDE:auto,’R5C5',DDEReadVal)

 !Request continual update from server
ACCEPT
CASE EVENT()
OF EVENT:DDEdata !As changed data comes from Excel
PassedData(DDEReadVal) ! call proc to process the new data

END
END

See Also: DDEQUERY, DDEWRITE



APPENDIX A DDE L IBRARY  REFERENCE A-13

DDEWRITE (provide data to DDE client)

DDEWRITE( channel, mode, item [, variable ] )

DDEWRITE Provide data to an open DDE server channel.

channel A LONG integer constant or variable containing the
server channel—the value returned by the DDESERVER
function.

mode An integer constant or variable containing the interval
(in seconds) to poll for changes to the variable, or an
EQUATE defining the type of data link: DDE:auto,
DDE:manual, or DDE:remove (defined in
EQUATES.CLW).

item A string constant or variable containing the application-
specific name of the data item to provide.

variable The name of the variable providing the data. If omitted
and mode is DDE:remove, all links to the item are
canceled.

The DDEWRITE  procedure allows a DDE server program to provide the
variable’s data to the client. The item parameter supplies a string value that
identifies the specific data item being provided. The format and structure of
the item string is dependent upon the server application. The type of update
performed is determined by the mode parameter.

If the mode is DDE:auto, the client program receives the current value of the
variable and the internal libraries continue to provide that value whenever
the client (or any other client) asks for it again. If the client requested a
“hot” link, any changes to the variable should be tracked by the Clarion
program so it can issue a new DDEWRITE statement to update the client
with the new value.

If the mode is DDE:manual, the variable is updated only once. If the client
requested a “hot” link, any changes to the variable should be tracked by the
Clarion program so it can issue a new DDEWRITE statement to update the
client with the new value. PROP:DDETimeOut can be used to set or get the
time out value for the DDE connection (default is five seconds).

If the mode is a positive integer, the internal libraries check the value of the
variable whenever the specified number of seconds has passed. If the value
has changed, the client is automatically updated with the new value by the
internal libraries (without the need for any further Clarion code). This can
incur significant overhead, depending upon the data, and so should be used
only when necessary.

If the mode is DDE:remove, any previous “hot” link to the variable is
terminated. If the mode is DDE:remove and variable is omitted, all previous
“hot” links to the item are terminated, no matter what variables were linked.



A-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

This means the client must send another DDEREAD request to the server to
check for any changed value.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out

Events Generated:

 EVENT:DDErequest
A client has requested a data item (a “cold” link).

 EVENT:DDEadvise
A client has requested continuous updates of a data item
(a “hot” link).

Example:

DDERetVal STRING(20)
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDERetVal)
END

MyServer LONG
CODE
OPEN(WinOne)
MyServer = DDESERVER(‘MyApp’,’DataEntered’) !Open as server
ACCEPT
CASE EVENT()
OF EVENT:DDErequest !As server for data requested once
DDEWRITE(MyServer,DDE:manual,’DataEntered’,DDERetVal)

!Provide data once
OF EVENT:DDEadvise !As server for constant update request
DDEWRITE(MyServer,15,’DataEntered’,DDERetVal)

!Check for change every 15 seconds
! and provide data whenever changed

END
END

See Also: DDEQUERY, DDEREAD



APPENDIX A DDE L IBRARY  REFERENCE A-15

DDEEXECUTE (send command to DDE server)

DDEEXECUTE( channel, command )

DDEEXECUTE Sends a command string to an open DDE client channel.

channel A LONG integer constant or variable containing the
client channel—the value returned by the DDECLIENT
function.

command A string constant or variable containing the application-
specific command for the server to execute.

The DDEEXECUTE  procedure allows a DDE client program to
communicate a command to the server. The command must be in a format
the server application can recognize and act on. The server does not need to
be a Clarion program. By convention, the entire command string is normally
contained within square brackets ( [ ] ).

A Clarion DDE server can use the DDEITEM() function to determine what
command the client has sent.The CYCLE statement after an
EVENT:DDEexecute signals positive acknowledgement to the client that
sent the command.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
603 DDEEXECUTE Failed
605 Time Out

Events Generated:

 EVENT:DDEexecute
A client has sent a command.

Example:

!The client application’s code contains:
WinOne WINDOW,AT(0,0,160,400)

END
SomeServer LONG
DDEChannel LONG
CODE
OPEN(WinOne)
DDEChannel = DDECLIENT(‘PROGMAN’,’PROGMAN’)

 !Open a channel to Windows Program Manager
DDEEXECUTE(DDEChannel,’[CreateGroup(Clarion Applications)]’)

!Create a new program group
DDEEXECUTE(DDEChannel,’[ShowGroup(1)]’) !Display it
DDEEXECUTE(DDEChannel,’[AddItem(MYAPP.EXE,My Program,PROGMAN.EXE,2)]’)

!Create new item in the group
! using second icon in progman.exe



A-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DDEPOKE (send unsolicited data to DDE server)

DDEPOKE( channel, item, value )

DDEPOKE Sends unsolicited data through an open DDE client
channel to a DDE server.

channel A LONG integer constant or variable containing the
client channel—the value returned by the DDECLIENT
function.

item A string constant or variable containing the application-
specific item to receive the unsolicited data.

value A string constant or variable containing the data to place
in the item.

The DDEPOKE procedure allows a DDE client program to communicate
unsolicited data to the server. The item and value parameters must be in a
format the server application can recognize and act on. The server does not
need to be a Clarion program.

A Clarion DDE server can use the DDEITEM() and DDEVALUE()
functions to determine what the client has sent. The CYCLE statement after
an EVENT:DDEpoke signals positive acknowledgement to the client that
sent the unsolicited data.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
604 DDEPOKE Failed
605 Time Out

Events Generated:

 EVENT:DDEpoke A client has sent unsolicited data



APPENDIX A DDE L IBRARY  REFERENCE A-17

Example:

WinOne WINDOW,AT(0,0,160,400)
END

DDEChannel LONG
CODE
OPEN(WinOne)
DDEChannel = DDECLIENT(‘Excel’,’System’) !Open channel to Excel
DDEEXECUTE(DDEChannel,’[NEW(1)]’) !Create a new spreadsheet
DDEEXECUTE(DDEChannel,’[Save.As(“DDE_CHART.XLS”)]’) !Save it as DDE_CHART.XLS
DDECLOSE(DDEChannel) !Close conversation
DDEChannel = DDECLIENT(‘Excel’,’DDE_CHART.XLA’) !Open channel to new chart
DDEPOKE(DDEChannel,’R1C2’,’Widgets’) !Send it data
DDEPOKE(DDEChannel,’R1C3’,’Gadgets’)
DDEPOKE(DDEChannel,’R2C1’,’East’)
DDEPOKE(DDEChannel,’R3C1’,’West’)
DDEPOKE(DDEChannel,’R2C2’,’450’)
DDEPOKE(DDEChannel,’R3C2’,’275’)
DDEPOKE(DDEChannel,’R2C3’,’340’)
DDEPOKE(DDEChannel,’R3C3’,’390’)
DDEEXECUTE(DDEChannel,’[SELECT(“R1C1:R3C2”)]’) !Highlight the data
DDEEXECUTE(DDEChannel,’[NEW(2,2)]’) ! and create a new chart
 !Send some more commands to format the chart and work with it

DDECLOSE(DDEChannel) !Close channel when done



A-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DDECLOSE (terminate DDE server link)

DDECLOSE( channel )

DDECLOSE Closes an open DDE channel.

channel The label of the LONG integer variable containing the
channel number—the value returned by the
DDESERVER or DDECLIENT function.

The DDECLOSE procedure allows a DDE client program to terminate the
specified channel. A channel is automatically terminated when the window
which opened the channel is closed.

Errors Posted: 601 Invalid DDE Channel
602 DDE Channel Not Open
605 Time Out

Example:

WinOne WINDOW,AT(0,0,160,400)
END

SomeServer LONG
CODE
OPEN(WinOne)
SomeServer = DDECLIENT(‘SomeApp’,’MyTopic’) !Open as client
ACCEPT
END
DDECLOSE(SomeServer)



APPENDIX B K EYCODES B-1

Clarion KClarion KClarion KClarion KClarion Keyeyeyeyeycodescodescodescodescodes

Windows Keycode Mapping Format

Each key on the keyboard is assigned a keycode. Keycodes are 16-bit values
where the low-order 8 bits (values from 0 to 255) represent the key that was
pressed, and the high-order 8 bits indicate the state of the Shift, Ctrl, and Alt
keys. Keycodes are returned by the KEYCODE() and KEYBOARD()
functions, and use the following format:

 | A | C | S |  CODE  |

 Bits: 10  9  8  7  0

CODE - The Key pressed
A - Alt key bit
C - Ctrl key bit
S - Shift key bit

Calculating a keycode’s numeric value is generally unnecessary, since most
of the possible key combinations are listed as EQUATES in
KEYCODES.CLW (INCLUDE this file and use the equates instead of the
numbers). The contents of KEYCODES.CLW are listed in Appendix A.



B-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

KEYCODES.CLW

Keycode equate labels assign mnemonic labels to Clarion keycodes. The
keycode equates file (KEYCODES.CLW) is a Clarion source file which
contains an EQUATE statement for each keycode. This file is located in the
directory in which you installed Clarion Database Developer. It may be
merged into a source PROGRAM with the statement:
INCLUDE(‘KEYCODES.CLW’).

This file contains EQUATE statements for all the keycodes:

Key0  EQUATE(0030H) !0 Key
Key1  EQUATE(0031H) !1 Key
Key2  EQUATE(0032H) !2 Key
Key3  EQUATE(0033H) !3 Key
Key4  EQUATE(0034H) !4 Key
Key5  EQUATE(0035H) !5 Key
Key6  EQUATE(0036H) !6 Key
Key7  EQUATE(0037H) !7 Key
Key8  EQUATE(0038H) !8 Key
Key9  EQUATE(0039H) !9 Key
AKey  EQUATE(0041H) !A Key
BKey  EQUATE(0042H) !B Key
CKey  EQUATE(0043H) !C Key
DKey  EQUATE(0044H) !D Key
EKey  EQUATE(0045H) !E Key
FKey  EQUATE(0046H) !F Key
GKey  EQUATE(0047H) !G Key
HKey  EQUATE(0048H) !H Key
IKey  EQUATE(0049H) !I Key
JKey  EQUATE(004AH) !J Key
KKey  EQUATE(004BH) !K Key
LKey  EQUATE(004CH) !L Key
MKey  EQUATE(004DH) !M Key
NKey  EQUATE(004EH) !N Key
OKey  EQUATE(004FH) !O Key
PKey  EQUATE(0050H) !P Key
QKey  EQUATE(0051H) !Q Key
RKey  EQUATE(0052H) !R Key
SKey  EQUATE(0053H) !S Key
TKey  EQUATE(0054H) !T Key
UKey  EQUATE(0055H) !U Key
VKey  EQUATE(0056H) !V Key
WKey  EQUATE(0057H) !W Key
XKey  EQUATE(0058H) !X Key
YKey  EQUATE(0059H) !Y Key
ZKey  EQUATE(005AH) !Z Key
F1Key  EQUATE(0070H) !F1 Key
F2Key  EQUATE(0071H) !F2 Key
F3Key  EQUATE(0072H) !F3 Key
F4Key  EQUATE(0073H) !F4 Key
F5Key  EQUATE(0074H) !F5 Key
F6Key  EQUATE(0075H) !F6 Key
F7Key  EQUATE(0076H) !F7 Key
F8Key  EQUATE(0077H) !F8 Key
F9Key  EQUATE(0078H) !F9 Key
F10Key  EQUATE(0079H) !F10 Key
F11Key  EQUATE(007AH) !F11 Key
F12Key  EQUATE(007BH) !F12 Key



APPENDIX B K EYCODES B-3

AstKey  EQUATE(006AH) !Asterisk Key
BSKey  EQUATE(0008H) !Backspace Key
CapsLockKey  EQUATE(0014H) !CapsLock Key
DecimalKey  EQUATE(006EH) !Decimal Key
DeleteKey  EQUATE(002EH) !Delete Key
DivideKey  EQUATE(006FH) !Divide Key
DownKey  EQUATE(0028H) !Cursor Down Key
EndKey  EQUATE(0023H) !End Key
EnterKey  EQUATE(000DH) !Enter Key
EscKey  EQUATE(001BH) !Esc Key
HomeKey  EQUATE(0024H) !Home Key
InsertKey  EQUATE(002DH) !Insert Key
LeftKey  EQUATE(0025H) !Cursor Left Key
MinusKey  EQUATE(006DH) !Minus Key
PauseKey  EQUATE(0013H) !Pause Key
PgDnKey  EQUATE(0022H) !PgDn Key
PgUpKey  EQUATE(0021H) !PgUp Key
PlusKey  EQUATE(006BH) !Plus Key
PrintKey  EQUATE(002CH) !PrintScreen Key
RightKey  EQUATE(0027H) !Cursor Right Key
SlashKey  EQUATE(006FH) !Slash Key
SpaceKey  EQUATE(0020H) !Spacebar
TabKey  EQUATE(0009H) !Tab Key
UpKey  EQUATE(0026H) !Cursor Up Key
KeyPad0  EQUATE(0060H) !0 on numeric keypad
KeyPad1  EQUATE(0061H) !1 on numeric keypad
KeyPad2  EQUATE(0062H) !2 on numeric keypad
KeyPad3  EQUATE(0063H) !3 on numeric keypad
KeyPad4  EQUATE(0064H) !4 on numeric keypad
KeyPad5  EQUATE(0065H) !5 on numeric keypad
KeyPad6  EQUATE(0066H) !6 on numeric keypad
KeyPad7  EQUATE(0067H) !7 on numeric keypad
KeyPad8  EQUATE(0068H) !8 on numeric keypad
KeyPad9  EQUATE(0069H) !9 on numeric keypad
MouseLeft  EQUATE(0001H) !Left mouse button
MouseRight  EQUATE(0002H) !Right mouse button
MouseCenter  EQUATE(0004H) !Middle mouse button
Alt0  EQUATE(0430H) !Alt-0 Key
Alt1  EQUATE(0431H) !Alt-1 Key
Alt2  EQUATE(0432H) !Alt-2 Key
Alt3  EQUATE(0433H) !Alt-3 Key
Alt4  EQUATE(0434H) !Alt-4 Key
Alt5  EQUATE(0435H) !Alt-5 Key
Alt6  EQUATE(0436H) !Alt-6 Key
Alt7  EQUATE(0437H) !Alt-7 Key
Alt8  EQUATE(0438H) !Alt-8 Key
Alt9  EQUATE(0439H) !Alt-9 Key
AltA  EQUATE(0441H) !Alt-A Key
AltB  EQUATE(0442H) !Alt-B Key
AltC  EQUATE(0443H) !Alt-C Key
AltD  EQUATE(0444H) !Alt-D Key
AltE  EQUATE(0445H) !Alt-E Key
AltF  EQUATE(0446H) !Alt-F Key
AltG  EQUATE(0447H) !Alt-G Key
AltH  EQUATE(0448H) !Alt-H Key
AltI  EQUATE(0449H) !Alt-I Key
AltJ  EQUATE(044AH) !Alt-J Key
AltK  EQUATE(044BH) !Alt-K Key
AltL  EQUATE(044CH) !Alt-L Key
AltM  EQUATE(044DH) !Alt-M Key
AltN  EQUATE(044EH) !Alt-N Key
AltO  EQUATE(044FH) !Alt-O Key



B-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

AltP  EQUATE(0450H) !Alt-P Key
AltQ  EQUATE(0451H) !Alt-Q Key
AltR  EQUATE(0452H) !Alt-R Key
AltS  EQUATE(0453H) !Alt-S Key
AltT  EQUATE(0454H) !Alt-T Key
AltU  EQUATE(0455H) !Alt-U Key
AltV  EQUATE(0456H) !Alt-V Key
AltW  EQUATE(0457H) !Alt-W Key
AltX  EQUATE(0458H) !Alt-X Key
AltY  EQUATE(0459H) !Alt-Y Key
AltZ  EQUATE(045AH) !Alt-Z Key
AltF1  EQUATE(0470H) !Alt-F1 Key
AltF2  EQUATE(0471H) !Alt-F2 Key
AltF3  EQUATE(0472H) !Alt-F3 Key
AltF4  EQUATE(0473H) !Alt-F4 Key
AltF5  EQUATE(0474H) !Alt-F5 Key
AltF6  EQUATE(0475H) !Alt-F6 Key
AltF7  EQUATE(0476H) !Alt-F7 Key
AltF8  EQUATE(0477H) !Alt-F8 Key
AltF9  EQUATE(0478H) !Alt-F9 Key
AltF10  EQUATE(0479H) !Alt-F10 Key
AltF11  EQUATE(047AH) !Alt-F11 Key
AltF12  EQUATE(047BH) !Alt-F12 Key
AltAst  EQUATE(046AH) !Alt-Asterisk Key
AltBS  EQUATE(0408H) !Alt-Backspace Key
AltDecimal  EQUATE(046EH) !Alt-Decimal Key
AltDelete  EQUATE(042EH) !Alt-Delete Key
AltDivide  EQUATE(046FH) !Alt-Divide Key
AltDown  EQUATE(0428H) !Alt-Cursor Down Key
AltEnd  EQUATE(0423H) !Alt-End Key
AltEnter  EQUATE(040DH) !Alt-Enter Key
AltEsc  EQUATE(041BH) !Alt-Esc Key
AltHome  EQUATE(0424H) !Alt-Home Key
AltInsert  EQUATE(042DH) !Alt-Insert Key
AltLeft  EQUATE(0425H) !Alt-Cursor Left Key
AltMinus  EQUATE(046DH) !Alt-Minus Key
AltPause  EQUATE(0413H) !Alt-Pause Key
AltPgDn  EQUATE(0422H) !Alt-PgDn Key
AltPgUp  EQUATE(0421H) !Alt-PgUp Key
AltPlus  EQUATE(046BH) !Alt-Plus Key
AltPrint  EQUATE(042CH) !Alt-PrintScreen Key
AltRight  EQUATE(0427H) !Alt-Cursor Right Key
AltSlash  EQUATE(046FH) !Alt-Slash Key
AltSpace  EQUATE(0420H) !Alt-Spacebar
AltTab  EQUATE(0409H) !Alt-Tab Key
AltUp  EQUATE(0426H) !Alt-Cursor Up Key
AltPad0  EQUATE(0460H) !Alt-0 on numeric keypad
AltPad1  EQUATE(0461H) !Alt-1 on numeric keypad
AltPad2  EQUATE(0462H) !Alt-2 on numeric keypad
AltPad3  EQUATE(0463H) !Alt-3 on numeric keypad
AltPad4  EQUATE(0464H) !Alt-4 on numeric keypad
AltPad5  EQUATE(0465H) !Alt-5 on numeric keypad
AltPad6  EQUATE(0466H) !Alt-6 on numeric keypad
AltPad7  EQUATE(0467H) !Alt-7 on numeric keypad
AltPad8  EQUATE(0468H) !Alt-8 on numeric keypad
AltPad9  EQUATE(0469H) !Alt-9 on numeric keypad
AltMouseLeft  EQUATE(0401H) !Alt-Left mouse button
AltMouseRight  EQUATE(0402H) !Alt-Right mouse button
AltMouseCenter  EQUATE(0404H) !Alt-Middle mouse button
Ctrl0  EQUATE(0230H) !Ctrl-0 Key
Ctrl1  EQUATE(0231H) !Ctrl-1 Key
Ctrl2  EQUATE(0232H) !Ctrl-2 Key



APPENDIX B K EYCODES B-5

Ctrl3 EQUATE(0233H) !Ctrl-3 Key
Ctrl4 EQUATE(0234H) !Ctrl-4 Key
Ctrl5 EQUATE(0235H) !Ctrl-5 Key
Ctrl6 EQUATE(0236H) !Ctrl-6 Key
Ctrl7 EQUATE(0237H) !Ctrl-7 Key
Ctrl8 EQUATE(0238H) !Ctrl-8 Key
Ctrl9 EQUATE(0239H) !Ctrl-9 Key
CtrlA EQUATE(0241H) !Ctrl-A Key
CtrlB EQUATE(0242H) !Ctrl-B Key
CtrlC EQUATE(0243H) !Ctrl-C Key
CtrlD EQUATE(0244H) !Ctrl-D Key
CtrlE EQUATE(0245H) !Ctrl-E Key
CtrlF EQUATE(0246H) !Ctrl-F Key
CtrlG EQUATE(0247H) !Ctrl-G Key
CtrlH EQUATE(0248H) !Ctrl-H Key
CtrlI EQUATE(0249H) !Ctrl-I Key
CtrlJ EQUATE(024AH) !Ctrl-J Key
CtrlK EQUATE(024BH) !Ctrl-K Key
CtrlL EQUATE(024CH) !Ctrl-L Key
CtrlM EQUATE(024DH) !Ctrl-M Key
CtrlN EQUATE(024EH) !Ctrl-N Key
CtrlO EQUATE(024FH) !Ctrl-O Key
CtrlP EQUATE(0250H) !Ctrl-P Key
CtrlQ EQUATE(0251H) !Ctrl-Q Key
CtrlR EQUATE(0252H) !Ctrl-R Key
CtrlS EQUATE(0253H) !Ctrl-S Key
CtrlT EQUATE(0254H) !Ctrl-T Key
CtrlU EQUATE(0255H) !Ctrl-U Key
CtrlV EQUATE(0256H) !Ctrl-V Key
CtrlW EQUATE(0257H) !Ctrl-W Key
CtrlX EQUATE(0258H) !Ctrl-X Key
CtrlY EQUATE(0259H) !Ctrl-Y Key
CtrlZ EQUATE(025AH) !Ctrl-Z Key
CtrlF1 EQUATE(0270H) !Ctrl-F1 Key
CtrlF2 EQUATE(0271H) !Ctrl-F2 Key
CtrlF3 EQUATE(0272H) !Ctrl-F3 Key
CtrlF4 EQUATE(0273H) !Ctrl-F4 Key
CtrlF5 EQUATE(0274H) !Ctrl-F5 Key
CtrlF6 EQUATE(0275H) !Ctrl-F6 Key
CtrlF7 EQUATE(0276H) !Ctrl-F7 Key
CtrlF8 EQUATE(0277H) !Ctrl-F8 Key
CtrlF9 EQUATE(0278H) !Ctrl-F9 Key
CtrlF10 EQUATE(0279H) !Ctrl-F10 Key
CtrlF11 EQUATE(027AH) !Ctrl-F11 Key
CtrlF12 EQUATE(027BH) !Ctrl-F12 Key
CtrlAst EQUATE(026AH) !Ctrl-Asterisk Key
CtrlBS EQUATE(0208H) !Ctrl-Backspace Key
CtrlDecimal EQUATE(026EH) !Ctrl-Decimal Key
CtrlDelete EQUATE(022EH) !Ctrl-Delete Key
CtrlDivide EQUATE(026FH) !Ctrl-Divide Key
CtrlDown EQUATE(0228H) !Ctrl-Cursor Down Key
CtrlEnd EQUATE(0223H) !Ctrl-End Key
CtrlEnter EQUATE(020DH) !Ctrl-Enter Key
CtrlEsc EQUATE(021BH) !Ctrl-Esc Key
CtrlHome EQUATE(0224H) !Ctrl-Home Key
CtrlInsert EQUATE(022DH) !Ctrl-Insert Key
CtrlLeft EQUATE(0225H) !Ctrl-Cursor Left Key
CtrlMinus EQUATE(026DH) !Ctrl-Minus Key
CtrlPause EQUATE(0213H) !Ctrl-Pause Key
CtrlPgDn EQUATE(0222H) !Ctrl-PgDn Key
CtrlPgUp EQUATE(0221H) !Ctrl-PgUp Key
CtrlPlus EQUATE(026BH) !Ctrl-Plus Key



B-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CtrlPrint EQUATE(022CH) !Ctrl-PrintScreen Key
CtrlRight EQUATE(0227H) !Ctrl-Cursor Right Key
CtrlSlash EQUATE(026FH) !Ctrl-Slash Key
CtrlSpace EQUATE(0220H) !Ctrl-Spacebar
CtrlTab EQUATE(0209H) !Ctrl-Tab Key
CtrlUp EQUATE(0226H) !Ctrl-Cursor Up Key
CtrlPad0 EQUATE(0260H) !Ctrl-0 on numeric keypad
CtrlPad1 EQUATE(0261H) !Ctrl-1 on numeric keypad
CtrlPad2 EQUATE(0262H) !Ctrl-2 on numeric keypad
CtrlPad3 EQUATE(0263H) !Ctrl-3 on numeric keypad
CtrlPad4 EQUATE(0264H) !Ctrl-4 on numeric keypad
CtrlPad5 EQUATE(0265H) !Ctrl-5 on numeric keypad
CtrlPad6 EQUATE(0266H) !Ctrl-6 on numeric keypad
CtrlPad7 EQUATE(0267H) !Ctrl-7 on numeric keypad
CtrlPad8 EQUATE(0268H) !Ctrl-8 on numeric keypad
CtrlPad9 EQUATE(0269H) !Ctrl-9 on numeric keypad
CtrlMouseLeft EQUATE(0201H) !Ctrl-Left mouse button
CtrlMouseRight EQUATE(0202H) !Ctrl-Right mouse button
CtrlMouseCenter EQUATE(0204H) !Ctrl-Middle mouse button
Shift0 EQUATE(0130H) !Shift-0 Key
Shift1 EQUATE(0131H) !Shift-1 Key
Shift2 EQUATE(0132H) !Shift-2 Key
Shift3 EQUATE(0133H) !Shift-3 Key
Shift4 EQUATE(0134H) !Shift-4 Key
Shift5 EQUATE(0135H) !Shift-5 Key
Shift6 EQUATE(0136H) !Shift-6 Key
Shift7 EQUATE(0137H) !Shift-7 Key
Shift8 EQUATE(0138H) !Shift-8 Key
Shift9 EQUATE(0139H) !Shift-9 Key
ShiftA EQUATE(0141H) !Shift-A Key
ShiftB EQUATE(0142H) !Shift-B Key
ShiftC EQUATE(0143H) !Shift-C Key
ShiftD EQUATE(0144H) !Shift-D Key
ShiftE EQUATE(0145H) !Shift-E Key
ShiftF EQUATE(0146H) !Shift-F Key
ShiftG EQUATE(0147H) !Shift-G Key
ShiftH EQUATE(0148H) !Shift-H Key
ShiftI EQUATE(0149H) !Shift-I Key
ShiftJ EQUATE(014AH) !Shift-J Key
ShiftK EQUATE(014BH) !Shift-K Key
ShiftL EQUATE(014CH) !Shift-L Key
ShiftM EQUATE(014DH) !Shift-M Key
ShiftN EQUATE(014EH) !Shift-N Key
ShiftO EQUATE(014FH) !Shift-O Key
ShiftP EQUATE(0150H) !Shift-P Key
ShiftQ EQUATE(0151H) !Shift-Q Key
ShiftR EQUATE(0152H) !Shift-R Key
ShiftS EQUATE(0153H) !Shift-S Key
ShiftT EQUATE(0154H) !Shift-T Key
ShiftU EQUATE(0155H) !Shift-U Key
ShiftV EQUATE(0156H) !Shift-V Key
ShiftW EQUATE(0157H) !Shift-W Key
ShiftX EQUATE(0158H) !Shift-X Key
ShiftY EQUATE(0159H) !Shift-Y Key
ShiftZ EQUATE(015AH) !Shift-Z Key
ShiftF1 EQUATE(0170H) !Shift-F1 Key
ShiftF2 EQUATE(0171H) !Shift-F2 Key
ShiftF3 EQUATE(0172H) !Shift-F3 Key
ShiftF4 EQUATE(0173H) !Shift-F4 Key
ShiftF5 EQUATE(0174H) !Shift-F5 Key
ShiftF6 EQUATE(0175H) !Shift-F6 Key
ShiftF7 EQUATE(0176H) !Shift-F7 Key



APPENDIX B K EYCODES B-7

ShiftF8 EQUATE(0177H) !Shift-F8 Key
ShiftF9 EQUATE(0178H) !Shift-F9 Key
ShiftF10 EQUATE(0179H) !Shift-F10 Key
ShiftF11 EQUATE(017AH) !Shift-F11 Key
ShiftF12 EQUATE(017BH) !Shift-F12 Key
ShiftAst EQUATE(016AH) !Shift-Asterisk Key
ShiftBS EQUATE(0108H) !Shift-Backspace Key
ShiftDecimal EQUATE(016EH) !Shift-Decimal Key
ShiftDelete EQUATE(012EH) !Shift-Delete Key
ShiftDivide EQUATE(016FH) !Shift-Divide Key
ShiftDown EQUATE(0128H) !Shift-Cursor Down Key
ShiftEnd EQUATE(0123H) !Shift-End Key
ShiftEnter EQUATE(010DH) !Shift-Enter Key
ShiftEsc EQUATE(011BH) !Shift-Esc Key
ShiftHome EQUATE(0124H) !Shift-Home Key
ShiftInsert EQUATE(012DH) !Shift-Insert Key
ShiftLeft EQUATE(0125H) !Shift-Cursor Left Key
ShiftMinus EQUATE(016DH) !Shift-Minus Key
ShiftPause EQUATE(0113H) !Shift-Pause Key
ShiftPgDn EQUATE(0122H) !Shift-PgDn Key
ShiftPgUp EQUATE(0121H) !Shift-PgUp Key
ShiftPlus EQUATE(016BH) !Shift-Plus Key
ShiftPrint EQUATE(012CH) !Shift-PrintScreen Key
ShiftRight EQUATE(0127H) !Shift-Cursor Right Key
ShiftSlash EQUATE(016FH) !Shift-Slash Key
ShiftSpace EQUATE(0120H) !Shift-Spacebar
ShiftTab EQUATE(0109H) !Shift-Tab Key
ShiftUp EQUATE(0126H) !Shift-Cursor Up Key
ShiftPad0 EQUATE(0160H) !Shift-0 on numeric keypad
ShiftPad1 EQUATE(0161H) !Shift-1 on numeric keypad
ShiftPad2 EQUATE(0162H) !Shift-2 on numeric keypad
ShiftPad3 EQUATE(0163H) !Shift-3 on numeric keypad
ShiftPad4 EQUATE(0164H) !Shift-4 on numeric keypad
ShiftPad5 EQUATE(0165H) !Shift-5 on numeric keypad
ShiftPad6 EQUATE(0166H) !Shift-6 on numeric keypad
ShiftPad7 EQUATE(0167H) !Shift-7 on numeric keypad
ShiftPad8 EQUATE(0168H) !Shift-8 on numeric keypad
ShiftPad9 EQUATE(0169H) !Shift-9 on numeric keypad
ShiftMouseLeft  EQUATE(0101H) !Shift-Left mouse button
ShiftMouseRight  EQUATE(0102H) !Shift-Right mouse button
ShiftMouseCenter EQUATE(0104H) !Shift-Middle mouse button
AltShift0 EQUATE(0530H) !Alt-Shift-0 Key
AltShift1 EQUATE(0531H) !Alt-Shift-1 Key
AltShift2 EQUATE(0532H) !Alt-Shift-2 Key
AltShift3 EQUATE(0533H) !Alt-Shift-3 Key
AltShift4 EQUATE(0534H) !Alt-Shift-4 Key
AltShift5 EQUATE(0535H) !Alt-Shift-5 Key
AltShift6 EQUATE(0536H) !Alt-Shift-6 Key
AltShift7 EQUATE(0537H) !Alt-Shift-7 Key
AltShift8 EQUATE(0538H) !Alt-Shift-8 Key
AltShift9 EQUATE(0539H) !Alt-Shift-9 Key
AltShiftA EQUATE(0541H) !Alt-Shift-A Key
AltShiftB EQUATE(0542H) !Alt-Shift-B Key
AltShiftC EQUATE(0543H) !Alt-Shift-C Key
AltShiftD EQUATE(0544H) !Alt-Shift-D Key
AltShiftE EQUATE(0545H) !Alt-Shift-E Key
AltShiftF EQUATE(0546H) !Alt-Shift-F Key
AltShiftG EQUATE(0547H) !Alt-Shift-G Key
AltShiftH EQUATE(0548H) !Alt-Shift-H Key
AltShiftI EQUATE(0549H) !Alt-Shift-I Key
AltShiftJ EQUATE(054AH) !Alt-Shift-J Key
AltShiftK EQUATE(054BH) !Alt-Shift-K Key



B-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

AltShiftL EQUATE(054CH) !Alt-Shift-L Key
AltShiftM EQUATE(054DH) !Alt-Shift-M Key
AltShiftN EQUATE(054EH) !Alt-Shift-N Key
AltShiftO EQUATE(054FH) !Alt-Shift-O Key
AltShiftP EQUATE(0550H) !Alt-Shift-P Key
AltShiftQ EQUATE(0551H) !Alt-Shift-Q Key
AltShiftR EQUATE(0552H) !Alt-Shift-R Key
AltShiftS EQUATE(0553H) !Alt-Shift-S Key
AltShiftT EQUATE(0554H) !Alt-Shift-T Key
AltShiftU EQUATE(0555H) !Alt-Shift-U Key
AltShiftV EQUATE(0556H) !Alt-Shift-V Key
AltShiftW EQUATE(0557H) !Alt-Shift-W Key
AltShiftX EQUATE(0558H) !Alt-Shift-X Key
AltShiftY EQUATE(0559H) !Alt-Shift-Y Key
AltShiftZ EQUATE(055AH) !Alt-Shift-Z Key
AltShiftF1 EQUATE(0570H) !Alt-Shift-F1 Key
AltShiftF2 EQUATE(0571H) !Alt-Shift-F2 Key
AltShiftF3 EQUATE(0572H) !Alt-Shift-F3 Key
AltShiftF4 EQUATE(0573H) !Alt-Shift-F4 Key
AltShiftF5 EQUATE(0574H) !Alt-Shift-F5 Key
AltShiftF6 EQUATE(0575H) !Alt-Shift-F6 Key
AltShiftF7 EQUATE(0576H) !Alt-Shift-F7 Key
AltShiftF8 EQUATE(0577H) !Alt-Shift-F8 Key
AltShiftF9 EQUATE(0578H) !Alt-Shift-F9 Key
AltShiftF10 EQUATE(0579H) !Alt-Shift-F10 Key
AltShiftF11 EQUATE(057AH) !Alt-Shift-F11 Key
AltShiftF12 EQUATE(057BH) !Alt-Shift-F12 Key
AltShiftAst EQUATE(056AH) !Alt-Shift-Asterisk Key
AltShiftBS EQUATE(0508H) !Alt-Shift-Backspace
AltShiftDecimal EQUATE(056EH) !Alt-Shift-Decimal Key
AltShiftDelete EQUATE(052EH) !Alt-Shift-Delete Key
AltShiftDivide EQUATE(056FH) !Alt-Shift-Divide Key
AltShiftDown EQUATE(0528H) !Alt-Shift-Cursor Down
AltShiftEnd EQUATE(0523H) !Alt-Shift-End Key
AltShiftEnter EQUATE(050DH) !Alt-Shift-Enter Key
AltShiftEsc EQUATE(051BH) !Alt-Shift-Esc Key
AltShiftHome EQUATE(0524H) !Alt-Shift-Home Key
AltShiftInsert EQUATE(052DH) !Alt-Shift-Insert Key
AltShiftLeft EQUATE(0525H) !Alt-Shift-Cursor Left
Key
AltShiftMinus EQUATE(056DH) !Alt-Shift-Minus Key
AltShiftPause EQUATE(0513H) !Alt-Shift-Pause Key
AltShiftPgDn EQUATE(0522H) !Alt-Shift-PgDn Key
AltShiftPgUp EQUATE(0521H) !Alt-Shift-PgUp Key
AltShiftPlus EQUATE(056BH) !Alt-Shift-Plus Key
AltShiftPrint EQUATE(052CH) !Alt-Shift-PrintScreen
AltShiftRight EQUATE(0527H) !Alt-Shift-Cursor Right
AltShiftSlash EQUATE(056FH) !Alt-Shift-Slash Key
AltShiftSpace EQUATE(0520H) !Alt-Shift-Spacebar
AltShiftTab EQUATE(0509H) !Alt-Shift-Tab Key
AltShiftUp   EQUATE(0526H) !Alt-Shift-Cursor Up
AltShiftPad0   EQUATE(0560H) !Alt-Shift-0 on numeric keypad
AltShiftPad1   EQUATE(0561H) !Alt-Shift-1 on numeric keypad
AltShiftPad2   EQUATE(0562H) Alt-Shift-2 on numeric keypad
AltShiftPad3   EQUATE(0563H) !Alt-Shift-3 on numeric keypad
AltShiftPad4   EQUATE(0564H) !Alt-Shift-4 on numeric keypad
AltShiftPad5   EQUATE(0565H) !Alt-Shift-5 on numeric keypad
AltShiftPad6   EQUATE(0566H) !Alt-Shift-6 on numeric keypad
AltShiftPad7   EQUATE(0567H) !Alt-Shift-7 on numeric keypad
AltShiftPad8   EQUATE(0568H) !Alt-Shift-8 on numeric keypad
AltShiftPad9   EQUATE(0569H) !Alt-Shift-9 on numeric keypad
AltShiftMouseLeft EQUATE(0501H) !Alt-Shift-Left mouse button



APPENDIX B K EYCODES B-9

AltShiftMouseRight EQUATE(0502H) !Alt-Shift-Right mouse button
AltShiftMouseCenter EQUATE(0504H) !Alt-Shift-Middle mouse button
CtrlShift0 EQUATE(0330H) !Ctrl-Shift-0 Key
CtrlShift1 EQUATE(0331H) !Ctrl-Shift-1 Key
CtrlShift2 EQUATE(0332H) !Ctrl-Shift-2 Key
CtrlShift3 EQUATE(0333H) !Ctrl-Shift-3 Key
CtrlShift4 EQUATE(0334H) !Ctrl-Shift-4 Key
CtrlShift5 EQUATE(0335H) !Ctrl-Shift-5 Key
CtrlShift6 EQUATE(0336H) !Ctrl-Shift-6 Key
CtrlShift7 EQUATE(0337H) !Ctrl-Shift-7 Key
CtrlShift8 EQUATE(0338H) !Ctrl-Shift-8 Key
CtrlShift9 EQUATE(0339H) !Ctrl-Shift-9 Key
CtrlShiftA EQUATE(0341H) !Ctrl-Shift-A Key
CtrlShiftB EQUATE(0342H) !Ctrl-Shift-B Key
CtrlShiftC EQUATE(0343H) !Ctrl-Shift-C Key
CtrlShiftD EQUATE(0344H) !Ctrl-Shift-D Key
CtrlShiftE EQUATE(0345H) !Ctrl-Shift-E Key
CtrlShiftF EQUATE(0346H) !Ctrl-Shift-F Key
CtrlShiftG EQUATE(0347H) !Ctrl-Shift-G Key
CtrlShiftH EQUATE(0348H) !Ctrl-Shift-H Key
CtrlShiftI EQUATE(0349H) !Ctrl-Shift-I Key
CtrlShiftJ EQUATE(034AH) !Ctrl-Shift-J Key
CtrlShiftK EQUATE(034BH) !Ctrl-Shift-K Key
CtrlShiftL EQUATE(034CH) !Ctrl-Shift-L Key
CtrlShiftM EQUATE(034DH) !Ctrl-Shift-M Key
CtrlShiftN EQUATE(034EH) !Ctrl-Shift-N Key
CtrlShiftO EQUATE(034FH) !Ctrl-Shift-O Key
CtrlShiftP EQUATE(0350H) !Ctrl-Shift-P Key
CtrlShiftQ EQUATE(0351H) !Ctrl-Shift-Q Key
CtrlShiftR EQUATE(0352H) !Ctrl-Shift-R Key
CtrlShiftS EQUATE(0353H) !Ctrl-Shift-S Key
CtrlShiftT EQUATE(0354H) !Ctrl-Shift-T Key
CtrlShiftU EQUATE(0355H) !Ctrl-Shift-U Key
CtrlShiftV EQUATE(0356H) !Ctrl-Shift-V Key
CtrlShiftW EQUATE(0357H) !Ctrl-Shift-W Key
CtrlShiftX EQUATE(0358H) !Ctrl-Shift-X Key
CtrlShiftY EQUATE(0359H) !Ctrl-Shift-Y Key
CtrlShiftZ EQUATE(035AH) !Ctrl-Shift-Z Key
CtrlShiftF1 EQUATE(0370H) !Ctrl-Shift-F1 Key
CtrlShiftF2 EQUATE(0371H) !Ctrl-Shift-F2 Key
CtrlShiftF3 EQUATE(0372H) !Ctrl-Shift-F3 Key
CtrlShiftF4 EQUATE(0373H) !Ctrl-Shift-F4 Key
CtrlShiftF5 EQUATE(0374H) !Ctrl-Shift-F5 Key
CtrlShiftF6 EQUATE(0375H) !Ctrl-Shift-F6 Key
CtrlShiftF7 EQUATE(0376H) !Ctrl-Shift-F7 Key
CtrlShiftF8 EQUATE(0377H) !Ctrl-Shift-F8 Key
CtrlShiftF9 EQUATE(0378H) !Ctrl-Shift-F9 Key
CtrlShiftF10 EQUATE(0379H) !Ctrl-Shift-F10 Key
CtrlShiftF11 EQUATE(037AH) !Ctrl-Shift-F11 Key
CtrlShiftF12 EQUATE(037BH) !Ctrl-Shift-F12 Key
CtrlShiftAst EQUATE(036AH) !Ctrl-Shift-Asterisk
CtrlShiftBS EQUATE(0308H) !Ctrl-Shift-Backspace
CtrlShiftDecimal EQUATE(036EH) !Ctrl-Shift-Decimal
CtrlShiftDelete EQUATE(032EH) !Ctrl-Shift-Delete
CtrlShiftDivide EQUATE(036FH) !Ctrl-Shift-Divide Key
CtrlShiftDown EQUATE(0328H) !Ctrl-Shift-Cursor Down
CtrlShiftEnd EQUATE(0323H) !Ctrl-Shift-End Key
CtrlShiftEnter EQUATE(030DH) !Ctrl-Shift-Enter Key
CtrlShiftEsc EQUATE(031BH) !Ctrl-Shift-Esc Key
CtrlShiftHome EQUATE(0324H) !Ctrl-Shift-Home Key
CtrlShiftInsert EQUATE(032DH) !Ctrl-Shift-Insert Key
CtrlShiftLeft EQUATE(0325H) !Ctrl-Shift-Cursor Left



B-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CtrlShiftMinus EQUATE(036DH) !Ctrl-Shift-Minus Key
CtrlShiftPause EQUATE(0313H) !Ctrl-Shift-Pause Key
CtrlShiftPgDn EQUATE(0322H) !Ctrl-Shift-PgDn Key
CtrlShiftPgUp EQUATE(0321H) !Ctrl-Shift-PgUp Key
CtrlShiftPlus EQUATE(036BH) !Ctrl-Shift-Plus Key
CtrlShiftPrint EQUATE(032CH) !Ctrl-Shift-PrintScreen
CtrlShiftRight EQUATE(0327H) !Ctrl-Shift-Cursor
Right
CtrlShiftSlash EQUATE(036FH) !Ctrl-Shift-Slash Key
CtrlShiftSpace EQUATE(0320H) !Ctrl-Shift-Spacebar
CtrlShiftTab EQUATE(0309H) !Ctrl-Shift-Tab Key
CtrlShiftUp EQUATE(0326H) !Ctrl-Shift-Cursor Up
CtrlShiftPad0 EQUATE(0360H) !Ctrl-Shift-0 on numeric keypad
CtrlShiftPad1 EQUATE(0361H) !Ctrl-Shift-1 on numeric keypad
CtrlShiftPad2 EQUATE(0362H) !Ctrl-Shift-2 on numeric keypad
CtrlShiftPad3 EQUATE(0363H) !Ctrl-Shift-3 on numeric keypad
CtrlShiftPad4 EQUATE(0364H) !Ctrl-Shift-4 on numeric keypad
CtrlShiftPad5 EQUATE(0365H) !Ctrl-Shift-5 on numeric keypad
CtrlShiftPad6 EQUATE(0366H) !Ctrl-Shift-6 on numeric keypad
CtrlShiftPad7 EQUATE(0367H) !Ctrl-Shift-7 on numeric keypad
CtrlShiftPad8 EQUATE(0368H) !Ctrl-Shift-8 on numeric keypad
CtrlShiftPad9 EQUATE(0369H) !Ctrl-Shift-9 on numeric keypad
CtrlShiftMouseLeft EQUATE(0301H) !Ctrl-Shift-Left mouse button
CtrlShiftMouseRight  EQUATE(0302H) !Ctrl-Shift-Right mouse button
CtrlShiftMouseCenter EQUATE(0304H) !Ctrl-Shift-Middle mouse button
CtrlAlt0  EQUATE(0630H) !Ctrl-Alt-0 Key
CtrlAlt1  EQUATE(0631H) !Ctrl-Alt-1 Key
CtrlAlt2  EQUATE(0632H) !Ctrl-Alt-2 Key
CtrlAlt3  EQUATE(0633H) !Ctrl-Alt-3 Key
CtrlAlt4  EQUATE(0634H) !Ctrl-Alt-4 Key
CtrlAlt5  EQUATE(0635H) !Ctrl-Alt-5 Key
CtrlAlt6  EQUATE(0636H) !Ctrl-Alt-6 Key
CtrlAlt7  EQUATE(0637H) !Ctrl-Alt-7 Key
CtrlAlt8  EQUATE(0638H) !Ctrl-Alt-8 Key
CtrlAlt9  EQUATE(0639H) !Ctrl-Alt-9 Key
CtrlAltA  EQUATE(0641H) !Ctrl-Alt-A Key
CtrlAltB  EQUATE(0642H) !Ctrl-Alt-B Key
CtrlAltC  EQUATE(0643H) !Ctrl-Alt-C Key
CtrlAltD  EQUATE(0644H) !Ctrl-Alt-D Key
CtrlAltE  EQUATE(0645H) !Ctrl-Alt-E Key
CtrlAltF  EQUATE(0646H) !Ctrl-Alt-F Key
CtrlAltG  EQUATE(0647H) !Ctrl-Alt-G Key
CtrlAltH  EQUATE(0648H) !Ctrl-Alt-H Key
CtrlAltI  EQUATE(0649H) !Ctrl-Alt-I Key
CtrlAltJ  EQUATE(064AH) !Ctrl-Alt-J Key
CtrlAltK  EQUATE(064BH) !Ctrl-Alt-K Key
CtrlAltL  EQUATE(064CH) !Ctrl-Alt-L Key
CtrlAltM  EQUATE(064DH) !Ctrl-Alt-M Key
CtrlAltN  EQUATE(064EH) !Ctrl-Alt-N Key
CtrlAltO  EQUATE(064FH) !Ctrl-Alt-O Key
CtrlAltP  EQUATE(0650H) !Ctrl-Alt-P Key
CtrlAltQ  EQUATE(0651H) !Ctrl-Alt-Q Key
CtrlAltR  EQUATE(0652H) !Ctrl-Alt-R Key
CtrlAltS  EQUATE(0653H) !Ctrl-Alt-S Key
CtrlAltT  EQUATE(0654H) !Ctrl-Alt-T Key
CtrlAltU  EQUATE(0655H) !Ctrl-Alt-U Key
CtrlAltV  EQUATE(0656H) !Ctrl-Alt-V Key
CtrlAltW  EQUATE(0657H) !Ctrl-Alt-W Key
CtrlAltX  EQUATE(0658H) !Ctrl-Alt-X Key
CtrlAltY  EQUATE(0659H) !Ctrl-Alt-Y Key
CtrlAltZ  EQUATE(065AH) !Ctrl-Alt-Z Key
CtrlAltF1  EQUATE(0670H) !Ctrl-Alt-F1 Key



APPENDIX B K EYCODES B-11

CtrlAltF2 EQUATE(0671H) !Ctrl-Alt-F2 Key
CtrlAltF3 EQUATE(0672H) !Ctrl-Alt-F3 Key
CtrlAltF4 EQUATE(0673H) !Ctrl-Alt-F4 Key
CtrlAltF5 EQUATE(0674H) !Ctrl-Alt-F5 Key
CtrlAltF6 EQUATE(0675H) !Ctrl-Alt-F6 Key
CtrlAltF7 EQUATE(0676H) !Ctrl-Alt-F7 Key
CtrlAltF8 EQUATE(0677H) !Ctrl-Alt-F8 Key
CtrlAltF9 EQUATE(0678H) !Ctrl-Alt-F9 Key
CtrlAltF10 EQUATE(0679H) !Ctrl-Alt-F10 Key
CtrlAltF11 EQUATE(067AH) !Ctrl-Alt-F11 Key
CtrlAltF12 EQUATE(067BH) !Ctrl-Alt-F12 Key
CtrlAltAst EQUATE(066AH) !Ctrl-Alt-Asterisk Key
CtrlAltBS EQUATE(0608H) !Ctrl-Alt-Backspace Key
CtrlAltDecimal EQUATE(066EH) !Ctrl-Alt-Decimal Key
CtrlAltDelete EQUATE(062EH) !Ctrl-Alt-Delete Key
CtrlAltDivide EQUATE(066FH) !Ctrl-Alt-Divide Key
CtrlAltDown EQUATE(0628H) !Ctrl-Alt-Cursor Down
CtrlAltEnd EQUATE(0623H) !Ctrl-Alt-End Key
CtrlAltEnter EQUATE(060DH) !Ctrl-Alt-Enter Key
CtrlAltEsc EQUATE(061BH) !Ctrl-Alt-Esc Key
CtrlAltHome EQUATE(0624H) !Ctrl-Alt-Home Key
CtrlAltInsert EQUATE(062DH) !Ctrl-Alt-Insert Key
CtrlAltLeft EQUATE(0625H) !Ctrl-Alt-Cursor Left
CtrlAltMinus EQUATE(066DH) !Ctrl-Alt-Minus Key
CtrlAltPause EQUATE(0613H) !Ctrl-Alt-Pause Key
CtrlAltPgDn EQUATE(0622H) !Ctrl-Alt-PgDn Key
CtrlAltPgUp EQUATE(0621H) !Ctrl-Alt-PgUp Key
CtrlAltPlus EQUATE(066BH) !Ctrl-Alt-Plus Key
CtrlAltPrint EQUATE(062CH) !Ctrl-Alt-PrintScreen
CtrlAltRight EQUATE(0627H) !Ctrl-Alt-Cursor Right
CtrlAltSlash EQUATE(066FH) !Ctrl-Alt-Slash Key
CtrlAltSpace EQUATE(0620H) !Ctrl-Alt-Spacebar
CtrlAltTab EQUATE(0609H) !Ctrl-Alt-Tab Key
CtrlAltUp EQUATE(0626H) !Ctrl-Alt-Cursor Up Key
CtrlAltPad0 EQUATE(0660H) !Ctrl-Alt-0 on numeric keypad
CtrlAltPad1 EQUATE(0661H) !Ctrl-Alt-1 on numeric keypad
CtrlAltPad2 EQUATE(0662H) !Ctrl-Alt-2 on numeric keypad
CtrlAltPad3 EQUATE(0663H) !Ctrl-Alt-3 on numeric keypad
CtrlAltPad4 EQUATE(0664H) !Ctrl-Alt-4 on numeric keypad
CtrlAltPad5 EQUATE(0665H) !Ctrl-Alt-5 on numeric keypad
CtrlAltPad6 EQUATE(0666H) !Ctrl-Alt-6 on numeric keypad
CtrlAltPad7 EQUATE(0667H) !Ctrl-Alt-7 on numeric keypad
CtrlAltPad8 EQUATE(0668H) !Ctrl-Alt-8 on numeric keypad
CtrlAltPad9 EQUATE(0669H) !Ctrl-Alt-9 on numeric keypad
CtrlAltMouseLeft EQUATE(0601H) !Ctrl-Alt-Left mouse button
CtrlAltMouseRight EQUATE(0602H) !Ctrl-Alt-Right mouse button
CtrlAltMouseCenter EQUATE(0604H) !Ctrl-Alt-Middle mouse button



APPENDIX C PROPERTY ASSIGNMENTS C-1

Data StructurData StructurData StructurData StructurData Structure Pe Pe Pe Pe Prrrrroperoperoperoperopertiestiestiestiesties
The attributes (properties) of many of the APPLICATION, WINDOW, and
REPORT data structures, and their component controls, are designed take
constant values (not variables) as their parameters in the data structure
declaration. The same is true of FILE, VIEW, and QUEUE data structures.
This may seem to be a restriction, however, the values of these constant
properties may be easily changed or determined using simple assignment
statements containing property expressions.

Property expressions represent the attributes (properties) and the parameters
of attributes declared in APPLICATION, WINDOW, REPORT, FILE, VIEW,
and QUEUE structures, and their components. Most attributes have
corresponding property expressions. However, some attributes (such as PRE,
OVER, and THREAD) are actually compiler directives which have no
associated property expression. In addition, there are some property
expressions which are not associated with declared attributes (undeclared
properties).

A property expression can be used as the destination of an assignment
statement. This changes the value of the attribute (or attribute parameter)
associated with the property. A property expression can also be used in any
string expression to determine the current value of the attribute (or attribute
parameter).

Built-in V ariables

There are three built-in variables in the Clarion for Windows runtime library:
TARGET, PRINTER, and SYSTEM. These are only used with the property
assignment syntax to identify the target of a property assignment.

TARGET normally references the window that currently has focus. It can
also be set to reference a window in another execution thread or the
currently printing REPORT, enabling you to affect the properties of controls
and windows in other execution threads and dynamically change report
control properties while printing. The SETTARGET procedure is used to
change the TARGET variable’s reference.

PRINTER references the printer properties used by the next REPORT
opened (and all subsequest reports). This is used only with the Printer
Properties.

SYSTEM is a built-in variable that specifies global properties used by the
the entire application. There are several specific undeclared properties that
may use the SYSTEM variable to set or query global application-wide
properties.



C-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Property Expressions

[target] [$] [control] { property [,element] }

target The label of an APPLICATION, WINDOW, REPORT,
VIEW, or FILE structure, the label of a BLOB, or one of
the built-in variables: TARGET, PRINTER, or SYS-
TEM. If omitted, TARGET is assumed.

$ Required separator when both target and control are
specified. May be omitted if either target or control is
omitted.

control A field number or field equate label for the control in the
target structure (APPLICATION, WINDOW, or RE-
PORT) to affect. If omitted, the target must be specified.
The control must be omitted if the target is a FILE
structure, the label of a BLOB, or the PRINTER or
SYSTEM built-in variables.

property An integer constant, EQUATE, or variable that specifies
the property (attribute) to change. It can also be a string
when referencing a .VBX property.

element An integer constant or variable that specifies which
element to change (for those attributes that are arrays
with multiple values).

This property expression syntax allows you access to all the attributes
(properties) of APPLICATION, WINDOW, or REPORT structures, or any
control within these structures. To specify an attribute of an APPLICATION,
WINDOW, REPORT, VIEW, or FILE structure (not a component control),
omit the control portion of the property expression. To specify a control in
the current window, omit the target portion of the property expression.

REPORT data structures are never the default target.   Therefore, either
SETTARGET must be used to change the default target, or the structure’s
label must be explicitly specified as the target before you can change any
property of the structure, or any control it contains.

Property expressions may be used in Clarion language statements anywhere
a string expression is allowed, or as the destination of a simple assignment
statement. Therefore, assigning a new value to a property is an assignment
with the property as the destination and the new value as the source.
Determining the current value of a property is an assignment where the
property is the source and the variable to recieve its value is the destination.

All properties are treated as string data at runtime; the compiler
automatically performs any necessary data type conversion. Any property
without parameters is binary. Binary properties are either “present” or
“missing” and returns a ‘1’ if it is present, and ‘’ (null) if it is missing.
Changing the value of a binary property to ‘’ (null), ‘0’ (zero), or any non-



APPENDIX C PROPERTY ASSIGNMENTS C-3

numeric string sets it to missing. Changing it to any other value sets it to
“present.”

Most properties can be both examined (read) and changed (written).
However, some properties are “read-only” and cannot be changed. Assigning
a value to a “read-only” property has no effect at all. Other properties are
“write-only” properties that are meaningless if read.

Some properties are arrays that contain multiple values. The syntax for
addresssing a particular property array element uses a comma (not square
brackets) as the delimiter between the property and the element number.

Example:

MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS,RESIZE
MENUBAR
MENU(‘File’),USE(?FileMenu)
ITEM(‘Open...’),USE(?OpenFile)
ITEM(‘Close’),USE(?CloseFile),DISABLE
ITEM(‘E&xit’),USE(?MainExit)

END
MENU(‘Help’),USE(?HelpMenu)
ITEM(‘Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(‘Search for Help On...’),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(‘About MyApp...’),USE(?HelpAbout)

END
END
TOOLBAR
BUTTON(‘Open’),USE(?OpenButton),ICON(ICON:Open)

END
END

CODE
OPEN(MainWin)
MainWin{PROP:text} = ‘A New Title’ !Change window title
?OpenButton{PROP:icon} = ICON:Asterisk !Change button icon
?OpenButton{PROP:at,1} = 5 !Change button x position
?OpenButton{PROP:at,2} = 5 !Change button y position
IF MainWin$?HelpContents{PROP:std} <> STD:HelpIndex
MainWin$?HelpContents{PROP:std} = STD:HelpIndex

END
MainWin{PROP:maximize} = 1 !Expand to full screen
ACCEPT
CASE ACCEPTED() !Which control was chosen?
OF ?OpenFile !Open... menu selection
OROF ?OpenButton !Open button on toolbar
START(OpenFileProc) !Start new execution thread

OF ?MainExit !Exit menu selection
OROF ?MainExitButton !Exit button on toolbar
BREAK !Break ACCEPT loop

OF ?HelpAbout !About... menu selection
HelpAboutProc !Call application information procedure

END
END
CLOSE(MainWin) !Close APPLICATION
RETURN

See Also: SETTARGET



C-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Attribute Property Equates

Equates for all properties are contained in the PROPERTY.CLW file. This
file also contains equates for the standard values used by some of these
properties. Some properties are “read-only” and their value may not be
changed, and others are “write-only” properties whose value cannot be
determined. These restrictions are noted for each control affected.

Each of the following properties references an attribute (or one of its
parameters) of a window, report, or control. The referenced attribute is listed
in the explanation and you should look up the attribute itself for further
explanation of its effect on the window or control it modifies.

Some property descriptions state: (‘’ if missing, else present), which means
the attribute is either active for the window,report, or control, or it is not.
Querying the property returns a blank string when the attribute is not active
for the window, report, or control. Assigning a blank string (‘’) to such an
attribute turns it off, and assigning any other value turns it on.

  PROP:Text The text parameter of an APPLICATION(text),
WINDOW(text), or control(text). This could contain any
value that is valid as the parameter to a control declara-
tion. For example, ?Image{PROP:Text} = ‘My.BMP’
displays a new bitmap in the referenced IMAGE control.

  PROP:Type Contains the type of control. Values are the
CREATE:xxxx equates (listed in EQUATES.CLW).
(READ-ONLY)

AT attribute properties:

  PROP:At AT attribute. An array (4 values).

  PROP:Xpos AT(x) parameter, equivalent to {PROP:At,1}

  PROP:Ypos AT(,y) parameter, equivalent to {PROP:At,2}

  PROP:Width AT(,,width) parameter, equivalent to {PROP:At,3}

  PROP:Height AT(,,,height) parameter, equivalent to {PROP:At,4}

FONT attribute properties:

  PROP:Font FONT attribute. An array (4 values).

  PROP:FontName FONT(fontname) parameter, equivalent to
{PROP:Font,1}.

  PROP:FontSize FONT(,fontsize) parameter, equivalent to
{PROP:Font,2}.

  PROP:FontColor FONT(,,fontcolor) parameter, equivalent to
{PROP:Font,3}.

  PROP:FontStyle FONT(,,,fontstyle) parameter, equivalent to
{PROP:Font,4}.



APPENDIX C PROPERTY ASSIGNMENTS C-5

CLASS attribute properties:

  PROP:Class CLASS attribute. An array (2 values).

  PROP:VbxFile CLASS(vbxfile) parameter, equivalent to
{PROP:Class,1}.

  PROP:VbxName CLASS(,vbxname) parameter, equivalent to
{PROP:Class,2}.

All other attribute properties (in alphabetical order):

  PROP:Absolute ABSOLUTE attribute (‘’ if missing, else present).

  PROP:Alone ALONE attribute (‘’ if missing, else present).

  PROP:Alrt ALRT attribute. An array.

  PROP:Auto AUTO attribute (‘’ if missing, else present).

  PROP:Ave AVE attribute (‘’ if missing, else present).

  PROP:Boxed ABSOLUTE attribute (‘’ if missing, else present).

  PROP:Cap ABSOLUTE attribute (‘’ if missing, else present).

  PROP:Center CENTER attribute (‘’ if missing, else present).

  PROP:CenterOffset
CENTER(offset) parameter, equivalent to
{PROP:Center,2}.

  PROP:Check CHECK attribute, (‘’ if missing, else present).

  PROP:Cnt CNT attribute (‘’ if missing, else present).

  PROP:Color COLOR attribute (COLOR:none if none).

  PROP:Column COLUMN attribute (0 = off, else currently highlighted
column number).

  PROP:Cursor CURSOR attribute (‘’ if missing, else present).

  PROP:Decimal DECIMAL attribute (‘’ if missing, else present).

  PROP:DecimalOffset

DECIMAL(offset) parameter, equivalent to
{PROP:Decimal,2}.

  PROP:Default DEFAULT attribute (‘’ if missing, else present).

  PROP:Disable DISABLE attribute (‘’ if missing, else present).

  PROP:Double DOUBLE attribute (‘’ if missing, else present).

  PROP:Dragid DRAGID attribute. An array.

  PROP:Drop DROP attribute (0 if none). You may not change this to
or from zero (0).

  PROP:Dropid DROPID attribute. An array.

  PROP:Fill FILL attribute (COLOR:none if none).



C-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

  PROP:First FIRST attribute (‘’ if missing, else present).

  PROP:Format FORMAT attribute (‘’ if missing, else present). This
property is updated whenever the user changes the
format of the LIST at runtime.

  PROP:From FROM attribute (queue, queue field, or string). (WRITE-
ONLY)

  PROP:Full FULL attribute (‘’ if missing, else present).

  PROP:Gray GRAY attribute (‘’ if missing, else present).

  PROP:Hide HIDE attribute (‘’ if missing, else present).

  PROP:Hlp HLP attribute (blank if none).

  PROP:Hscroll HSCROLL attribute (‘’ if missing, else present).

  PROP:Icon ICON attribute (blank if none).

  PROP:Iconize ICONIZE attribute (‘’ if missing, else present).

  PROP:Imm IMM attribute (‘’ if missing, else present).

  PROP:Ins INS attribute (‘’ if missing, else present).

  PROP:Key KEY attribute (blank if none).

  PROP:Landscape LANDSCAPE attribute, (‘’ if missing, else present).

  PROP:Last LAST attribute (‘’ if missing, else present).

  PROP:Left LEFT attribute (‘’ if missing, else present).

  PROP:LeftOffset LEFT(offset) parameter, equivalent to {PROP:Left,2}.

  PROP:Mark MARK attribute (queue or queue field). (WRITE-
ONLY)

  PROP:Mask MASK attribute (‘’ if missing, else present).

  PROP:Max MAX attribute (‘’ if missing, else present).

  PROP:Maximize MAXIMIZE attribute (‘’ if missing, else present).

  PROP:Mdi MDI attribute (‘’ if missing, else present). (READ-
ONLY)

  PROP:Meta META attribute (‘’ if missing, else present).

  PROP:Min MIN attribute (‘’ if missing, else present).

  PROP:Mm MM attribute (‘’ if missing, else present).

  PROP:Modal MODAL attribute (‘’ if missing, else present). (READ-
ONLY)

  PROP:Msg MSG attribute (‘’ if missing, else present).

  PROP:NoBar NOBAR attribute (‘’ if missing, else present).

  PROP:NoFrame NOFRAME attribute (‘’ if missing, else present).



APPENDIX C PROPERTY ASSIGNMENTS C-7

  PROP:NoMerge NOMERGE attribute (‘’ if missing, else present).

  PROP:Ovr OVR attribute (‘’ if missing, else present).

  PROP:Page PAGE attribute (‘’ if missing, else present).

  PROP:PageAfter PAGEAFTER attribute (‘’ if missing, else present).

  PROP:PageAfterNum
PAGEAFTER(pageafternum) parameter, equivalent to
{PROP:PageAfter,2}.

  PROP:PageBefore PAGEBEFORE attribute (‘’ if missing, else present).

  PROP:PageBeforeNum
PAGEBEFORE(pagebeforenum) parameter, equivalent
to {PROP:PageBefore,2}.

  PROP:Pageno PAGENO attribute (‘’ if missing, else present).

  PROP:Palette PALETTE attribute. Single value.

  PROP:Password PASSWORD attribute (‘’ if missing, else present).

  PROP:Points POINTS attribute (‘’ if missing, else present).

  PROP:Preview PREVIEW attribute (queue or queue field). (WRITE-
ONLY)

  PROP:Range RANGE attribute. An array (2 values).

  PROP:RangeHigh RANGE(,rangehigh) parameter, equivalent to
{PROP:Range,2}.

  PROP:RangeLow RANGE(rangelow) parameter, equivalent to
{PROP:Range,1}.

  PROP:ReadOnly READONLY attribute (‘’ if missing, else present).

  PROP:Req REQ attribute (‘’ if missing, else present).

  PROP:Reset RESET attribute (0 = off, else breaklevel nesting depth).

  PROP:Resize RESIZE attribute (‘’ if missing, else present).

  PROP:Right RIGHT attribute (‘’ if missing, else present).

  PROP:RightOffset RIGHT(offset) parameter, equivalent to
{PROP:Right,2}.

  PROP:Round ROUND attribute (‘’ if missing, else present).

  PROP:Scroll SCROLL attribute (‘’ if missing, else present).

  PROP:Separate SEPARATE attribute (‘’ if missing, else present).

  PROP:Skip SKIP attribute (‘’ if missing, else present).

  PROP:Spread SPREAD attribute (‘’ if missing, else present).

  PROP:Status STATUS attribute. An array (0 terminates).

  PROP:StatusText  STATUS bar text. An array (0 terminates).



C-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

  PROP:Std STD attribute (‘’ if missing, else present).

  PROP:Step STEP attribute (‘’ if missing, else present).

  PROP:Sum SUM attribute (‘’ if missing, else present).

  PROP:System SYSTEM attribute (‘’ if missing, else present).

  PROP:Thous THOUS attribute (‘’ if missing, else present).

  PROP:Timer TIMER attribute (0 if none).

  PROP:Toolbox TOOLBOX attribute (‘’ if missing, else present).

  PROP:ToolTip TIP attribute (‘’ if missing, else present).

  PROP:Trn TRN attribute, (‘’ if missing, else present).

  PROP:Upr UPR attribute (‘’ if missing, else present).

  PROP:Use USE attribute (variable name). Writing to it changes the
USE variable. Reading it returns the contents of the USE
variable.

  PROP:Value VALUE attribute (‘’ if missing, else present).

  PROP:Vcr VCR attribute (‘’ if missing, else present).

  PROP:VcrFeq VCR(vcrfeq) parameter, equivalent to {PROP:Vcr,2}.

  PROP:Vscroll VSCROLL attribute (‘’ if missing, else present).

  PROP:WithNext WITHNEXT attribute (0 if none).

  PROP:WithPrior WITHPRIOR attribute (0 if none).

  PROP:Wizard WIZARD attribute (‘’ if missing, else present).

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name),REQ
IMAGE(‘SomePic.BMP’),USE(?Image)
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
Screen{PROP:At,1} = 0 !Position window to top left corner
Screen{PROP:At,2} = 0
Screen{PROP:Gray} = 1 !Give window 3D look
Screen{PROP:Status,1} = -1 !Create status bar with two sections
Screen{PROP:Status,2} = 180
Screen{PROP:Status,3} = 0 !Terminate staus bar array
Screen{PROP:StatusText,2} = FORMAT(TODAY(),@D2)

!Put date in status bar section 2
?CtlCode{PROP:Alrt,1} = F10Key !Alert F10 on Ctl:Code entry control
?CtlCode{PROP:Text} = ‘@N4’ !Change entry picture token
?Image{PROP:Text} = ‘MyPic.BMP’ !Change image control filename
?OkButton{PROP:Default} = ‘1’ !Put DEFAULT attribute on OK button
ACCEPT
END



APPENDIX C PROPERTY ASSIGNMENTS C-9

List Box Format String Proper ties

The properties of individual fields in a multi-column LIST or COMBO
control can also be set using property equates.Each of these properties
relates to one element of the FORMAT attribute’s string parameter. These
properties eliminate the need to create a complete FORMAT attribute string
just to change a single property of a single field in the LIST.

These are all property arrays that require an explicit array element number
following the property equate (separated by a comma) to specify which field
in the LIST or COMBO is affected.

  PROPLIST:Center
The C that indicates center justification, (blank if
missing, 1 if present).

  PROPLIST:CenterOffset
An integer that specifes the indent, (blank if missing, 1
if present).

  PROPLIST:Color The * (asterisk) that indicates color information for the
field is contained in four LONG fields that immediately
follow the data field in the QUEUE (or FROM attribute
string), (blank if missing, 1 if present).

  PROPLIST:Decimal
The D that indicates decimal justification, (blank if
missing, 1 if present).

  PROPLIST:DecimalOffset
An integer that specifes the indent, (blank if missing, 1
if present).

  PROPLIST:Fixed The F that specifies the field remains fixed at left edge
of the list, (blank if missing, 1 if present).

  PROPLIST:Header
The ~header~ text for the field or group, (blank if
missing, 1 if present).

  PROPLIST:HeaderCenter
The C that indicates center header justification, (blank if
missing, 1 if present).

  PROPLIST:HeaderCenterOffset
An integer that specifes the indent, (blank if missing, 1
if present).

  PROPLIST:HeaderDecimal
The D that indicates decimal header justification, (blank
if missing, 1 if present).



C-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

  PROPLIST:HeaderDecimalOffset
An integer that specifes the indent, (blank if missing, 1
if present).

  PROPLIST:HeaderLeft
The L that indicates left header justification, (blank if
missing, 1 if present).

  PROPLIST:HeaderLeftOffset
An integer that specifes the indent, (blank if missing, 1
if present).

  PROPLIST:HeaderRight
The R that indicates right header justification, (blank if
missing, 1 if present).

  PROPLIST:HeaderRightOffset
An integer that specifes the indent, (blank if missing, 1
if present).

  PROPLIST:Icon The I that indicates an icon number for the field is
contained in a LONG field that immediately follows the
data field in the QUEUE (or FROM attribute string),
(blank if missing, 1 if present).

  PROPLIST:LastOnLine
The / (slash) that indicates the next field in the group
appears on the next line, (blank if missing, 1 if present).

  PROPLIST:Left The L that indicates left justification, (blank if missing,
1 if present).

  PROPLIST:LeftOffset
An integer that specifes the indent, (blank if missing, 1
if present).

  PROPLIST:Locator
The ? (question mark) that specifies the field for a
locator, (blank if missing, 1 if present).

  PROPLIST:Picture
The @picture@ display format for the field, (blank if
missing, 1 if present).

  PROPLIST:Resize
The M that allows the user to resize the field or group,
(blank if missing, 1 if present).

  PROPLIST:RightBorder
The | (vertical bar) that places a right border on the field
or group, (blank if missing, 1 if present).

  PROPLIST:Right The R that indicates right justification, (blank if missing,
1 if present).



APPENDIX C PROPERTY ASSIGNMENTS C-11

  PROPLIST:RightOffset
An integer that specifes the indent, (blank if missing, 1
if present).

  PROPLIST:Scroll The S(integer) that puts a scroll bar on the field or
group. Specifies the integer portion, (blank if missing, 1
if present).

  PROPLIST:Tree The T that indicates the LIST is a tree control, (blank if
missing, 1 if present).

  PROPLIST:TreeLines
The T(L) that indicates the tree control suppresses the
conecting lines between levels, (blank if missing, 1 if
present).

  PROPLIST:TreeBoxes
The T(B) that indicates the tree control suppresses the
expansion boxes, (blank if missing, 1 if present).

  PROPLIST:TreeIndent
The T(I) that indicates the tree control suppresses level
indentation (which also implicitly suppresses both lines
and boxes), (blank if missing, 1 if present).

  PROPLIST:Underline
The _ (underscore) that underlines the field or group,
(blank if missing, 1 if present).

  PROPLIST:Width The integer that specifies the width of the field or group.

Any of these properties can also apply to a field group by adding
PROPLIST:Group to the property.

  PROPLIST:Group Add this property to the PROPLIST field property to
affect field group properties.

Example:

?List{PROPLIST:Header,1} = ‘First Field’ !Change first field’s header text
?List{PROPLIST:Header + PROPLIST:Group,1} = ‘First Group’

!Change first group’s header text

See Also: FORMAT



C-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Other POther POther POther POther Prrrrroperoperoperoperopertiestiestiestiesties

List Box Mouse Click Proper ties

The following properties return the mouse position within the LIST or
COMBO control when pressed or released.They can also be written to,
which has no effect except to temporarily change the value that the property
returns when next read (within the same ACCEPT loop iteration). This may
make coding easier in some circumstances.

  PROPLIST:MouseDownField
Returns the field number when the mouse is pressed.

  PROPLIST:MouseDownRow
Returns the row number when the mouse is pressed.

  PROPLIST:MouseDownZone
Returns the zone number when the mouse is pressed.

  PROPLIST:MouseMoveField
Returns the field number when the mouse is moved.

  PROPLIST:MouseMoveRow
Returns the row number when the mouse is moved.

  PROPLIST:MouseMoveZone
Returns the zone number when the mouse is moved.

  PROPLIST:MouseUpField
Returns the field number when the mouse is released.

  PROPLIST:MouseUpRow
Returns the row number when the mouse is released.

  PROPLIST:MouseUpZone
Returns the zone number when the mouse is released.

The three “Row” properties all return -1 for header text and -2 if below the
last displayed item.

Equates for the following Zones are listed on EQUATES.CLW:

LISTZONE:Field On a field in the LIST
LISTZONE:Right On the field’s right border resize zone
LISTZONE:Header On a field or group header
LISTZONE:ExpandBox On an expand box in a Tree
LISTZONE:Tree On the connecting lines of a Tree
LISTZONE:Icon On an icon (Tree or not)
LISTZONE:Nowhere Anywhere else



APPENDIX C PROPERTY ASSIGNMENTS C-13

Example:

Que QUEUE
F1 STRING(50)
F2 STRING(50)
F3 STRING(50)

END
WinView WINDOW(‘View’),AT(,,340,200),SYSTEM,CENTER,ALRT(MouseLeft)

LIST,AT(20,0,300,200),USE(?List),FROM(Que),IMM,HVSCROLL  |
FORMAT(‘80L~F1~80L~F2~80L~F3~’),IMM

END
CODE
OPEN(WinView)
DO BuildListQue
X# = 0
ACCEPT
CASE EVENT()
OF EVENT:AlertKey
IF ?List{PROPLIST:MouseUpRow} = -1 !Check for click in header
CASE ?List{PROPLIST:MouseDownField} + X# !Check which header
OF 1
SORT(Que,Que:F1)
?List{PROP:Format} = ‘80L~F1~#1#80L~F2~#2#80L~F3~#3#’
X# = 0

OF 2
SORT(Que,Que:F2)
?List{PROP:Format} = ‘80L~F2~#2#80L~F3~#3#80L~F1~#1#’
X# = 1

OF 3
SORT(Que,Que:F3)
?List{PROP:Format} = ‘80L~F3~#3#80L~F1~#1#80L~F2~#2#’
X# = 2

END
DISPLAY

. . .
FREE(Que)



C-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Undeclared Proper ties

The following properties can only be accessed at runtime, and do not relate
directly to data structure or control field attributes:

PROP:AcceptAll Returns one (1) if AcceptAll mode is active and zero (0)
if it is not, and may also be used to toggle AcceptAll
(non-stop) mode. SELECT with no parameters usually
initiates AcceptAll mode. This is a field edit mode in
which each control in the window is processed in TAB

key sequence by generating EVENT:Accepted for each.
This allows data entry validation code to execute for all
controls, including those that the user has not touched.

AcceptAll mode immediately terminates when any of
the following conditions is met:

SELECT(?)
Window{PROP:AcceptAll} = 0
A REQ control is left blank or zero.

The SELECT(?) statement selects the same control for
the user to edit. This code usually indicates the value it
contains is invalid and the user must re-enter data. The
Window{PROP:AcceptAll} = 0 statement toggles
AcceptAll mode off. Assigning values to this property
can be used to initiate and terminate AcceptAll mode.
When a control with the REQ attribute is left blank or
zero, AcceptAll mode terminates with the control
highlighted for user entry, without processing any more
fields in the TAB key sequence.

When all controls have been successfully processed,
EVENT:Completed is posted to the window.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ctl:Code)
ENTRY(@S30),USE(Ctl:Name),REQ
BUTTON(‘OK’),USE(?OkButton),KEY(EnterKey)
BUTTON(‘Cancel’),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
ACCEPT
IF EVENT() = EVENT:Completed THEN BREAK. !AcceptAll mode terminated
CASE ACCEPTED()
OF ?Ctl:Code
IF Ctl:Code > 150 !If data entered is invalid
BEEP ! alert the user and
SELECT(?) ! make them re-enter the data

END
OF ?OkButton
Screen{PROP:AcceptAll} = 1 !Initiate AcceptAll mode

. . !Terminate ACCEPT and CASE ACCEPTED



APPENDIX C PROPERTY ASSIGNMENTS C-15

PROP:Active Returns 1 if the window is the active window, blank if
not. Set to 1 to make the top window of a thread the
active window.

Example:

CODE
OPEN(ThisWindow)
X# = START(AnotherThread) !Start another thread
ACCEPT
CASE EVENT()
OF EVENT:LoseFocus !When this window is losing focus
IF Y# <> X# ! check for the first focus change
ThisWindpw{PROP:Active} = 1 ! and return focus to this thread
Y# = X# ! then flag first focus change completed

. . .

PROP:AppInstance
Returns the instance handle (HInstance) of the .EXE file
for use in low-level API calls which require it. This is
only used with the SYSTEM built-in variable. (READ-
ONLY)

Example:

PROGRAM
HInstance LONG
CODE
OPEN(AppFrame)
HInstance = SYSTEM{PROP:AppInstance} !Get .EXE instance handle for later use
ACCEPT
END

PROP:ChoiceFeq Returns or sets the field number of the currently selected
TAB in a SHEET, or RADIO in an OPTION structure.

Example:

WinView WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
OPTION(‘Option 1’),USE(OptVar1),KEY(F10Key),HLP(‘Option1Help’)
RADIO(‘Radio 1’),AT(0,0,20,20),USE(?R1)
RADIO(‘Radio 2’),AT(20,0,20,20),USE(?R2)

END
END

CODE
OPEN(WinView)
?OptVar1{PROP:ChoiceFeq} = ?R1 !Select radio one
ACCEPT
END



C-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:ClientHandle
Returns the client window handle (the area of the
window that contains the controls) for use with low-level
Windows API calls that require it. (READ-ONLY)

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
END

MessageText CSTRING(‘You cannot exit the program from this window ’)
MessageCaption CSTRING(‘No EVENT:CloseDown Allowed ’)
TextAddr LONG
CaptionAddr LONG
RetVal SHORT
CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:CloseDown
TextAddress = ADDRESS(MessageText)
CaptionAddress = ADDRESS(MessageCaption)
RetVal = MessageBox(WinView{PROP:ClientHandle},TextAddr,CaptionAddr,MB_OK)

!Windows API call using a window handle
CYCLE !Disallow program closedown from this window

END
END



APPENDIX C PROPERTY ASSIGNMENTS C-17

PROP:ClientWndProc
Sets or gets the client window messaging procedure for
use with low-level Windows API calls that require it.
Generally used with sub-classing to track all Windows
messages.

Example:

PROGRAM
MAP
main
SubClassFunc(USHORT,SHORT,SHORT,LONG),LONG,PASCAL
MODULE('Windows') !TopSpeed Win31 Library
CallWindowProc(LONG,USHORT,SHORT,SHORT,LONG),LONG,PASCAL

END
END

SavedProc LONG
PT GROUP,PRE(PT)
X SHORT
Y SHORT

END
CODE
Main

Main PROCEDURE
WinView WINDOW('View'),AT(0,0,320,200),HVSCROLL,MAX,TIMER(1)

STRING('X Pos'),AT(1,1,,),USE(?String1)
STRING(@n3),AT(24,1,,),USE(PT:X)
STRING('Y Pos'),AT(44,1,,),USE(?String2)
STRING(@n3),AT(68,1,,),USE(PT:Y)
BUTTON('Close'),AT(240,180,60,20),USE(?Close)

END
CODE
OPEN(WinView)
SavedProc = WinView{PROP:ClientWndProc} !Save this procedure
WinView{PROP:ClientWndProc} = ADDRESS(SubClassFunc)

!Change to subclass procedure
ACCEPT
CASE ACCEPTED()
OF ?Close
BREAK

END
END

SubClassFunc    FUNCTION(hWnd,wMsg,wParam,lParam) !Sub class procedure
WM_MOUSEMOVE    EQUATE(0200H) ! to track mouse movement in
CODE ! client area of window
CASE wMsg
OF  WM_MOUSEMOVE
PT:X = MOUSEX()
PT:Y = MOUSEY()

END
RETURN(CallWindowProc(SavedProc,hWnd,wMsg,wParam,lParam))

!Pass control back to
! saved procedure



C-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:ClipBits Property of an IMAGE control that allows bitmap
images to be moved into (but not out of) the Windows
clipboard when set to one (1). Only .BMP, .PCX, or
.GIF image types can be stored as a bitmap (.BMP)
image in the Clipboard.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(),AT(0,0,,),USE(?Image)
BUTTON(‘Save Picture’),AT(80,180,60,20),USE(?SavePic)
BUTTON(‘New Picture’),AT(160,180,60,20),USE(?NewPic)

END

FileName STRING(64) !Filename variable

CODE
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’BitMap|*.BMP|PCX|*.PCX’,0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’BitMap|*.BMP|PCX|*.PCX’,0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName

OF ?SavePic
?Image{PROP:ClipBits} = 1 !Put image into Clipboard
ENABLE(?LastPic) ! activate Last Picture button

END
END



APPENDIX C PROPERTY ASSIGNMENTS C-19

PROP:ConnectString
Property of a FILE usingthe ODBC diriver that returns
the connection string (normally stored in the file's
OWNER attribute) that would allow a complete connec-
tion. If the OWNER attribute contains only a data source
name, a login screen appears to ask for the rest of the
required details before the connection is made. This
login window appears every time you log on.  With this
property, the developer can enter information in the login
screen once, then set the OWNER attribute to the return
value from PROP:ConnectString, eliminating the login.

Example:

OwnerString STRING(20)
Customer FILE,DRIVER(‘ODBC’),OWNER(OwnerString)
Record  RECORD
Name  STRING(20)

. .
CODE
OwnerString = ‘DataSourceName’
OPEN(Customer)
OwnerString = Customer{PROP:ConnectString} !Get full connect string
MESSAGE(OwnerString) !Display it for future use

PROP:DDETimeOut
A property of the SYSTEM built-in variable that  allows
you to set and get the DDE timeout used when using
DDEWRITE in DDE:manual mode.  This value is in
hundredths of seconds and the default value is 500.

Example:

DDERetVal STRING(20)
WinOne WINDOW,AT(0,0,160,400)

ENTRY(@s20),USE(DDERetVal)
END

MyServer LONG
CODE
OPEN(WinOne)
MyServer = DDESERVER(‘MyApp’,’DataEntered’) !Open as server
SYSTEM{PROP:DDETimeOut} = 1000 !Set time out to ten seconds
ACCEPT
CASE EVENT()
OF EVENT:DDErequest !Data requested once
DDEWRITE(MyServer,DDE:manual,’DataEntered’,DDERetVal)

!Provide data once
END

END



C-20 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:DeferMove A property of the SYSTEM built-in variable that defers
the resizing and/or movement of controls until the end of
the ACCEPT loop or SYSTEM{PROP:DeferMove} is
reset to zero (0). This disables the immediate effect of all
assignments to position and size properties, and enables
the library to perform all the moves at once (eliminating
possible temporarily overlapping controls).

The absolute value of the number assigned to
SYSTEM{PROP:DeferMove} defines the number of
deferred moves for which space is pre-allocated (auto-
matically expanded when necessary, but less efficient
and may fail). Assigning a positive number automati-
cally resets it to zero at the next ACCEPT, while a
negative number leaves it set until explicitly reset to zero
(0).

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(),AT(0,0,,),USE(?Image)
BUTTON(‘New Picture’),AT(160,180,60,20),USE(?NewPic)
BUTTON(‘Close’),AT(80,180,60,20),USE(?Close)

END
FileName STRING(64) !Filename variable
ImageWidth SHORT
ImageHeight SHORT
CODE
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’BitMap|*.BMP|PCX|*.PCX’,0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’BitMap|*.BMP|PCX|*.PCX’,0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName
SYSTEM{PROP:DeferMove} = 4 !Defer move and resize
ImageWidth = ?Image{PROP:Width}
ImageHeight = ?Image{PROP:Height}
IF ImageWidth > 320
?Image{PROP:Width} = 320
?Image{PROP:XPos} = 0

ELSE
?Image{PROP:XPos} = (320 - ImageWidth) / 2 !Center horizontally

END
IF ImageHeight > 180
?Image{PROP:Height} = 180
?Image{PROP:YPos} = 0

ELSE
?Image{PROP:YPos} = (180 - ImageHeight) / 2 !Center vertically

END
OF ?Close
BREAK

. . !Moves and resizing happen at end of ACCEPT loop



APPENDIX C PROPERTY ASSIGNMENTS C-21

 PROP:Edit Specifies the field equate label of the control to perform
edit-in-place for a LIST box column. This is an array
whose element number indicates the column number to
edit. When non-zero, the control is unhidden and moved/
resized over the current row in the column indicated to
allow the user to input data. Assign zero to re-hide the
data entry control.

Example:

Q QUEUE
f1 STRING(15)
f2 STRING(15)

END
Win1 WINDOW('List Edit In Place'),AT(0,1,308,172),SYSTEM

 LIST,AT(6,6,120,90),USE(?List),COLUMN,FORMAT('60L@s15@60L@s15@'),FROM(Q),IMM
END

?EditEntry EQUATE(100)
CODE
OPEN(Win1)
CREATE(?EditEntry,CREATE:Entry)
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:NewSelection
IF ?List{PROP:edit,?List{PROP:column}}
GET(Q,CHOICE())

END
OF EVENT:Accepted
IF KEYCODE() = MouseLeft2
GET(Q,CHOICE())
?EditEntry{PROP:text} = ?List{PROPLIST:picture,?List{PROP:column}}
CASE ?List{PROP:column}
OF 1
?EditEntry{PROP:use} = F1

OF 2
?EditEntry{PROP:use} = F2

END
?List{PROP:edit,?List{PROP:column}} = ?EditEntry

. .
OF ?EditEntry
CASE EVENT()
OF EVENT:Selected
?EditEntry{PROP:Touched} = 1

OF EVENT:Accepted
PUT(Q)
?List{PROP:edit,?List{PROP:column}} = 0

. . .



C-22 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:Enabled Returns an empty string if the control is not enabled
either because it itself has been disabled, or because it is
a member of a “parent” control (OPTION, GROUP,
MENU, SHEET, or TAB) that has been disabled.
(READ-ONLY)

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB(‘Tab One’),USE(?TabOne)
PROMPT(‘Enter Data:’),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB(‘Tab Two’),USE(?TabTwo)
PROMPT(‘Enter Data:’),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON(‘Ok’),AT(100,180,20,20),USE(?Ok)
BUTTON(‘Cancel’),AT(200,180,20,20),USE(?Cancel)

END
CODE
OPEN(MDIChild)
ACCEPT
CASE EVENT()
OF EVENT:Completed
BREAK

END
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
SELECT

END
OF ?E3
CASE EVENT()
OF EVENT:Accepted
IF ?E3{PROP:Enabled} AND MDIChild{PROP:AcceptAll}

!Check for visibility during AcceptAll mode
E3 = UPPER(E3) !Convert the data entered to Upper case
DISPLAY(?E3) ! and display the upper cased data

END
END

OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END



APPENDIX C PROPERTY ASSIGNMENTS C-23

PROP:Filter Sets the FILTER attribute of a VIEW structure.

Example:

BRW1::View:Browse VIEW(Members)
PROJECT(Mem:MemberCode,Mem:LastName,Mem:FirstName)

END
KeyValue STRING(20)

CODE
KeyValue = ‘Smith’
BIND(‘KeyValue’,KeyValue)
BIND(‘Mem:LastName’,Mem:LastName)
Mem:LastName = KeyValue
SET(Mem:LastNameKey,Mem:LastNameKey)
BRW1::View:Browse{PROP:Filter} = ‘Mem:LastName = KeyValue’
OPEN(BRW1::View:Browse)



C-24 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:FlushPreview
Flushes the REPORT structure’s PREVIEW attribute
metafiles to the printer (0 = off, else on, always 0 at
report open).

Example:

SomeReport PROCEDURE

WMFQue QUEUE !Queue to contain .WMF filenames
STRING(64)

END

NextEntry  BYTE(1) !Queue entry counter variable

Report REPORT,PREVIEW(WMFQue) !Report with PREVIEW attribute
DetailOne DETAIL

!Report controls
END

 END

ViewReport WINDOW(‘View Report’),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(),AT(0,0,320,180),USE(?ImageField)
BUTTON(‘View Next Page’),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON(‘Print Report’),AT(80,180,60,20),USE(?PrintReport)
BUTTON(‘Exit Without Printing’),AT(160,180,60,20),USE(?ExitReport)

END

CODE
OPEN(Report)
SET(SomeFile) !Code to generate the report
LOOP
NEXT(SomeFile)
IF ERRORCODE() THEN BREAK.

PRINT(DetailOne)
END
ENDPAGE(Report)
OPEN(ViewReport) !Open report preview window
GET(WMFQue,NextEntry) !Get first queue entry
?ImageField{PROP:text} = WMFQue !Load first report page
ACCEPT
CASE ACCEPTED()
OF ?NextPage
NextEntry += 1 !Increment entry counter
IF NextEntry > RECORDS(WMFQue) THEN CYCLE. !Check for end of report
GET(WMFQue,NextEntry) !Get next queue entry
?ImageField{PROP:text} = WMFQue !Load next report page
DISPLAY ! and display it

OF ?PrintReport
Report{PROP:FlushPreview} = 1 !Flush files to printer
BREAK ! and exit procedure

OF ?ExitReport
BREAK !Exit procedure

END
END
RETURN !Return to caller, automatically

! closing the window and report
! freeing the queue and automatically
! deleting all the temporary .WMF files



APPENDIX C PROPERTY ASSIGNMENTS C-25

PROP:Follows Changes the tab order to specify the position within the
parent that the control will occupy. The control follows
the control number you specify in the tab order. This
must specify an existing control within the parent
(window, option, group). (WRITE-ONLY)

Example:

WinView WINDOW(‘View Report’),AT(0,0,320,200),MDI,MAX,HVSCROLL
BUTTON(‘View Next Page’),AT(0,180,60,20),USE(?NextPage),DEFAULT
BUTTON(‘Print Report’),AT(80,180,60,20),USE(?PrintReport)
BUTTON(‘Exit Without Printing’),AT(160,180,60,20),USE(?ExitReport)

END
CODE
OPEN(WinView)

!Print Report button normally follows View button
?PrintReport{PROP:Follows} = ?ExitReport

!Now Print Report button follows Exit button in the tab order
ACCEPT
END

 PROP:Handle Returns the window or control handle for use with low-
level Windows API calls that require it.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
END

MessageText CSTRING(‘You cannot exit the program from this window ’)
MessageCaption CSTRING(‘No EVENT:CloseDown Allowed ’)
TextAddress LONG
CaptionAddress LONG
RetVal SHORT
CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:CloseDown
TextAddress = ADDRESS(MessageText)
CaptionAddress = ADDRESS(MessageCaption)
RetVal = MessageBox(WinView{PROP:Handle},TextAddress,CaptionAddress,MB_OK)

!Windows API call using a window handle
CYCLE !Disallow program closedown from this window

END
END



C-26 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:HscrollPos Returns the position of the horizontal scroll bar’s
“thumb” (from 0 to 255) on a window, IMAGE, TEXT,
LIST or COMBO with the HSCROLL attribute. Setting
this property causes the control or window’s contents to
scroll horizontally.

Example:

Que QUEUE
F1 STRING(50)
F2 STRING(50)
F3 STRING(50)

END
WinView WINDOW(‘View’),AT(,,340,200),SYSTEM,CENTER

LIST,AT(20,0,300,200),USE(?List),FROM(Que),IMM,HVSCROLL  |
FORMAT(‘80L#1#80L#2#80L#3#’)

END
CODE
OPEN(WinView)
DO BuildListQue
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:ScrollDrag
CASE ?List{PROP:HscrollPos} % 200) + 1
OF 1
?List{PROP:Format} = ‘80L#1#80L#2#80L#3#’

OF 2
?List{PROP:Format} = ‘80L#2#80L#3#80L#1#’

OF 3
?List{PROP:Format} = ‘80L#3#80L#1#80L#2#’

END
DISPLAY

. . .
FREE(Que)

BuildListQue  ROUTINE
LOOP 15 TIMES
Que:F1 = 'F1F1F1F1'
Que:F2 = 'F2F2F2F2'
Que:F3 = 'F3F3F3F3'
ADD(Que)

END



APPENDIX C PROPERTY ASSIGNMENTS C-27

 PROP:IconList An array that sets the icons displayed in a LIST format-
ted to display icons (usually a tree control).

Example:

PROGRAM
MAP
RandomAlphaData(*STRING)

END

TreeDemo QUEUE,PRE() !Data list box FROM queue
FName STRING(20)
ColorNFG LONG !Normal Foreground color for FName
ColorNBG LONG !Normal Background color for FName
ColorSFG LONG !Selected Foreground color for FName
ColorSBG LONG !Selected Background color for FName
IconField LONG !Icon number for FName
TreeLeve LONG !Tree Level
LName STRING(20)
Init STRING(4)

END

Win WINDOW(‘List Boxes’),AT(0,0,366,181),SYSTEM,DOUBLE
LIST,AT(0,34,366,146),FROM(TreeDemo),USE(?Show),HVSCROLL,   |

FORMAT(’80L*IT~First Name~*80L~Last Name~16C~Initials~’)
END

CODE
LOOP 20 TIMES
RandomAlphaData(FName)
ColorNFG = COLOR:White !Assign FNAME’s colors
ColorNBG = COLOR:Maroon
ColorSFG = COLOR:Yellow
ColorSBG = COLOR:Blue
IconField = ((x#-1) % 4) + 1 !Assign icon number
TreeLevel = ((x#-1) % 4) + 1 !Assign tree level
RandomAlphaData(LName)
RandomAlphaData(Init)
ADD(TD)

END
OPEN(Win)
?Show{PROP:iconlist,1} = ICON:VCRback !Icon 1 = <
?Show{PROP:iconlist,2} = ICON:VCRrewind !Icon 2 = <<
?Show{PROP:iconlist,3} = ICON:VCRplay !Icon 3 = >
?Show{PROP:iconlist,4} = ICON:VCRfastforward !Icon 4 = >>
ACCEPT
END

RandomAlphaData PROCEDURE(Field) !MAP Prototype is: RandomAlphaData(*STRING)
CODE
y# = RANDOM(1,SIZE(Field)) !Random fill size
LOOP x# = 1 to y# !Fill each character with
Field[x#] = CHR(RANDOM(97,122)) ! a random lower case letter

END



C-28 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:ImageBits Property of an IMAGE control that allows bitmap
images displayed in the control to be moved into and out
of memo fields. Any image displayed in the control can
be stored.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(),AT(0,0,,),USE(?Image)
BUTTON(‘Save Picture’),AT(80,180,60,20),USE(?SavePic)
BUTTON(‘New Picture’),AT(160,180,60,20),USE(?NewPic)
BUTTON(‘Last Picture’),AT(240,180,60,20),USE(?LastPic)

END

SomeFile FILE,DRIVER(‘Clarion’),PRE(Fil) !A file with a memo field
MyMemo MEMO(65520),BINARY
Rec RECORD
F1 LONG

. .

FileName STRING(64) !Filename variable

CODE
OPEN(SomeFile)
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’BitMap|*.BMP|PCX|*.PCX’,0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’BitMap|*.BMP|PCX|*.PCX’,0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName

OF ?SavePic
Fil:MyMemo = ?Image{PROP:ImageBits} !Put image into memo
ADD(SomeFile) ! and save it to the file on disk
ENABLE(?LastPic) ! activate Last Picture button

OF ?LastPic
?Image{PROP:ImageBits} = Fil:MyMemo !Put last saved memo into image

END
END



APPENDIX C PROPERTY ASSIGNMENTS C-29

PROP:ImageBlob Property of an IMAGE control that allows bitmap
images displayed in the control to be moved into and out
of BLOB fields. Any image displayed in the control can
be stored.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(),AT(0,0,,),USE(?Image)
BUTTON(‘Save Picture’),AT(80,180,60,20),USE(?SavePic)
BUTTON(‘New Picture’),AT(160,180,60,20),USE(?NewPic)
BUTTON(‘Last Picture’),AT(240,180,60,20),USE(?LastPic)

END

SomeFile FILE,DRIVER(‘TopSpeed’),PRE(Fil) !A file with a memo field
MyBlob BLOB,BINARY
Rec RECORD
F1 LONG

. .

FileName STRING(64) !Filename variable

CODE
OPEN(SomeFile)
OPEN(WinView)
DISABLE(?LastPic)
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’BitMap|*.BMP|PCX|*.PCX’,0)
RETURN !Return if no file chosen

END
?Image{PROP:Text} = FileName
ACCEPT
CASE ACCEPTED()
OF ?NewPic
IF NOT FILEDIALOG(‘Choose File to View’,FileName,’BitMap|*.BMP|PCX|*.PCX’,0)
BREAK !Return if no file chosen

END
?Image{PROP:Text} = FileName

OF ?SavePic
Fil:MyBlob{PROP:Handle} = ?Image{PROP:ImageBlob} !Put image into BLOB
ADD(SomeFile) ! and save it to the file on disk
ENABLE(?LastPic) ! activate Last Picture button

OF ?LastPic
?Image{PROP:ImageBlob} = Fil:MyBlob{PROP:Handle}

!Put last saved BLOB into image
END

END



C-30 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:Items Returns the number of entries visible in a LIST or
COMBO control. (READ-ONLY)

Example:

Que QUEUE
STRING(30)

END

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM
 LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
SET(SomeFile)
LOOP ?List(PROP:Items} TIMES !Fill display queue to limit of displayable items
NEXT(SomeFile)
Que = Fil:Record
ADD(Que)

END
ACCEPT
END

PROP:LazyDisplay
Disables (when set to 1) or enables (when set to 0, the
default) the feature where all window re-painting is
completely done before processing continues with the
next statement following a DISPLAY. Setting
PROP:LazyDisplay = 1 creates seemingly faster video
processing, since the re-paints occur at the end of the
ACCEPT loop if there are no other messages pending.
This can improve the performance of some applications,
but can also have a negative impact on appearance.

Example:

WinView APPLICATION(‘MyApp’),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM
END

CODE
OPEN(WinView)
SYSTEM{PROP:LazyDisplay} = 1 !Disable extra paint message display

! throughout entire application
ACCEPT
END



APPENDIX C PROPERTY ASSIGNMENTS C-31

PROP:Line An array whose elements each contain one line of the
text in a TEXT control. (READ ONLY)

PROP:LineCount Returns the number of lines of text in a TEXT control.
(READ ONLY)

Example:

LineCount SHORT
MemoLine STRING(80)

CustRpt REPORT,AT(1000,1000,6500,9000),THOUS
Detail1 DETAIL,AT(0,0,6500,6000)

TEXT,AT(0,0,6500,6000),USE(Fil:MemoField)
END

Detail2 DETAIL,AT(0,0,6500,125)
STRING(@s80),AT(0,0,6500,125),USE(MemoLine)

END
END

CODE
OPEN(File)
SET(File)
OPEN(CustRpt)
LOOP
NEXT(File)
LIneCount = ?Fil:MemoField{PROP:LineCount}
LOOP X# = 1 TO LIneCount
MemoLine = ?Fil:MemoField{PROP:Line,X#}
PRINT(Detail2)

END
END

PROP:LoginTimeOut
Property of a FILE using the ODBC driver that allows
you to set the login timeout. This value is in seconds.

Example:

OwnerString STRING(20)
Customer FILE,DRIVER(‘ODBC’),OWNER(OwnerString)
Record  RECORD
Name  STRING(20)

. .
CODE
OwnerString = ‘DataSourceName’
Customer{PROP:LoginTimeOut} = 30 !Set timeout to 30 seconds
OPEN(Customer)
OwnerString = Customer{PROP:ConnectString} !Get full connect string
MESSAGE(OwnerString) !Display it for future use



C-32 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:MaxHeightSets or returns the maximum height of a resizable
window.

PROP:MaxWidth Sets or returns the maximum width of a resizable
window.

PROP:MinHeight Sets or returns the minimum height of a resizable
window.

PROP:MinHeight Sets or returns the minimum width of a resizable win-
dow.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM,RESIZE
 LIST,AT(6,6,120,90),USE(?List),FORMAT('120L'),FROM(Q),IMM
END

CODE
OPEN(WinView)
WinView{PROPMaxHeight} = 200 !Set boundaries beyond which the user cannot
WinView{PROPMaxWidth} = 320 ! resize the window
WinView{PROPMinHeight} = 90
WinView{PROPMinWidth} = 120
ACCEPT
END

PROP:NoTips Disables (when set to 1) or re-enables (when set to 0)
tooltip display (TIP attribute) for the SYSTEM, window,
or control.

Example:

WinView APPLICATION(‘MyApp’),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM
END

CODE
OPEN(WinView)
SYSTEM{PROP:NoTips} = 1 !Disable TIP display throughout entire application
ACCEPT
END



APPENDIX C PROPERTY ASSIGNMENTS C-33

PROP:Progress You can directly update the display of a PROGRESS
control by assigning a value (which must be within the
range defined by the RANGE attribute) to the control’s
PROP:progress property.

Example:

BackgroundProcess PROCEDURE !Background processing batch process

Win WINDOW(‘Batch Processing...’),AT(,,400,400),TIMER(1),MDI,CENTER
PROGRESS,AT(100,140,200,20),USE(?ProgressBar),RANGE(0,200)
BUTTON(‘Cancel’),AT(190,300,20,20),STD(STD:Close)

END

CODE
OPEN(Win)
OPEN(File)
?ProgressBar{PROP:rangehigh} = RECORDS(File)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK

OF EVENT:Timer !Process records when timer allows it
ProgressVariable += 3 !Auto-updates 1st progress bar
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
?ProgressBar{PROP:progress} += 1 !Manually update progress bar
!Perform some batch processing code

. . .
CLOSE(File)

PROP:ScreenText Returns the text displayed on screen in the specified
ENTRY or entry-like (SPIN/COMBO) control.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
SPIN(@n3),AT(0,0,320,180),USE(Fil:Field),RANGE(0,255)

END
CODE
OPEN(WinView)
ACCEPT
CASE FIELD()
OF ?Fil:Field
CASE EVENT()
OF EVENT:Rejected
MESSAGE(?Fil:Field{PROP:ScreenText} & ‘ is not in the range 0-255’)
SELECT(?)
CYCLE

END
END

END



C-34 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:SelStart Sets or retrieves the beginning (inclusive) character to
mark as a block in an ENTRY or TEXT control. It
positions the data entry cursor left of the character, and
sets PROP:SelEnd to zero (0) to indicate no block is
marked.

PROP:SelEnd Sets or retrieves the ending (inclusive) character to mark
as a block in an ENTRY or TEXT control.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
ENTRY(@S30),AT(0,0,320,180),USE(Fil:Field),ALRT(F10Key)

END
CODE
OPEN(WinView)
ACCEPT
CASE ACCEPTED()
OF ?Fil:Field
SETCLIPBOARD(Fil:Field[?Fil:Field{PROP:SelStart}:?Fil:Field{PROP:SelEnd}])

!Place highlighted string slice in Windows’ clipboard
END

END

PROP:Size Returns (or sets) the size of a BLOB field.

Example:

Names FILE,DRIVER(‘TopSpeed’)
NbrKey KEY(Names:Number)
Notes BLOB !Can be larger than 64K
Rec RECORD
Name STRING(20)
Number SHORT

. .

BlobSize LONG
BlobBuffer1 STRING(65520),STATIC !Maximum size string
BlobBuffer2 STRING(65520),STATIC !Maximum size string

WinView WINDOW(‘View BLOB Contents’),AT(0,0,320,200),SYSTEM
TEXT,AT(0,0,320,180),USE(BlobBuffer1),VSCROLL
TEXT,AT(0,190,320,180),USE(BlobBuffer2),VSCROLL,HIDE

END
CODE
OPEN(Names)
SET(Names)
NEXT(Names)
OPEN(WinView)
BlobSize = Names:Notes{PROP:Size} !Get size of BLOB contents
IF BlobSize > 65520
BlobBuffer1 = Names:Notes[1:65520]
BlobBuffer2 = Names:Notes[65521:BlobSize]
WinView{PROP:Height} = 400
UNHIDE(?BlobBuffer2)

ELSE
BlobBuffer1 = Names:Notes[1:BlobSize]

END
ACCEPT
END



APPENDIX C PROPERTY ASSIGNMENTS C-35

PROP:Thread Returns the thread number of a window. This is not
necessarily the currently executing thread, if you’ve used
SETTARGET to set the TARGET built-in variable.
(READ-ONLY)

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL,SYSTEM
END

ToolboxThread BYTE
CODE
OPEN(WinView)
ToolboxThread = ToolboxWin{PROP:Thread} !Get window thread number
ACCEPT
END

PROP:TipDelay Sets the time delay before tooltip display (TIP attribute)
for the SYSTEM (16-bit only).

PROP:TipDisplay Sets the duration of tooltip display (TIP attribute) for the
SYSTEM (16-bit only).

Example:

WinView APPLICATION(‘MyApp’),AT(0,0,320,200),MAX,HVSCROLL,SYSTEM
END

CODE
OPEN(WinView)
SYSTEM{PROP:TipDelay} = 50 !Delay TIP display for 1/2 second
SYSTEM{PROP:TipDisplay} = 500 !TIP display for 5 seconds
ACCEPT
END

PROP:Touched When non-zero, indicates the data in the ENTRY, TEXT,
SPIN, or COMBO control with input focus has been
changed by the user since the last  EVENT:Accepted.
Automatically reset to zero each time the control gener-
ates an EVENT:Accepted.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
ENTRY(@S30),AT(0,0,320,180),USE(Fil:Field)

END
CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:Selected
?Fil:Field{PROP:Touched} = 1 !Force an EVENT:Accepted to generate

OF EVENT:Accepted
!Process the data, whether entered by the user or in the field at the start

END
END



C-36 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:TrueValue Sets the value received by the USE variable of a
CHECK box when the user checks it on. This overrides
the default assigned value of one (1).

PROP:FalseValue Sets the value received by the USE variable of a
CHECK box when the user checks it off. This overrides
the default assigned value of zero (0).

Example:

CheckField STRING(1)

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
CHECK(‘True or False’),AT(0,0,,),USE(CheckField)

END
CODE
OPEN(WinView)
?CheckField{PROP:TrueValue} = ‘T’
?CheckField{PROP:FalseValue} = ‘F’
ACCEPT
END

PROP:VBXEvent Returns the name of a VBX event. (READ-ONLY)

PROP:VBXEventArg
VBX event parameters. An array.

Example:

WinView WINDOW(‘View’),AT(0,0,320,200),MDI,MAX,HVSCROLL
CUSTOM,USE(?Graph),CLASS(‘graph.vbx’,’graph’),’graphstyle’(‘2’)

END

CODE
OPEN(WinView)
ACCEPT
CASE EVENT()
OF EVENT:VBXEvent
IF ?Graph{PROP:VBXEvent} = ‘FooEvent’ !Check event name
ProcessFoo(?Graph{PROP:VBXEventArg,1},?Graph{PROP:VBXEventArg,2})

!Get 1st and 2nd event parameters and pass to process procedure
END

END
END



APPENDIX C PROPERTY ASSIGNMENTS C-37

PROP:Visible Returns an empty string if the control is not visible
because either because it has been hidden, or it is a
member of a “parent” control (OPTION, GROUP,
MENU, SHEET, or TAB) that is hidden, or is on a TAB
control page that is not currently selected. (READ-
ONLY)

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB(‘Tab One’),USE(?TabOne)
PROMPT(‘Enter Data:’),AT(100,100,20,20),USE(?P1)
ENTRY(@S8),AT(100,140,32,20),USE(E1)
PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P2)
ENTRY(@S8),AT(100,240,32,20),USE(E2)

END
TAB(‘Tab Two’),USE(?TabTwo)
PROMPT(‘Enter Data:’),AT(100,100,20,20),USE(?P3)
ENTRY(@S8),AT(100,140,32,20),USE(E3)
PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P4)
ENTRY(@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON(‘Ok’),AT(100,180,20,20),USE(?Ok)
BUTTON(‘Cancel’),AT(200,180,20,20),USE(?Cancel)

END
CODE
OPEN(MDIChild)
ACCEPT
CASE EVENT()
OF EVENT:Completed
BREAK

END
CASE FIELD()
OF ?Ok
CASE EVENT()
OF EVENT:Accepted
SELECT

END
OF ?E3
CASE EVENT()
OF EVENT:Accepted
E3 = UPPER(E3) !Convert the data entered to Upper case
IF ?E3{PROP:Visible} AND MDIChild{PROP:AcceptAll}

!Check for visibility during AcceptAll mode
DISPLAY(?E3) ! and display the upper cased data

END
END

OF ?Cancel
CASE EVENT()
OF EVENT:Accepted
BREAK

END
END

END



C-38 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:VscrollPos Returns the position of the vertical scroll bar’s “thumb”
(from 0 to 255) on a window, IMAGE, TEXT, LIST, or
COMBO control with the VSCROLL attribute. Setting
this property causes the control or window’s contents to
be scrolled vertically (unless the IMM attribute is on the
LIST or COMBO, then only the “thumb” moves).

Example:

Que QUEUE
STRING(50)

END
WinView WINDOW(‘View’),AT(0,0,320,200),MDI,SYSTEM

LIST,AT(0,0,320,200),USE(?List),FROM(Que),IMM,VSCROLL
END

CODE
OPEN(WinView)
Fil:KeyField = ‘A’ ; DO BuildListQue
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:ScrollDrag
EXECUTE INT(?List{PROP:VscrollPos}/10) + 1
Fil:KeyField = ‘A’
Fil:KeyField = ‘B’
Fil:KeyField = ‘C’
Fil:KeyField = ‘D’
Fil:KeyField = ‘E’
Fil:KeyField = ‘F’
Fil:KeyField = ‘G’
Fil:KeyField = ‘H’
Fil:KeyField = ‘I’
Fil:KeyField = ‘J’
Fil:KeyField = ‘K’
Fil:KeyField = ‘L’
Fil:KeyField = ‘M’
Fil:KeyField = ‘N’
Fil:KeyField = ‘O’
Fil:KeyField = ‘P’
Fil:KeyField = ‘Q’
Fil:KeyField = ‘R’
Fil:KeyField = ‘S’
Fil:KeyField = ‘T’
Fil:KeyField = ‘U’
Fil:KeyField = ‘V’
Fil:KeyField = ‘W’
Fil:KeyField = ‘X’
Fil:KeyField = ‘Y’
Fil:KeyField = ‘Z’

END
DO BuildListQue

. . .
FREE(Que)

BuildListQue ROUTINE
FREE(Queue)
SET(Fil:SomeKey,Fil:SomeKey) !Set to selected key field
LOOP ?List{PROP:Items} TIMES !Process number of records visible in list
NEXT(SomeFile) ; IF ERRORCODE() THEN BREAK. !Break at end of file
Que = Fil:KeyField !Assign field to display to QUEUE
ADD(Que) ! and add it to the QUEUE

END



APPENDIX C PROPERTY ASSIGNMENTS C-39

PROP:WndProc Sets or gets the window (not the client area) messaging
procedure for use with low-level Windows API calls that
require it. Generally used with sub-classing to track all
Windows messages. (READ-ONLY)

Example:

PROGRAM
MAP
main
SubClassFunc1(USHORT,SHORT,SHORT,LONG),LONG,PASCAL
SubClassFunc2(USHORT,SHORT,SHORT,LONG),LONG,PASCAL
MODULE('Windows') !TopSpeed Win31 Library
CallWindowProc(LONG,USHORT,SHORT,SHORT,LONG),LONG,PASCAL

END
END

SavedProc1 LONG
SavedProc2 LONG
WM_MOUSEMOVE    EQUATE(0200H)
PT GROUP,PRE(PT)
X SHORT
Y SHORT

END
CODE
Main

Main PROCEDURE
WinView WINDOW('View'),AT(0,0,320,200),HVSCROLL,MAX,TIMER(1),STATUS

STRING('X Pos'),AT(1,1,,),USE(?String1)
STRING(@n3),AT(24,1,,),USE(PT:X)
STRING('Y Pos'),AT(44,1,,),USE(?String2)
STRING(@n3),AT(68,1,,),USE(PT:Y)
BUTTON('Close'),AT(240,180,60,20),USE(?Close)

END
CODE
OPEN(WinView)
SavedProc1 = WinView{PROP:WndProc} !Save this procedure
WinView{PROP:WndProc} = ADDRESS(SubClassFunc1) !Change to subclass procedure
SavedProc2 = WinView{PROP:ClientWndProc} !Save this procedure
WinView{PROP:ClientWndProc} = ADDRESS(SubClassFunc2) !Change to subclass proc
ACCEPT
CASE ACCEPTED()
OF ?Close
BREAK

. .
SubClassFunc1    FUNCTION(hWnd,wMsg,wParam,lParam) !Sub class procedure
CODE ! to track mouse movement in
IF  wMsg = WM_MOUSEMOVE ! window’s status bar (only)
PT:X = MOUSEX()
PT:Y = MOUSEY()

END
RETURN(CallWindowProc(SavedProc1,hWnd,wMsg,wParam,lParam))

SubClassFunc2    FUNCTION(hWnd,wMsg,wParam,lParam) !Sub class procedure
CODE ! to track mouse movement in
IF  wMsg = WM_MOUSEMOVE ! window’s client area
PT:X = MOUSEX()
PT:Y = MOUSEY()

END
RETURN(CallWindowProc(SavedProc2,hWnd,wMsg,wParam,lParam))

!Pass control back to
! saved procedure



C-40 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Printer Control Proper ties

These properties control report and printer behavior. All of these properties
can be used with either the PRINTER built-in variable or the label of the
report as the target, however they may not all make sense with both.

PROPPRINT:Collate
Specify the printer should collate the output: 0=off,
1=on (not supported by all printers).

PROPPRINT:Color Color or monochrome print flag:1=mono, 2=color (not
supported by all printers).

PROPPRINT:Context
Returns the handle to the printer’s device context after
the first PRINT statement for the report, or an informa-
tion context before the first PRINT statement. This may
not be set for the built-in Global PRINTER variable and
is normally only read (not set).

PROPPRINT:Copies
The number of copies to print (not supported by all
printers).

PROPPRINT:Device
The name of the Printer as it appears in the Windows
Printer Dialog. If multiple printer names start with the
same characters, the first encountered is used (not case
sensitive). May be set for the PRINTER built-in variable
only before the report is open.

PROPPRINT:DevMode
The entire device mode (devmode) structure as defined
in the Windows Software Development Kit. This pro-
vides direct API access to all printer properties. Consult
a Windows API manual before using this.

DevMode GROUP
DeviceName STRING(32) !PROPPRINT:Device
SpecVersion USHORT
DriverVersion USHORT
Size USHORT
DriverExtra USHORT
Fields ULONG
Orientation SHORT
PaperSize SHORT !PROPPRINT:Paper
PaperLength SHORT !PROPPRINT:PaperHeight
PaperWidth SHORT !PROPPRINT:PaperWidth
Scale SHORT !PROPPRINT:Percent
Copies SHORT !PROPPRINT:Copies
DefaultSource SHORT !PROPPRINT:PaperBin
PrintQuality SHORT !PROPPRINT:Resolution
Color SHORT !PROPPRINT:Color
Duplex SHORT !PROPPRINT:Duplex

END



APPENDIX C PROPERTY ASSIGNMENTS C-41

PROPPRINT:DriverThe printer driver‘s filename (without the .DLL exten-
sion).

PROPPRINT:Duplex
The duplex printing mode (not supported by all print-
ers). Equates  (DUPLEX::xxx) for the standard choices
are listed in the PRNPROP.CLW file.

PROPPRINT:FontMode
The TrueType font mode. Equates (FONTMODE:xxx)
for the modes are listed in the PRNPROP.CLW file.

PROPPRINT:FromMin
When set for the built-in PRINTER variable, this forces
the value into the “From:” page number in the
PRINTERDIALOG. Specify -1 to disable ranges

PROPPRINT:FromPage
The page number on which to start printing. Specify -1
to print from the start.

PROPPRINT:Paper Standard paper size. Equates (PAPER:xxx) for the
standard sizes are listed in the PRNPROP.CLW file. This
defines the dimensions of the .WMF files that are
created by the Clarion runtime library’s “print engine.”

PROPPRINT:PaperBin
The paper source. Equates (PAPERBIN:xxx) for the
standard locations are listed in the PRNPROP.CLW file.

PROPPRINT:PaperHeight
The paper height in tenths of millimeters (mm/10).
There are 25.4 mm per inch. Used when setting
PROPPRINT:Paper to PAPER:Custom (not normally
used for laser printers).

PROPPRINT:PaperWidth
The paper width in tenths of millimeters (mm/10).
There are 25.4 mm per inch. Used when setting
PROPPRINT:Paper to PAPER:Custom (not normally
used for laser printers).

PROPPRINT:Percent
The scaling factor used to enlarge or reduce the printed
output, in percent (not supported by all printers). This
defaults to 100 percent. Set this value to print at the
desired percentage (if your printer and driver support
scaling). For example, set to 200 to print at double size,
or 50 to print at half size.

PROPPRINT:Port Output port name (LPT1, COM1, etc.).

PROPPRINT:PrintToFile
The Print to File flag: 0=off, 1=on.



C-42 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROPPRINT:PrintToName
The output filename when printing to a file.

PROPPRINT:Resolution
The print resolution in Dots Per Inch (DPI). Equates
(RESOLUTION:xxx)  for the standard resolutions are
listed in the PRNPROP.CLW file.

PROPPRINT:ToMax
When set for the built-in PRINTER variable, this forces
the value into the “To:” page number in the
PRINTERDIALOG. Specify -1 to disable ranges

PROPPRINT:ToPage
The page number on which to end printing. Specify -1 to
print to end.

PROPPRINT:Yresolution
Vertical print resolution in Dots Per Inch (DPI). Equates
(RESOLUTION:xxx)  for the standard resolutions are
listed in the PRNPROP.CLW file.

Example:

SomeReport REPORT
END

CODE
PRINTER{PROPPRINT:Device} = 'Epson' !Pick 1st Epson in the list

PRINTER{PROPPRINT:Port} = 'LPT2:' !Send report to LPT2

SomeReport{PROPPRINT:Paper} = PAPER:User !Custom paper size
SomeReport{PROPPRINT:PAPERHeight} = 6 * 254 !6" form height
SomeReport{PROPPRINT:PAPERWidth} = 3.5 * 254 !3.5" form width

PRINTER{PROPPRINT:Percent} = 250 !page printed 2.5 times normal

PRINTER{PROPPRINT:Copies} = 3 !print 3 copies of each page
PRINTER{PROPPRINT:Collate} = False !print 1,1,1,2,2,2,3,3,3,...
PRINTER{PROPPRINT:Collate} = True !print 1,2,3..., 1,2,3...,

PRINTER{PROPPRINT:PrintToFile} = True !print to a file
PRINTER{PROPPRINT:PrintToName} = 'OUTPUT.RPT' !filename to print to

OPEN(SomeReport) !Open report after setting properties



APPENDIX C PROPERTY ASSIGNMENTS C-43

Embedded SQL

Clarion’s property syntax can be used to execute SQL statements in your
program code by using PROP:SQL naming the file as the target. This is
only appropriate when using an SQL file driver (such as the ODBC, AS/400,
or Oracle drivers).

You may embed any SQL statements supported by the back-end SQL server.
If you issue an SQL statement that causes a result set to be returned (such as
an SQL SELECT statement), you use NEXT(file) to retrieve the result set
(one row at a time) into the file's record buffer. The FILEERRORCODE()
and FILEERROR() functions will return any error code and error string set
by the back-end SQL server.

You may also query the contents of PROP:SQL to get the last SQL
statement issued by the file driver.

Example:

SQLFile{PROP:SQL} = ‘SELECT field1,field2 FROM table1’ |
& ‘WHERE field1 > (SELECT max(field1)’ |
& ‘FROM table2’

!Returns a result set that you
! get one row at a time using
! NEXT(SQLFile)

SQLFile{PROP:SQL} = 'CALL GetRowsBetween(2,8)' !Call a stored procedure

SQLFile{PROP:SQL} = 'CREATE INDEX ON table1 (field1, field2 DESC)"
!No result set

SQLString = SQLFile{PROP:SQL} !Get last SQL statement issued by driver



APPENDIX D ERROR CODES D-1

Run Time ErRun Time ErRun Time ErRun Time ErRun Time Errrrrrorsorsorsorsors

Trappable Run Time Errors

The following errors can be trapped in code with the ERRORCODE and
ERROR functions. Each error has a code number (returned by the
ERRORCODE function) and an associated text message (returned by the
ERROR function) indicating what the problem is.

2      File Not Found
The requested file does not exist in the specifed direc-
tory.

3      Path Not Found
The directory name specified as part of the path does not
exist.

4      Too Many Open Files
The total number of file handles available has been used.
Check the FILES= setting in the CONFIG.SYS file, or
the user’s or network’s simultaneous open files setting in
a network environment.

5      Access Denied
The file has already been opened by another user for
exclusive access, has been left in a locked state, or you
do not have network rights to open the file. This error
can also occur when no disk space is available.

7      Memory Corrupted
Some unknown memory corruption has occurred.

8      Insufficient Memory
There is not enough unallocated memory left to perform
the operation. Closing other applications may free up
enough memory . With Btrieve, this indicates that you
do not have enough real mode memory left to load
BTR32.EXE. IN Win95, loading WBTR32.EXE in
WINSTART.BAT can avoid this problem.

30     Entry Not Found
A GET to QUEUE has failed. For GET(Q,key), the
matching key value was not found, and for
GET(Q,pointer), the pointer is out of range.

32     File Is Already Locked
An attempt to LOCK a file has failed because another
user has already locked it.



D-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

33     Record Not Available
Usually an attempt to read past the end or beginning of
file with NEXT or PREVIOUS. May also be posted by
PUT or DELETE when no record was read before the
attempted PUT or DELETE.

35     Record Not Found
For a GET(File,key), the matching key field value was
not found.

36     Invalid Data File
Some unknown data file corruption has occurred.

37     File Not Open
An attempt to perform some operation that requires the
file be already open has failed because the file is not
open.

38     Invalid Key File
Some unknown key file corruption has occurred.

40     Creates Duplicate Key
An attempt to ADD or PUT a record with key field
values that duplicate another existing record in the file
has been made to a file with a key that does not allow
duplicate entires.

43     Record Is Already Held
An attempt to HOLD a record has failed because another
user has already held it.

45     Invalid Filename
The filename does not meet the definition of a valid
DOS filename.

46     Key File Must Be Rebuilt
Some unknown key corruption has occurred that requires
the BUILD statement to re-build the key.

47     Invalid Record Declaration
The data file on disk does not match the file’s declara-
tion in the .EXE, usually because you have changed the
file’s definition in the Data Dictionary and have not yet
converted the file to the new format.

48     Unable To Log Transaction
A transaction logout or pre-image file cannot be written
to disk. This usually occurs because no disk space is
available, or the user does not have the proper network
rights.

52     File Already Open
An attempt to OPEN a file that has already been opened
by this user.



APPENDIX D ERROR CODES D-3

53     Invalid Clarion File
Indicates a file with a corrupt dBase header. This error
only occurs with the xBase drivers.

54     No Create Attribute
An attempt to execute the CREATE procedure on a file
whose declaration does not inlcude the CREATE at-
tribute.

56     LOGOUT Already Active
An attempt to issue a second LOGOUT statement while
a transaction is already in progress.

57     Invalid Memo File
Some unknown memo file corruption has occurred. For
Clarion data files, this could come from a corrupt .MEM
file “signature” or pointers to the memo file in the data
file that are “out of sync” (usually due to copying files
from one location to another and copying the wrong
.MEM file).

63     Exclusive Access Required
An attempt to perform a BUILD(file), BUILD(key),
EMPTY(file) or PACK(file) was made when the file had
not been opened with exclusive access.

64     Sharing Violation
An attempt to perform some action on a file which
requires that the file be opened for shared access.

65     Unable To ROLLBACK Transaction
An attempt to ROLLBACK a transaction has failed for
some unknown reason.

73     Memo File Missing
An attempt to OPEN a file that has been declared with a
MEMO field and the file containing that memo data
does not exist.

75     Invalid Field Type Descriptor
Either the type descriptor is corrupt, you have used a
name that does not exist in GET(Q,name), or the file
definition is not valid for the file driver.  For example,
trying to define a LONG field in an xBase file without a
matching MEMO field.

76     Invalid Index String
The index string passed to BUILD(DynIndex,string)
was invalid.

77     Unable To Access Index
An attempt to retrieve records using a dynamic index
failed because the dynamic index could not be found.



D-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

78     Invalid Number Of Parameters
You did not pass the correct number of parameters to a
function called in an EVALUATE statement.

79     Unsupported Data Type In File
The file driver has detected a field in the file declared
with a data type that is not supported by the file system
the driver is designed to access.

80     Unsupported File Driver Function
The file driver has detected a file access statement that is
not supported. This is frequently an unsupported form
(different parameters) of a statement that is supported.

81     Unknown Error Posted
The file driver has detected some error from the backend
file system that it cannot get further information about.

88     Invalid Key Length
 An attempt to CREATE a Clarion file driver KEY or
INDEX with more than 245 characters.

89     Record Changed By Another Station
The WATCH statement has detected a record on disk that
does not match the original version of the record about
to be updated in a network situation.

90     File Driver Error
The file driver has detected some other error reported by
the file system. You can use the FILEERRORCODE and
FILEERROR functions to determine exactly what native
error the file system is reporting.



APPENDIX D ERROR CODES D-5

Non-Trappable Run Time Errors

The following errors occur at run time and cannot be trapped with the
ERRORCODE or ERROR functions.

Mismatch with CWVBX.DLL detected
The first CWVBX.DLL file encountered in the path is
not the same version (usually an earlier version) than
was used to create the .EXE.

VBX control is too complex
A .VBX control containing more than 64 dialogs
(hidden or visible). This limit exists only in 16-bit.

Event posted to a report control
An attempt to POST an event to a control in a REPORT
structure.

Metafile record too large in report
A .WMF file is too large to print in the report.

Unexpected error opening printer device
An unexpected error occurred while attempting to open a
printer.

Report is already open
An attempt to OPEN a REPORT that has already been
opened and not yet closed.

Unable to open APPLICATION (APPLICATION already active)
An attempt to OPEN an APPLICATION in a program
that has already opened an MDI application frame
window.

Unable to open APPLICATION (system is MODAL)
An attempt to OPEN an APPLICATION in a program
that has already opened a MODAL window.

Unable to open APPLICATION
A failed attempt to OPEN an APPLICATION.

Unable to open WINDOW
A failed attempt to OPEN a WINDOW.

Unable to open MDI window (No APPLICATION active)
An attempt to OPEN an MDI WINDOW in a program
that has not yet opened an MDI APPLICATION frame
window.

Unable to open MDI window (system is MODAL)
An attempt to OPEN an MDI WINDOW in a program
that has already opened a MODAL window.



D-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Unable to open MDI window on APPLICATION's thread
An attempt to OPEN an MDI WINDOW in the same
execution thread as the MDI APPLICATION frame
window.

Unable to open MDI WINDOW
A failed attempt to OPEN an MDI WINDOW.

Too many keystrokes PRESSed
The parameter to the PRESS statement contains too
many characters.

Window is already open
An attempt to OPEN a WINDOW that is already open.

Window is not open
An attempt has been made to perform some action that
requires a window be opened first. Usually a property
assignment statement.

ACCEPT loop requires a window
An ACCEPT loop that has no associated window.

PRINT must only be called for reports
An attempt to PRINT a structure that is not part of a
REPORT.

ENDPAGE must only be called for reports
An attempt to execute the ENDPAGE statement when no
REPORT is active.

Unable to process ACCEPT (system is MODAL)
An attempt to perform an illegal action in a program that
has already opened a MODAL window.

Unable to create control (system is MODAL)
An attempt to CREATE a control in a program that has
already opened a MODAL window.

Unable to complete operation (system is MODAL)
An attempt to perform an illegal action in a program that
has already opened a MODAL window.



APPENDIX D ERROR CODES D-7

Compiler ErCompiler ErCompiler ErCompiler ErCompiler Errrrrrorsorsorsorsors
The compiler generates an error message at exactly the point in the source
code where it determines that something has gone wrong. Therefore, the
problem is always either right at that point, or somewhere in the code
preceding that point. For most error messages, the problem exists right at the
point at which it is detected, but some error messages are typically generated
by problems that far precede their detection by the compiler, making some
“detective work” necessary, along with an understanding of what the
compiler is trying to tell you in the error message itself.

Deciphering compiler error messages to determine exactly what syntax error
needs to be corrected can be a bit of an arcane science. The major reason for
this is that a single (relatively minor) error can create a “cascade effect;” a
long list of error messages that all have one root cause. This is typically the
case in the situation where there are a very large number of compiler errors
reported in the same source module. To handle this, you should correct just
the first error reported then re-compile to see how many errors are left (quite
often, none). If you have just a couple of errors reported that are widely
separated in the source code, it is likely that each is a discrete error and you
should correct them all before re-compiling.

Specific Errors

The following  error messages occur when the compiler has detected a
specific syntax problem and is attempting to alert you to exactly  what the
problem is so that you may correct it.

Some of the following error messages contain a “%V” token. The compiler
substitutes an explicit label indicating what problem is occurring for this
token when it generates the error message, which should help point to the
cause of the error.

! introduces a comment
This is a common C programmer’s error. If you type IF
A != 1 THEN you get this warning.

Actual value parameter cannot be array
The passed parameter must not be an array.

ADDRESS parameter ambiguous
ADDRESS(MyLabel) where MyLabel is the label of
both a procedure and a data item.

All fields must be declared before JOINs
All PROJECT statements for the file must precede any
JOIN statements in the VIEW structure.



D-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Ambiguous label The field qualification syntax  has come up with more
that one solution for the label you have supplied. For
example:

G GROUP
S:T SHORT !Referenced as G:S:T

END
G:S GROUP
T SHORT !Referenced as G:S:T

END
CODE
G:S:T = 7 !Which are you talking about?

Array too big Arrays are limited to 64K in 16 bit.

Attribute parameter must be QUEUE, QUEUE field or constant string
The parameter must be the label of a previously declared
QUEUE structure, a field within a QUEUE structure, or
a string constant.

Attribute requires more parameters
You must pass all required parameters to an attribute that
takes parameters.

Attribute string must be constant
The parameter must be a string constant, not the label of
a variable.

Attribute variable must be global
The parameter must be a variable declared in the PRO-
GRAM module as global data.

Attribute variable must have string type
The parameter must be a variable declared as a STRING,
CSTRING, or PSTRING.

BREAK statement must be within LOOP
BREAK is only valid within a LOOP or ACCEPT
structure.

BREAK structure must enclose DETAIL
There must be at least one DETAIL structure within
nested BREAK structures (at the lowest level).

Calling function as procedure
A Warning that a FUNCTION is being called as a
PROCEDURE and the return value will be lost.

Cannot call procedure as function
You can call a FUNCTION as a PROCEDURE, but you
cannot call a PROCEDURE as a FUNCTION.

Cannot declare KEY in a VIEW
A KEY declaration is not valid in a VIEW structure.

Cannot EXIT from here
Only a ROUTINE may contain the EXIT statement.



APPENDIX D ERROR CODES D-9

Cannot GOTO into ROUTINE
The target of GOTO must be the label of an executable
code statement within the same procedure or ROUTINE,
and may not be the label of a ROUTINE.

Cannot have default parameter here
You may only have a default value on non-omittable
integer data type parameters passed by value.

Cannot have initial values with OVER
A variable declaration with the OVER attribute may not
also have an initial value parameter.

Cannot have statement here
This happens if the compiler thinks you have tried to
define a code label inside the global data section.

Cannot initialize variable reference
A reference variable cannot have an initial value.

Cannot return CSTRING from CLARION function
CSTRING is not a valid return data type for a FUNC-
TION written in Clarion (only for functions written in
other languages).

Cannot RETURN value from procedure
Only a FUNCTION may contain the RETURN state-
ment with a return value parameter.

CLARION function cannot use RAW or NAME
These attributes are not appropriate for a PROCEDURE
or a FUNCTION written in Clarion (only for functions
written in other languages).

CYCLE statement must be within LOOP
CYCLE is only valid within a LOOP or ACCEPT
structure.

DECIMAL has too many places
A DECIMAL or PDECIMAL declaration may only have
a maximum of 30 decimal places, and the decimal
portion must be less than the length.

DECIMAL too long
A DECIMAL or PDECIMAL declaration may have a
maximum length of 31 digits.

Declaration not valid in FILE structure
This data declaration may not be contained within a
FILE structure.

Declaration too big The compiler has detecteda PSTRING > 255 or MEMO
> 64K in 16 bit, etc.



D-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DLL attribute requires EXTERNAL attribute
The DLL attribute further defines the EXTERNAL
attribute.

Duplicate code label: %V
Two lines of executable source code have the same
named label.

Dynamic INDEX must be empty
An attempt to use the 2 parameter form of BUILD on a
KEY or INDEX declared with component fields..

Embedded OVER must name field in same structure
The parameter to the OVER attribute must be the label
of a previously declared variable in the same structure.

ENCRYPT attribute requires OWNER
The ENCRYPT attribute and OWNER attribute function
together.

Entity-parameter cannot be an array
You cannot pass an array of entity parameters (FILE,
QUEUE, etc.).

Expected a PROJECT statement
A VIEW structure must contain at least one PROJECT
statement.

Expected: %V This is one of the most common errors. The compiler
was expecting to find something (one of the items in the
list substituted for the %V token) as the next code to
compile, but instead found the code at the point in the
source that the error is generated.

Expression cannot be picture
You have attempted to use an EQUATE label to a picture
token in a place where a picture token is not valid.

Expression cannot have conditional type
An expression is not a numeric value. For example,
MyValue = A > B is invalid.

Expression must be constant
Variables are not valid in this expression.

Field equate label not defined: %V
The named field equate label has not been previously
declared.

Field not found in parent FILE
A JOIN statement must declare all the linking fields
between the parent and child files.

Field requires (more) subscripts
This is referencing an array with multiple dimensions,
and you must supply an index into each dimension.



APPENDIX D ERROR CODES D-11

FILE must have DRIVER attribute
The DRIVER attribute is required to declare the file
system for whcih the data file is formatted.

FILE must have RECORD structure
It is invalid to declare a FILE which does not contain a
RECORD structure.

FILEs must have same DRIVER attribute
All files named in a LOGOUT statement must use the
same file system.

FUNCTION must have return type
If you declare a prototype with a return data type in the
MAP, you must create it as a FUNCTION.

Function result is not of correct type
The RETURN statement must return a value consistent
with the return data type prototyped in the MAP struc-
ture.

Group too big GROUPs are limited to 64K in 16 bit.

Ignoring EQUATE redefinition: %V
A Warning that the named equate is being ignored. This
is really a label-redefined error except that the definition
is not thrown away.

Illegal array assignment
An assignment to an array must reference a single
element, not the entire array.

Illegal character A non-valid lexical token. For example, an ASCII 255 in
your source.

Illegal data type: %V
The named data type is inappropriate for the structure in
which it is placed.

Illegal key component
A KEY has any type of illegal component.

Illegal nesting of window controls
Window controls other than RADIO have been placed
within an OPTION structure, or controls other than TAB
have been placed directly within a SHEET structure.

Illegal parameter for LIKE
An illegal parameter to a LIKE declaration. For ex-
ample, LIKE(7).

Illegal parameter type for STRING
An illegal parameter to a STRING declaration. For
example, STRING(MyVar).



D-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Illegal reference assignment
A reference variable may only be assigned another
reference variable of the same type, or the label of a
variable of the type it references.

Illegal return type or attribute
The prototype contains an invalid data type as the return
data type (such as *CSTRING).

Illegal target for DO
The target of DO must be the label of a ROUTINE.

Illegal target for GOTO
The target of GOTO must be the label of an executable
code statement within the same procedure or ROUTINE,
and may not be the label of a ROUTINE.

INCLUDE invalid, expected: %V
The INCLUDE statement’s parameter must be a well
formed Clarion string. In particular, type conversion is
not valid, so INCLUDE(‘MyFile’&MyValue) is invalid.

INCLUDE misplaced
INCLUDE has to follow a line-break, or a semi-colon
(possibly followed by white space).

INCLUDE nested too deep
You can only nest INCLUDEs 3 deep. In other words
you can INCLUDE a file that INCLUDEs a file that
INCLUDEs a file, but the last file must not INCLUDE
anything.

Incompatible assignment types
An attempt to assign between incompatible data types.

Incorrect procedure profile
An attempt to pass a procedure with the wrong prototype
as a procedural parameter.

Indices must be constant
An attempt has been made to have a USE variable that is
an array element with variable indices.

Integer expression expected
The expression must evaluate to an integer.

Invalid data declaration attribute
An attribute that is inappropriate on the data declaration.

Invalid data type for value parameter
The data type prototyped in the MAP may not be passed
by value and must be passed by address. For example, to
pass a CSTRING parameter to a Clarion procedure, it
may only be prototyped as *CSTRING.



APPENDIX D ERROR CODES D-13

Invalid FILE attribute
An attribute that is inappropriate on a FILE declaration.

Invalid first parameter of ADD
The statement’s first parameter is not appropriate.

Invalid first parameter of DELETE
The statement’s first parameter is not appropriate.

Invalid first parameter of FREE
The statement’s first parameter is not appropriate.

Invalid first parameter of NEXT
The statement’s first parameter is not appropriate.

Invalid first parameter of POSITION
The statement’s first parameter is not appropriate.

Invalid first parameter of PREVIOUS
The statement’s first parameter is not appropriate.

Invalid first parameter of PUT
The statement’s first parameter is not appropriate.

Invalid first parameter of SET
The statement’s first parameter is not appropriate.

Invalid GROUP/QUEUE/RECORD attribute
An attribute that is inappropriate on a GROUP, QUEUE,
or RECORD declaration.

Invalid KEY/INDEX attribute
An attribute that is inappropriate on a KEY or INDEX
declaration.

Invalid label A label that contains characters other than letters,
numbers, underscore (_), or colon (:), or does not start
with a letter or underscore.

Invalid LOOP variable
An attempt to use an illegal data type (DATE, TIME,
STRING, etc.) as a LOOP  variable.

Invalid MEMBER statement
The parameter to the MEMBER statement is not a string
constant or does not reference the PROGRAM module
for the current project.

Invalid number A number is required, for example inside the repeat
character notation ({}) in  a string constant.

Invalid OMIT expression
The parameter to the OMIT statement is invalid.

Invalid parameters for attribute
You must pass valid parameters to an attribute that takes
them.



D-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Invalid picture token
A picture token that contains inappropriate characters.

Invalid printer control token
A PRINT statement containing a printer control token
other than @CR, @LF, or @FF.

Invalid QUEUE/RECORD attribute
An attribute that is inappropriate on a QUEUE or
RECORD declaration.

Invalid SIZE parameter
SIZE(Junk+SomeMoreJunk)

Invalid string (misused <...> or {...} )
A string constant contains a single beginning bracket (<
or {) without a matching terminating bracket (> or }).
These characters must have two together (<< or {{) if
intended to be part of the string.

Invalid structure as first parameter
The statement’s first parameter is not appropriate.

Invalid structure within property syntax
A structure that is inappropriate in a proeprty assignment
statement.

Invalid USE attribute parameter
The parameter is not appropriate for a USE attribute.

Invalid variable data parameter type
When passing parameters by address, you must pass the
same data type as prototyped in the MAP structure.

Invalid WINDOW control
A control that is inappropriate in a WINDOW structure.

ISL error: %V Contact Technical Support and provide all details of the
error message.

KEY must have components
You cannot declare a KEY without naming the compo-
nent fields that establish the KEY’s sort order.

Label duplicated, both removed: %V
The named field equate label is used multiple times
within the same module and has been removed from the
list of equate labels that may be used within the execut-
able code. Correctable with the third parameter to the
USE attribute.

Label not defined: %V
The named label has not been previously declared.

Mis-placed string slice operator
A string slice that is not the last array index. For ex-
ample, MyStringArray[3:4,5]. 



APPENDIX D ERROR CODES D-15

Missing procedure definition: %V
The named procedure is not prototyped in a MAP
structure.

Must be dimensioned variable
This must be an array.

Must be field of a FILE or VIEW
Must be a field that is a member of a FILE or VIEW
structure. For example NULL(LocalVariable) with give
this error.

Must be variable This must be the label of a previously declared variable.

Must have constant string parameter
The parameter must be a string constant, not the label of
a variable.

Must have one field for each key component
A JOIN statement must declare all the linking fields
between the parent and child files.

Must RETURN value from function
A FUNCTION must contain the RETURN statement
with a return value parameter.

Must specify DECIMAL size
A DECIMAL or PDECIMAL declaration must declare
the maximum number of digits it stores.

Must specify identifier
An indentifier was required but not supplied.

Must specify print-structure
A PRINT statement may only print a structure in a
REPORT.

No prototype available
All PROCEDUREs and FUNCTIONs must be
prototyped in a MAP structure.

Not valid inside structure
A data type is inappropriate for the structure in which it
is placed.

OMIT cannot be nested
You are in an OMIT (or COMPILE) that is not omitting
code and the compiler encounter another OMIT.

OMIT misplaced OMIT has to follow a line-break, or a semi-colon
(possibly followed by white space).

OMIT not terminated: %V
The referenced OMIT parameter was not found before
the end of the source module.



D-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Order is MENUBAR, TOOLBAR, Controls
The MENUBAR structure must come before the
TOOLBAR, and the TOOLBAR structure must come
before the controls in a WINDOW or APPLICATION.

OVER must name variable
The parameter to the OVER attribute must be the label
of a previously declared variable.

OVER must not be larger than target variable
The parameter to the OVER attribute must be the label
of a previously declared variable that is greater than or
equal to the size of the variable being declared OVER it.

OVER not allowed with STATIC or THREAD
A variable declaration with the OVER attribute may not
also have the STATIC or THREAD attribute (these must
be on the initial declaration).

Parameter cannot be omitted
The procedure or function call must pass all parameters
that have not been prototyped as omittable parameters.

Parameter cannot be omitted
The procedure or function call must pass all parameters
that have not been prototyped as omittable parameters.

Parameter kind does not match
When passing parameters by address, you must pass the
same data type as prototyped in the MAP structure.

Parameter must be picture
This must be a display picture token.

Parameter must be procedure label
This must be the label of a procedure.

Parameter must be report DETAIL label
A PRINT statement may only print a structure in a
REPORT.

Parameter type label ambiguous (CODE or DATA)
You many have a PROCEDURE and data declaration
with the same name, but then you cannot use that name
in a procedure prototype.

Parameter type must be GROUP or QUEUE
The passed parameter must be a GROUP or QUEUE
structure.

PROCEDURE cannot have return type
If you declare a prototype without a return data type in
the MAP, you must create it as a PROCEDURE.



APPENDIX D ERROR CODES D-17

Procedure doesn’t belong to module: %V
An attempt to define a procedure that has a prototype
that says it belongs in another module.

Redefining system intrinsic: %V
A Warning that the named procedure (part of your source
code) has the same name as a Clarion run time library
procedure or function and that your procedure or func-
tion will be called instead of the built-in library’s.

Routine label duplicated
The label of a ROUTINE statement has been previously
used on another statement.

Routine not defined: %V
The named ROUTINE does not exist.

SECTION duplicated: %V
The named SECTION exists twice in the INCLUDE file.

SECTION not found: %V
The named SECTION does not exist in the INCLUDE
file.

Statement label duplicated
Two lines of executable source code have the same label.

Statement must have label
The statement (such as a ROUTINE or PROCEDURE
statement) must have a label.

String not terminated
A string constant without a terminating single quote (’).

Subscript out of range
An attempt to reference an array element beyond the
valid number of elements dimensioned in the data
declaration.

Too few indices This is referencing an array with multiple dimensions,
and you must supply an index into each dimension.

Too few parameters The procedure or function call must pass all parameters
that have not been prototyped as omittable parameters.

Too few parameters The procedure or function call must pass all parameters
that have not been prototyped as omittable parameters.

Too many indices This is referencing an array and you are supplying too
many indexes into the dimensions.

Too many parameters
The procedure or function call may noy pass more
parameters than have been prototyped.



D-18 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Unable to verify validity of OVER attribute
A Warning that you are declaring a variable OVER a
passed parameter and the data types may not match at
run time.

Unknown attribute: %V
The named attribute is not part of the Clarion language.

Unknown function label
The FUNCTION has not been previously prototyped in
the program’s MAP structure.

Unknown identifier The label has not been previously declared.

Unknown identifier: %V
The named identifier has not been previously declared.

Unknown key component: %V
The named key component does not exist within the
FILE structure.

Unknown procedure label
The PROCEDURE has not been previously prototyped
in the program’s MAP structure.

Value requires (more) subscripts
This is referencing an array with multiple dimensions,
and you must supply an index into each dimension.

Variable expected This must be the label of a previously declared variable.

Variable-size must be constant
The variable declaration must contain a constant
expresion for its size parameter.

VIEW must have a FILE as parameter
A VIEW structure must declare the primary file from
which it derives data.

Wrong number of parameters
The procedure or function call must pass all parameters
that have not been prototyped as omittable parameters.

Wrong number of parameters
The procedure or function call must pass all parameters
that have not been prototyped as omittable parameters.

Wrong number of subscripts
An attempt to access a multi-dimensioned array without
providing an element number for each dimension. For
example:

MyShort SHORT,DIM(8,2)
CODE
MyValue = MyShort[7] !Wrong number of subscripts



APPENDIX D ERROR CODES D-19

Unknown errors

All of the error messages listed below are errors where the compiler has
tried to give the compiler writer some clue as to what is wrong. Report the
problem immediately to TopSpeed together with the source file that
generated the error.

Inconsistent scanner initialization

Unknown operator

Unknown expression type

Unknown expression kind

Unknown variable context

Unknown parameter kind

Unknown assignment operator

Unknown variable type

Unknown case type

Unknown equate type

Unknown string kind

Unknown picture type

Unknown descriptor type

Unknown initializer type

Unknown designator kind

Unknown structure field

Unknown formal entity

Type descriptor not static

Unknown clear type

Unkonwn simple formal type

Out of attribute space

Unknown label/routine

Unknown special identifier

Value not static

Unknown static label

Unknown screen structure kind

Corrupt pragma string

Old symbol non-NIL



APPENDIX E EVENTS E-1

EEEEEventsventsventsventsvents
In Clarion Windows programs, most of the messages from Windows are
automatically handled internally by the ACCEPT event processor. These are
the common events handled by the runtime library (screen re-draws, etc.).
Only those events that actually may require program action are passed on by
ACCEPT to your Clarion code. The net effect of this is to make your
programming job easier by removing the low-level “drudgery” code from
your program, allowing you to concentrate on the high-level aspects of
programming, instead. Of course, it is also possible to handle these low-
level messages yourself by “sub-classing” the window, but that is a low-level
technique that should only be used if absolutely necessary. Consult Charles
Petzold’s book Programming Windows published by Microsoft Press if you
need more information on sub-classing.

There are two types of events passed on to the program by ACCEPT: Field-
specific and Field-independent events. The following lists are the event
EQUATEs that are contained in EQUATES.CLW.

Field-Independent Events

A Field-independent event does not relate to any one control but requires
some program action (for example, to close a window, quit the program, or
change execution threads). Most of these events cause the system to become
modal for the period during which they are processing, since they require a
response before the program may continue.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key for an ALRT
attribute on the window. If a CYCLE statement is
encountered in the code to process this event, the
EVENT:AlertKey is not generated and the action is
aborted.

EVENT:AlertKey The user pressed an ALRT attribute hot key for an ALRT
attribute on the window.  This is the event on which you
perform the action the user has requested by pressing the
alert key.

EVENT:CloseWindow
The window is closing. POSTing this event closes the
window. This is the event on which you perform any
window cleanup code.

EVENT:CloseDown
The application is closing. POSTing this event closes the
application. This is the event on which you perform any
application cleanup code.



E-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EVENT:OpenWindow
The window is opening. This is the event on which you
perform any window initialization code.

EVENT:LoseFocus The window is losing input focus to another thread. This
is the event on which you save any data that could be at
risk of being changed by another thread.

EVENT:GainFocus The window is gaining input focus from another thread.
This is the event on which you restore any data you
saved in EVENT:LoseFocus.

EVENT:Suspend The window still has input focus but is giving control to
another thread to process timer events.

EVENT:Resume The window still has input focus and is regaining control
from an EVENT:Suspend.

EVENT:Timer The TIMER attribute has triggered. This is the event on
which you perform any timed actions, such as clock
display, or background record processing for reports or
batch processes.

EVENT:Move The user is moving the window. If a CYCLE statement
is encountered in the code to process this event, the
EVENT:Moved is not generated and the action is
aborted. This is the event on which you can prevent
users from moving a window.

EVENT:Moved The user has moved the window. This is the event on
which you readjust anything that is screen-position-
dependent.

EVENT:Size The user is resizing the window. If a CYCLE statement
is encountered in the code to process this event, the
EVENT:Sized is not generated and the action is aborted.
This is the event on which you can prevent users from
resizing a window.

EVENT:Sized The user has resized the window. This is the event on
which you readjust anything that is screen-size-depen-
dent.

EVENT:Restore The user is restoring the window’s previous size. If a
CYCLE statement is encountered in the code to process
this event, the EVENT:Restored is not generated and the
action is aborted. This is the event on which you can
prevent users from restorng a window.

EVENT:Restored The user has restored the window’s previous size. This is
the event on which you readjust anything that is screen-
size-dependent.



APPENDIX E EVENTS E-3

EVENT:Maximize The user is maximizing the window. If a CYCLE
statement is encountered in the code to process this
event, the EVENT:Maximized is not generated and the
action is aborted. This is the event on which you can
prevent users from maximizing a window.

EVENT:MaximizedThe user has maximized the window. This is the event
on which you readjust anything that is screen-size-
dependent.

EVENT:Iconize The user is minimizing the window. If a CYCLE state-
ment is encountered in the code to process this event, the
EVENT:Iconized is not generated and the action is
aborted. This is the event on which you can prevent
users from minimizing a window.

EVENT:Iconized The user has minimized the window. This is the event on
which you readjust anything that is screen-size-depen-
dent.

EVENT:Completed AcceptAll (non-stop) mode has finished processing all
the window’s controls. This is the event on which you
have executed all data entry validation code for the
controls in the window and can safely write to disk.

EVENT:DDErequest
A client has requested a data item from this Clarion
DDE server application. This is the event on which you
execute DDEWRITE to provide the data to the client
once.

EVENT:DDEadvise
A client has requested continuous updates of a data item
from this Clarion DDE server application. This is the
event on which you execute DDEWRITE to provide the
data to the client every time it changes.

EVENT:DDEexecute
A client has sent a command to this Clarion DDE server
application (if the client is another Clarion application, it
has executed a DDEEXECUTE statement). This is the
event on which you determine the action the client has
requested and perform it, then execute a CYCLE state-
ment to signal positive acknowledgement to the client
that sent the command.

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE
server application. This is the event on which you
determine what the client has sent and where to place it,
then execute a CYCLE statement to signal positive
acknowledgement to the client that sent the data.

EVENT:DDEdata A DDE server has supplied an updated data item to this
Clarion client application.



E-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EVENT:DDEclose A DDE server has terminated the DDE link to this
Clarion client application.

Field-Specific Events

A Field-specific event occurs when the user presses a key that may require
the program to perform a specific action related to that control.

EVENT:Selected The control has received input focus. This is the event on
which you should perform any data initialization code.

EVENT:Accepted The user has entered data or made a selection then
pressed TAB or CLICKED the mouse to move on to another
control. This is the event on which you should perform
any data input validation code.

EVENT:Rejected The user has entered an invalid value for the entry
picture, or an out-of-range number on a SPIN control.
The REJECTCODE function returns the reason the
user’s input has been rejected and you can use the
PROP:ScreenText property to get the user’s input from
the screen. This is the event on which you alert the user
to the exact problem with their input.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key for an ALRT
attribute on the control. If a CYCLE statement is en-
countered in the code to process this event, the
EVENT:AlertKey is not generated and the action is
aborted.

EVENT:AlertKey The user pressed an ALRT attribute hot key for an ALRT
attribute on the control. This is the event on which you
perform the action the user has requested by pressing the
alert key.

EVENT:Dragging The user is dragging the mouse from a control with the
DRAGID attribute and the mouse cursor is over a valid
potential drop target. This event is posted to the control
from which the user is dragging. This is the event on
which you can change the mouse cursor to indicate a
valid drop target.

EVENT:Drag The user released the mouse button over a valid drop
target. This event is posted to the control from which the
user is dragging. This is the event on which you set the
program to pass the dragged data to the drop target.

EVENT:Drop The user released the mouse button over a valid drop
target. This event is posted to the drop target control.
This is the event on which you receive the dragged data.



APPENDIX E EVENTS E-5

EVENT:NewSelection
The current selection in the LIST or COMBO control
has changed (the highlight bar has moved up or down).
This is the event on which you perform any “housekeep-
ing” to synchronize other controls with the currently
highlighted record in the list.

EVENT:ScrollUp On a LIST or COMBO control with the IMM attribute,
the user has attempted to move the highlight bar off the
top of the LIST. This is the event on which you get a
previous record when “page-loading” the list.

EVENT:ScrollDown
On a LIST or COMBO control with the IMM attribute,
the user has attempted to move the highlight bar off the
bottom of the LIST. This is the event on which you get
the next record when “page-loading” the list.

EVENT:PageUp On a LIST or COMBO control with the IMM attribute,
the user pressed PGUP. This is the event on which you get
the previous page of records when “page-loading” the
list.

EVENT:PageDown
On a LIST or COMBO control with the IMM attribute,
the user pressed PGDN. This is the event on which you get
the next page of records when “page-loading” the list.

EVENT:ScrollTop On a LIST or COMBO control with the IMM attribute,
the user pressed CTRL+PGUP. This is the event on which
you get the first page of records when “page-loading”
the list.

EVENT:ScrollBottom
On a LIST or COMBO control with the IMM attribute,
the user pressed CTRL+PGDN. This is the event on which
you get the last page of records when “page-loading” the
list.

EVENT:Locate On a LIST control with the VCR attribute, the user
pressed the locator (?) VCR button. This is the event on
which you can unhide the locator entry control, if it is
kept hidden.

EVENT:DroppingDown
On a LIST or COMBO control with the DROP attribute,
the user pressed the down arrow button. This is the event
on which you get the records when “demand-loading”
the list.



E-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EVENT:DroppedDown
On a LIST or COMBO control with the DROP attribute,
the list has dropped. This is the event on which you can
hide other controls that the droplist covers to prevent
“screen clutter” from distracting the user.

EVENT:VBXevent  On a CUSTOM control, a VBX-specific event occurred.
This is the event on which you query the
PROP:VBXEvent and PROP:VBXEventArg properties
to determine what event occurred and its parameters.

EVENT:Expanding On a LIST control with T in the FORMAT attribute
string, the user has clicked on a tree expansion box. If a
CYCLE statement is encountered in the code to process
this event, the EVENT:Expanded is not generated and
the expansion is aborted.

EVENT:Expanded On a LIST control with T in the FORMAT attribute
string, the user has clicked on a tree expansion box.

EVENT:Contracting
On a LIST control with T in the FORMAT attribute
string, the user has clicked on a tree contraction box. If a
CYCLE statement is encountered in the code to process
this event, the EVENT:Contracted is not generated and
the contraction is aborted.

EVENT:Contracted On a LIST control with T in the FORMAT attribute
string, the user has clicked on a tree expansion box.

EVENT:MouseIn On a REGION with the IMM attribute, the mouse cursor
has entered the region.

EVENT:MouseOut On a REGION with the IMM attribute, the mouse cursor
has left the region.

EVENT:MouseMove
On a REGION with the IMM attribute, the mouse cursor
has moved within the region.

EVENT:TabChanging
On a SHEET control, focus is passing to another tab.
This is the event on which you perform any necessary
“housekeeping” code.



INDEX I - 1

IndexIndexIndexIndexIndex

Symbols

‘ ‘ (single quotes) .............................................................. 2-7
, (comma) ......................................................................... 2-7
“ (double quote) ................................................................ 2-7
! (exclamation) ................................................................. 2-7
# (pound sign) .................................................................. 2-7
$ (dollar sign) ................................................................... 2-7
% (percent sign) ............................................................... 2-7
& (ampersand) ................................................................. 2-7
( ) (parentheses) .............................................................. 2-7
* (asterisk) ....................................................................... 2-7
+ (plus sign) ..................................................................... 2-7
- (minus sign) ................................................................... 2-7
. (period) ........................................................................... 2-7
.CLA files ....................................................................... 2-13
.DLL ............................................................................. 10-14
.ENV ............................................................................ 10-74
.OBJ files ..................................................................... xxxvii
.VBX control ................................................................... 6-61
.VBX file ....................................................................... 6-103
/ (slash) ............................................................................ 2-7
: (colon) ............................................................................ 2-7
:=: ................................................................................... 4-16
; (semi-colon) ................................................................... 2-7
< (left angle bracket) ........................................................ 2-7
< > (angle brackets) ......................................................... 2-7
= (equal sign) ................................................................... 2-7
> (right angle bracket) ...................................................... 2-7
? (question mark) ............................................................. 2-7
@ (“AT” sign) .................................................................... 2-7
[ ] (brackets) ..................................................................... 2-7
^ (carat) ............................................................................ 2-7
{ } (curly braces) .............................................................. 2-7
| (vertical bar) ................................................................... 2-7
~ (tilde) ............................................................................. 2-7
16-bit CRC ................................................................... 10-92
32-bit ............................................................................ xxxvii

A

ABS (absolute value) ..................................................... 13-3
ABSOLUTE.................................................................... 8-22
ACCEPT ................................................................. xxxi, 7-4
AcceptAll mode ................................................... 7-29, C-16
ACCEPTED ................................................................... 7-38
Access mode ............................................................... 10-89

ACOS (arccosine) .......................................................... 13-9
ADD .............................................................................. xxxiv

FILE ........................................................................ 10-39
QUEUE ................................................................... 12-12

Addition operator ............................................................. 4-3
ADDRESS ................................................................... 13-38
AGE ............................................................................. 13-29
Alarm (BEEP) .............................................................. 13-40
ALERT ............................................................................. 7-6
Algebraic Order of Operation ........................................... 4-3
ALIAS ............................................................................. 7-49
ALL ............................................................................... 13-11
All or nothing ................................................................ 10-63
Allocation, memory

Dynamic .................................................................... 3-41
memory QUEUE ....................................................... 12-3
Static ......................................................................... 3-41

ALONE
Print structure attribute ............................................. 8-22

Alphanumeric
CSTRING .................................................................. 3-18
PSTRING .................................................................. 3-20
STRING .................................................................... 3-16

ALRT
window attribute ........................................................ 6-19
window control attribute .......................................... 6-100

Alternate sort orders .................................................... 10-83
Ampersand ...................................................................... 2-7
AND ................................................................................. 4-4
Angle brackets ................................................................. 2-7
Apostophe ........................................................................ 2-7
APPEND

FILE ........................................................................ 10-40
APPLICATION ................................................................. 6-8
Application modal ................................................ 6-15, 6-33
Application windows ........................................................ 6-5
Application-modal .......................................................... 6-33
ARC ................................................................................. 9-4
Arguments (Parameters) ............................................... 2-23
Arithmetic Operator

Addition ....................................................................... 4-3
Division ....................................................................... 4-3
Exponentiation ............................................................ 4-3
Modulus ...................................................................... 4-3
Multiplication ............................................................... 4-3
Subtraction .................................................................. 4-3



I-2 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Arithmetic Operators ................................................ 4-3, 4-5
Arithmetic overflow .............................................. 3-44, 4-20
Array

DIM ........................................................................... 3-32
passing as parameter ............................................... 2-38
subscript ........................................................... 4-3, 4-10

ASCII Character Codes ................................................... 4-6
ASIN (arcsine) ............................................................... 13-9
ASK ................................................................................ 7-49
Assignment Statements

CLEAR ...................................................................... 4-19
Deep .......................................................................... 4-16
Operating .................................................................. 4-15
Reference .................................................................. 4-18
Simple ....................................................................... 4-15

Assignment statements ................................................... 2-3
Asterisk ............................................................................ 2-7
AT

Print structure attribute ............................................. 8-23
REPORT attribute ....................................................... 8-7
report control attribute .............................................. 8-44
window attribute ........................................................ 6-20
window control attribute .......................................... 6-101

ATAN (arctangent) ........................................................ 13-10
Attribute Equates ............................................................. C-6
Attributes, runtime assignment ........................................ C-3
AUTO

Variable attribute ....................................................... 3-39
Window attribute ....................................................... 6-21

Automatic Conversion of Data Types ............................ 4-20
Automatic overlay loader ............................................. xxxviii
Automatic variables ............................................. 2-14, 2-16
AVE ................................................................................ 8-45

B

B (blank when zero) ....................................................... 3-44
BAND (Bitwise AND) ................................................... 13-21
Base 10 logarithm.......................................................... 13-5
Base Data Types ............................................................ 4-20
Base numbers

Binary .......................................................................... 4-5
Decimal ....................................................................... 4-5
Hexadecimal ............................................................... 4-5
Octal ............................................................................ 4-5

BCD ............................................................................... 4-21
BEEP ............................................................... 10-99, 13-40
BEGIN .................................................................... 2-39, 5-5
Begin executable CODE ................................................ 2-18
BFLOAT4 ....................................................................... 3-10
BFLOAT8 ....................................................................... 3-11
BINARY

MEMO attribute ....................................................... 10-23
Binary

Numeric constant ........................................................ 4-5
Binary Coded Decimal (BCD) ........................................ 4-21
BIND .............................................................................. 4-11
BINDABLE

FILE attribute ................................................ 10-12, 12-9
variable declaration attribute ..................................... 3-39

Bit manipulation
BAND ...................................................................... 13-21
BOR ........................................................................ 13-22
BSHIFT ................................................................... 13-24
BXOR ...................................................................... 13-23

bitmap images in memo fields ................. C-20, C-30, C-31
BLANK ............................................................................. 9-5
Blank when zero ............................................................ 3-44
BLOB ........................................................................... 10-21
BOF (beginning of file) ................................................. 10-56
Boolean operators ........................................................... 4-4
BOR (Bitwise OR) ........................................................ 13-22
BOX

graphics procedure ..................................................... 9-6
report control ............................................................. 8-31
window control .......................................................... 6-51

BOXED
report control attribute .............................................. 8-45
window control attribute .......................................... 6-102

Brackets ........................................................................... 2-7
BREAK............................................................................ xxix

LOOP control statement ........................................... 5-10
REPORT group break structure ................................ 8-14

BSHIFT (Bitwise SHIFT) ............................................. 13-24
Btrieve

DATE ......................................................................... 3-22
LSTRING .................................................................. 3-20
TIME ......................................................................... 3-23
ZSTRING .................................................................. 3-18

BUILD .............................................................. 10-27, 10-83
Built-in Variables .............................................................. C-3
Built-in variables

PRINTER .................................................................. 7-57
TARGET .................................................................... 7-35

BUILTINS.CLW .............................................................. 2-12
BUTTON ........................................................................ 6-52
BXOR (Bitwise eXclusive OR) ..................................... 13-23
BY .................................................................................... 5-8
BYTE ............................................................................... 3-3
BYTES ......................................................................... 10-57

C

C .................................................................................... 2-23



INDEX I - 3

calling convention ..................................................... 2-28
Call

FUNCTION................................................................ 2-22
PROCEDURE ........................................................... 2-22

CALL (call procedure from a DLL) ............................... 13-41
calling convention

C ................................................................................ 2-28
PASCAL .................................................................... 2-28

CAP
report control attribute .............................................. 8-45
window control attribute .......................................... 6-102

Carat ................................................................................ 2-7
Carriage-return/Line-feed ................................................. 2-7
CASE ...................................................................... xxix, 5-3
Case insensitive key .................................................... 10-24
CENTER

function ................................................................... 13-11
report control attribute .............................................. 8-52
window attribute ........................................................ 6-21
window control attribute .......................................... 6-121

CHAIN ............................................................................ 5-11
CHANGE........................................................................ 7-16
Character String

CSTRING .................................................................. 3-18
PSTRING .................................................................. 3-20
STRING .................................................................... 3-16

CHECK
report control ............................................................. 8-32
window control .......................................................... 6-55
window control attribute .......................................... 6-102

Check for other user’s changes ................................... 10-92
Checksum .................................................................... 10-92
CHOICE ......................................................................... 7-39
CHORD ............................................................................ 9-7
CHR (character from ASCII) ........................................ 13-12
CLA files ........................................................................ 2-13
CLAAMPM ................................................................... 10-75
CLABUTTON ............................................................... 10-76
CLACASE .................................................................... 10-76
CLACHARSET ............................................................. 10-74
CLACOLSEQ ............................................................... 10-74
CLADIGRAPH ............................................................. 10-75
CLAMON...................................................................... 10-75
CLAMONTH ................................................................. 10-75
CLAMSG ...................................................................... 10-76
Clarion internal library .................................................... 2-12
Clarion standard date .................................................. 13-25
Clarion standard time .................................................. 13-25
CLASS ......................................................................... 6-103
CLEAR ........................................................................... 4-19
CLIP

function ................................................................... 13-12

CLIPBOARD .................................................................. 7-60
CLOCK......................................................................... 13-26
CLOSE

FILE ........................................................................ 10-29
REPORT ................................................................... 8-59
VIEW ....................................................................... 11-10
window ...................................................................... 7-17

CNT ................................................................................ 8-46
CODE............................................................................. 2-18
Collating sequence

INDEX ..................................................................... 10-18
KEY ......................................................................... 10-19
SORT (QUEUE) ...................................................... 12-19

Colon ................................................................................ 2-7
COLOR

report control attribute .............................................. 8-46
window control attribute .......................................... 6-104

COLORDIALOG............................................................. 7-53
colorized list box fields ................................................ 6-111
colors in list boxes ......................................................... 6-71
COLUMN ..................................................................... 6-104
COMBO ......................................................................... 6-57
Comma ............................................................................ 2-7
COMMAND

command line ......................................................... 13-30
Command line

COMMAND ............................................................. 13-30
SETCOMMAND ...................................................... 13-34

COMMIT .......................................................... 10-65, 10-67
Commit boundaries ......................................... 10-63, 10-68
Comparison Operators .................................................... 4-4
COMPILE ....................................................................... 2-40
Compiler ......................................................................... 2-39
Compiler Error Messages ................................................ D-9
Concatenation .................................................................. 4-5
Concatenation Operator .................................................. 4-6
Concurrency checking ..................................... 10-66, 10-90
Conditional loops ............................................................ xxix
Conditional Operators ...................................................... 4-4
Constants

Numeric Constants ..................................................... 4-5
String Constant ........................................................... 4-6

CONTENTS ................................................................... 7-40
Continuation character (|) ................................................ 2-7
Control Fields ................................................................... 6-6
control handle ................................................................ C-27
Control menu ................................................................. 6-36
Control statements .......................................................... 2-3
Control Structures ............................................................ 5-3
Conversion of Data Types .............................................. 4-20
convert ANSI strings to ASCII ..................................... 10-77
convert ASCII strings to ANSI ..................................... 10-78



I-4 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CONVERTANSITOOEM .............................................. 10-77
CONVERTOEMTOANSI .............................................. 10-78
Cooperative multi-tasking .............................................. 7-10
COPY ........................................................................... 10-29
COS (cosine of angle) ................................................... 13-8
CREATE

FILE ........................................................................ 10-30
FILE attribute ............................................................ 10-7
window control .......................................................... 7-18

Credit (CR) pictures ....................................................... 3-43
CSTRING ....................................................................... 3-18
Currency Pictures .......................................................... 3-43
Current Target .................................................................. 9-3
CURSOR

TOOLBAR attribute ................................................... 6-44
window attribute ........................................................ 6-22
window control attribute .......................................... 6-105

CUSTOM
report control ............................................................. 8-33
window control .......................................................... 6-61

Custom .VBX control ..................................................... 6-61
CW.ENV....................................................................... 10-74
CYCLE .................................................................. xxix, 5-12
Cyclical Redundancy Check (CRC) ............................ 10-92

D

Data Conversion Rules .................................................. 4-20
Data integrity ................................................................ 10-63
Data names (Labels) ....................................................... 2-3
Data Type Conversion .................................................... 4-22
Data Types

BFLOAT4 ................................................................... 3-10
BFLOAT8 ................................................................... 3-11
BYTE........................................................................... 3-3
CSTRING .................................................................. 3-18
DATE ......................................................................... 3-22
DECIMAL .................................................................. 3-12
GROUP ..................................................................... 3-24
LIKE .......................................................................... 3-27
LONG .......................................................................... 3-6
PDECIMAL ............................................................... 3-14
PSTRING .................................................................. 3-20
REAL ........................................................................... 3-9
SHORT ........................................................................ 3-4
SREAL ........................................................................ 3-8
STRING .................................................................... 3-16
TIME ......................................................................... 3-23
ULONG ....................................................................... 3-7
USHORT ..................................................................... 3-5

DATE
data type ................................................................... 3-22

function ................................................................... 13-27
Date

Standard Date ......................................................... 13-25
Date Pictures ................................................................. 3-47
DAY .............................................................................. 13-28
Day of the week ........................................................... 13-25
DDE ................................................................................. A-3
DDE Events ..................................................................... A-4
DDEAPP .......................................................................... A-9
DDECHANNEL ................................................................ A-8
DDECLIENT .................................................................... A-6
DDECLOSE ................................................................... A-20
DDEEXECUTE .............................................................. A-17
DDEITEM ....................................................................... A-10
DDEPOKE ..................................................................... A-18
DDEQUERY ..................................................................... A-7
DDEREAD ..................................................................... A-13
DDESERVER................................................................... A-5
DDETOPIC .................................................................... A-11
DDEVALUE .................................................................... A-12
DDEWRITE .................................................................... A-15
“Deadly Embrace” ........................................................ 10-98
“deadly embrace” ......................................................... 10-66
Debit (DB) pictures ........................................................ 3-43
DECIMAL

data type ................................................................... 3-12
report control attribute .............................................. 8-52
window control attribute .......................................... 6-121

Decimal
Numeric Constant ....................................................... 4-5

Decimal Arithmetic ........................................................ 4-21
Deep Assignment Statements ....................................... 4-16
DEFAULT ..................................................................... 6-106
DEFORMAT ................................................................. 13-13
DELETE ........................................................................ xxxiv

FILE ........................................................................ 10-41
QUEUE ................................................................... 12-14
VIEW ....................................................................... 11-12

Delete a file (REMOVE) ............................................... 10-34
Delimiters ......................................................................... 2-7
Deny All ....................................................................... 10-89
Deny None ................................................................... 10-89
Deny Read ................................................................... 10-89
Deny Write ................................................................... 10-89
Destination variable ................................... 4-15, 4-16, 4-18
DESTROY ...................................................................... 7-20
DETAIL ........................................................................... 8-15
Dialog boxes .................................................................... 6-5
Dialog units ............................................................ 8-7, 8-12
dialog units6-15, 6-20, 6-35, 6-101, 6-111, 6-113, 6-121
DIM ................................................................................ 3-32
DIRECTORY ................................................................ 13-31



INDEX I - 5

DISABLE
statement .................................................................. 7-21
window control attribute .......................................... 6-106

Disable tooltip display .................................................... C-34
DISPLAY ........................................................................ 7-22
Division operator .............................................................. 4-3
DLL ................................................................................ 3-34

attribute of FILE ...................................................... 10-16
attribute of QUEUE ................................................. 12-11
prototype attribute ..................................................... 2-30

DO .......................................................................... xxx, 5-12
Document windows .......................................................... 6-5
Dollar sign .............................................................. 2-7, 3-43
DOS Access Code ....................................................... 10-89
DOS DLLs .................................................................... xxxviii
DOS extender .............................................................. xxxviii
DOUBLE ........................................................................ 6-23
Double quote .................................................................... 2-7
Double-precision real ............................................. 3-9, 3-11
Drag and Drop Processing ............................................ 7-58
DRAGID

function ..................................................................... 7-61
window control attribute .......................................... 6-107

DRIVER ......................................................................... 10-7
DROP ........................................................................... 6-106
DROPID

function ..................................................................... 7-62
window control attribute .......................................... 6-108

DUP ............................................................................. 10-23
DUPLICATE

FILE ........................................................................ 10-58
Dynamic Data ................................................................ 3-41
Dynamic Data Exchange ................................................. A-3
Dynamic index

BUILD ..................................................................... 10-27
INDEX ..................................................................... 10-18

“dynamic” INDEX ......................................................... 10-84

E

Editing data .................................................................... 3-50
EJECT ........................................................................... 2-41
ELLIPSE

graphics procedure ..................................................... 9-8
report control ............................................................. 8-34
window control .......................................................... 6-63

ELSE................................................................ 2-3, 5-3, 5-7
ELSIF ...................................................................... xxix, 5-7
Embedded SQL ............................................................ xxxiv
EMPTY

FILE ........................................................................ 10-30
ENABLE ......................................................................... 7-23

ENCRYPT ...................................................................... 10-9
END ....................................................................... 2-3, 2-20
ENDPAGE ...................................................................... 8-60
ENTRY ........................................................................... 6-64
Environment Files ........................................................ 10-74
Environment variable (COMMAND) ............................. 13-30
EOF............................................................................... xxxiv
EOF (end of file) .......................................................... 10-59
Equal sign ........................................................................ 2-7
EQUATE ......................................................................... 3-53
ERASE........................................................................... 7-24
ERROR ........................................................................ 13-35
Error Codes ...................................................................... D-3
Error Messages ............................................................... D-9
Error messages

Compiler ...................................................................... D-9
Run time ............................................................. D-3, D-7

ERRORCODE .............................................................. 13-35
ERRORFILE ................................................................ 13-36
ERRORLEVEL ................................................... 5-14, 13-33
EVALUATE ..................................................................... 4-14
Evaluations, logical .......................................................... 4-4
EVENT ............................................................................. 7-8
Event Processing ............................................................. 7-3
Event processor ............................................................... 7-4
EVENT:Accepted ............................................................. E-6
EVENT:AlertKey ..................................................... E-3, E-6
EVENT:CloseDown ......................................................... E-3
EVENT:CloseWindow ...................................................... E-3
EVENT:Completed .......................................................... E-5
EVENT:Contracted .......................................................... E-8
EVENT:Contracting ......................................................... E-8
EVENT:DDEadvise .......................................................... E-5
EVENT:DDEclose ............................................................ E-6
EVENT:DDEdata ............................................................. E-5
EVENT:DDEexecute ........................................................ E-5
EVENT:DDEpoke ............................................................ E-5
EVENT:DDErequest ........................................................ E-5
EVENT:Drag .................................................................... E-6
EVENT:Dragging ............................................................. E-6
EVENT:Drop .................................................................... E-6
EVENT:DroppedDown ..................................................... E-8
EVENT:DroppingDown .................................................... E-7
EVENT:Expanded............................................................ E-8
EVENT:Expanding ........................................................... E-8
EVENT:GainFocus .......................................................... E-4
EVENT:Iconize ...................................................... 6-30, E-5
EVENT:Iconized .................................................... 6-30, E-5
EVENT:Locate ................................................................. E-7
EVENT:LoseFocus .......................................................... E-4
EVENT:Maximize .................................................. 6-30, E-5
EVENT:Maximized ................................................ 6-30, E-5



I-6 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EVENT:MouseIn .............................................................. E-8
EVENT:MouseMove ........................................................ E-8
EVENT:MouseOut ........................................................... E-8
EVENT:Move ......................................................... 6-30, E-4
EVENT:Moved ....................................................... 6-30, E-4
EVENT:NewSelection ...................................................... E-7
EVENT:OpenWindow ...................................................... E-4
EVENT:PageDown .......................................................... E-7
EVENT:PageUp ............................................................... E-7
EVENT:PreAlertKey ............................................... E-3, E-6
EVENT:Rejected .................................................. 13-37, E-6
EVENT:Restore ..................................................... 6-30, E-4
EVENT:Restored ................................................... 6-30, E-4
EVENT:Resume .............................................................. E-4
EVENT:ScrollBottom ....................................................... E-7
EVENT:ScrollDown .......................................................... E-7
EVENT:ScrollTop ............................................................. E-7
EVENT:ScrollUp .............................................................. E-7
EVENT:Selected .............................................................. E-6
EVENT:Size ........................................................... 6-30, E-4
EVENT:Sized ......................................................... 6-30, E-4
EVENT:Suspend .............................................................. E-4
EVENT:TabChanging ....................................................... E-8
EVENT:Timer ................................................................... E-4
EVENT:VBXevent ............................................................ E-8
Events .............................................................................. E-3
Exclude null key entries ............................................... 10-24
EXECUTE ................................................................ xxx, 5-5

BEGIN ......................................................................... 5-5
Execution Sequence ...................................................... 2-21
EXIT ............................................................................... 5-13
Exponentiation operator ................................................... 4-3
Expression Evaluation ..................................................... 4-3
Expression Strings ........................................................ 4-10
Expressions ..................................................................... 4-3

Evaluation Precedence ............................................... 4-3
Logical Expressions .................................................... 4-9
Numeric Expressions .................................................. 4-5
Runtime ..................................................................... 4-10
String Expressions ...................................................... 4-7

EXTERNAL .................................................................. 10-14
attribute of QUEUE ................................................. 12-10
variable declaration attribute ........................... 3-33, 12-9

F

FIELD ............................................................................. 7-41
Field Completion Keys

ALERT......................................................................... 7-6
ALRT ......................................................................... 6-19

Field Equate Labels ......................................................... 6-6
Field Qualification ............................................................ 2-5

Field-Independent Events ................................................ E-3
Field-independent events ........................................ 7-3, E-3
Field-Specific Events ....................................................... E-6
Field-specific events ................................................7-3, E-3
Fields (controls) ............................................................... 6-6
FILE ............................................................................... 10-5
File Access .................................................................. 10-83
file directory ................................................................. 13-31
FILE structure ............................................................... xxxiii
FILEDIALOG.................................................................. 7-54
FILEERROR ................................................................ 13-36
FILEERRORCODE ...................................................... 13-37
FILEs with the EXTERNAL attribute ........................... 10-14
FILL

report control attribute .............................................. 8-47
window control attribute .......................................... 6-109

FILTER
VIEW attribute ........................................................... 11-6

FIRST .......................................................................... 6-109
FIRSTFIELD .................................................................. 7-42
Floating Point

Double Precision ............................................... 3-9, 3-11
Single Precision ................................................ 3-8, 3-10

FLUSH ......................................................................... 10-31
FOCUS .......................................................................... 7-42
FONT

Print structure attribute ............................................. 8-25
REPORT attribute ....................................................... 8-8
report control attribute .............................................. 8-48
TOOLBAR attribute ................................................... 6-45
window attribute ........................................................ 6-24
window control attribute .......................................... 6-110

FONTDIALOG ............................................................... 7-56
FOOTER ........................................................................ 8-17
Foreign Key .................................................................. 10-63
FORM ............................................................................ 8-19
FORMAT

function ................................................................... 13-13
report control attribute .............................................. 8-49
window control attribute .......................................... 6-111

Format String Properties ............................................... C-11
FREE ........................................................................... 12-14
FROM

report control attribute .............................................. 8-51
window control attribute .......................................... 6-115

FULL ............................................................................ 6-116
FUNCTION .................................................................... 2-16
FUNCTION Call ............................................................. 2-22
FUNCTION Return Types .............................................. 2-26



INDEX I - 7

G

GET................................................................... xxxiv, 10-87
FILE ........................................................................ 10-42
QUEUE ................................................................... 12-15

GETFONT ...................................................................... 7-25
GETINI ........................................................................... 7-65
GETPOSITION .............................................................. 7-26
Global data .................................................................... 3-42
Global Data Declarations ................................................. 2-8
Global menu .................................................................. 6-39
Global tools .................................................................... 6-42
GOTO ............................................................................. 5-13
Graphics Coordinates ...................................................... 9-3
GRAY ............................................................................. 6-25
GROUP .......................................................................... 3-24

report control ............................................................. 8-35
window control .......................................................... 6-67

H

HALT .............................................................................. 5-14
handle ................................................................. C-18, C-27
HEADER ........................................................................ 8-20
HELP.............................................................................. 7-27
Hexadecimal (numeric constant) ..................................... 4-5
HIDE

procedure .................................................................. 7-28
report control attribute .............................................. 8-51
window control attribute .......................................... 6-116

HLP
window attribute ............................................ 6-26, 6-116

HOLD ........................................................................... 10-94
FILE ........................................................................ 10-44
VIEW ....................................................................... 11-13

HSCROLL
window attribute ........................................................ 6-27
window control attribute .......................................... 6-117

HVSCROLL
window attribute ........................................................ 6-27
window control attribute .......................................... 6-117

I

ICON
window attribute ........................................................ 6-28
window control attribute .......................................... 6-118

ICONIZE ........................................................................ 6-29
Icons in List boxes ....................................................... 6-112
icons in list boxes .......................................................... 6-71
icons in list fields .............................................. 6-112, C-12
IDLE ............................................................................... 5-15

IF ............................................................................. xxix, 5-7
IMAGE

graphics procedure ..................................................... 9-9
report control ............................................................. 8-36
window control .......................................................... 6-69

IMM
window attribute ........................................................ 6-30
window control attribute .......................................... 6-119

Implicit String Arrays ....................................................... 4-8
Implicit type conversions .............................................. xxviii
Implicit Variables ............................................................ 3-29
Implicit variables

LONG ........................................................................ 3-29
REAL ......................................................................... 3-29
STRING(32) .............................................................. 3-29

INCLUDE ....................................................................... 2-41
INCOMPLETE ............................................................... 7-43
INDEX .......................................................................... 10-83

Dynamic .................................................................. 10-18
FILE ........................................................................ 10-18

Index Record Number .................................................. 10-86
INLIST .......................................................................... 13-14
Input Focus ...................................................................... 6-6
INRANGE ...................................................................... 13-3
INS ............................................................................... 6-119
INSTRING .................................................................... 13-15
INT (integer function) ..................................................... 13-4
Intermediate Value ........................................................... 4-3
Intermediate value ........................................................... 4-3
internal library ................................................................ 2-12
Internationalization ...................................................... 10-74
ISALPHA...................................................................... 10-79
ISLOWER .................................................................... 10-80
ISUPPER ..................................................................... 10-81
ITEM .............................................................................. 6-49

J

JOIN
VIEW structure ......................................................... 11-8

K

KEY .............................................................................. 10-83
FILE ........................................................................ 10-19
window control attribute .......................................... 6-120

Key-in Pictures ............................................................... 3-50
KEYBOARD ................................................................... 7-51
Keyboard Functions ....................................................... 7-51
Keyboard Procedures .................................................... 7-49
KEYCHAR ..................................................................... 7-51
KEYCODE ..................................................................... 7-52



I-8 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Keycode EQUATE Labels ................................................ B-4
Keycodes ......................................................................... B-3
KEYCODES.EQU ............................................................ B-4
KEYSTATE ..................................................................... 7-52
KEYWORD

Reserved ..................................................................... 2-6
Syntax Diagram .......................................................... 1-5

L

Labels .............................................................................. 2-3
LANDSCAPE ................................................................. 8-13
Language Extension Modules ...................................... xxxiv
LANs ............................................................................ 10-89
LAST ............................................................................ 6-109
LASTFIELD.................................................................... 7-43
Leading zeroes .............................................................. 3-43
LEFT

function ................................................................... 13-16
report control attribute .............................................. 8-52
window control attribute .......................................... 6-121

Left angle bracket (<) ....................................................... 2-7
LEMs ............................................................................. xxxiv
LEN .............................................................................. 13-16
LIKE ...................................................................... xxvi, 3-27
LINE

graphics procedure ................................................... 9-10
report control ............................................................. 8-37
window control .......................................................... 6-70

Line continuation character (|) ......................................... 2-7
Linking ......................................................................... xxxvii
LIST

report control ............................................................. 8-38
window control .......................................................... 6-71

List Box Format String Properties ................................. C-14
LISTZONE:ExpandBox .................................................. C-14
LISTZONE:Field ............................................................ C-14
LISTZONE:Header ........................................................ C-14
LISTZONE:Icon ............................................................. C-14
LISTZONE:Nowhere ...................................................... C-14
LISTZONE:Right ............................................................ C-14
LISTZONE:Tree ............................................................. C-14
Local Area Networks ................................................... 10-89
Local data ...................................................................... 3-42
Local data declarations .................................................. 2-10
Local menu .................................................................... 6-39
Local subroutines ........................................................... xxix
Local tools ...................................................................... 6-42
LOCALE....................................................................... 10-82
LOCK ........................................................................... 10-97

FILE ........................................................................ 10-32
LOG10 (base 10 logarithm) ........................................... 13-5

Logarithm ............................................................. 13-4, 13-5
LOGE (natural logarithm) ............................................... 13-4
Logging Transactions ................................................... 10-63
Logical Evaluations .......................................................... 4-4
Logical Expressions ........................................................ 4-9
Logical Operators ............................................................ 4-4
LOGOUT .......................................................... 10-64, 10-68
LONG ............................................................................... 3-6
LOOP ......................................................... xxix, 5-8, 10-84
LOWER ........................................................................ 13-17

M

Maintaining INI Files ...................................................... 7-65
MAP ............................................................................... 2-12

MODULE................................................................... 2-13
MARK .......................................................................... 6-122
MASK............................................................................. 6-31
MAX

report control attribute .............................................. 8-53
window attribute ........................................................ 6-31

MAXIMIZE ..................................................................... 6-32
MAXIMUM ................................................................... 13-42
MDI ................................................................................ 6-32
MDI application window ................................................... 6-5
MDI child windows ........................................................... 6-5
MDI frame window ........................................................... 6-8
MDI program .................................................................... 6-5
MEMBER ....................................................................... 2-10

MAP .......................................................................... 2-12
MEMO.......................................................................... 10-20

BINARY ................................................................... 10-23
Memory allocation

Dynamic .................................................................... 3-41
memory QUEUE ....................................................... 12-3
Static ......................................................................... 3-41

Memory redeclaration (OVER) ...................................... 3-37
Memory-mapped video ................................................... xxxi
MENU ............................................................................ 6-47
MENUBAR ..................................................................... 6-39
MESSAGE ..................................................................... 7-44
META ............................................................................. 8-53
MIN ................................................................................ 8-54
Minus sign ........................................................................ 2-7
Mixed data types ........................................................... 3-24
Mixing the use of HOLD and LOCK ............................ 10-99
MM

REPORT attribute ..................................................... 8-13
MODAL .......................................................................... 6-33
modal ............................................................................. 6-15
Modeless window .......................................................... 6-33
MODULE........................................................................ 2-13



INDEX I - 9

Module data ................................................................... 3-42
Modulus operator ............................................................. 4-3
MONTH ........................................................................ 13-28
MOUSEX ....................................................................... 7-45
MOUSEY ....................................................................... 7-45
move .............................................................................. 6-30
MSG

window attribute ........................................................ 6-34
window control attribute .......................................... 6-123

Multi-Tasking .................................................................. 7-12
Multi-tasking ................................................................ 10-89
Multi-Threaded Applications .......................................... 7-12
Multi-Threading .............................................................. 7-12
Multi-threading ............................................................. 10-89

START ....................................................................... 7-14
THREAD ................................................................... 7-15

Multi-user environments .............................................. 10-89
Multiple Document Interface (MDI) ........................ 6-5, 7-12
Multiplication operator ..................................................... 4-3

N

NAME
FILE attribute ............................................................ 10-8
function ................................................................... 13-42
KEY or INDEX attribute .......................................... 10-26
on a prototype declaration ........................................ 2-24
QUEUE field attribute ............................................... 12-7
variable declaration attribute ........................... 2-29, 3-35

Natural logarithm ........................................................... 13-4
NEXT ................................................................ xxxiv, 10-84

FILE ........................................................................ 10-45
VIEW ....................................................................... 11-15

NOBAR ........................................................................ 6-123
NOCASE ...................................................................... 10-24
NOFRAME ..................................................................... 6-23
NOMEMO

FILE ............................................................ 10-46, 11-16
NOMERGE .................................................................... 6-46
Non-stop mode ................................................... 7-29, C-16
non-stop mode .................................................... 7-29, C-16
Non-Trappable Run Time Errors ...................................... D-7
NOT.................................................................................. 4-4
NULL ............................................................................ 10-71
Null String ........................................................................ 4-6
Null “value” ................................................................... 10-70
NUMERIC .................................................................... 13-17
Numeric Constants .......................................................... 4-5
Numeric Pictures ........................................................... 3-43

O

Octal (numeric constant) ................................................. 4-5
ODBC.................................................................. C-21, C-33
ODBC Connect String ................................................... C-21
OEM ............................................................................. 10-17
OF ........................................................................... xxix, 5-3
OMIT .............................................................................. 2-42
OMITTED ..................................................................... 13-43
Omitted parameters ....................................................... 2-24
OPEN ........................................................................... 10-89

FILE ........................................................................ 10-33
REPORT ................................................................... 8-61
VIEW ....................................................................... 11-11
window ...................................................................... 7-28

Operating Assignment Statements ............................... 4-15
Operator Precedence ...................................................... 4-3
Operators

Conditional Operators ................................................. 4-4
Logical Operators ........................................................ 4-4

OPT .............................................................................. 10-24
OPTION

report control ............................................................. 8-39
window control .......................................................... 6-76

OR .................................................................................... 4-4
OROF...................................................................... xxix, 5-3
OS/2 ............................................................................. xxxvii
outer join ........................................................................ 11-8
outline control ................................................... 6-112, C-13
OVER ............................................................................. 3-37
OVER attribute ................................................................ xxvi
Overflow, arithmetic ............................................. 3-44, 4-20
OVR ............................................................................. 6-119
OWNER ......................................................................... 10-9
OWNER attribute ........................................................... C-21

P

PACK............................................................................ 10-34
Packed Decimal ................................................... 3-12, 3-14
PAGE ............................................................................. 8-54
Page Overflow .................................................................. 8-3
Page-based printing ......................................................... 8-3
PAGEAFTER ................................................................. 8-26
PAGEBEFORE .............................................................. 8-27
PAGENO ........................................................................ 8-54
PALETTE ....................................................................... 6-34
PAPER ........................................................................... 8-12
Parameter List ................................................................ 2-23
Parameter Passing ........................................................ 2-32
Parameter Types ............................................................ 2-32
Parameters ...................................................................... 4-7



I-10 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Arrays as ................................................................... 2-38
expression used as ........................................... 4-3, 4-10
omitted ...................................................................... 2-24
passed by address .................................................... 2-32
passed by value ........................................................ 2-32
“typeless” .................................................................. 2-34

Parentheses ..................................................................... 2-7
PASCAL ......................................................................... 2-23

calling convention ..................................................... 2-28
Passed by address; Parameters ................................... 2-32
Passed by value; Parameters ........................................ 2-32
Passing GROUPs and QUEUEs as Parameters ........... 2-37
PASSWORD ................................................................ 6-123
PATH ............................................................................ 13-33
Pattern Pictures ............................................................. 3-49
PDECIMAL .................................................................... 3-14
PEEK ........................................................................... 13-44
PENCOLOR ................................................................... 9-19
PENSTYLE .................................................................... 9-20
PENWIDTH .................................................................... 9-21
Percent sign ..................................................................... 2-7
Period ....................................................................... 2-3, 2-7
Physical Record Number ............................................. 10-86
Picture Tokens ............................................................... 3-43
Pictures

Date ........................................................................... 3-47
Key-in ........................................................................ 3-50
Numeric and Currency .............................................. 3-43
Pattern ...................................................................... 3-49
Scientific Notation ..................................................... 3-46
String ......................................................................... 3-52
Time .......................................................................... 3-48

PIE ................................................................................. 9-11
Plus sign .......................................................................... 2-7
POINTER

FILE ........................................................................ 10-60
INDEX ..................................................................... 10-60
KEY ......................................................................... 10-60
QUEUE ................................................................... 12-20

POINTS
REPORT attribute ..................................................... 8-13

POKE ........................................................................... 13-45
POLYGON ...................................................................... 9-13
POPUP .......................................................................... 7-46
POSITION

FILE ........................................................................ 10-61
VIEW ....................................................................... 11-26

POST
EVENT ........................................................................ 7-9

Pound sign ....................................................................... 2-7
PRE

FILE attribute .......................................................... 10-11

QUEUE attribute ....................................................... 12-6
REPORT attribute ....................................................... 8-9
variable declaration attribute ..................................... 3-31

Pre-Image files ............................................................ 10-64
Prefix attribute ................................................................. xxv
PRESS........................................................................... 7-50
PRESSKEY ................................................................... 7-50
PREVIEW ...................................................................... 8-10
PREVIOUS ....................................................... xxxiv, 10-84

FILE ........................................................................ 10-47
VIEW ....................................................................... 11-17

Primary Key ................................................................. 10-63
PRINT ................................................................... xxxi, 8-61
“print engine” .................................................................... 8-3
Print structure

BREAK ...................................................................... 8-14
DETAIL ...................................................................... 8-15
FOOTER ................................................................... 8-17
FORM ....................................................................... 8-19
HEADER ................................................................... 8-20

PRINTER “built-in” variable............................................ 7-57
PRINTERDIALOG ......................................................... 7-57
PRIVATE ........................................................................ 2-31
PROC ............................................................................. 2-31
PROCEDURE ................................................................ 2-14
Procedure Call ............................................................... 2-22
PROGRAM ...................................................................... 2-8

MAP .......................................................................... 2-12
PROGRESS .................................................................. 6-81
PROJECT

Relational operation .................................................. 11-7
PROMPT........................................................................ 6-79
PROP:Absolute ................................................................ C-7
PROP:AcceptAll ............................................................ C-16
PROP:Active .................................................................. C-17
PROP:Alone .................................................................... C-7
PROP:Alrt ........................................................................ C-7
PROP:AppInstance ....................................................... C-17
PROP:At .......................................................................... C-6
PROP:Auto ...................................................................... C-7
PROP:Ave ........................................................................ C-7
PROP:Boxed .................................................................... C-7
PROP:Cap ....................................................................... C-7
PROP:Center ................................................................... C-7
PROP:CenterOffset ......................................................... C-7
PROP:Check ................................................................... C-7
PROP:ChoiceFeq .......................................................... C-17
PROP:Class ..................................................................... C-7
PROP:ClientHandle ....................................................... C-18
PROP:ClientWndProc .................................................... C-19
PROP:ClipBits ............................................................... C-20
PROP:Cnt ........................................................................ C-7



INDEX I -11

PROP:Color ..................................................................... C-7
PROP:Column .................................................................C-7
PROP:ConnectString ..................................................... C-21
PROP:Cursor ................................................................... C-7
PROP:DDETimeOut ...................................................... C-21
PROP:Decimal .................................................................C-7
PROP:DecimalOffset .......................................................C-7
PROP:Default .................................................................. C-7
PROP:DeferMove .......................................................... C-22
PROP:Disable .................................................................. C-7
PROP:Double .................................................................. C-7
PROP:Dragid ................................................................... C-7
PROP:Drop ...................................................................... C-7
PROP:Dropid ................................................................... C-7
PROP:Edit ..................................................................... C-23
PROP:Enabled ............................................................... C-24
PROP:FalseValue .......................................................... C-38
PROP:Fill ......................................................................... C-7
PROP:Filter .................................................................... C-25
PROP:First ....................................................................... C-8
PROP:FlushPreview ...................................................... C-26
PROP:Follows ................................................................ C-27
PROP:Font ....................................................................... C-6
PROP:FontColor .............................................................. C-6
PROP:FontName ............................................................. C-6
PROP:FontSize ............................................................... C-6
PROP:FontStyle .............................................................. C-6
PROP:Format .................................................................. C-8
PROP:From ..................................................................... C-8
PROP:Full ........................................................................ C-8
PROP:Gray ...................................................................... C-8
PROP:Handle ................................................................ C-27
PROP:Height ................................................................... C-6
PROP:Hide ...................................................................... C-8
PROP:Hlp ........................................................................ C-8
PROP:Hscroll ................................................................... C-8
PROP:Icon ....................................................................... C-8
PROP:Iconize .................................................................. C-8
PROP:IconList ............................................................... C-29
PROP:ImageBits ........................................................... C-30
PROP:ImageBlob .......................................................... C-31
PROP:Imm....................................................................... C-8
PROP:Ins ......................................................................... C-8
PROP:Items ................................................................... C-32
PROP:Key ........................................................................ C-8
PROP:Landscape ............................................................ C-8
PROP:Last ....................................................................... C-8
PROP:Left ........................................................................ C-8
PROP:LeftOffset .............................................................. C-8
PROP:Line ..................................................................... C-33
PROP:LineCount ........................................................... C-33
PROP:LoginTimeOut ..................................................... C-33

PROP:Mark ...................................................................... C-8
PROP:Mask ..................................................................... C-8
PROP:Max ....................................................................... C-8
PROP:MaxHeight .......................................................... C-34
PROP:Maximize .............................................................. C-8
PROP:MaxWidth ............................................................ C-34
PROP:Mdi ........................................................................ C-8
PROP:Meta ...................................................................... C-8
PROP:Min ........................................................................ C-8
PROP:MinHeight ........................................................... C-34
PROP:Mm........................................................................ C-8
PROP:Modal .................................................................... C-8
PROP:Msg ....................................................................... C-8
PROP:NoBar.................................................................... C-8
PROP:NoFrame ............................................................... C-8
PROP:NoMerge ............................................................... C-9
PROP:NoTips ..................................................... C-32, C-34
PROP:Ovr ........................................................................ C-9
PROP:Page ..................................................................... C-9
PROP:PageAfter .............................................................. C-9
PROP:PageAfterNum ...................................................... C-9
PROP:PageBefore ........................................................... C-9
PROP:PageBeforeNum ................................................... C-9
PROP:Pageno ................................................................. C-9
PROP:Palette................................................................... C-9
PROP:Password .............................................................. C-9
PROP:Points .................................................................... C-9
PROP:Preview ................................................................. C-9
PROP:Progress ............................................................. C-35
PROP:Range ................................................................... C-9
PROP:RangeHigh ............................................................ C-9
PROP:RangeLow ............................................................. C-9
PROP:ReadOnly .............................................................. C-9
PROP:Req ....................................................................... C-9
PROP:Reset .................................................................... C-9
PROP:Resize ................................................................... C-9
PROP:Right ..................................................................... C-9
PROP:RightOffset ........................................................... C-9
PROP:Round ................................................................... C-9
PROP:ScreenText .......................................................... C-35
PROP:Scroll ..................................................................... C-9
PROP:SelEnd ................................................................ C-36
PROP:SelStart ............................................................... C-36
PROP:Separate ............................................................... C-9
PROP:Size ..................................................................... C-36
PROP:Skip ....................................................................... C-9
PROP:Spread .................................................................. C-9
PROP:SQLExecute ....................................................... C-45
PROP:Status ................................................................... C-9
PROP:StatusText ............................................................. C-9
PROP:Std ...................................................................... C-10
PROP:Step .................................................................... C-10



I-12 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROP:Sum .................................................................... C-10
PROP:System ............................................................... C-10
PROP:Thous .................................................................. C-10
PROP:Thread ................................................................ C-37
PROP:Timer .................................................................. C-10
PROP:TipDelay .............................................................. C-37
PROP:TipDisplay ........................................................... C-37
PROP:Toolbox ............................................................... C-10
PROP:ToolTip ................................................................ C-10
PROP:Touched .............................................................. C-37
PROP:Trn ....................................................................... C-10
PROP:TrueValue ............................................................ C-38
PROP:Upr ...................................................................... C-10
PROP:Use ..................................................................... C-10
PROP:Value ................................................................... C-10
PROP:VBXEvent ........................................................... C-38
PROP:VBXEventArg ..................................................... C-38
PROP:VbxFile .................................................................. C-7
PROP:VbxName .............................................................. C-7
PROP:Vcr ...................................................................... C-10
PROP:VcrFeq ................................................................ C-10
PROP:Visible ................................................................. C-39
PROP:Vscroll ................................................................. C-10
PROP:VscrollPos ................................................ C-28, C-40
PROP:Width .................................................................... C-6
PROP:WithNext ............................................................. C-10
PROP:WithPrior ............................................................. C-10
PROP:Wizard ................................................................ C-10
PROP:WndProc ............................................................. C-41
PROP:Xpos ..................................................................... C-6
PROP:Ypos ..................................................................... C-6
Properties

active window ............................................................ C-17
bitmap images in memo fields ............ C-20, C-30, C-31
data changed by the user ......................................... C-37
edit-in-place .............................................................. C-23
FlushPreview ................................................. C-25, C-26
mark as a block......................................................... C-36
name of a VBX event ................................................ C-38
number of entries visible in a LIST ................ C-32, C-34
tab order .................................................................... C-27
thread number ........................................................... C-37
Undeclared ................................................................ C-16
window or control handle ......... C-18, C-19, C-27, C-41

Property Access Syntax .................................................. C-4
Property Assignment ....................................................... C-3
Property Equates ............................................................. C-6
Property Expressions ...................................................... C-4
Property Strings ............................................................... C-3
PROPLIST:Center ......................................................... C-11
PROPLIST:CenterOffset ............................................... C-11
PROPLIST:Color ........................................................... C-11

PROPLIST:Decimal ....................................................... C-11
PROPLIST:DecimalOffset ............................................. C-11
PROPLIST:Fixed ........................................................... C-11
PROPLIST:Group .......................................................... C-13
PROPLIST:Header ........................................................ C-11
PROPLIST:HeaderCenter.............................................. C-11
PROPLIST:HeaderCenterOffset .................................... C-11
PROPLIST:HeaderDecimal ........................................... C-11
PROPLIST:HeaderDecimalOffset ................................. C-12
PROPLIST:HeaderLeft .................................................. C-12
PROPLIST:HeaderLeftOffset ........................................ C-12
PROPLIST:HeaderRight ................................................ C-12
PROPLIST:HeaderRightOffset ...................................... C-12
PROPLIST:Icon ............................................................. C-12
PROPLIST:LastOnLine .................................................. C-12
PROPLIST:Left .............................................................. C-12
PROPLIST:LeftOffset .................................................... C-12
PROPLIST:Locator ........................................................ C-12
PROPLIST:MouseDownField ........................................ C-14
PROPLIST:MouseDownRow ......................................... C-14
PROPLIST:MouseDownZone ........................................ C-14
PROPLIST:MouseMoveField ........................................ C-14
PROPLIST:MouseMoveRow ......................................... C-14
PROPLIST:MouseMoveZone ........................................ C-14
PROPLIST:MouseUpField ............................................. C-14
PROPLIST:MouseUpRow ............................................. C-14
PROPLIST:MouseUpZone ............................................ C-14
PROPLIST:Picture ......................................................... C-12
PROPLIST:Resize ......................................................... C-12
PROPLIST:Right ............................................................ C-12
PROPLIST:RightBorder ................................................. C-12
PROPLIST:RightOffset .................................................. C-13
PROPLIST:Scroll ........................................................... C-13
PROPLIST:Tree ............................................................. C-13
PROPLIST:TreeBoxes ................................................... C-13
PROPLIST:TreeIndent ................................................... C-13
PROPLIST:TreeLines .................................................... C-13
PROPLIST:Underline ..................................................... C-13
PROPLIST:Width ........................................................... C-13
PROPPRINT:Collate ...................................................... C-42
PROPPRINT:Color ........................................................ C-42
PROPPRINT:Context .................................................... C-42
PROPPRINT:Copies ...................................................... C-42
PROPPRINT:Device ...................................................... C-42
PROPPRINT:DevMode .................................................. C-42
PROPPRINT:Driver ....................................................... C-43
PROPPRINT:Duplex ...................................................... C-43
PROPPRINT:FontMode ................................................. C-43
PROPPRINT:FromMin ................................................... C-43
PROPPRINT:FromPage ................................................ C-43
PROPPRINT:Paper ....................................................... C-43
PROPPRINT:PaperBin .................................................. C-43



INDEX I -13

PROPPRINT:PaperHeight ............................................. C-43
PROPPRINT:PaperWidth .............................................. C-43
PROPPRINT:Percent ..................................................... C-43
PROPPRINT:Port .......................................................... C-43
PROPPRINT:PrintToFile ................................................ C-43
PROPPRINT:PrintToName ............................................ C-44
PROPPRINT:Resolution ................................................ C-44
PROPPRINT:ToMax ...................................................... C-44
PROPPRINT:ToPage ..................................................... C-44
PROPPRINT:Yresolution ............................................... C-44
Protected mode ........................................................... xxxvii
Prototypes

FUNCTION................................................................ 2-23
PROCEDURE ........................................................... 2-23

prototypes ...................................................................... 2-12
PSTRING ....................................................................... 3-20
PUT ............................................................................... xxxiv

FILE ........................................................................ 10-48
QUEUE ................................................................... 12-17
VIEW ....................................................................... 11-18

PUTINI ........................................................................... 7-66

Q

QUEUE .......................................................................... 12-3
ADD......................................................................... 12-12
DELETE .................................................................. 12-14
GET......................................................................... 12-15
POINTER ................................................................ 12-20
PUT ......................................................................... 12-17
RECORDS .............................................................. 12-20
SORT ...................................................................... 12-19

R

RADIO
report control ............................................................. 8-40
window control .......................................................... 6-83

RANDOM ....................................................................... 13-5
Random access ........................................................... 10-83
Random File Access ................................................... 10-87
RANGE ........................................................................ 6-124
Range validation ............................................................ 13-3
RAW ..................................................................... 2-24, 2-28
Re-declarations ............................................................... xxvi
Read Only .................................................................... 10-89
Read/Write ................................................................... 10-89
READONLY .................................................................. 6-124
REAL ................................................................................ 3-9
RECLAIM ..................................................................... 10-10
RECORD ..................................................................... 10-22
“record lock” ................................................................. 10-94

Record pointer ............................................................. 10-87
RECORDS

FILE ........................................................................ 10-62
INDEX ..................................................................... 10-62
KEY ......................................................................... 10-62
QUEUE ................................................................... 12-20

Recursive
FUNCTION ................................................................ 3-42
PROCEDURE ........................................................... 3-42

Redeclares (OVER) ....................................................... 3-37
Redirection file ............................................................... 2-41
Reference Assignment Statements ............................... 4-18
Reference Variables ....................................................... 3-30
Referential integrity ...................................................... 10-63
REGET

FILE ........................................................................ 10-50
VIEW ....................................................................... 11-19

REGION ......................................................................... 6-86
REJECTCODE ............................................................ 13-37
Relative record ............................................................. 10-60
RELEASE .................................................................... 10-94

FILE ........................................................................ 10-49
VIEW ....................................................................... 11-21

Remainder (Modulus division) ......................................... 4-3
REMOVE ..................................................................... 10-34
RENAME ..................................................................... 10-35
Repeat count notation ..................................................... 4-6
Repeated characters ................................................... 13-11
Replaceable database drivers ....................................... xxxv
REPORT .......................................................................... 8-4

Page Overflow ............................................................. 8-3
REPORT structures ........................................................ xxxi
Report totals

AVE ........................................................................... 8-45
CNT ........................................................................... 8-46
MAX .......................................................................... 8-53
MIN ........................................................................... 8-54
SUM .......................................................................... 8-56

REQ ............................................................................. 6-124
Reserved Words .............................................................. 2-6
RESET

FILE ........................................................................ 10-51
report control attribute .............................................. 8-55
VIEW ....................................................................... 11-22

RESIZE .......................................................................... 6-23
resize ............................................................................. 6-30
RETURN ........................................................................ 5-16
RETURN value .............................................................. 2-26
Rewrite (PUT) .............................................................. 10-48

VIEW ....................................................................... 11-18
rewrite (PUT)

QUEUE ................................................................... 12-17



I-14 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RIGHT
function ................................................................... 13-18
MENU control attribute ........................................... 6-125
report control attribute .............................................. 8-52
window control attribute .......................................... 6-121

Right angle bracket (>) .................................................... 2-7
ROLLBACK ...................................................... 10-65, 10-69
ROUND

function ..................................................................... 13-6
report control attribute .............................................. 8-55
window control attribute .......................................... 6-125

ROUNDBOX .................................................................. 9-14
ROUTINE ............................................................... xxx, 2-19

DO ............................................................................. 5-12
EXIT .......................................................................... 5-13

RUN ............................................................................... 5-17
Run Time Errors ...................................................... D-3, D-7
RUNCODE ................................................................... 13-33
Runtime Expression ...................................................... 4-10
Runtime Property Assignment ........................................ C-3

Property Access Syntax ............................................. C-4
Property Equates ........................................................ C-6
Runtime-Only Properties .......................................... C-16

Runtime-Only Properties ............................................... C-16

S

Scientific Notation Pictures ........................................... 3-46
Screen Fields (controls) ................................................... 6-6
SCREEN structure .......................................................... xxxi
SCROLL ....................................................................... 6-125
SECTION ....................................................................... 2-43
SELECT ......................................................................... 7-29
SELECTED .................................................................... 7-48
Semi-colon ............................................................... 2-3, 2-7
SEND ........................................................................... 10-62
Sentence oriented languages ......................................... xxiii
SEPARATOR ................................................................ 6-126
Sequential access ....................................................... 10-83
Sequential File Access ................................................ 10-84
SET ....................................................... xxxiv, 10-84, 10-85

FILE ........................................................................ 10-52
SET3DLOOK ................................................................. 7-31
SETCLIPBOARD ........................................................... 7-63
SETCLOCK ................................................................. 13-27
SETCOMMAND ........................................................... 13-34
SETCURSOR ................................................................ 7-32
SETDROPID .................................................................. 7-64
SETFONT ...................................................................... 7-33
SETKEYCODE .............................................................. 7-50
SETNONNULL ............................................................. 10-73
SETNULL ..................................................................... 10-72

SETPATH ..................................................................... 13-34
SETPENCOLOR............................................................ 9-15
SETPENSTYLE ............................................................. 9-16
SETPENWIDTH............................................................. 9-17
SETPOSITION .............................................................. 7-34
SETTARGET .................................................................. 7-35
SETTODAY .................................................................. 13-26
SHARE ........................................................................ 10-89

FILE ........................................................................ 10-36
Shared-access ............................................................. 10-89
SHEET ........................................................................... 6-88
SHORT ............................................................................ 3-4
SHOW ............................................................................ 9-18
SHUTDOWN .................................................................. 5-18
Sieve of Eratosthenes ................................................. xxxviii
Simple Assignment Statements .................................... 4-15
SIN (sine of angle) ......................................................... 13-7
Single Document Interface (SDI) ..................................... 6-5
Single-precision real .............................................. 3-8, 3-10
SIZE ............................................................................... 3-54
SKIP .............................................................................. xxxiv

FILE ........................................................................ 10-54
VIEW ....................................................................... 11-24
window control attribute .......................................... 6-126

Slash ................................................................................ 2-7
Smart Linking ............................................................... xxxviii
SORT (QUEUE) ........................................................... 12-19
Sort orders ................................................................... 10-83
Sound (BEEP) ............................................................. 13-40
Source variable .............................................................. 4-15
Special Characters .......................................................... 2-7
SPIN .............................................................................. 6-91
SPREAD ...................................................................... 6-126
SQL ..................................................................... xxxiv, C-45
SQRT (square root) ....................................................... 13-6
SREAL ............................................................................. 3-8
Standard Date .............................................................. 13-25
Standard Time ............................................................. 13-25
START............................................................................ 7-14
Statement Execution Sequence .................................... 2-21
Statement Format ............................................................ 2-3
Statement Labels ............................................................. 2-3
Statement oriented languages ....................................... xxiii
Statement selection integer ............................................. xxx
STATIC ........................................................................... 3-38

QUEUE attribute ....................................................... 12-6
Static Data ..................................................................... 3-41
STATUS

window attribute ........................................................ 6-35
STD .............................................................................. 6-127
STEP ........................................................................... 6-128
STOP ............................................................................. 5-19



INDEX I -15

STREAM ...................................................................... 10-37
STRING

data type ................................................................... 3-16
report control ............................................................. 8-41
window control .......................................................... 6-94

String Constants .............................................................. 4-6
String Expressions .......................................................... 4-7
String Pictures ............................................................... 3-52
String Slicing .................................................................... 4-8
Strong typing ................................................................... xxvi
Structure Termination ....................................................... 2-4
SUB (substring function) ............................................. 13-19
sub-classing ............................................... C-19, C-41, E-3
Sub-routine (ROUTINE) ................................................. 2-19
Subscript

Array.......................................................................... 3-32
MAXIMUM .............................................................. 13-42

SUBTITLE ...................................................................... 2-44
Subtraction operator ........................................................ 4-3
SUM ............................................................................... 8-56
Switch To ........................................................................ 6-36
SYSTEM

window attribute ........................................................ 6-36
System Date

SETTODAY ............................................................. 13-26
TODAY .................................................................... 13-26

System menu................................................................. 6-36
System modal ...................................................... 6-15, 6-33
System Time

CLOCK .................................................................... 13-26
SETCLOCK ............................................................. 13-27

T

TAB ................................................................................ 6-96
TAN (tangent of angle) ................................................... 13-8
TARGET

built-in variable ............................................................ C-3
TARGET, built-in variable ............................................... 7-35
Termination

FUNCTION................................................................ 5-16
HALT ......................................................................... 5-14
PROCEDURE ........................................................... 5-16
PROGRAM ............................................................... 5-16
ROUTINE .................................................................. 5-13
structure ...................................................................... 2-4

TEXT
report control ............................................................. 8-43
window control .......................................................... 6-98

THEN ...................................................................... xxix, 5-7
THOUS

REPORT attribute ..................................................... 8-13

THREAD .............................................................. 3-38, 7-15
FILE attribute .......................................................... 10-13
QUEUE attribute ....................................................... 12-7

Tilde ................................................................................. 2-7
TIME

data type ................................................................... 3-23
Time

Standard Time ......................................................... 13-25
Time Pictures ................................................................. 3-48
TIMER............................................................................ 6-38
TIMES .............................................................................. 5-8
TIP ............................................................................... 6-129
TITLE ............................................................................. 2-44
TO .................................................................. xxix, 5-3, 5-8
TODAY ......................................................................... 13-26
Token oriented languages ................................................ xxii
TOOLBAR ...................................................................... 6-42
TOOLBOX ...................................................................... 6-36
Totals

AVE ........................................................................... 8-45
CNT ........................................................................... 8-46
MAX .......................................................................... 8-53
MIN ........................................................................... 8-54
SUM .......................................................................... 8-56

Transaction Frame ....................................................... 10-63
Transaction Logging ..................................................... 10-63
Transaction Processing ............................................... 10-63

COMMIT ................................................................. 10-67
LOGOUT ................................................................. 10-68
ROLLBACK ............................................................. 10-69

Transaction Tracking .................................................... 10-63
Trappable Run Time Errors .............................................. D-3
tree control ........................................................ 6-112, C-13
tree controls in list boxes ............................................... 6-71
TRN

report control attribute .............................................. 8-56
window control attribute .......................................... 6-130

Truncation
Data Conversion Rules ............................................. 4-20
INT ............................................................................ 13-4

TYPE ................................................................... 2-29, 9-18
GROUP type definition ............................................. 3-40
QUEUE type definition .............................................. 12-8

Type Conversion .................................................. 4-20, 4-22

U

ULONG ............................................................................ 3-7
UNBIND ......................................................................... 4-13
Undeclared Properties ................................................... C-16
UNHIDE ......................................................................... 7-36
Uninterruptable Power Supply (UPS) .......................... 10-65



I-16 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

UNIX ............................................................................ xxxvii
Unknown errors .............................................................. D-21
UNLOCK ...................................................................... 10-97

FILE ........................................................................ 10-38
Unspecified Data Type Parameters ............................... 2-34
UNTIL ............................................................................... 5-8
Untyped value-parameters ............................................ 2-34
Untyped variable-parameters ........................................ 2-34
UPDATE ......................................................................... 7-37
UPPER ........................................................................ 13-20
UPR

report control attribute .............................................. 8-45
window control attribute .......................................... 6-102

USE
Print structure attribute ............................................. 8-28
report control attribute .............................................. 8-57
window control attribute .......................................... 6-131

USHORT .......................................................................... 3-5

V

VAL (ASCII value) ........................................................ 13-20
VALUE ......................................................................... 6-133
Variables

BFLOAT4 ................................................................... 3-10
BFLOAT8 ................................................................... 3-11
BYTE........................................................................... 3-3
CSTRING .................................................................. 3-18
DATE ......................................................................... 3-22
DECIMAL .................................................................. 3-12
GROUP ..................................................................... 3-24
Implicit ....................................................................... 3-29
LONG .......................................................................... 3-6
PDECIMAL ............................................................... 3-14
PSTRING .................................................................. 3-20
REAL ........................................................................... 3-9
SHORT ........................................................................ 3-4
SREAL ........................................................................ 3-8
STRING .................................................................... 3-16
TIME ......................................................................... 3-23
ULONG ....................................................................... 3-7
USHORT ..................................................................... 3-5

VCR ............................................................................. 6-134
Vertical bar ............................................................... 2-3, 2-7
VIEW .............................................................................. 11-3
Visual Basic .VBX control ............................................. 6-61
VSCROLL

window attribute ........................................................ 6-27
window control attribute .......................................... 6-117

W

WATCH
FILE ........................................................................ 10-55
VIEW ....................................................................... 11-25

WHILE .............................................................................. 5-8
WINDOW ....................................................................... 6-13

MDI child window ...................................................... 6-13
non-MDI window ....................................................... 6-13

Window Functions ......................................................... 7-38
“window of vulnerability” .............................................. 10-64
window or control handle .............. C-18, C-19, C-27, C-41
Window Overview ............................................................ 6-5
Window Procedures ....................................................... 7-16
Windows ...................................................................... xxxvii
Windows Standard Dialog Functions ............................ 7-53
WITHNEXT .................................................................... 8-29
WITHPRIOR .................................................................. 8-30
WIZARD ....................................................................... 6-134
Write Only .................................................................... 10-89

X

XOR ................................................................................. 4-4

Y

YEAR ........................................................................... 13-29
YIELD ............................................................................ 7-10


	    Forward - Origins of the Clarion Language
	Setting the Style
	Declaring Data
	Painless Typing
	Intermediate Values
	Control Structures
	Taming the User Interface
	Opening Windows
	Designing a Database
	A New View
	Our First Compiler
	A New Partner
	Where We Stand Now

	 1 Introduction
	The Language Reference Manual
	Chapter Organization
	Reference Item Format
	KEYWORD (short description of intended use)
	Conventions and Symbols

	 2 Source Code Format
	Statement Format
	Declaration and Statement Labels
	Structure Termination
	Field Qualification
	Reserved Words
	Special Characters

	Program Format
	PROGRAM (declare a program)
	MEMBER (identify member source file)
	MAP (declare PROCEDURE and/or FUNCTION prototypes)
	MODULE (specify MEMBER source file)
	PROCEDURE (declare a procedure)
	FUNCTION (declare a function)
	CODE (begin executable statements)
	ROUTINE (declare local subroutine)
	END (terminate a structure)
	Statement Execution Sequence
	PROCEDURE and FUNCTION Calls

	Procedure Prototyping
	FUNCTION and PROCEDURE Prototypes
	FUNCTION Return Types
	C, PASCAL (parameter passing conventions)
	RAW (pass address only)
	NAME (set prototype’s external name)
	TYPE (specify procedure or function type defintion)
	DLL (set procedure defined externally in .DLL)
	PROC (set function called as procedure without warnings)
	PRIVATE (set procedure private to a single module)

	Parameter Passing
	Parameter Types
	Passing Parameters of Unspecified Data Type
	Passing GROUPs and QUEUEs as Parameters
	Passing Arrays as Parameters

	Program Structure Compiler Directives
	BEGIN (define code structure)
	COMPILE (specify source to be compiled)
	EJECT (start new listing page)
	INCLUDE (compile code in another file)
	OMIT (specify source not to be compiled)
	SECTION (specify source code section)
	SUBTITLE (print MODULE subtitle)
	TITLE (print MODULE title)


	 3 Declaring Variables
	Variable Declaration Statements
	BYTE (one-byte unsigned integer)
	SHORT (two-byte signed integer)
	USHORT (two-byte unsigned integer)
	LONG (four-byte signed integer)
	ULONG (four-byte unsigned integer)
	SREAL (four-byte signed floating point)
	REAL (eight-byte signed floating point)
	BFLOAT4 (four-byte signed floating point)
	BFLOAT8 (eight-byte signed floating point)
	DECIMAL (signed packed decimal)
	PDECIMAL (signed packed decimal)
	STRING (fixed-length string)
	CSTRING (fixed-length null terminated string)
	PSTRING (embedded length-byte string)
	DATE (four-byte date)
	TIME (four-byte time)
	GROUP (compound data structure)
	LIKE (inherited data type)
	Implicit Variables
	Reference Variables

	Attributes of Variables
	PRE (set group label prefix)
	DIM (set array dimensions)
	EXTERNAL (set variable defined externally)
	DLL (set variable defined externally in .DLL)
	NAME (set variable’s external name)
	OVER (set shared memory location)
	STATIC (set local variable static)
	THREAD (set thread-specific static variable)
	BINDABLE (set dynamic expression string variables)
	AUTO (uninitialized local variable)
	TYPE (GROUP type definition)

	Data Declarations and Memory Allocation
	Global, Local, Static, and Dynamic
	Data Declaration Sections

	Picture Tokens
	Numeric and Currency Pictures
	Scientific Notation Pictures
	Date Pictures
	Time Pictures
	Pattern Pictures
	Key-in Template Pictures
	String Pictures

	Compiler Directives
	EQUATE (assign label)
	SIZE (memory size in bytes)


	 4 Expressions and Assignments
	Expressions
	Expression Evaluation
	Untitled
	Arithmetic Operators
	Logical Operators
	Numeric Constants
	Numeric Expressions
	String Constants
	The Concatenation Operator
	String Expressions
	Implicit String Arrays and String Slicing
	Logical Expressions

	Runtime Expression Strings
	BIND (declare runtime expression string variable)
	UNBIND (free runtime expression string variable)
	EVALUATE (return runtime expression string result)

	Assignment Statements
	Simple Assignment Statements
	Operating Assignment Statements
	Deep Assignment Statements
	Reference Assignment Statements
	CLEAR (clear a variable)

	Data Conversion Rules
	Base Types
	BCD Operations and Functions
	Type Conversion and Intermediate Results
	Simple Assignment Data Conversion


	 5 Control Statements
	Control Structures
	CASE (selective execution structure)
	EXECUTE (statement execution structure)
	IF (conditional execution structure)
	LOOP (iteration structure)

	Control Statements
	BREAK (immediately leave loop)
	CHAIN (execute another program)
	CYCLE (go to top of loop)
	DO (call a ROUTINE)
	EXIT (leave a ROUTINE)
	GOTO (go to a label)
	HALT (exit program)
	IDLE (arm periodic procedure)
	RETURN (return to caller)
	RUN (execute command)
	SHUTDOWN (arm termination procedure)
	STOP (suspend program execution)


	 6 Window Structures
	Clarion Windows
	Window Overview
	Control Fields and Input Focus
	Field Equate Labels

	Window Structures
	APPLICATION (declare an MDI frame window)
	WINDOW (declare a dialog window)

	APPLICATION and WINDOW Attributes
	ALRT (set window “hot” keys)
	AT (set window position and size)
	AUTO (set USE variable automatic re-display)
	CENTER (set position and size)
	CURSOR (set mouse cursor type)
	DOUBLE, NOFRAME, RESIZE (set window border)
	FONT (set window default font)
	GRAY (set 3-D look background)
	HLP (set window’s on-line help identifier)
	HSCROLL, VSCROLL, HVSCROLL (set window scroll bars)
	ICON (set window icon)
	ICONIZE (set window open as icon)
	IMM (set immediate resize event notification)
	MASK (set pattern editing data entry)
	MAX (set maximize control)
	MAXIMIZE (set window open maximized)
	MDI (set MDI child window)
	MODAL (set system modal window)
	MSG (set window status bar message)
	PALETTE (set number of hardware colors)
	STATUS (set status bar)
	SYSTEM (set system menu)
	TOOLBOX (set toolbox window behavior)
	TIMER (set periodic event)

	MENUBAR and TOOLBAR Structures
	MENUBAR (declare a pulldown menu)
	TOOLBAR (declare a tool bar)

	MENUBAR and TOOLBAR Attributes
	CURSOR (set toolbar mouse cursor type)
	FONT (set toolbar default font)
	NOMERGE (set merging behavior)

	MENUBAR Controls
	MENU (declare a menu box)
	ITEM (declare a menu item)

	TOOLBAR and WINDOW Control Fields
	BOX (declare a window box control)
	BUTTON (declare a pushbutton control)
	CHECK (declare a window checkbox control)
	COMBO (declare an entry/list control)
	CUSTOM (declare a window .VBX custom control)
	ELLIPSE (declare a window ellipse control)
	ENTRY (declare a data entry control)
	GROUP (declare a group of window controls)
	IMAGE (declare a window graphic image control)
	LINE (declare a window line control)
	LIST (declare a window list control)
	OPTION (declare a group of window RADIO controls)
	PROMPT (declare a prompt control)
	PROGRESS (declare a progress control)
	RADIO (declare a window radio button control)
	REGION (declare a window region control)
	SHEET (declare a group of TAB controls)
	SPIN (declare a spinning list control)
	STRING (declare a window string control)
	TAB (declare a page of a SHEET control)
	TEXT (declare a multi-line data entry control)

	Control Field Attributes
	ALRT (set control “hot” keys)
	AT (set control position and size in window)
	BOXED (set window controls group border)
	CAP, UPR (set display case)
	CHECK (set on/off ITEM)
	CLASS (set .VBX custom control class)
	COLOR (set control display color)
	COLUMN (set list box highlight bar)
	CURSOR (set control mouse cursor type)
	DEFAULT (set enter key button)
	DISABLE (set control dimmed at open)
	DROP (set list box behavior)
	DRAGID (set drag-and-drop host signatures)
	DROPID (set drag-and-drop target signatures)
	FILL (set display fill color)
	FIRST, LAST (set MENU or ITEM position)
	FONT (set control font)
	FORMAT (set LIST or COMBO layout)
	FROM (set window listbox data source)
	FULL (set full-screen)
	HIDE (set control hidden at open)
	HLP (set control’s on-line help identifier)
	HSCROLL, VSCROLL, HVSCROLL (set control scroll bars)
	ICON (set control icon)
	IMM (set immediate event notification)
	INS, OVR (set typing mode)
	KEY (set control execution keycode)
	LEFT, RIGHT, CENTER, DECIMAL (set display justification)
	MARK (set multiple selection mode)
	MSG (set control status bar message)
	NOBAR (set no highlight bar)
	PASSWORD (set data non-display)
	RANGE (set range limits)
	READONLY (set display-only)
	REQ (set required entry)
	RIGHT (set MENU position)
	ROUND (set round-cornered window BOX)
	SCROLL (set scrolling control)
	SEPARATOR (set separator line ITEM)
	SKIP (set Tab key skip)
	SPREAD (set evenly spaced TAB controls)
	STD (set standard behavior)
	STEP (set SPIN increment)
	TIP (set “balloon help” text)
	TRN (set transparent window string)
	USE (set control variable or equate label)
	VALUE (set RADIO control OPTION USE variable assignment)
	VCR (set VCR control)
	WIZARD (set “tabless” SHEET control)


	 7 Window Commands
	Event Processing
	Event-driven Programming
	ACCEPT (the event processor)
	ALERT (set event generation key)
	EVENT (return event number)
	POST (post user-defined event)
	YIELD (allow event processing)

	Multi-Threaded Applications
	Multi-Threading vs. Multi-Tasking
	Multi-Threading and MDI
	START (return new execution thread)
	THREAD (return current execution thread)

	Window Procedures
	CHANGE (change control field value)
	CLOSE (close window)
	CREATE (create new control)
	DESTROY (remove a control)
	DISABLE (dim a control)
	DISPLAY (write USE variables to screen)
	ENABLE (re-activate dimmed control)
	ERASE (clear screen control and USE variables)
	GETFONT (get font information)
	GETPOSITION (get control position)
	HELP (help window access)
	HIDE (blank a control)
	OPEN (open window for processing)
	SELECT (select next control to process)
	SET3DLOOK (set 3D window look)
	SETCURSOR (set temporary mouse cursor)
	SETFONT (specify font)
	SETPOSITION (specify new control position)
	SETTARGET (set current window or report)
	UNHIDE (show hidden control)
	UPDATE (write from screen to USE variables)

	Window Functions
	ACCEPTED (return control just completed)
	CHOICE (return relative item position)
	CONTENTS (return contents of USE variable)
	FIELD (return control with focus)
	FIRSTFIELD (return first window control)
	FOCUS (return control with focus)
	INCOMPLETE (return empty REQ control)
	LASTFIELD (return last window control)
	MESSAGE (return message box response)
	MOUSEX (return mouse horizontal position)
	MOUSEY (return mouse vertical position)
	POPUP (return popup menu selection)
	SELECTED (return control that has received focus)

	Keyboard Procedures
	ALIAS (set alternate keycode)
	ASK (get one keystroke)
	PRESS (put characters in the buffer)
	PRESSKEY (put a keystroke in the buffer)
	SETKEYCODE (specify keycode)

	Keyboard Functions
	KEYBOARD (return keystroke waiting)
	KEYCHAR (return ASCII code)
	KEYCODE (return last keycode)
	KEYSTATE (return keyboard status)

	Windows Standard Dialog Functions
	COLORDIALOG (return chosen color)
	FILEDIALOG (return chosen file)
	FONTDIALOG (return chosen font)
	PRINTERDIALOG (return chosen printer)

	Drag and Drop Processing
	CLIPBOARD (return windows clipboard contents)
	DRAGID (return matching drag-and-drop signature)
	DROPID (return drag-and-drop string)
	SETCLIPBOARD (set windows clipboard contents)
	SETDROPID (set DROPID return string)

	Maintaining INI Files
	GETINI (return INI file entry)
	PUTINI (set INI file entry)


	 8 Reports
	Reports in Windows
	Page Overflow

	Report Structure
	REPORT (declare a report structure)
	AT (set detail print area)
	FONT (set report default font)
	P R E (set report label prefix)
	PREVIEW (set report output to metafiles)
	PAPER (set report paper size)
	LANDSCAPE (set page orientation)
	THOUS, MM, POINTS (set report coordinate measure)

	Print Structures
	BREAK (declare group break structure)
	DETAIL (report detail line structure)
	FOOTER (page or group footer structure)
	FORM (page layout structure)
	HEADER (page or group header structure)

	Print Structure Attributes
	ABSOLUTE (set fixed-position printing)
	ALONE (set to print without page header, footer, or form)
	AT (set print structure position and size)
	FONT (set print structure default font)
	PAGEAFTER (set page break after)
	PAGEBEFORE (set page break first)
	USE (set structure equate label)
	WITHNEXT (set widow elimination)
	WITHPRIOR (set orphan elimination)

	Report Controls
	BOX (declare a report box control)
	CHECK (declare a report checkbox control)
	CUSTOM (declare a report .VBX custom control)
	ELLIPSE (declare a report ellipse control)
	GROUP (declare a group of report controls)
	IMAGE (declare a report graphic image control)
	LINE (declare a report line control)
	LIST (declare a report list control)
	OPTION (declare a group of report RADIO controls)
	RADIO (declare a report radio button control)
	STRING (declare a report string control)
	TEXT (declare a multi-line text control)

	Control Attributes
	AT (set control position and size in report)
	AVE (set total average)
	BOXED (set report controls group border)
	CAP, UPR (set print case)
	CNT (set total count)
	COLOR (set color)
	FILL (set print fill color)
	FONT (set default font)
	FORMAT (set LIST print format)
	FROM (set report listbox data source)
	HIDE (set control non-print)
	LEFT, RIGHT, CENTER, DECIMAL (set print justification)
	MAX (set total maximum)
	META (set .VBX to print as .WMF)
	MIN (set total minimum)
	PAGE (set page total reset)
	PAGENO (set page number print)
	RESET (set total reset)
	ROUND (set round-cornered report BOX)
	SUM (set total)
	TRN (set transparent report string)
	USE (set code reference name)

	Report Procedures
	CLOSE (close an active report structure)
	ENDPAGE (force page overflow)
	OPEN (open a report structure for processing)
	PRINT (print a report structure)


	 9 Graphics Commands
	Graphics Overview
	The Current Target
	Graphics Coordinates

	Graphics Procedures
	ARC (draw an arc of an ellipse)
	BLANK (erase graphics)
	BOX (draw a rectangle)
	CHORD (draw a section of an ellipse)
	ELLIPSE (draw an ellipse)
	IMAGE (draw a graphic image)
	LINE (draw a straight line)
	PIE (draw a pie chart)
	POLYGON (draw a multi-sided figure)
	ROUNDBOX (draw a box with round corners)
	SETPENCOLOR (set line draw color)
	SETPENSTYLE (set line draw style)
	SETPENWIDTH (set line draw thickness)
	SHOW (write to screen)
	TYPE (write string to screen)

	Graphics Functions
	PENCOLOR (return line draw color)
	PENSTYLE (return line draw style)
	PENWIDTH (return line draw thickness)


	10 Data Files
	Data File Structures
	FILE (declare a data file structure)
	CREATE (allow data file creation)
	DRIVER (specify data file type)
	NAME (set filename)
	ENCRYPT (encrypt data file)
	OWNER (declare password for data encryption)
	RECLAIM (reuse deleted record space)
	PRE (set file label)
	BINDABLE (set runtime expression string RECORD variables)
	THREAD (set thread-specific record buffer)
	EXTERNAL (set file defined externally)
	DLL (set file defined externally in .DLL)
	OEM (set international string support)

	File Structure Statements
	INDEX (declare static file access index)
	KEY (declare dynamic file access index)
	MEMO (declare a text field)
	BLOB (declare a variable-length memo field)
	RECORD (declare record structure)

	INDEX, KEY and MEMO Attributes
	BINARY (MEMO contains binary data)
	DUP (allow duplicate KEY entries)
	NOCASE (case insensitive KEY or INDEX)
	OPT (exclude null KEY or INDEX entries)
	PRIMARY (set relational primary key)
	NAME (set external name)

	File Commands
	BUILD (build keys and indexes)
	CLOSE (close a data file)
	COPY (copy a data file)
	CREATE (create an empty data file)
	EMPTY (empty a data file)
	FLUSH (flush DOS buffers)
	LOCK (exclusive file access)
	OPEN (open a data file)
	PACK (remove deleted records)
	REMOVE (erase the data file)
	RENAME (change data file directory name)
	SHARE (open a data file)
	STREAM (enable DOS buffering)
	UNLOCK (unlock a locked data file)

	Record Access Commands
	ADD (add a new file record)
	APPEND (add a new file record)
	DELETE (delete a file record)
	GET (read a file record by direct access)
	HOLD (exclusive file record access)
	NEXT (read next file record in sequence)
	NOMEMO (read file record without reading memo)
	PREVIOUS (read previous file record in sequence)
	PUT (write record back to file)
	RELEASE (release a held file record)
	REGET (reget file record)
	RESET (reset file record sequence position)
	SET (initiate sequential file processing)
	SKIP (bypass file records in sequence)
	WATCH (automatic file concurrency check)

	File Functions
	BOF (beginning of file function)
	BYTES (return size in bytes)
	DUPLICATE (check for duplicate key entries)
	EOF (end of file function)
	POINTER (return relative record position)
	POSITION (return file record sequence position)
	RECORDS (return number of file or key records)
	SEND (send message to file driver)

	Transaction Processing
	Transaction Definition
	Transaction Frame
	LOGOUT, COMMIT, ROLLBACK
	Multi-User Considerations
	COMMIT (terminate successful transaction)
	LOGOUT (begin transaction)
	ROLLBACK (terminate unsuccessful transaction)

	Null Data Processing
	NULL (return null file field)
	SETNULL (set file field null)
	SETNONNULL (set file field non-null)

	Internationalization
	Environment Files
	CONVERTANSITOOEM (convert ANSI strings to ASCII)
	CONVERTOEMTOANSI (convert ASCII strings to ANSI)
	ISALPHA (return alphabetic character)
	ISLOWER (return lower case character)
	ISUPPER (return upper case character)
	LOCALE (load environment file)

	Data File Processing
	File Access Methods
	KEY and INDEX
	Sequential File Access
	Random File Access
	Summary

	Multi-User Considerations
	Opening Files
	Concurrency Checking
	HOLD and RELEASE
	LOCK and UNLOCK
	”Deadly Embrace”
	Summary


	11 File Views
	View Structures
	VIEW (declare a “virtual” file)
	FILTER (set view filter expression)
	PROJECT (set view fields)
	JOIN (declare a “join” operation)

	View Commands
	CLOSE (close a VIEW)
	OPEN (open a VIEW)
	DELETE (delete a view primary file record)
	HOLD (exclusive view record access)
	NEXT (read next view record in sequence)
	NOMEMO (read view record without reading memos)
	PREVIOUS (read previous view record in sequence)
	PUT (write VIEW primary file record back)
	REGET (reget view record)
	RELEASE (release a held view record)
	RESET (reset view record sequence position)
	SKIP (bypass view records in sequence)
	WATCH (automatic view concurrency check)

	View Functions
	POSITION (return view record sequence position)


	12 Memory Queues
	Queue Structure
	QUEUE (declare a memory QUEUE structure)
	PRE (set label prefix)
	STATIC (set local queue static)
	THREAD (set thread-specific static queue)
	NAME (set queue variable external name)
	TYPE (QUEUE type definition)
	BINDABLE (set runtime expression string QUEUE variables)
	EXTERNAL (set queue defined externally)
	DLL (set queue defined externally in .DLL)

	Queue Procedures
	ADD (add an entry)
	DELETE (delete an entry)
	FREE (delete all entries)
	GET (read an entry)
	PUT (write an entry)
	SORT (sort entries)

	Queue Functions
	POINTER (return last entry position)
	RECORDS (return number of entries)


	13 Miscellaneous Procedures and Functions
	Mathematical Functions
	ABS (return absolute value)
	INRANGE (check number within range)
	INT (truncate fraction)
	LOGE (return natural logarithm)
	LOG10 (return base 10 logarithm)
	RANDOM (return random number)
	ROUND (return rounded number)
	SQRT (return square root)

	Trigonometric Functions
	SIN (return sine)
	COS (return cosine)
	TAN (return tangent)
	ASIN (return arcsine)
	ACOS (return arccosine)
	ATAN (return arctangent)

	String Fundtions
	ALL (return repeated characters)
	CENTER (return centered string)
	CHR (return character from ASCII)
	CLIP (return string without trailing spaces)
	DEFORMAT (remove formatting from numeric string)
	FORMAT (format numbers into a picture)
	INLIST (search for entry in list)
	INSTRING (search for substring)
	LEFT (return left justified string)
	LEN (return length of string)
	LOWER (return lower case)
	NUMERIC (check numeric string)
	RIGHT (return right justified string)
	SUB (return substring of string)
	UPPER (return upper case)
	VAL (return ASCII value)

	Bit Manipulation Functions
	BAND (return bitwise AND)
	BOR (return bitwise OR)
	BXOR (return bitwise exclusive OR)
	BSHIFT (return shifted bits)

	Date/Time Procedures and Functions
	Standard Date
	Standard Time
	TODAY (return system date)
	SETTODAY (set system date)
	CLOCK (return system time)
	SETCLOCK (set system time)
	DATE (return standard date)
	DAY (return day of month)
	MONTH (return month of date)
	YEAR (return year of date)
	AGE (return age from base date)

	Operating System Procedures and Functions
	COMMAND (return command line)
	DIRECTORY (get file directory)
	PATH (return current directory)
	RUNCODE (return program exit code)
	SETCOMMAND (set command line parameters)
	SETPATH (change current drive and directory)

	Error Reporting Functions
	ERROR (return error message)
	ERRORCODE (return error code number)
	ERRORFILE (return error filename)
	FILEERROR (return file driver error message)
	FILEERRORCODE (return file driver error code number)
	REJECTCODE (return reject code number)

	Miscellaneous Procedures and Functions
	ADDRESS (return a memory address)
	BEEP (sound tone on speaker)
	CALL (call procedure from a DLL)
	MAXIMUM (return maximum subscript value)
	NAME (return DOS file or device name)
	OMITTED (check omitted parameters)
	PEEK (read memory address)
	POKE (write to memory address)


	 A DDE Library Reference
	Dynamic Data Exchange
	Overview
	DDE Events

	DDE Functions
	DDESERVER (return DDE server channel)
	DDECLIENT (return DDE client channel)
	DDEQUERY (return registered DDE servers)
	DDECHANNEL (return DDE channel number)
	DDEAPP (return server application)
	DDEITEM (return server item)
	DDETOPIC (return server topic)
	DDEVALUE (return data value sent to server)

	DDE Procedures
	DDEREAD (get data from DDE server)
	DDEWRITE (provide data to DDE client)
	DDEEXECUTE (send command to DDE server)
	DDEPOKE (send unsolicited data to DDE server)
	DDECLOSE (terminate DDE server link)


	 B Keycodes
	Clarion Keycodes
	Windows Keycode Mapping Format
	KEYCODES.CLW


	 C Property Assignments
	Data Structure Properties
	Built-in Variables
	Property Expressions
	Attribute Property Equates
	List Box Format String Properties

	Other Properties
	List Box Mouse Click Properties
	Undeclared Properties
	Printer Control Properties
	Embedded SQL


	 D Error Codes
	Run Time Errors
	Trappable Run Time Errors
	Non-Trappable Run Time Errors

	Compiler Errors
	Specific Errors
	Unknown errors


	 E Event Equates
	Events
	Field-Independent Events
	Field-Specific Events


	     Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y


