ORIGINS OF THE CLARION L ANGUAGE

FORWARD - Origins of the Clarion
Language Contents |

by Bruce D. Barrington, CEO, TopSpeed Corporation

As so often happens, | was just trying to please myself. | bought the first PC
| ever saw and wanted to program it. That's what | do. Pascal was a straight-
jacket and C wasn't available yet. So | tried BASIC. All it needed were some
smart screen and keyboard routines. Right? Perhaps a little indexed
sequential. Right?

Wrong! | could make it work. But | couldn’t make it clean. | had just spent
10 years working with software development tools of my own design. | liked
them. Maybe it was time to share what | had learned. Maybe the world
really needed yet another computer language—a general-purpose, business
programming language. Designed especially for PCs.

It may sound contradictory to call a business language “general-purpose,”
but in the PC world there are many business “languages” that are anything
but general-purpose. Writing spreadsheet macros isqroging, | suppose,

but the macros hardly comprise a general-purpose language. For that matter,
most database languages are not general-purpose lasgliagy are really
scripts to be executed by their database manager. The scripts define a role
the database manager plays while acting out your application. Even the
dBase language, which can be compiled and run on stand-alone basis, is not
really general-purpose.

According to my definition, a general-purpose language should be able to
exercise the entire repertoire of capability offered by the underlying
platform. That means a program should be able to read any section of any
file that is visible to the operating system. It should pass through all the
versatility available for the user interface. It should connect, in standard
ways, to other general-purpose languages and componentware. A general-
purpose language does not contaminate a program with its own “look and
feel.” It does not erect barriers to be surmounted. Rather, it grants wide
latitude within the constraints of its platform to solve a broad range of
programming problems with an extensive choice of styles.

But why restrict the new language to PCs? Other mainstream languages are
meticulously portable. | decided that PCs deserve special treatment. Even in
1984, when | began designing Clarion in earnest, PCs already comprised a
substantial percentage of all the computers installed in the world. And PCs
were different than other computers. They were inherently single-user
devices with an integrated keyboard and monitor. The keyboard and monitor
could be accessed instantly, without modems and communications lines.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

These machines begged for responsive, interactive application programs. |
wanted to exploit this functionality by building memory-mapped video into
my new language. If a Clarion program could “only” run on 40 or 50 million
computers, that was all right by me.

| was driven by the steadfast belief that programming should be simpler.
That programming languages should be easier to read and write. And that
the poor productivity associated with software development stemmed from
inadequate and poorly designed programming tools.

These feelings began as pet peeves: Why would anyone design an
statement likeéF ... THEN BEGIN ;statement&ND ELSE... (Pascal). What
possible value do thEHEN, BEGIN, andEND keywords serve in this
structure? Why use2” instead of =" for an assignment statement (Pascal,
Modula-2, Ada). Didn’t the language designer know that assignments are the
most numerous statements in a program or tkdtis a finger locking
combination of shifted and unshifted keys? How abdREAD... AT END
(COBOL) clause that sets an end-of-file variable that is tested to terminate a
read loop? Why can'’t the loop test for end-of-file? Having declared a
variable, why must | remind the compiler to convert it in mixed expressions?
Can’t the compiler remember that for me? Have you ever done lint
collection? Did you ask why? And hex dumps. What about HEX DUMPS!
After twenty years of programming, | felt like the anchorman in the movie
Networkwho shouted out the window: “I'm mad as hell and I'm not going

to take it anymore.”

Setting the Style

So | set out to design a new computer language that was compact (easy to
write) and expressive (easy to read). | began at the back and worked toward
the front: First, | wrote lots of programs, experimenting with syntax and
semantics until the programs looked great. Then | wrote a small language
reference manual. When the manual was well along, the development team
started writing a compiler. The language was changing daily. Our old
development memos describe an energetic and interactive process. Many
ideas were proposed and rejected for reasons of art. Others for poor
technology. Some were simply insane. Like Darwin’s species, only the
strong survived.

| classify programming languages into three styles: token oriented, sentence
oriented, and statement oriented. Token oriented languages like Pascal and (
are compact but not particularly expressive. Such languages treat a program
as a set of tokens (keywords, data names, constants, punctuation, etc.)
separated by “white space” (spaces, CR/LFs, comments, and sometimes
commas). The compiler collects the tokens and ignores the white space.
Token oriented languages are one-dimensional, so programmers use white
space to add a second dimension to their programs:

FORWARD

ORIGINS OF THE CLARION L ANGUAGE

typedef struct {
unsigned char Type; /*the type of structure*/

unsigned Vien; /*variable length*/

unsigned char Dplac; /*decimal places if decimal*/

void *Use; /*pointer to variable*/
}Usedef

This C programmer has done about everything possible to cedelabie

type definition. But the left brace seems to “dangle” offdtnect keyword.
And Usedef dangles off the right brace. After all, braces aren’t very artistic
vertical delimiters.

Sentence oriented languages like COBOL and most database languages are
expressive but not very compact. Sometimes statements in sentence orientec
languages read like perfect English. This COBOL statement is certainly
expressive:

MULTIPLY PRINCIPAL BY RATE GIVING PAYMENT ROUNDED.
But no more so than:
Payment = Principal * Rate

| would argue that in the context of an entire program, the second statement
is easier to read than the first, which tends to melt into paragraphs full of
verbiage. Other sentence formats are not very English-like at all. | found
this “beauty” in an xBase language reference manual:

EDIT [FIELDS <field Tist>] [<scope>][FOR <explLl>]
[WHILE <expL2>I[FREEZE <field>]
[KEY<exprl> [,<expr2>]] [LAST] [LEDIT] [REDIT]
[LPARTITION] [NOAPPEND] [NOCLEAR] [NODELETE]
[NOEDIT | NOMODIFY] [NOLINK] [NOMENU] [NOOPTIMIZE]
[NORMALI[NOWAITI[PARTITION <expN1>][PREFERENCE <expCl>]
[SAVEILTIMEOUT <expN2>] [TITLE <expC2>]
[VALID [:F] <expL3> [ERROR <expC3>]] [WHEN <explL4>]
[WIDTH <expN3>] [[WINDOW <window namel>]
[IN [WINDOW] <window name2> | IN SCREEN]]
[COLOR SCHEME <expN4>] | COLOR <color pair Tist>]

Wow! These are certainly English words, but are they expressive? Could any
programmer understand an instance of this statement format without a
manual? Among many other questions I'd like to ask is: Who designed a
WHILE clause and &/HEN clause in the same statement? It makes me
want to scream out the window.

My experimental programs had become statement oriented—that old
fashioned style used by FORTRAN and BASIC. Statement oriented
languages exploit the fact that source programs are contained in ASCII
source files—every line of a program is a record in the file. So record
boundaries can be used to eliminate punctuation. | settled on a statement
format that proved to be compact, expressive, and versatile:

label STATEMENT[(parameters)] [,ATTRIBUTE[(parameters)]]

Attributes are only used to declare data. Executable statements use the
format of a standard procedure call. Of course, | defined different statement
formats for assignment statements (A = B) and (IF, CASE, etc.).

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

A statement label starts in column one (the first position of the record). A
statement without a label must not start in column one. A statement is
terminated by the end of the line unless it is continued by a vertical bar (|).
| adopted the semi-colon as an optional statement separator to allow more
than one statement per line. By adopting the Modula-2 concept of ignoring
empty statements, | eliminated the distinction between statement separators
and terminators that had confounded countless Pascal programmers.

This design eliminates the punctuation otherwise necessary to identify labels
and separate statements. Blocks of statements are initiated by a single
compound statement such as IF and are terminated by a statement separator
such as ELSE (which initiates another statement block) or by an END
statement (or period). There are no “dangling” keywords.

Declaring Data

In its infancy, COBOL was said to be “self-documenting” because of its
explicit data division and its expressive statement syntax.. Every element
that a COBOL program processes must be declared in the data division:
variables, constants, files, records, indexes—even sort sequences and report
formats. | agreed that these declarations were essential for documenting
business programs. And | felt that our new statement format would greatly
improve their readability.

In the late 1960's, IBM promoted PL/I as the successor to COBOL. The
language was a disappointment to many, but it did offer a few fresh ideas.
By condensing the data type keywords and introducing embedded comments
(/*comment*/), PL/I provided enough space to comment every declaration
statement. COBOL had been designed for long, descriptive data names. But
programmers didn’t use long data names. There were good reasons for this:
First of all, programmers like to columnarize programs to make them more
readable. Arranging the data division in columns restricts data names to an
arbitrary maximum length. Secondly, programmers don't like long data
names in the procedure division. Long names create unwieldy expressions
and add to the writer’'s cramp produced by an already verbose language. So
most COBOL programmers used short, cryptic labels and wrote programs
that weren’t nearly as self-documenting as they should have been.

PL/I programmers got around that problem by commenting their declaration
statements. If there was a question about the meaning of a data name, it
could be resolved by looking up its declaration. | had managed a large PL/I
project in the 60’s and became convinced that declaration statements
required three parts: a statement label, a data type, and a comment.

The new statement format was perfect. The statement label appeared on the
left where it would be most visible. Data type keywords were short (BYTE,
REAL, DIM, etc.) to maximize the space available for the comment. As a
final space saver, a single exclamation character (!) was designated as a
comment initiator.

FORWARD ORIGINS OF THE CLARION L ANGUAGE

COBOL and PL/I use “levels” to declare data structures. Every variable has
a level number. A variable with a higher level number is “part of” a prior
variable with a lower level number. If a variable is not part of a data
structure, it is declared as an “01” or “77” level. | never liked using “levels”
and was surprised that they were carried over in PL/I. | considered them
arbitrary and a waste of space. (What does “77” mean and why do
unstructured variables need a level anyway?) | chose GROUP (named after
COBOLs's “group item”) as a compound statement to initiate data structures
(which we then called “groups”). This mechanism is similar to record...end
used in Pascal, Modula-2, and ADA; and struct{..} used in C. Indenting
nested GROUP statements produces a very readable declaration:

Error GROUP,PRE(Err) lError information
Date DATE !Date of error
Time TIME ITime of error
Device STRING(12) IActive device
Message GROUP lError message
MsgCode STRING(@PHHHEP) IMessage Code
STRING(® -)
MsgText STRING(32) IMessage text

END
END

COBOL and PL/I permit the same data name to be used in different data
structures. Such data names are referenced by the data nhame qualified by th
structure name. This is a useful construct, since the same fields frequently
appear in more than one data structure (e.g. ACCT-NO IN OLD-VENDOR,
ACCT-NO IN CURRENT-PAYEE, etc.). But many programmers refuse to

use this feature because it creates such long references. Instead, they code
mnemonic prefixes on every field (e.g., VND-ACCT-NO). This takes extra
coding time and reduces the available name space.

To deal with this issue, | included an optional prefix attribute that could be
attached to any data structure (€BRE(VND)). Elements of the structure
are qualified by placing the prefix and a colon in front of their data name
(e.g. VND:AcctNo, PAY:AcctNo).

To match the functionality of “MOVE CORRESPONDING” in COBOL and
“BY NAME” assignments in PL/I, a “deep” assignment statement was
added to move matching elements between groups:

DestinationGroup :=: SourceGroup

As a business language, Clarion needed a rich set of basic data types: All
sizes of integers and realmbers were included to provide compatibility

with external record layouts and parameter lists. Packed decimals were
included to solve rounding problems and reduce memory usage. (They can
be declared in a range of sizes.) Various string formats (fixed, Pascal, and
C), along with a complete set of string functions, were also included. And
finally, data types for dates and times were designed to support direct
arithmetic on these variables:

Tomorrow = Today + 1

But what about structured data types? In ALGOL-like languages such as

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Pascal, Modula-2, Ada, and C, groups and arrays are declared as types. You
declare the type, then you declare a group or array as an instance of the
predeclared type. | never have liked this syntax. In business programs, most
groups and arrays are only declared once. Thinking up a type name and
coding aTYPE statement is usually unnecessary busy-work. | have never
considered a group or an array to be a data type anyway. Groups and arrays
describe storage relationships, not data types.

So | made the type declaration optional. A Clarion declaration WithiRE
attribute declares a data type that can be used for recurring structures or
structures that are passed as parameters. A declaration WitPio

attribute declares both a data type and a variable of the same name. |
adopted the PLAIKE statement to declare a variable of predeclared type. |
felt that this design offered the best of both worlds:

Totals GROUP,PRE(QTR)

GrossPay DECIMAL(12,2)
Deductions DECIMAL(12,2)
NetPay DECIMAL(12,2)

END

YTD:Totals LIKE(Totals),PRE(YTD)

Painless Typing

A computer language is strongly typed if every data element has a single
data type and the language syntax makes it is impossible to view that
element as a different type. Many experts feel that strong typing increases
program reliability. Perhaps. But strongly typed programs are harder to
write, restricting the use of general purpose procedures, and requiring an
unnecessarily vigilant awareness of data types. Furthermore, | have never
heard a COBOL programmer acci®EDEFINES (used solely to defeat
strong typing) of causing reliability problems. (COBOL programmers, by
the way, are not uncritical of their language. M\ ER statement fell into
disuse years ago because it produced unstable programs.)

| didn’t want our new language to be strongly typed. First of all, | wanted to
support re-declarations similar REDEFINES or theunion typein C.
Redeclarations are useful for implementing record types (variant records in
Pascal) and for handling special programming cases. | assigney it
attribute to this purpose:

MonthNames STRING(‘JdanFebMarAprMayJdundulAugSepOctNovDec’)
Month STRING(3),DIM(12),0VER(MonthNames)

Secondly, | wanted group structures to be treated like stritnjgs wieakened

data typing because groups can contain data types other than strings. But
groups need functionality. They must be moved, passed as parameters, even
(carefully) compared. That's the rub, of course. Masgteric data types

don'’t collate as strings, so groups containingeric elements usually

won't collate properly. Negative integers collate higher than positive integers
and floating-point numbers collate somewhat randomly. Design involves
compromise (sigh) and | elected the functionality while accepting the risk.

FORWARD ORIGINS OF THE CLARION L ANGUAGE

It was important for Clarion data types to permit simple construction of
general-purpose procedures. If a procedure expected a numeric parameter,
then any numeric data type should suffice. | thought it was ridiculous to
require different numeric functions to handle different numeric data types
like the ALGOL derivative languages. To go evenHar, | think

polymorphism, as implemented in C++, that requires separate functions for
each data type but permits them to be called by a single function name is a
notational sham.

In the original version of Clarion, parameters were not even prototyped.
Whatever appeared in the callers argument list was used by the procedure.
Clarion now requires parameter prototypes but permits the data type to be
unspecified. Clarion procedures have always been truly polymorphic for
unstructured data.

Clarion parameters are prototyped to be passed by value or by address.
Clarion does not support pointers. There are two reasons for this: First,
pointers don't carry data type information with them and can be easily
misused. And second, pointer dereferences (syntax differentiating the pointer
from its target) needlessly complicate programs. It has been my experience
that pointer mishaps are involved in most C program bugs.

We chose reference variables, as implemented in C++, to support
indirection. A reference variable contains the data type as well as the identity
of its target. And a reference variable is automatically dereferenced when it
is used. There is no possibility of confusion between a reference variable
and its target. Consider the following:

CompanyA FILE

END
CompanyB FILE

END

Company &FILE ICompany being processed
CODE
CASE Companyletter !Which company to process?
0F ‘A’
Company &= CompanyA IPoint to Company A
OF ‘B’
Company &= CompanyB IPoint to Company B
END
OPEN(Company) !0pen selected company

The reference variablgéompanyis set by a reference assignment statement
(&=). The compiler will object if the data types don’t match. Thereafter, a
reference variable can be used in any context its target is permitted.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

IntermediateV alues

Another important issue involved automatic type conversion. | felt strongly
that you declared a data type so that the compiler would know! And that an
obliging compiler would generate data type conversions as needed. | also
felt that a great compiler would probe expressions for meaning and supply
logical conversions.

For example, if | add a string to an integer, it is reasonable for the compiler
to assume that the string contains an ASCII number and to generate such a
conversion. Conversely, if | concatenate an integer to a string, | am asking
the compiler to convert the integer first. By selecting appropriate data types
for intermediate values, the compiler can safely convert data types in
expressions without losing information. If you divide two integers, a good
compiler will store the result in an intermediate value that will hold a
fraction. If you add an integer to a string, the compiler will also use a
;ractional intermediate value because a string is capable of expressing a
raction.

Information can be lost, of course, when a value is moved, for instance, by
an assignment statement or as a parameter of a procedure call. Moving a rea
number to an integer truncates the fraction. Moving a real number to a
packed decimal rounds to the least significant decimal digit. Some
languages, such as Pascal, require that such data conversions be explicitly
called. | felt that by declaring a data type, a programmer was requesting the
compiler to implicitly restrict the data element to a given domain of value.

Earlier versions of Clarion used just two data types for numeric intermediate
values: 32 bit signed integer (LONG) and a 64 bit floating point (REAL). A
divide operation or any operation with one or more REAL operands would
produce a REAL intermediate value. This strategy provided sufficient
accuracy since a REAL could express the maximum numeric significance
(15 digits) supported by Clarion. Although they aoeurate, floating point
values are not discreet. Two equivalent expressions suchas 1/2and 2/ 4
can produce floating point results that differ in the least significant bit. This
is usually a meaningless difference in computations.

But not in comparisons. A programmer expects one-half to equal two-
fourths. | may be willing to avoid comparing REALSs but | expect a logical
expression such as this to work every time:

IF Hours > Normal * 1.5

Using a REAL to receive the expression on the right casts doubt on the
results of the comparison. We resolved this issue in Clarion for Windows by
implementing fixed-point intermediate values with 31 decimal digits on each
side of the decimal point. This change also increased our maximum numeric
significance to 31 ditg.

FORWARD ORIGINS OF THE CLARION L ANGUAGE

Control Structures

While the business languages, COBOL and PL/I, offered the preferred
model for declaring data, the ALGOL derivatives, especially Modula-2,
offered better control structures. | modified the ModuléZtatement by
making theTHEN keyword replaceable by a statement separator. This had
the effect of eliminating superfluo0$HEN s from multi-line IF structures.

By adopting Modula-2'€LSIF, | eliminated the massive indenting and
multiple terminations caused by deeply neskedtructures:

IF Number < 0
Sign = -1
ELSIF Number > 0
Sign = +1
ELSE
Sign = 0
END
| also used Modula-2 as a guide for ClaridDASE statement. Modula-2’s
CASE supports enumerated case labels and case labebraivgry useful
features. But | didn't like its punctuation. Thd keyword introduces the
first case label, but subsequent case labels are initiated by a verticgl)bar (*
| felt this punctuation was ugly and not very intuitive. Instead, | @€do
introduce all case labels. | invented BOF keyword to enumerate case
labels and th@0O keyword for case label ranges. These changes produced a
very friendly syntax:

CASE SUB(Name,1,1)

OFC*A”) TO (*M’) OROF(‘a’) TO (‘m’)
DO FirstHalf

OFC*N’) TO (*Z’) OROF(‘n”) TO (°z’)
DO SecondHalf

ELSE
DO FirstHalf

END

Modula-2 was the first usage | had seen ofl®®P keyword in its proper
context. In Modula-2l.OOP...END executes an unconditional loop that is
terminated by executing &XIT statement. | augmented this concept by
adding aCYCLE statement to recycle the loop from within. (I also changed
EXIT toBREAK because | was usirigXIT for another purpose.) |
implemented conditional loops by adding four optional clauses to the
LOOP statement:

LOOP I = 1 TO 100 BY 2
LOOP 10000 TIMES

LOOP WHILE Count > 0
LOOP UNTIL EndOfFile

| felt that good program organization required local subroutines. A local
subroutine is a block of statements that has been removed from the main
logic and is executed by a subroutine call statement. If the subroutine is
aptly named, the main logic becomes shorter without losing clarity. COBOL
and BASIC usd?’ERFORM andGOSUB for this purpose. Local

procedures in Pascal and Modula-2 nearly fit the bill but they require a

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

prototype statement to declare the parameter types. | didn’t want to support
subroutine parameters because | wanted all the caller’s data to be visible to
the subroutine. | designed tROUTINE statement to initiate a local
subroutineROUTINE s are placed at the end of a procedure or function and
are executed by RO statement.

A number of languages support executing a single statement from a list of
statements as indicated by a statement selection integer. FORTRAN uses the
computedGOTO. COBOL usesSOTO...DEPENDING ON. BASIC uses
ON...GOTO andON...GOSUB | wanted to implement a similar capability

that would execute any type of statement from a list of statements depending
on an integer expression. | named this strudiXECUTE after the
commonXEQ machine language instruction which executes the single
instruction addressed by its operand. This new structure is, | believe, unique
to the Clarion language, but has proven quite useful:

EXECUTE UpdateAction
ADD(Master)
PUT(Master)
DELETE(Master)

END

Taming the User Interface

In 1970, | was working for McDonnell Douglas Automation Company when
we purchased one of the first IV/70 computers built by Four Phase Systems,
Inc. It was a marvelous machin®6K of solid-state memory, with a

footprint not much larger than a PC. What made this box so interesting was
its video support; 32 CRTs daisy-chained from 8 video ports that were
refreshed directly from memory. Before the IV/70, every CRT | had used
was a communications device. You could watch individual characters display
as they arrived at the terminal. With the 1V/70, an entire new screen was
displayed every thirtieth of a second. It was the perfect platform for
interactive programs. But no one seemed to notice. Four Phase was selling
the system as a replacement for IBM’s clustered CRTs and as a multi-station
keypunch.

| had a higher use in mind. In 1973, | formed a company to develop a turn-
key hospital information system based on the 1V/70 computer. | wrote a
multi-user operating system and a macro-language that exercised it. Then |
wrote a macro pre-processor and a small hospital information system. The
entire process took 9 months.

The macro language accessed the CRTs as if they were memory (that's what
they were!) using move macros. The hospital application “painted” the
screen by moving literals to the video memory, then placed entry field
descriptions in a user field table and returned to the operating system for
processing. When a field completed or a special key was pressed, control
returned to the application.

FORWARD ORIGINS OF THE CLARION L ANGUAGE

This strategy had a distinct operating system “centric” viewpoint. Function
keys were connected to screen procedures. Screen procedures created field
tables that were connected to field edit procedures. A program didn’t “run”

in a conventional sense. In fact, there was no such thing as a program—just
a set of procedures that responded to operating system events. The
operating system was in control. It was up to the programmer to anticipate
its needs. Our programmers eventually became so proficient with this
approach that most hospital systems could be designed, implemented, and
fully tested before the hardware was cabled together.

But it was never intuitive. Every one of our programmers climbed a steep
learning curve. Event-driven programming is hard to grasp. Later, in one of
the most vivid flashes of insight | have ever experienced, it dawned on me
that an event-driven operating system could be controlled by a conventional
program. The user interface would be invoked by a single statement. For
Clarion, | called it ACCEPT. The leading edge of ACCEPT would return
control to the operating system and the trailing edge could serve as the entry
point for all event processing. A small set of functions would be crafted to
identify the event that occurred and the fields involved.

Event-driven systems had always seemed “inside-out” to me. | was inside,
chained to an oar, obeying the drummer, processing his events. | realized
that ACCEPT would make me the master again. Now the drum was mine! |
would call the operating system, not the other way around.

But how would Clarion depict a screen layout? Well, if screen literals are
data and screen fields are data, then a screen layout has to be a data
structure, doesn’t it? | unimaginatively called S&REEN structure.
OPEN(MyScreen) would display a screexCCEPT would enable the
keyboard and handles all of the behavior of operator entry. When the
operator completes a field or presses a “hot” keyADEEPT statement
would “fall through,” releasing control to the progra®BLOSE(MyScreen)
would restore the state of the monitor before “Mg@er’ was opened.

Declaring screen layouts made them easy to process but even easier to
design. The development team integrated a screen painter into the Clarion
source code editor which could genelf@@REEN structues. The screen

painter could also reg8iCREEN structures. Get the picture? Position the
cursor in &SSCREEN structure and invoke the screen painter. The screen
painter interprets the source and displays the screen layout. Now “paint”
some changes on the screen and exit. The screen painter changes the sourct
code by replacing the olSCREEN structure with the updated s&on.

Interactive visual design like this is impossible without declared structures.

| designed a similar structure for report layouREPORT structures

contain layouts for print lines, page headers and page footer®RINT
statement handles data formatting and page overflow automatically. And a
report painter is integrated with the source code editor to maintain
REPORT structures just lik6ECREEN structures.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

OpeningWindows

As luck would have it, our user interface design was perfectly suited to
Microsoft Windows—an “inside out” operating system if | ever saw one.
Windows programmers were having a very difficult time—who could blame
them? The “Hello World” example shipped with a popular C++ product was
8 pages long! Windows was in desperate need of a simple messaging model
like the Clarion ACCEPT loop. We decided to provide just that.

We changed our SCREEN structures to WINDOWdtres, introducing

the grammar necessary to declare and contain Windows objects and
properties. We added multi-threading to accommodate the multiple
document interface. We changed the grammar of REPORT structures to
depict WYSIWYG reports, background forms, and nested group headers,
footers, and sub-totals.

The ACCEPT statement became a structure defining the boundaries of an
event processing loop. We designed the compiler to cooperate with the run-
time library to hide the direction of the procedure calls used to process
window events. A call to a run-time window processor is generated above
the ACCEPT loop. The loop itself is generated as an embedded accept
procedure.

The window processor creates the necessary objects, specifying a common
event processing procedure for every event produced by every object. This
event processor handles “housekeeping” events such as redraws and calls th
embedded accept procedure to deal with other events. When the window
closes, the window processor returns control to the statement following the
ACCEPT loop.

To the Clarion programmer, it is all quite simple. Open a window, then fall
into an ACCEPT loop. The ACCEPT loop cycles for every event the
program needs to see. Close the window and fall out of the loop.

We defined a convenient set of functions to identify the events and objects
involved. The code necessary to process a typical dialog box looks like this:

FORWARD ORIGINS OF THE CLARION L ANGUAGE

OPEN(Window) !0pen the window

ACCEPT Enable the window
CASE FIELDC() IWhich field needs attention?
OF 270K I ‘0K’ needs attention

CASE EVENT()
OF EVENT:Selected

Which event has occurred?
‘0K’ is pressed down

: Process the 0K button

CLOSE(Window)

Close the window
END End CASE EVENT()
OF ?Cancel ‘Cancel’ needs attention

CASE EVENT()
OF EVENT:Selected

!
!
1
1
1
!
! Which event has occurred?
! ‘Cancel’ is pressed down
: ! Process ‘Cancel’ button
CLOSE(Window) !
1
1
!
1
1
1

Close the window
END End CASE EVENT()
ELSE Must be a non-field event

CASE EVENT()
OF EVENT:CloseWindow

Which event has occurred?
The window will be closed
: Process window close down

END

End CASE EVENT()
END ! End CASE FIELD()
END 'End ACCEPT
RETURN IReturn to the caller

A by-product of our object-oriented run-time library corrected a serious
deficiency in the Clarion language—compiler invariants. Declaring screens,
reports, and files is very illuminating. But it can also be restrictive. Because
they are compiled in, you can’t change most declarations at run-time. Many
of the language extensions requested by Clarion programmers involved
making declared attributes visible to and changeable by the program

In our Windows run-time library, these structures are objects. Objects have
properties. And properties can be changed. Anytime. Since we had already
overloaded the period as both a structure terminator and a decimal point, we
could not implement the standard object oriented notatiabjeft.property

So we elected to use “curly brackets” to enclosperties. With this

notation, any declared attribute, such as the text displayed on a button, can
be modified by a statement such as:

?Button{PROP:Text} = ‘My Button’

Designing a Database

| wanted to implement a simple database syntax that would support all three
standard file access methods, direct, sequential, and indexed. The underlying
file organization would also be simple: The file would contain a header
followed by fixed length data reats. The header would describe the record
layout and associated keys and memos which would reside in separate files.
This arrangement is similar to that used by dBase—a record could be
accessed sequentially or directly by key or by its relative record number. |
designed &ILE structure, similar to a COBOED, to declare files and

their components:

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Detail FILE,PRE(DTL),NAME(“C:\LEDGER\DETAIL.DAT")
AcctKey KEY(DTL:AcctNo,DTL:Period,DTL:Date)
BatchKey KEY(DTL:Batch,DTL:Period),DUP
Comment MEMO(4096)
RECORD !Detail record
AcctNo SHORT IAccount number
Period BYTE IAccounting period
Date DATE ITransaction date
Batch STRING(12) IBatch ID
Amount DECIMAL(12,2) Amount (+/- = debit/credit)

END
END

I implemented sequential processing ussigl, NEXT, PREVIOUS, and
SKIP verbs.SET establishes the sequence (by key or relative record
number) and starting point for the other three verbs which read records
forward and backward, and skip over records. These verbs combine nicely
with the end-of-file functionEOF) in a read loop:

SET(Dt1:AcctKey) ISet account number sequence
LOOP UNTIL EOF(Detail) ILoop through every record

NEXT(Detail) IRead the next record
END

The GET verb reads a record randomly by key or relative record number.
Importantly, GET does not interfere with sequential processing by resetting
the next record processeBUT andDELETE process records accessed by
NEXT, PREVIOUS, orGET. ADD inserts a new record in the database.

This database access grammar proved to be efficient, robust and versatile—
an essential and popular component of our product.

As the Clarion language spread, however, it took on new responsibilities.
Clarion developers needed to access dBase files. So we added a dBase
procedure library (we called Clarion procedure libraries “Language
Extension Modules™—or LEMSs). Then Novell came out with client-server
support for Btrieve (server-based indexing). Some large Clarion applications
needed Btrieve to improve their transaction throughput. So two of our third-
party developers came out with Btrieve LEMSs.

That left DB2. And RDB. And Oracle. And SQL Server. And every other
variety of database that runs on or is accessed by PCs. We were planning to
support direct C function calls in the next version of the language, so any
database with a C language API could be accessed by a Clarion program.
But it was clear to me that this was not the answer. Surely a general-purpose
business language shouldn’t be using a different grammar for every database
format. Migrating a data file shouldn’t require a major program overhaul.

The Clarion language needed standardized, built-in support for all common
databases.

It was suggested that we adopt SQL as our database grammar. | took the
suggestion seriously and rewrote some typical Clarion programs using
embedded SQL. It wasn't long before | realized this was a terrible idea.
When used as a programming language, SQL is extremely verbose and
inelegant. The little four statement record loop illustrated earlier becomes

FORWARD ORIGINS OF THE CLARION L ANGUAGE

A New View

this albatross under SQL.:
DECLARE X CURSOR

FOR SELECT *
FROM Detail
ORDER BY Dt1:AcctNo,Dt1:Period,Dt1:Date
END
END
OPEN X
LOOP
FETCH X

IF ReturnCode = 100 THEN BREAK.

END
CLOSE X

Not only are SQL cursors inelegant, they are also nearly useless. You can't
make a cursor skip—for example, to re-display a prior page of records. And
you can’'t make it relocate—for example, to jump torfds” while browsing
alphabetically. | concluded that if | were to replace the Clarion database
access syntax with SQL, | would have been tarred and feathered and run out
of town on a rail.

So we decided to implement replaceable database drivers. Clarion
programmers liked their database grammar, they just needed support for
other database formats. By building on the existing language structure, we
would be leveraging their knowledge as well as enhancing their current
applications. With our new database driver technology, we would make all
databases look alike—a non-trivial benefit.

To produce SQL database drivers, we map SQL syntax onto our own
database grammar. OBET statement constructs an SGELECT

statement which is issued at the first instance MEXT or PREVIOUS
operation. If you change directions (eNEXT .. PREVIOUS), the driver
issues anothe8ELECT with a differentORDER BY clauseOur GET

issues SELECT..FETCH. ADD issues atNSERT; GET..DELETE

issues DELETE ; andGET..PUT issues atJPDATE. A few features,

such as relative record access, are not supported for SQL databases, but
otherwise, the implementation is quite complete.

However, our database grammar was unable to exercise some very important
SQL features. Clarion programs implement record filters by reading and
throwing out unwanted records:

LOOP UNTIL EOF(Part)

NEXT(Part)
IF Prt:0OnHand > 0 THEN CYCLE

END

An SQL database can filter records on the server and save a lot of time.
Clarion programs join files by reading thénpary record to prime a key in

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

order to read the secondary record. An SQL database returnsniaeypand
secondary records with a single access. And Clarion programs read every
field in every record on every access. SQL returns only the fields you need.

Of course, an SQL database cannot read minds. You have to tell it what you
want it to do. So we designed a VIEW structure for this purpose:

View VIEW(Part),FILTER(‘PRT:OnHand = 0°)
PROJECT(PRT:Number,PRT:Name,PRT:0nHand,PRT:Usage)
JOIN(Vendor,PRT:Vendor,VND:Number)

PROJECT(VND:Name,VND:Address,VND:CityStateZip)
END
END

This VIEW structure consolidates the intentions of a Clarion program so that
the database driver can utilize any services offered by its underlying
database engine. The database driver either performs filter (record selection),
join (record lookup), and project (field selection) operations or requests the
database server to do so. In either case, performance is optimized.

There was also a problem implementing optimistic concurrency under SQL.
To update a shared file, a Clarion program reads and saves a rémnd. T
before it is updated, the record is locked, reread, and compared to the saved
copy. If they are the same, the changes are written to the database.
Otherwise, the record has been changed by another workstation and the
operator is so advised. This process is called “optimistic concurrency” and is
based on the expectation that records are usually unchanged.

SQL implements optimistic concurrency with a WHERE clause that requires
that all fields to be updated continue to have the same value. If one or more
fields have changed, SQL returns an appropriate error. Since Clarion had no
syntax to make such a request, we added a WATCH statement for this
purpose. WATCH is issued before a GET, NEXT, or PREVIOUS to initiate
optimistic concurrency. When the record is accessed, the driver saves a copy.
In response to the PUT statement, the driver either rereads the record for
comparison or issues an UPDATE...WHERE. to an SQL database. If the
record has changed, PUT returns an error.

Our First Compiler

We shipped version 1.0 of Clarion in May of 1986 with both a compiler and
an interpreter. The Clarion Compiler produced intermediate code that was
then interpreted by the Clarion Processor. The intermediate code was so
compact, that large Clarion applications would run on the small memory
sizes (256K) that characterized PCs of that era. The compiler produced such
tight code by generating a binary description of every declaration statement.
Then the data was addressed by a two-byte pointer to the binary description.
So it took five bytes to add an integer to a string and format the result
according to a picture (one byte for the add operation and four bytes for the
pointers to the integer and picture string descriptions). For every operation,

FORWARD ORIGINS OF THE CLARION L ANGUAGE

the Processor examined the data types of the elements involved and
performed any necessary conversions.

But tight intermediate code wasn't the primary reason for this design. By
interpreting the output from the compiler, the Processor could execute a
Clarion application without requiring a link step. This was no small
consideration. In 1985 and for a long time thereafter, linking was a time-
consuming process. Our customers appreciated quick testing, but they also
let us know that “real” programming languages produE&d files! Early

the next year, we released the Clarion Translator that converted Clarion
intermediate code int®BJ files by replacing the operation codes with
procedure calls. The pointers were passed as parameters. This strategy
served us well for six years but also posed some problems:

. We had trouble with external librarieSBJ files could
be linked into a ClariotEXE, but they could not be
executed directly by the Processor. We designed a
process that converted a suitaldJ into a special
binary format (LEM) that could be executed by the
processor and changed back inta@BJ by the Transla-
tor. But the process was complicated and was only used
by sophisticated developers.

. Simple Clarion programs produced lEs. The run-
time decision making referenced library procedures that
were included in theEXE but never called. That made a
“Hello World” program take 141K.

. Clarion applications ran slower than C, Pascal, and
Modula-2 programs because Clarion programs examined
data types at run-time while the other languages did so
at compile time.

. It was no longer necessary to avoid linking in the test
cycle. New linkers that supported run-time libraries
could link a program for testing as fast as we could load
the Processor.

Most importantly, we needed technology that would provide a development
path to Windows, protected mode, OS/2, UNIX, 32-bit, and non-Intel
architectures.

A New Partner

In May of 1990, we solved those problems and many others by licensing the
TopSpeed technology from Jensen & Partners International (JPI), a British
company. JPI was formed in 1988 when Niels Jensen, founder of Borland
International, and his language development team left that company as a
group. They purchased their work in progress and produced the TopSpeed
product line, the top-rated compiler technology in the industry. JPI had

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

developed C, C++, Pascal, and Modula-2 compilers that shared the same
optimizing code generator and project system. JPI called the compilers
“front-ends” and the code generator the ‘tbaad.”

We started immediately writing a Clarion front-end. As usual, it was harder
than we thought. The language required more changes than we expected.
The project took longer and used more resources than we thought it would.
But we were thrilled with the results.

We knew the TopSpeed back-end was good, but we were astonished when a
Clarion “Sieve of Eratosthenes” (an algorithm for finding prime numbers)

ran twice as fast as the same program written with Borland’s Turbo C++. We
had also licensed TopSpeed linking technology, but | hadn’t realized just
how good it was. TopSpeed’s unigue "Smart Linking” produced perfect
granularity by eliminating all unreferenced procedures and static data
elements from arEXE. Better yet, while we were working on our front-

end, JPI had developed an automatic overlay loader, DOS DLLs, a royalty-
free DOS extender, and had announced 32-bit support. With this state-of-the-
art technology, we had finally removed the performance penalty that had
always been associated with high-level business languages.

In September of 1991, we announced our new product at the first Clarion
Developers Confence. New features and the Clarion/TopSpeed connection
drew rave reviews. Caught up in the festivity of the occasion, Niels Jensen,
and | started talking about merging our companies. It made a great deal of
sense. TopSpeed products would gain a US presence and access to a much
larger programming market. Clarion products would own their core
technology. We would be the first to apply leading edge compiler technology
to business software development tools. After a lengthy negotiation, the
merger was concluded in April of 1992. Two and a half years later, after the
companies had completely homogenized their operations and product lines,
the successor company was renamed TopSpeed Corporation. In October of
1994, TopSpeed Corporation released Clarion for Windows, the first product
developed in its entirety by the merged companies.

Where We Stand Now

These remarks originally comprised the introduction tdPtlogrammer’s
Guidethat accompanied Clarion Database Developer Version 3.0, released in
April of 1993. Extensive additions and revisions have been necessary for the
Windows version of Clarion. Such is progress. | think of software
development as the process of gently rocking a Chinese checker board until
all the marbles fall into holes. | believe in the notion of a final, correct

design. Until Clarion for Windows, | felt that we were a long way from our
goal. Now | am not so sure. There are very few marbles rolling.

CHAPTER 1

INTRODUCTION 1-1

Introduction Contents |

The Language Reference Manual

Clarion for Windows is an integrated environment for writing data
processing applications and management information systems for
microcomputers using theidows operating environment. Clarion’s
programming language is the foundation of this environment. In this
manual, the language is concisely documented in a modular fashion.
Although this is not a text book, you should consult this manual first when
you want to know the precise syntax required to implement any declaration,
statement, or function.

As far as possible, real-world example code is provided for each item.

Chapter Organization

CHAPTER 1 - Introduction provides an introduction to the Clarion
Language Refence. It provides a brief overview of the contents of each
chapter, and a guide to help the reader understand the documentation
conventions used throughout the book.

CHAPTER 2 - Program Source Code Formatprovides the general layout

of a Clarion Windows program. Punctuation, special characessived

words, and a detailed description of the “building blocks” required to create
modular, structured Clarion source code are documented here.

CHAPTER 3 - Declaring Variablesdescribes the data types and attributes
used to declare variables in a Clarion program. In addition, formatting
masks, called “picture tokens,” are defined and illustrated.

CHAPTER 4 - Expressions and Assignmentdefines the syntax required
to combine variables, functions, and constants into numeric, string, or
logical expressions. It also defines how the value of an expression is
assigned to variables.

CHAPTER 5 - Control Statementsdescribes compound executable
statements that control program flow and operation.

CHAPTER 6 - Window Structures describes the APPLICATION and
WINDOW data structures and all their components and attributes.

CHAPTER 7 - Window Commmandsdescribes the executable statements
and functions that are specific to APPLICATION and WINDOW structures.

CHAPTER 8 - Reportsdescribes the REPORT data structure and all its

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

components and attributes. The executable statements and functions that are
specific to using a REPORT structure are also covered here.

CHAPTER 9 - Graphics Commandsdescribes executable statements and
functions that draw graphical figures in APPLICATION, WINDOW, and
REPORT structures.

CHAPTER 10 - Data Filesdescribes the FILE structure. This phex

covers the declarations, statements, and functions which access data files.
The statements and functions required for multi-user and transaction
processing systems are also documented here.

CHAPTER 11 - File Viewsdescribes the VIEW structure. This pher
covers the declarations, statements, and functions which access data files
through the VIEW structure.

CHAPTER 12 - Memory Queuesdescribes the QUEUE data structure,

which is used to rapidly process information in random access memory.
Along with all its components and attributes, the executable statements and
functions that are specific to using a memory QUEUE are also covered here.

CHAPTER 13 - Miscellaneous Procedures and Functiordocuments the
statements and functions that do not specifically apply to the subjects
covered in chapters 1 through 12.

APPENDIX A - DDE Library Reference documents the statements and

functions that perform Dynamic Data Exchange with other concurrently
executing Windows programs.

Reference ltem Format

Each Clarion programming language element referenced in this manual is
printed in UPPER CASE letters. Components of the language are
documented with a syntax diagram, a detailed description, and source code
examples.

Iltems are documented in logical groupings, dependent upon their
hierarchical relationships. Therefotke table of contents for this book is

not listed in alphabetical order. In general, data types and structures occur at
the beginning of a chapteglfowed by their attributes, and esutable
statements and functions at the end.

The documentation format used in this book is illustrated in the syntax
diagram on the following page.

CHAPTER 1 INTRODUCTION

KEYWORD (short description of intended use)

[label] KEYWORD(| parameterl| [parameter2]) [ATTRIBUTEL()] [ATTRIBUTE2()]

| alternate |

| parameter |

| list |

KEYWORD A brief statement of what the KEYWORD does.

parameterl A complete description of parameterl, along with how it
relates to parameter2 and the KEYWORD.

parameter2 A complete description of parameter2, along with how it

relates to parameterl and the KEYWORD. Because it is
enclosed in brackets, [], it is optional, and may be
omitted.

alternate parameter list
A complete description of alternates to parameterl,
along with how they relate to parameter2 and the KEY-
WORD.

ATTRIBUTE1 A sentence describing the relation of ATTRIBUTEL1 to
the KEYWORD.

ATTRIBUTEZ2 A sentence describing the relation of ATTRIBUTEZ2 to
the KEYWORD.

A concise description of what théEYWORD does. In many cases the
KEYWORD will be an attribute of a keyword that was described in the
preceding text. Sometimes a KEYWORD has no parameters and/or

attributes.
Events Generated: If the KEYWORD generates events, they are listed here.
Return Data Type: The data type returned if KEYWORD is a function.
Errors Posted: If KEYWORD posts errors which may be trapped by the ERROR and
ERRORCODE functions, they are listed here.
Example:
FieldOne = FieldTwo + FieldThree IThis is a source code example
FieldThree = KEYWORD(FieldOne,FieldTwo) IComments follow the “!” character

See Also: Other pertinent keywords and topics

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Conventions and Symbols

Symbols are used in the syntax diagrams as follows:

Symbol Meaning
[] Brackets enclose an optional (not required) attribute or
parameter.
() Parentheses enclose a parameter list.

|] Vertical lines enclose parameters, where one, but only
one, of the parameters is allowed.

Coding example conventions used throughout this manual:
CLARION KEYWORDS All caps
DataNames Mixed case with caps used for readability
Comments Predominantly lower case

The purpose of these conventions is to make the code examples readable an
clear.

CHAPTER 2

PROGRAM SouRcE CobDE FORMAT 2-1

Statement Format Contents |

Clarion is a “steement oriented” language. A statement oriented language
makes use of the fact that its source code is contained in ASCII text files so
every line of code is a separate record in the file. Therefore, the Carriage
Return/Line Feed record delimiter can be used to eliminate punctuation.

In general, the Clarion statement format is:
lTabel STATEMENT[(parameters)] [,ATTRIBUTE[(parameters)]]

Attributes specify the properties of the item and are only used on data
declarations. Executable statements take the form of a standard procedure
call, except assignment statements (A = B) and control structures (such as
IF, CASE, and LOOP).

A statement’s label must begin in column one (1) of the source code. A
statement without a label must not start in column one. A statement is
terminated by the end of the line. A statement too long to fit on one line can
be continued by a vertical bar (|). The semi-colon is an optional statement
separator that allows you to place more than one statement on a line.

Being a statement oriented language eliminates from Clarion much of the
punctuation required in other languages to identify labels and separate
statements. Blocks of statements are initiated by a single compound
statement, and are terminated by an END statement (or period).

Declaration and Statement Labels

The language statements in a source module can be divided into two general
categories: data declarations and executable statements, or simply “data” anc
“code.”

During program execution, data declarations reserve memory storage areas
that are manipulated by executable statements. A label is required for the
data to be referenced in executable code. All variables, data structures,
PROCEDURESs, FUNCTIONSs, and ROUTINEs are referenced by labels.

A label defines a specific location in a PROGRAM. Any code statement may
be identified and referenced by a label. This allows it to be used as the target
of a GOTO statement. Each label on an executable statement adds ten bytes
to the executable code size, even if not referenced.

The label on a PROCEDURE or FUNCTION statement is the procedure or
function’s name. Using the label of a PROCEDURE in an executable
statement executes the procedure. The label of a FUNCTION is used in
expressions, or parameter lists of other functions, to assign the value
returned by the function.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

The rules for valid Clarion labels are:

. A label MUST begin in column one (1) of the source
code.

. A label may contain letters (upper or lower case),
numerals 0 through 9, the underscore character (), and
colon ().

. The first character must be a letter or the underscore
character.

. Labels are not case sensitive (i.e. CurRent and CUR-
RENT are the same).

. A label may not be &served word.

Structure Termination

Compound data structures are created when data declarations are nested
within other data declarations. There are many compound data structures
within the Clarion language: APPLICATION, WINDOW, REPORT, FILE,
RECORD, GROUP, VIEW, QEUE, etc. These compound dataistures
must be terminated by a period (.) or the keyword END.

IF, CASE, EXECUTE, LOOP, BEGINgand ACCEPT arall executable
control structures. They must also be terminated with a period or the END
statement.

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

Field Qualification

Variables declared as members of complex data structures (GROUP,
QUEUE, FILE, RECORD, etc.) may have duplicate labels, as long as the
duplicates are not contained within the same structure. To explicitly
reference fields with duplicate labels in separate structures, you may use the
PRE attribute on the structures just as it is documented (Prefix: Hmdt)La

to provide unique names for each field. However, the PRE attribute is not
required for this purpose and may be omitted.

Any field of any complex structure can be explicitly referenced by
prepending the label of the structure containing the field to the fiedd, la
separated by a colon (StructureName:FieldLabel). You must use this Field
Quialification syntax to reference any field in a complex structure that does
not have a PRE attribute.

If the field is within nested complex data structures, you must prepend each
successive level's structure label to the field label to explicitly reference the
field (if the nested structure has a label). If apgted structure does not

have a label, then that part is omitted from the qualification sequence. This
is similar to anonymous unions in C+His means that, in the case of a

FILE structure (without a PRE attribute) in which the RECORDcstire

has a label, the individual fields in the file must be referenced as
FileLabel:RecordLiel:FieldLabel. If the FILE's RECORD structure does

not have a label, the individual fields are referencedlakdbel:FieldLdel.

Example:
MasterFile FILE,DRIVER(‘TopSpeed’)
Record RECORD
AcctNumber LONG IReferenced as Masterfile:Record:AcctNumber
Detail FILE,DRIVER(‘TopSpeed’)
RECORD
AcctNumber LONG IReferenced as Detail:AcctNumber
Memory GROUP, PRE(Mem)
Message STRING(30) !May be referenced as Mem:Message or Memory:Message
END
SaveQueue QUEUE
Fieldl LONG Referenced as SaveQueue:Fieldl
Field2 STRING IReferenced as SaveQueue:Field2
END
OuterGroup GROUP
Fieldl LONG IReferenced as OuterGroup:Fieldl
Field2 STRING IReferenced as OuterGroup:Field2
InnerGroup GROUP
Fieldl LONG IReferenced as OuterGroup:InnerGroup:Fieldl
Field2 STRING IReferenced as OuterGroup:InnerGroup:Field2
END
END

See Also: PRE

2-4

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ReservedWords

The following keywords areeserved and may not be used as labels for any

purpose:
ACCEPT AND BEGIN BREAK

BY CASE COMPILE CYCLE

DO EJECT ELSE ELSIF

END EXECUTE EXIT FUNCTION
GOTO IF INCLUDE LOOP
MEMBER NOT OF OMIT

OR OROF PROCEDURE PROGRAM
RETURN ROUTINE SECTION THEN
TIMES TO UNTIL WHILE

XOR

The following keywords may be used as labels of dat@tstres or
executable statements. They may not be used as labels of PROCEDURE or
FUNCTION statements:

APPLICATION
FOOTER
ITEM
MENUBAR
RECORD
SUBTITLE
TOOLBAR

CODE
FORM
JOIN
MODULE
REPORT
TAB
VIEW

DETAIL
GROUP
MAP
OPTION
ROW
TABLE
WINDOW

FILE
HEADER
MENU
QUEUE
SHEET
TITLE

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

Special Characters

Initiators: ! Exclamation point begins a source code comment.

? Question mark begins a field equate label.

@ “At” sign begins a picture token.

* Asterisk begins a parameter passed by address in a MAP prototype.
Terminators: ; Semi-colon is an executable statement separator.

CRI/LF Carriage-return/Line-feed is an executable statement separator.
Period terminates a data or code structure (a substitute for END).
Vertical bar is the source code line continuation character.

Pound sign declares an implicit LONG variable.

Dollar sign declares an implicit REAL variable.

Double guote declares an implicit STRING variable.

@ HT

Delimiters: Parentheses enclose a parameter list.

Brackets enclose an array subscript list.

Single quotes enclose a string constant.

Curly braces enclose a repeat count in a string constant, or a

property parameter in an assignment statement.

<> Angle brackets enclose an ASCII code in a string constant, or
indicate a parameter in a MAP prototype which may be omitted.

Colon separates the start and stop positions of a string “slice.”

- —~
I

~=
—

Connecters: . Period is a decimal point used in numeric constants.
, Comma connects parameters in a parameter list.
: Colon connects a prefix to a label, or a complex structure label
to the label of one of its members.
$ Dollar sign connects the window to a field equate label in a control
property assignment statement.
Operators: Plus sign indicates addition.
Minus sign indicates subtraction.
Asterisk indicates multiplication.
Slash indicates division.
Percent sign indicates modulus division.
Carat indicates exponentiation.
Left angle bracket indicates less than.
Right angle bracket indicates greater than.
Equal sign indicates assignment or equivalence.
Tilde indicates the logical “NOT” operator.
Ampersand indicates concatenation.

QOIIIV/\>O\°*'+

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Program Format
PROGRAM (declare a program)

PROGRAM
[MAP
prototypes
[MODULE()
prototypes
END]
END]
global data
CODE
Statements
[RETURN]
procedures or functions
PROGRAM The first declaration in a Clarion program source mod-
ule. Required.
MAP Global procedure and function declarations. Required.
MODULE Declare member source modules.
prototypes PROCEDURE and/or FUNCTION declarations.
global data Declare Global data which may be referenced by all
procedures and functions.
CODE Begin executable statements.
statements Executable program instructions.
RETURN Terminate program execution. Return to operating
systemcontrol.

procedures ofunctions
Source code for the procedures and functions in the
PROGRAM module.

The PROGRAM statement is required to be the first declaration in a

Clarion program source module. It may only be preceded by source code
comments or a TITLE or SUBTITLE compiler directive. The PROGRAM
source file name is used as the object (.OBJ) and executable (.EXE) file
name, when compiled. The PROGRAM statement may have a label, but the
label is ignored by the compiler.

A PROGRAM with PROCEDUREs and/or FUNCTIONs must have a MAP
structure. The MAP declares the PROCEDURE and/or FUNCTION
prototypes. Any PROCEDURE or FUNCTION contained in a separate
source file must be declared in a MODULE structure within the MAP.

Data declared in the PROGRAM module, between the keywords
PROGRAM and CODE, is Global data that may be accessed by any

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

PROCEDURE or FUNCTION in the PROGRAM. Its memory allocation is

Static.
Example:
PROGRAM ISample program declaration
INCLUDE(‘EQUATES.CLW”) IInclude standard equates
MAP
CalcTemp !Procedure Prototype
END
CODE
CalcTemp ICall procedure
CalcTemp PROCEDURE
Fahrenheit REAL(O) IGlobal data declarations
Centigrade REAL(O)
Window WINDOW(‘Temperature Conversion’),CENTER,SYSTEM
STRING(‘Enter Fahrenheit Temperature: ‘),AT(34,50,101,10)
ENTRY(@N-04),AT(138,49,60,12),USE(Fahrenheit)
STRING(‘Centigrade Temperature:’),AT(34,71,80,10),LEFT
ENTRY(@N-04),AT(138,70,60,12),USE(Centigrade),SKIP
BUTTON(‘Another’),AT(34,92,32,16),USE(?Another)
BUTTON(“Exit’),AT(138,92,32,16),USE(?Exit)
END
CODE IBegin executable code section
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Fahrenheit
Centigrade = (Fahrenheit - 32) / 1.8
DISPLAY(?Centigrade)
OF ?Another
Fahrenheit = 0
Centigrade = 0
DISPLAY
SELECT(?Fahrenheit)
OF ?Exit
BREAK
END
END
CLOSE(Window)
RETURN
See Also: MAP, MODULE, PROCEDURE, FUNCTION, Data Declarations and

Memory Allocation

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

MEMBER (identify member source file)

[label]

MEMBER (program)

[MAP

prototypes

END]
local data

procedures or functions

MEMBER The first statement in a source module that is not a
PROGRAM source file. Required.

program A string constant containing the filename (without
extension) of a PROGRAM source file. This parameter
is required.

MAP Local procedure and function declarations. Any proce-

dures or functions declared here may be referenced only
by the procedures or functions in the MEMBER module.

prototypes PROCEDURE and/or FUNCTION declarations.

local data Declare Local Static data which may be referenced only
by the procedures and functions whose source code is in
the MEMBER module.

procedures or functions
Source code for the procedures and functions in the
MEMBER module.

MEMBER is the first statement required to be in a source module that is
not a PROGRAM source file. It may only be preceded by source code
comments or a TITLE or SUBTITLE compiler directive. It is required at the
beginning of any source file that contains PROCEDUREs or FUNCTIONs
that are used by a PROGRAM. The MEMBER statement identifies the
programto which the source MODULE belongs.

A MEMBER module may have a local MAP structure. Procedures and
functions declared in this MAP are visible only to the other procedures and
functions in the MEMBER module. The source code for the procedures and
functions declared in this MEMBER MAP may be contained in the
MEMBER source file, or another file.

If the source code for the PROCEDURE or FUNCTION declared in a
MEMBER MAP is contained in a separate file, the PROCEDURE or
FUNCTION's prototypemust be declared in a MODULE structure within

the MEMBER MAP. That separate source file MEMBER MODULE must
also contain its own MAP which declares the samo¢otypefor that
PROCEDURE or FUNCTION. Any PROCEDURE or FUNCTION not
declared in the Global (PROGRAM) MAP must be declared in a local MAP
in the MEMBER MODULE which contains its source code.

Data declared in the MEMBER module, after the keyword MEMBER and

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

before the first PROCEDURE or FUNCTION statement, is Member Local
data that may only be accessed by PROCEDUREs or FUNCTIONS within
the module (unless passed as a parameter). Its memory allocation is Static.

Example:
ISourcel module contains:
MEMBER(‘OrderSys’) IModule belongs to the OrderSys program
MAP !Declare Tocal procedures
Funcl(STRING),STRING !'Funcl is known only in both module
MODULE(“Source2.clw’)
HistOrd2 IHistOrd2 is known only in both modules
END
END
LocalData STRING(10) IDeclare data Tocal to MEMBER module
HistOrd PROCEDURE !Declare order history procedure
HistData STRING(10) IDeclare data local to PROCEDURE
CODE
LocalData = Funcl(HistData)
Funcl FUNCTION(RecField) !Declare local function
CODE
lExecutable code statements
ISource2 module contains:
MEMBER(‘OrderSys’) IModule belongs to the OrderSys program
MAP !Declare Tocal procedures
HistOrd2 IHist0rd2 is known only in both modules
MODULE(“Sourcel.clw’)
Funcl(STRING),STRING !Funcl is known only in both modules
END
END
LocalData STRING(10) !Declare data local to MEMBER module
HistOrd2 PROCEDURE IDeclare second order history procedure
CODE
LocalData = Funcl(LocalData)
See Also: MODULE, PROCEDURE, FUNCTION, Data Declarations and Memory

Allocation

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

MAP (declare PROCEDURE and/or FUNCTION prototypes)

MAP

prototypes
[MODULE()

prototypes
END]
END

MAP Contains therototypeswhich declare the functions,
procedures and external source modules used in a
PROGRAM or MEMBER module.

prototypes Declare a PROCEDURE or FUNCTION.
MODULE Declare a member source module.

A MAP structure contains thrototypeswhich declare the functions,
procedures and external source modules used in a PROGRAM or MEMBER
module. A MAP declared in the PROGRAM source module declares
PROCEDUREs or FUNCTIONSs that are available throughout the program.
A MAP in a MEMBER module declares PROCEDUREs or FUNCTIONSs

that are available in that MEMBER module only.

A MAP structure is mandatory for any Clarion program because the
BUILTINS.CLW file is automatically included in your PROGRAM’s MAP
structure by the compiler. This file contains prototypes of most of the
procedures and functions in the Clarion internal library that are available as
part of the Clarion language. This file is required because the compiler does
not have these prototypes built into it (making it more efficient).Since the
prototypes in the BUILTINS.CLW file use some constant EQUATES that are
defined in the EQUATES.CLW file, this file is also automatically included

by the compiler in every Clarion program.

Example:
!0ne file contains:
PROGRAM !Sample program in sample.cla
MAP IBegin map declaration
LoadIt ! LoadIt procedure
END 'End of map
1A separate file contains:
MEMBER(*Sample’) !Declare MEMBER module
MAP IBegin local map declaration
Computelt ! compute it procedure
END 'End of map
See Also: PROGRAM, MEMBER, MODULE, FUNCTION and PROCEDURE

Prototypes

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

MODULE (specify MEMBER source file)

MODULE(sourcefile)
procedure prototype
function prototype

END

MODULE Names a MEMBER module or external library file.

sourcefile A string constant. If the sourcefile contains Clarion
language source code, this specifies the filename (with-
out extension) of the source file which contains the
PROCEDUREs and/or FUNCTIONS. If the sourcefile is
an external library, this string may contain any unique
identifier.

procedure prototyp€he prototype of a PROCEDURE contained in the
sourcefile.

function prototype The prototype of a FUNCTION contained in the
sourcdile.

A MODULE structure names a MEMBER module or external library file. It
contains therototypesfor the PROCEDURES and FUNCTIONSs contained
in thesourcefile A MODULE structure can only be declared within a MAP

structure.
Example:
!The “sample.cla” file contains:
PROGRAM !Sample program in sample.cla
MAP !Begin map declaration
MODULE(‘Loadit’) ! source module loadit.cla
LoadIt ! load it procedure
END ! end module
MODULE(‘Compute’) ! source module compute.cla
Computelt ! compute it procedure
END ! end module
END 'End map
!The “loadit.cla” file contains:
MEMBER(“Sample”) !Declare MEMBER module
MAP IBegin local map declaration
MODULE(‘Process”’) ! source module process.cla
ProcessIt ! process it procedure
END ! end module
END 'End map

See Also: MEMBER, MAP, FUNCTION and PROCEDURE Prototypes

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

PROCEDURE (declare a procedure)

label

PROCEDURE [(parameter list)]

local data
CODE

Sstatements

[RETURN]

PROCEDURE Begins a section of source code that can be executed
from within a PROGRAM.

label Names the PROCEDURE.

parameter list An optional list of variables which pass values to the
PROCEDURE. This list defines the name of each
parameter as used within the PROCEDURE's source
code. Each parameter is separated by a comma. The data
type of each parameter is specified in the procedure’s
prototype in the MAP structure.

local data Declare Local data which may be referenced only by this
procedure.

CODE Begin executable statements.

statements Executable program instructions.

RETURN Terminate procedure execution. Return to the point from

which the procedure was called.

PROCEDURE begins a section of source code that can be executed from
within a PROGRAM. It is called by naming the PROCEDUREel (with

its parameter listif any) as an executable statement in the code section of a
PROGRAM, PROCEDURE, or FUNCTION.

A PROCEDURE terminates and returns to its caller when a RETURN
statement is executed. An implicit RETURN occurs at the end of the
executable code. The end of executable code for the PROCEDURE is
defined as the end of the source file, or the first encounter of a FUNCTION,
ROUTINE, or another PROCEDURE.

Data declared within a PROCEDURE, between the keywords PROCEDURE
and CODE, is Procedure Local data that can only be accessed by that
PROCEDURE (unless passed as a parameter to another PROCEDURE or
FUNCTION). This data is allocated memory upon entering the procedure,
and de-allocated when it terminates. If the data is smaller than the stack
threshold (5K is the default) it is placed on the stack, otherwise it is
allocated from the heap.

A PROCEDURE must be declared in the MAP of a PROGRAM or
MEMBER module. If declared in the PROGRAM MAP, it is available to
any other procedure or function in the program. If declared in a MEMBER
MAP, it is only available to other procedures or functions in that MEMBER
module.

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

Example:
PROGRAM lExample program code
MAP
OpenFile(FILE) !Procedure prototype with parameter
ShoTime IProcedure prototype without parameter
END
CODE
OpenFile(FileOne) 1Call procedure to open file
ShoTime 1Call ShoTime procedure
IMore executable statements
OpenFile PROCEDURE(AnyFile) !0pen any file
CODE IBegin code section
OPEN(AnyFile) 10pen the file
IF ERRORCODE() = 2 I'TIf file not found
CREATE(AnyFile) ! create it
END
RETURN IReturn to caller
ShoTime PROCEDURE IShow time
Time LONG !Local variable
Window WINDOW,CENTER
STRING(@T3),USE(Time),AT(34,70)
BUTTON(“Exit’),AT(138,92,32,16),USE(?Exit)
END
CODE IBegin executable code section
Time = CLOCK() 1Get time from system
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Exit
BREAK
END
END
RETURN !Return to caller
See Also: FUNCTION and PROCEDURE Prototypes, Data Declarations and Memory

Allocation

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

FUNCTION (declare a function)

label ~ FUNCTION [(parameter list)]

local data
CODE
Statements
RETURN(value)
FUNCTION Begins a section of source code that can be executed
from within a PROGRAM.
label Names the FUNCTION.

parameter list An optional list of variables which pass values to the
FUNCTION. This list defines the name of each param-
eter as used within the FUNCTION's source code. Each
parameter is separated by a comma. The data type of
each parameter is specified in the procedure’s prototype
in the MAP structure.

local data Declare Local data which may be referenced only by this
function.

CODE Begin executable statements.

statements Executable program instructions.

RETURN Terminate function execution and return the value to the
expression in which the function was used.

value A numeric or string constant or variable which specifies

the result of the function call.

FUNCTION begins a section of source code that can be executed by
naming the FUNCTION label with ifgsarameter listtempty parentheses are
required if no parameters are passed). FUNCTION execution is terminated
by a RETURN statement in its CODE section (required).

A function can be used as an expression component, or a parameter of a
PROCEDURE or another FUNCTION. A FUNCTION may also be called in
the same manner as a PROCEDURE, if the program logic does not require
the RETURNvalue In this case, the compiler will generate a warning
(unless its prototype has the PROC attribute) which may be safely ignored.

Data declared within a FUNCTION, between the keywords FUNCTION and
CODE, is Procedure Local data that can only be accessed by that
FUNCTION (unless passed as a parameter to another PROCEDURE or
FUNCTION). This data is allocated memory on the stack upon entering the
function, and de-allocated when it terminates.

A FUNCTION must be declared in the MAP of a PROGRAM or MEMBER
module. If declared in the PROGRAM MAP, it is available to any other
procedure or function in the program. If declared in a MEMBER MAP, it is
only available to other procedures or functions in the MEMBER module.

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

Example:
PROGRAM
MAP
Ful1Name(STRING,STRING,STRING),STRING !Function prototype with parameters
DayString,STRING IFunction prototype without parameters
END
TodayString STRING(9)
CODE
TodayString = DayString() I'Function call without parameters
! the () is required for a function
1Global executable statements
START(NewThread) IClarion START function called as a
! procedure -- generates compiler warning
! but executes correctly
FullName FUNCTION(Last,First,Init) IFull name function
CODE IBegin executable code section
IF Init = *’ ITf no middle initial
RETURN(CLIP(First) & ° ° & Last) I return full name
ELSE 10therwise
RETURN(CLIP(First) & * ¢ & Init & ‘. ° & Last)
! return full name
END
DayString FUNCTION IDay string function
CODE IBegin executable code section
Day# = (TODAY() % 7) + 1 IFind day of week from system date
EXECUTE Day# lExecute, return day string

RETURN(‘Sunday’)
RETURN(‘Monday’)
RETURN(‘Tuesday’)
RETURN(‘Wednesday’)
RETURN(‘Thursday’)
RETURN(“Friday’)
RETURN(‘Saturday’)
END

See Also: FUNCTION and PROCEDURE Prototypes

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

CODE (begin executable statements)

CODE
The CODE statement separates the data declaration section from the
executable statement section within a PROGRAM, PROCEDURE, or
FUNCTION. The first statement executed in a PROGRAM, PROCEDURE
or FUNCTION is the statement following CODE.

Example:
OrdList PROCEDURE IDeclare a procedure
!Data declarations go here
CODE IThis is the beginning of the “code” section

IExecutable statements go here

See Also: PROGRAM, PROCEDURE, FUNCTION

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

ROUTINE (declare local subroutine)

label ROUTINE

ROUTINE Declares the beginning of a local subroutine of execut-
able statements.
label The name of the ROUTINE.

ROUTINE declares the beginning of a local subroutine of executable
statements. It is local to the PROCEDURE or FUNCTION in which it is
written and must be at the end of the CODE section of the PROCEDURE or
FUNCTION to which it belongs. All variables visible to the PROCEDURE

or FUNCTION are available in the ROUTINE. This includes all Procedure
Local, Module Local, and Global data.

A ROUTINE is called by the DO statement followed by the label of the
ROUTINE. Program control following execution of a ROUTINE is returned
to the statement following the calling DO statement. A ROUTINE is
terminated by the end of the source module, or by another ROUTINE,
PROCEDURE, or FUNCTION. The EXIT statement can also be used to
terminate execution of a ROUTINE's code (similar to RETURN in a
PROCEDURE).

A ROUTINE is internally implemented by the compiler as a local procedure.
Therefore, there are some efficiency issues that are not immediately obvious:

. DO and EXIT statements are very efficient.
. Accessing the PROCEDURE's local data is less efficent
than accessing module data.
. Implicit variables used only within the ROUTINE are
less efficient than using local variables.
. Each RETURN statement within a ROUTINE incurs a
40-byte overhead.
Example:
SomeProc PROCEDURE
CODE
ICode statements
DO Tally ICall the routine
IMore code statements
Tally ROUTINE !Begin routine, end procedure
IF CountVar < 55 I'If less than 55
CountVar += 1 ! increment counter
ELSE ! otherwise
CountVar = 0 ! reset the counter
EXIT ! and exit the routine
END 1End if

See Also: EXIT, DO

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

END (terminate a structure)

END
END terminates a data declaration structure or a compound executable
statement. It is functionally equivalent to a period (.).
Example:
Customer FILE,DRIVER(‘Clarion’) IDeclare a file
RECORD ! begin record declaration
Name STRING(20)
Number LONG
END ! end record declaration
END lEnd file declaration
CODE
IF Number <> SavNumber IBegin if structure
DO GetNumber
END lEnd if structure
CASE Action IBegin case structure
OF 1
DO AddRec
OF 2
DO ChgRec
0F 3
DO DelRec

END lEnd case structure

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

Statement Execution Sequence

In the CODE section of a Clarion program, statements are normally
executed line-by-line, in the sequence in which they appear in the source
module. Control statements, procedure calls, and function calls are used to
modify this execution sequence.

PROCEDURE calls modify the execution sequence by branching to the
called procedure and executing the code contained in it. Control returns to
the executable statemewnllbwing the procedure call when a RETURN
statement is executed in the called procedure, or there are no more
statements in the called procedure to execute.

FUNCTION calls modify the execution sequence by branching to the called
function and executing the code contained in it. Control returns to the
executable statement containing the function call when a RETURN
statement is executed in the called function, returning the value of the
function.

Control structures—IF, CASE, LOOP, and EXECUTE—change the
execution sequence by evaluating expressions. When the expression is
evaluated, the control structure conditionally executes statements contained
within the structure.

Branching also occurs with the GOTO, DO, CYCLE, BREAK, EXIT, and
RETURN statements. These statements immediately and unconditionally
alter the normal execution sequence.

The START function begins a new execution thread, unconditionally
branching to that thread. However, the user may choose to activate another
thread by clicking the mouse on the other thread’s active window.

Example:
PROGRAM
MAP
ComputeTime(*GROUP) 'Passing a group parameter
MatchMaster IPassing no parameters
END
ParmGroup GROUP IDeclare a group

FieldOne STRING(10)
FieldTwo LONG
END

CODE IBegin executable code
FieldTwo = CLOCK() lExecutes 1st
ComputeTime(ParmGroup) lExecutes 2nd, passes control to procedure

MatchMaster IExecutes after procedure executes fully

2-20 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

PROCEDURE and FUNCTION Calls

procname[(parameters)]
return = funcnamel[(parameters)]

procname The name of the PROCEDURE as declared in the
procedure’s prototype in the MAP. If this is not the label
of a PROCEDURE statement, compiler errors are
issued.

parameters An optional parameter list passed to the PROCEDURE
or FUNCTION. A parameter list may be one or more
variable labels or expressions. Tfeametersare
separated by commas and are declared in the prototype

in the MAP.

return The label of a variable teeceive the value returned by
the FUNCTION.

funcname The name of the FUNCTION as declared in the

procedure’s prototype in the MAP. If this is not the label
of a FUNCTION statement, compiler errors are issued.

A PROCEDURE is called by its label (including any parameter list) as a
statement in the CODE section of a PROGRAM, PROCEDURE, or
FUNCTION. The parameter list must match the parameter list declared in
the procedure’s prototype in the MAP. Procedures cannot be called in
expressions.

A FUNCTION is called by its label (including any parameter list) as a
component of an expression or parameter list passed to another
PROCEDURE or FUNCTION. The parameter list must match the parameter
list declared in the function’s prototype in the MAP. A FUNCTION may

also be called by its label (including any parameter list), in the same manner
as a PROCEDURE, if its return value is not needed. This will generate a
compiler warning that can be safely ignored.

Example:
PROGRAM
MAP
ComputeTime(*GROUP) !Passing a group parameter
MatchMaster(),BYTE I'FUNCTION passing no parameters
END
ParmGroup GROUP !Declare a group

FieldOne STRING(10)
FieldTwo LONG
END
CODE

FieldTwo = CLOCK() !Built-in function called as expression
ComputeTime(ParmGroup) ICall the compute time procedure
MatchMaster() 1Call the function as a procedure

See Also: FUNCTION and PROCEDURE Prototypes

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

Procedure Prototyping
FUNCTION and PROCEDURE Prototypes

name[(parameter list)] [,return type] [, calling convention] [, RAW] [, NAME()] [, TYPE] [, DLL]
[, PROC][, PRIVATE]

name The label of a PROCEDURE or FUNCTION statement.

parameter list The data types of the parameters. Each parameter’s data
type may be followed by a label used to document the
parameter (only). Each parameter may also include an
assignment of the default value (a constant) to pass if the
parameter is omitted.

return type The data type the FUNCTION will RETURN

calling convention Specify the C or PASCAL stack-based parameter calling
convention.

RAWV Specifies that STRING or GROUP parameters pass only

the memory address (without passing the length of the
passed string). It also alters the behaviour of ? and *?
parameters. This attribute is only for C compatability
and is not valid on a Clarion language procedure.

NAME Specify an alternate, “external” name for the PROCE-
DURE or FUNCTION. This attribute is only for other
language compatability and is not valid on a Clarion
language procedure.

TYPE Specify the prototype is a type definition for procedures
passed as parameters.

DLL Specify the PROCEDURE or FUNCTION is in a .DLL.

PROC Specify the FUNCTION may be called as a PROCE-
DURE without generating a compiler warning.

PRIVATE Specify the PROCEDURE or FUNCTION may be

called only from another PROCEDURE or FUNCTION
within the same MODULE.

All PROCEDURESs and FUNCTIONSs in a PROGRAM must be declared as
a prototype in a MAP. A prototype is defined asheneof the

PROCEDURE or FUNCTION, an optionparameter listand the data

return type(if prototyping a FUNCTION). You may specify the parameter
calling conventionif you are linking in objects that require stack-based
parameter passing (such as objects that were not compiled with a Clarion
TopSpeed compiler).

The optionaparameter listis a list of the data types that are passed to the
PROCEDURE or FUNCTION. Each passed parameter ipanemeter list

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

is delimited by commas, and the enti@ameter lisis enclosed in the
parentheses following theame

In theparameter list each parameter’s data type may be followed by a valid
Clarion label which is completely ignored by the compiler (used only to
document the purpose of the parameter). Each numeric value parameter’s
(passed by value) definition may also include the assignment of a constant
value to the data type (or the documentary label, if present) that defines the
default value to pass if the parameter is omitted.

Any parameter that may be omitted when the PROCEDURE or FUNCTION
is called must be included in the prototypgegsameter listand enclosed in

angle brackets (< >) unless a default value is defined for the parameter. The
OMITTED function allows you to test for unpassed paramters at runtime
(except those parameters which have a default value defined).

You can optionally specify the C (right to left) or PASCAL (left to right and
compatible with Windows for both 16-bit and 32-bit) stack-based parameter
calling conventiorfor your PROCEDURE or FUNCTION. This provides
compatibility with third-party libraries written in other languages (if they
were not compiled with a TopSpeed compiler). If you do not specify a
calling conventionthe default is the internal, register-based parameter
passing convention used by all the TopSpeed compilers.

The RAW attribute allows you to pass just the memory address of a *?,
STRING, or GROUP parameter (whether passed by value or by reference) to
a non-Clarion language procedure or function. Normally, STRING or
GROUP parameters pass both the address and the length of the string. The
RAW attribute eliminates the length portion. This is provided for

compatibility with external library functions which expect only the address

of the string.

The NAME attribute provides the linker arternal name for the
PROCEDURE or FUNCTION. This is also provided for compatibility with
libraries written in other languages. For example: in some C language
compilers, with the C calling convention specified, the compiler adds a
leading underscore to the function name. The NAME attribute allows the
linker to resolve the name of the function correctly.

The TYPE attribute indicates the prototype does not reference a specific
PROCEDURE or FUNCTION. Instead, it defines a prototypmeused in
other prototypes to indicate the type of procedure passed to another
PROCEDURE or FUNCTION as a parameter.

The DLL attribute specifies that the PROCEDURE or FUNCTION for
prototype on which it is placed is in a .DLL. The DLL attribute is required
for 32-bit applications because .DLLs are relocatable in a 32-bit flat address
space, which requires one extra dereference by the compiler to address the
procedure.

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

The PRIVATE attribute specifies that only another PROCEDURE or
FUNCTION that is in the same MODULE may call it. This would most
commonly be used on a prototype in a module’s MAP structure, but may
also be used in the global MAP.

When thenameof a prototype is used in tiparameter listof another
prototype, it indicates the procedure being prototyped will receive the label
of a PROCEDURE or FUNCTION that receives the sparameter list

(and has the sanreturn type if it is a FUNCTION). A prototype with the
TYPE attribute may not also have the NAME attribute.

Example:
MAP
MODULE(“Test”) I"test.clw’ contains these procedure and functions
MyProcl(LONG) ILONG value-parameter
MyProc2(<*LONG>) !Omittable LONG variable-parameter
MyProc3(LONG=23) IPasses 23 if omitted
MyProc4(LONG Count, REAL Sum) ILONG passing a Count and REAL passing a Sum
MyProc5(LONG Count=1, REAL Sum=0) !Count defaults to 1 and Sum to 0
MyFuncl(*SREAL),REAL,C ISREAL variable-parameter, REAL return, C call conv
MyFunc2(FILE),STRING IFILE entity-parameter, returning a STRING
ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING
!ProcType procedure-parameter, returning a STRING,
! must be passed a procedure that takes a FILE
! as a parameter
MyFunc4(FILE),STRING,PROC IMay be called as a procedure without warnings
MyProc6(FILE),PRIVATE IMay only be called by other procs in TEST.CLW
END
MODULE(“Party3.0bj’) 'A third-party library
Func46(*CSTRING),REAL,C,RAW
!Pass CSTRING address-only to C function
Func47 (*CSTRING) ,*CSTRING, C, RAW
IReturns pointer to a CSTRING
Func48(REAL),REAL,PASCAL
IPASCAL calling convention
Func49(SREAL),REAL,C,NAME(*_func49”)
IC convention and external function name
END
MODULE(“*STDFuncs.DLL”) IA standard functions .DLL
Func50(SREAL),REAL,PASCAL,DLL
END
END
See Also: MAP, MEMBER, MODULE, NAME, PROCEDURE, FUNCTION,

RETURN, Passing Parameters

2-24

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

FUNCTION ReturnTypes

A FUNCTION must RETURN a value. The data type to be netdris
listed, separated by a comma, after the optional parameter list. Valid
RETURN types are:

BYTE SHORT USHORT LONG ULONG SREAL REAL DATE
TIME STRING CSTRING *BYTE *SHORT *USHORT *LONG
*ULONG *SREAL *REAL *DATE *TIME
Untyped value-parameter return value (?)

An untyped value-parameter return value (?) indicates the data type of the
value returned by the FUNCTION is not known. This functions in exactly

the same manner as an untyped value-parameter. When the value is returnec
from the FUNCTION, standard Clarion Data Conversion Rules apply, no
matter what data type is returned.

Functions which return pointers (the address of some data) should be
prototyped with an asterisk prepended to the return data type (except
CSTRING). This is provided just for compatibility with external library
functions (written in another language) which return only the address of

data. The compiler automatically handles the returned pointer at runtime.
Functions prototyped this way act just like a variable defined in the
program—when the function is used in Clarion code, the data referenced by
the returned pointer is automatically used. This data can be assigned to othel
variables, passed as parameters to procedures or functions, or the ADDRES:!
function may return the address of the data.

CSTRING is an exception because all the others are fixed length datums,
and a CSTRING is not. So, any C function that returns a pointer to a
CSTRING can be prototyped as “char *” at the C end, but the compiler
thunks the procedure and copies the datum onto the stack. Therefore, just
like the other pointer return values, when the function is used in Clarion
code the data referenced by the returned pointer is automatically used (the
pointer is dereferenced).

As an example of this, assume that the XYZ() function returns a pointer to a
CSTRING, CStringVar is a CSTRING variable, and LongVar is a LONG
variable. The simple Clarion assignment statement, CStringVar = XYZ(),
places the data referenced by the XYZ() function’s returned pointer, in the
CStringVar variable. The assignment, LongVar = ADDRESS(XYZ()), places
the memory address of that data in the LongVar variable.

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

Example:

MAP
MODULE(“Party3.0bj’) 'A third-party 1ibrary
Func46(*CSTRING),REAL,C,RAW
IPass CSTRING address-only to C function, return REAL
Func47 (*CSTRING),CSTRING, C,RAW
IReturns pointer to a CSTRING
Func48(REAL),REAL,PASCAL
IPASCAL calling convention, return REAL
Func49 (SREAL),REAL,C,NAME(‘_func49’)
IC convention and external function name, return REAL
END
END

See Also: MAP, MEMBER, MODULE, NAME, FUNCTION, RETURN

2-26 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

C, PASCAL (parameter passing conventions)

C
PASCAL

The C andPASCAL attributes of a PROCEDURE or FUNCTION prototype
specifies that parameters are always passed on the stack. The C convention
passes the parameters from right to left as they appear in the parameter list,
while the PASCAL convention passes them from left to right. PASCAL is
also completely compatible with the Windows API calling convention for

both 16-bit and 32-bit compiled applications, it gives the operating system’s
default calling convention. These calling conventions provide compatibility
with third-party libraries written in other languages (if they were not
compiled with a TopSpeed compiler). If you do not specify a calling
convention in the prototype, the default calling convention is the internal,
register-based parameter passing convention used by all the TopSpeed
compilers.

Example:

MAP
MODULE(‘Party3.0bj’) A third-party library
Func46 (*CSTRING),REAL,C,RAW
Pass CSTRING address-only to C function
END
END

See Also: FUNCTION and PROCEDURE Prototypes, Passing Parameters

RAW (pass address only)

RAW

The RAW attribute of a PROCEDURE or FUNCTION prototype specifies

that STRING or GROUP parameters pass the memory address only. This
allows you to pass just the memory address of a *?, STRING, or GROUP
parameter, whether passed by value or by reference, to a non-Clarion
language procedure or function. Normally, STRING or GROUP parameters
pass the address and the length of the string. The RAW attribute eliminates
the length portion. For a prototype with a ? parameter, the parameter is taken
as a LONG but passed as a “void *” which just eliminates linker warnings.
This is provided for compatibility with external library functions which

expect only the address of the string.

Example:

MAP
MODULE(“Party3.0bj’) 'A third-party library
Func46 (*CSTRING),REAL,C,RAW IPass CSTRING address-only to C function

See Also: FUNCTION and PROCEDURE Prototypes, Passing Parameters

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

NAME (set prototype’s external name)

NAME(constant)

NAME Specifies an “external” name for the linker.
constant A string constant. This is case sensitive.

TheNAME attribute specifies an “external” name for the linker. The NAME
attribute may be placed on a FUNCTION or PROCEDURE Prototype. The
constantsupplies the external name used by the linker to identify the
procedure or function from an external library.

Example:
PROGRAM
MAP
MODULE(“‘External.0Obj’)
AddCount (LONG),LONG,C,NAME(‘*_AddCount’) !C function named °‘_AddCount’
See Also: FUNCTION and PROCEDURE Prototypes

TYPE (specify procedure or function type defintion)

TYPE

TheTYPE attribute specifies a prototype that does not reference an actual
PROCEDURE or FUNCTION. Instead, it defines a prototypmeto use in
other prototypes to indicate the type of procedure passed to another
PROCEDURE or FUNCTION as a parameter.

When thenameof the TYPEd prototype is used in tharameter listof

another prototype, the procedure being prototyped will receive, as a passed
parameter, the label of a PROCEDURE or FUNCTION that has the same
type ofparameter list(and has the sanmreturn type if it is a FUNCTION).

Example:

MAP
ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING
!ProcType procedure-parameter, returning a STRING,
! must be passed the label of a procedure that takes
! a FILE as a required parameter
END

See Also: FUNCTION and PROCEDURE Prototypes, Passing Parameters

2-28 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DLL (set procedure defined externally in .DLL)

DLL([flag])
DLL Declares a PROCEDURE or FUNCTION defined
externally in a .DLL.
flag A numeric constant, equate, or Project system define

which specifies the attribute as active or not. Ifftag

is zero, the attribute is not active, just as if it were not
present. If thdlag is any value other than zero, the
attribute is active. Uniquely, it may be an undefined
label, in which case the attribute is active.

TheDLL attribute specifies that the PROCEDURE or FUNCTION on

whose prototype it is placed is defined in a .DLL. The DLL attribute is
required for 32-bit applications because .DLLs are relocatable in a 32-bit flat
address space, which requires one extra dereference by the compiler to
address the procedure.

Example:

MAP
MODULE(“*STDFuncs.DLL”) 1A standard functions .DLL
Func50(SREAL),REAL,PASCAL,DLL
END
END

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

PROC (set function called as procedure without warnings)

PROC
ThePROC attribute specifies that the FUNCTION on whose prototype it is
placed may be called as a PROCEDURE without generating compiler
warnings. This allows you to use a FUNCTION as a PROCEDURE in those
instances in which you do not need the return value from the FUNCTION.

Example:
MAP
MODULE(“*STDFuncs.DLL”) IA standard functions .DLL

Func50(SREAL),REAL,PASCAL,PROC
END
END

PRIVATE (set procedure private to a single module)

PRIVATE
ThePRIVATE attribute specifies that the PROCEDURE or FUNCTION on
whose prototype it is placed may be called only from a PROCEDURE or
FUNCTION within the same source MODULE. This encapsulates it from
other modules.

Example:

MAP
MODULE(*STDFuncs.DLL") 'A standard functions .DLL

Func49 (SREAL),REAL,PASCAL,PROC
Proc50(SREAL),PRIVATE ICallable only from Func49
END
END

2-30

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Parameter Passing

Parameter Types

There are four types of parameters that may be passed to a PROCEDURE ot
FUNCTION: value-parameters variable-parameters, entity-
parameters andprocedure-parameters

Value-parametersare “passed by value.” A copy of the variable passed in
the parameter list of the “calling” PROCEDURE or FUNCTION is used in
the “called” PROCEDURE or FUNCTION. The “called” PROCEDURE or
FUNCTION cannot change the value of the variable passed to it by the
“caller.” Value-parameters are listed by data type in the PROCEDURE or
FUNCTION prototype in the MAP. Valid value-parameters are:

BYTE SHORT USHORT LONG ULONG SREAL REAL DATE
TIME STRING

Variable-parameters are “passed by address.” A variable passed by address
has only one memory address. Changing the value of the variable in the
“called” PROCEDURE or FUNCTION also changes its value in the “caller.”
Variable-parameters are listed by data type with a leading asterisk (*) in the
PROCEDURE or FUNCTION prototype in the MAP. Valid variable-
parameters are:

*BYTE *SHORT *USHORT *LONG *ULONG *SREAL *REAL
*BFLOAT4 *BFLOAT8 *DECIMAL *PDECIMAL *DATE *TIME
*STRING *PSTRING *CSTRING *GROUP

Entity-parameters pass the name of a data structure to the “called”
PROCEDURE or FUNCTION. Passing the entity allows the “called”
PROCEDURE or FUNCTION to use those Clarion commands that require
the label of the structure as a parameter. Entity-parameters are listed by
entity type in the PROCEDURE or FUNCTION prototype in the MAP.
Entity-parameters are always “passed by address.” Valid entity-parameters
are:

FILE VIEW KEY INDEX QUEUE APPLICATION WINDOW
REPORT BLOB

Procedure-parameterspass the name of another PROCEDURE or
FUNCTION to the “called” PROCEDURE or FUNCTION. Procedure-
parameters are listed by the name of a preceding prototype of the same type
in the PROCEDURE or FUNCTION prototype in the MAP (which may or
may not have the TYPE attribute). When called in executable code, the
“called” PROCEDURE or FUNCTION must be passed the name of a
PROCEDURE or FUNCTION whose prototype is exactly the same as the

CHAPTER 2

PROGRAM SouRcE CobDE FORMAT

procedure named in the “called” procedure’s prototype.

Each parameter in the list may be followed by a valid Clarion label which is
completely ignored by the compiler. This label is used only to document the
the parameter to make the prototype more readable.

Each passed parameter’s definition may also include the assignment of a
constant value to the data type (or the documentary label, if present) that
defines the default value to pass if the parameter is omitted.

Example:
MAP
MODULE(‘Test’) I"test.clw’ contains these procedure and functions
MyProcl(LONG) !'LONG value-parameter
MyProc2(<*LONG>) !Omittable LONG variable-parameter
MyProc3(LONG=23) IPasses 23 if omitted
MyProc4(LONG Count, REAL Sum) ILONG passing a Count and REAL passing a Sum
MyProc5(LONG Count=1, REAL Sum=0) !Count defaults to 1 and Sum to 0
MyFuncl(*SREAL),REAL,C ISREAL variable-parameter, REAL return, C call conv
MyFunc2(FILE),STRING !'FILE entity-parameter, returning a STRING
ProcType(FILE),TYPE !Procedure-parameter type definition
MyFunc3(ProcType),STRING
!ProcType procedure-parameter, returning a STRING,
! must be passed a procedure that takes a FILE
! as a parameter
END
MODULE(“Party3.0bj’) A third-party library
Func46(*CSTRING),REAL,C,RAW
IPass CSTRING address-only to C function
Func47 (*CSTRING),*CSTRING, C,RAW
IReturns pointer to a CSTRING
Func48(REAL),REAL,PASCAL
IPASCAL calling convention
Func49 (SREAL),REAL,C,NAME(‘_func49’)
IC convention and external function name
END
END
See Also: MAP, MEMBER, MODULE, NAME, PROCEDURE, FUNCTION,

RETURN

2-32

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Passing Parameters of Unspecified Data Type

The desire to write general purpose functions which perform some operation
on a passed parameter, where the exact data type of the parameter may vary
from one call to the next, is fairly common. Therefore, the function’s
prototype must indicate that the data type of the parameter is unknown at
compile time. The Clarion language allows for this witityped value-
parametersanduntyped variable-parameters These are polymorphic
parameters; they may become any other data type depending upon the data
type passed to the procedure or function.

Untyped value-parametersare represented in the PROCEDURE or
FUNCTION prototype with a question mark (?). When the procedure
executes, the parameter is dynamically typed and acts as a data object of the
base type (LONG, STRING, or REAL) of the passed variable, or the base
type of whatever it was last assigned. This means that the “assumed” data
type of the parameter can change within the PROCEDURE or FUNCTION,
allowing it to be treated as any data type.

An untyped value-parameter is “passed by value” to the PROCEDURE or
FUNCTION and its assumed data type is handled by Clarion’s automatic
Data Conversion Rules. Any changes made to the passed parameter within
the PROCEDURE or FUNCTION do not affect the variable which was
passed in.

Data types which may be passed as untyped value-parameters:

BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4
BFLOAT8 DECIMAL PDECIMAL DATE TIME STRING PSTRING
CSTRING GROUP (treated as a STRING) Untyped value-parameter (?)
Untyped Variable-parameter (*?)

The RAW attribute can be specified if the untyped value-parameter (?) is
being passed to external library functions written in other languages than
Clarion. This converts the data to a LONG then passes the data as a C or
C++ “void *” parameter (which eliminates “type inconsistency” warnings).

Untyped variable-parametersare represented in the PROCEDURE or
FUNCTION prototype with an asterisk and a question mark (*?). Inside the
procedure, the parameter acts as a data object of the type of the variable
passed in at runtime. This means the data type of the parameter is fixed
during the execution of the PROCEDURE or FUNCTION.

An untyped variable-parameter is “passed by address” to the PROCEDURE
or FUNCTION. Therefore, any changes made to the passed parameter
within the PROCEDURE or FUNCTION are made directly to the variable
which was passed in. This allows you to write polymorphic functions.

CHAPTER 2

PROGRAM SouRcE CobDE FORMAT 2-33

Within a PROCEDURE or FUNCTION which receives an untyped variable-
parameter, it is not safe to make any assumptions about the data type comin
in. Thedanger of making assumptions is the possiblity of assigning an out-
of-range value which the variable’s actual data type cannot handle. If this
happens, the result may be disastrously different from that expected.

Data types which may be passed as untyped variable-parameters:
BYTE SHORT USHORT LONG ULONG SREAL REAL BFLOAT4
BFLOAT8 DECIMAL PDECIMAL DATE TIME STRING PSTRING
CSTRING Untyped variable-parameter (*?)

The RAW attribute can be specified if the untyped variable-parameter (*?) is

being passed to external library functions written in other languages than
Clarion. This has the same effect as passing a C or C++ “void *" parameter.

Arrays may not be passed as either kind of untyped parameter.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

PROGRAM

MAP
Procl(?) !Untyped value-parameter
Proc2(*?) !Untyped variable-parameter
Proc3(*?) IUntyped variable-parameter (set to crash)
Max(?,?),? IFunction returning Untyped value-parameter
END

GlobalvVarl BYTE(3) IBYTE initialized to 3

GlobalVar2 DECIMAL(8,2,3)
GlobalVar3 DECIMAL(8,1,3)
MaxInteger LONG

MaxString STRING(255)
MaxFloat REAL

CODE

Procl(GlobalVarl) IPass in a BYTE, value is 3

Proc2(GlobalVar2) !Pass it a DECIMAL(8,2), value is 3.00 - it prints 3.33
Proc2(GlobalVar3) !Pass it a DECIMAL(8,1), value is 3.0 - it prints 3.3
Proc3(GlobalVarl) IPass it a BYTE and watch it crash

MaxInteger = Max(1,5) IMax function returns the 5

MaxString = Max(‘Z’,’A’) !Max function returns the ‘Z°
MaxFloat = Max(1.3,1.25) !Max function returns the 1.3
Procl PROCEDURE(ValueParm)

CODE I ValueParm starts at 3 and is a LONG
ValueParm = ValueParm & ValueParm INow Contains “33” and is a STRING
ValueParm = ValueParm / 10 INow Contains 3.3 and is a REAL
Proc2 PROCEDURE(VariableParm)
CODE
VariableParm = 10 / 3 IAssign 3.33333333... to passed variable
Proc3 PROCEDURE(VariableParm)
CODE
LOOP
IF VariableParm > 250 THEN BREAK. ITf passed a BYTE, BREAK will never happen
VariableParm += 10
END
Max FUNCTION(Vall,vall) !Find the larger of two passed values
CODE
IF vall > val2 ICheck first value against second
RETURN(Vall) I return first, if largest
ELSE lotherwise
RETURN(Val12) ! return the second
END
See Also: FUNCTION and PROCEDURE Prototypes, Passing Parameters, Data

Conversion Rules

CHAPTER 2

PROGRAM SouRcE CobDE FORMAT

Passing GROUPs and QUEUES as Parameters

Passing a GROUP or a QUEUE to a PROCEDURE or FUNCTION which
has been prototyped with GROUP or QUEUE types ipatameter list

does not allow you to reference the component fields within the structure in
the receiving PROCEDURE or FUNCTION. However, you can place the
label of a GROUP or QUEUE in the prototypparameter listo pass it by
address and allow references to the component fields.

The GROUP or QUEUE named in tharameter listdoes not need the

TYPE attribute, and does not have to be declared before the MAP structure,
but it must be declared before the PROCEDURE or FUNCTION that will
receive the parameter is called. This is the only case in the Clarion language
that allows such a “forward reference.”

The PROCEDURE or FUNCTION statement for the prototype may declare
the local name of the passed group with a prefix to prevent name clashes,
however this is unnecessary as long as you use the Field Qualification
syntax to reference members of the passed group. The passed group can be
“superset” of the named pamneter, as long as the first fields in the

“superset” group are the same as the named group.

Example:
PROGRAM
MAP
MyProcl(PassGroup,NameQue)
IReceives a GROUP defined the same as PassGroup and a QUEUE
! defined the same as NameQue
END
PassGroup GROUP,TYPE IType definition: GROUP with 2 STRING(20) fields
F1 STRING(20)
F2 STRING(20)
END
NameGroup GROUP IName group
First STRING(20) I first name
Last STRING(20) ! Tast name
Company STRING(30)
END
NameQue QUEUE I'Name Queue
First STRING(20) I first name
Last STRING(20) I Tast name
END
CODE
MyProcl(NameGroup,NameQue) IPass NameGroup and NameQue as parameters
MyProcl PROCEDURE(PassedGroup,PassedQue)
CODE
PassedQue:First = PassedGroup:Fl1 IAssign NameGroup:First to NameQue:First
PassedQue:Last = PassedGroup:F2 IAssign NameGroup:Last to NameQue:last
ADD(PassedQue) IAdd an entry into NameQue
See Also: FUNCTION and PROCEDURE Prototypes, GROUP, QUEUE, Field

Quialification

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Passing Arrays as Parameters

An array may be passed to a PROCEDURE or FUNCTION. The prototype
in the MAP structure must declare the array’s data type as a variable-
parameter (“passed by address”) with an empty subscript list. If the array is
more than one dimension, commas must be used as position holders to
indicate the number of dimensions in the array.

The calling statement should pass the entire array to the PROCEDURE or
FUNCTION, not just one element.

Example:

PROGRAM
MAP
MainProc
AddCount (*LONG[,],*LONG[, 1) IPassing two two-dimensional long arrays
END
CODE
MainProc 1Call first procedure

MainProc PROCEDURE
TotalCount LONG,DIM(10,10)
CurrentCnt LONG,DIM(10,10)

CODE
AddCount(TotalCount,CurrentCnt) 1Call the procedure passing the arrays
AddCount PROCEDURE(Tot,Cur) !Procedure expects two arrays

CODE

LOOP I# = 1 TO MAXIMUM(Tot,1) ILoop through first subscript
LOOP J#f = 1 TO MAXIMUM(Tot,2) !Loop through second subscript

Tot[I#,J#1 += Curl[I#,J4#] I increment TotalCount from CurrentCnt

END

END

CLEAR(Cur) IClear CurrentCnt array

RETURN

See Also: DIM, FUNCTION and PROCEDURE Prototypes, MAXIMUM

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

Program Structure Compiler Directives

Compiler Directives are statements that tell the compiler to take some action
at compile time. These statements are not included in the executable
program object code which the compiler generates. Therefore, there is no
run-time overhead associated with their use.

BEGIN (define code structure)

BEGIN
Statements
END
BEGIN Declares a single code statement structure.
statements Executable program instructions.

TheBEGIN compiler directive tells the compiler to treat thatementss a
single structure. The BEGIN structure must be terminated by a period or the
END statement.

BEGIN is used in an EXECUTE control structure to allow several lines of
code to be treated as one.

Example:
EXECUTE Value

Procl IExecute if Value =1

BEGIN lExecute if Value = 2
Value += 1
Proc?2

END

Proc3 lExecute if Value = 3

END

See Also: EXECUTE

2-38 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

COMPILE (specify source to be compiled)

COMPILE(terminator [,expression))

COMPILE Specifies a block of source code lines to be included in
the compilation.

terminator A string constant that marks the last line of a block of
source code.

expression An expression allowing conditional execution of the

COMPILE. The expression is: EQUATE = integer.

The COMPILE directive specifies a block of source code lines to be

included in the compilation. The included block begins with the COMPILE
directive and ends with the line that contains the same string constant as the
terminator. The entire terminating line is included in the COMPILE block.

The optionakxpressiorparameter permits conditional COMPILE. The form

of theexpressioris fixed. It is the label of an EQUATE statement, or a
Conditional Switch set in the Project System, followed by an equal sign (=
), followed by an integer constant. The code between COMPILE and the
terminatoris compiled only if theexpressioris true. Although the

expressioris not required, COMPILE without aaxpressiorparameter is

not necessary because all source code is compiled unless explicitly omitted.
COMPILE and OMIT are opposites and may not be nested within each
other, or themselves.

Example:
Demo EQUATE(1) ISpecify the Demo EQUATE value
CODE
COMPILE(“EndDemoChk’,Demo = 1) ICOMPILE only if Demo equate is turned on
DO DemoCheck !Check for demo 1imits passed
EndDemoChk 'End of conditional COMPILE code

See Also: OMIT, EQUATE

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

EJECT (start new listing page)

EJECT([module subtitle])

EJECT Starts a new page in a Clarion listing.

module subtitle A string constant containing the subtitle to be printed.
On the next page of the listing, theodule subtitles
printed in the first column of the third line.

TheEJECT directive starts a new page and an optional megule subtitle
in a Clarion listing. If themodule subtitlggarameter is omitted, the subtitle
set by a previous SUBTITLE or EJECT directive will be used on the next

page.

Example:

EJECT(‘File Declarations’) IStart new page, new subtitle

INCLUDE (compile code in another file)

INCLUDE(filename [,section])

INCLUDE Specifies source code to be compiled which exists in a
separate file which is not a MEMBER module.

filename A string constant that contains the DOS file specification
for a source file. If the extension is omitted, .CLW is
assumed.

section A string constant which is trering parameter of the

SECTION directive marking the beginning of the source
code to be included.

TheINCLUDE directive specifies source code to be compiled which exists
in a separate file which is not a MEMBER module. Starting on the line of
the INCLUDE directive, the source file, or the specifedtionof that file,

is compiled as if it appeared in sequence within the source module being
compiled. You can nest INCLUDESs up to 3 deep, so you can INCLUDE a
file that includes a file that includes a file but that latter file must not include
anything....

The compiler uses the Redirection file (CW15.RED) to find the file,
searching the path specified for that typdilehame(usually by extension).
This makes it unnecessary to provide a complete path fiieghameto be
included. A discussion of the Redirection file is in ger's Guide

Example:
GenLedger PROCEDURE IDeclare procedure
INCLUDE(‘filedefs.clw’) IInclude file definitions here
CODE IBegin code section

INCLUDE(“Setups’,’ChkErr”) !Tnclude error check from setups.clw

2-40 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

OMIT (specify source not to be compiled)

OMIT(terminator [,expression])

OMIT Specifies a block of source code lines to be omitted from
the compilation.

terminator A string constant that marks the last line of a block of
source code.

expression An expression allowing conditional execution of the

OMIT. The expression must be: EQUATE = integer.

The OMIT directive specifies a block of source code lines to be omitted
from the compilation. These lines may contain source code comments or a
section of code that has been “stubbed out” for testing purposes. The
omitted block begins with the OMIT directive and ends with the line that
contains the same string constant asénminator. The entire terminating

line is included in the OMIT block.

The optionakxpressiorparameter permits conditional OMIT. The form of
the expressioris fixed. It is the label of an EQUATE statement, or a
Conditional Switch set in the Project System, followed by an equal sign (=
), followed by an integer constant. The OMIT directive executes only if the
expressioris true.

COMPILE and OMIT are opposites and may not be nested within each
other, or themselves.

Example:

OMIT(“**END**’) Unconditional OMIT

*hkkhkhkkhkkhkhkhkkkhhkkhkhkhkhhhkkk * Kk kkkkkkkkkkk *kkkkhkkkkkx

*

* Main Program Loop
*

*hkkkhkhkkkkhkhkhhkkhkhkhhkhkhkhhkhhrk *kkkkkkkkkkk* *kkhkkhkkkhkkkk

END

Demo EQUATE(O) ISpecify the Demo EQUATE value
CODE
OMIT(“EndDemoChk’,Demo = 0) IOMIT only if Demo is turned off
DO DemoCheck ICheck for demo Timits passed

EndDemoChk 'End of omitted code

See Also: COMPILE, EQUATE

CHAPTER 2 PROGRAM SouRcE CobDE FORMAT

SECTION (specify source code section)

SECTION(string)

SECTION Identifies the beginning of a block of executable source
code or data declarations.
string A string constant which names the SECTION.

TheSECTION compiler directive identifies the beginning of a block of
executable source code or data declarations which may be INCLUDEd in
source code in another file. The SECTIOBISNng parameter is used as an
optional parameter of the INCLUDE directive to include a specific block of
source code. A SECTION is terminated by the next SECTION or the end of
the file.

Example:

SECTION(“FirstSection’) IBegin section

FieldOne STRING(20)
FieldTwo LONG

SECTION(*SecondSection’) lEnd previous section, begin new section

IF Number <> SavNumber
DO GetNumber
END

SECTION(‘ThirdSection’) lEnd previous section, begin new section

CASE Action
OF 1
DO AddRec
0F 2
DO ChgRec
0F 3
DO DelRec
END IThird section ends at end of file

See Also: INCLUDE

2-42 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SUBTITLE (print MODULE subtitle)

SUBTITLE(module subtitle)
SUBTITLE Declares a listing subtitle printed in the first column of
the third line of a Clarion listing.
module subtitle A string constant containing the subtitle to be printed.

A SUBTITLE is printed in the first column of the third line of a Clarion
listing. The SUBTITLE directive does not print in the listing. The
SUBTITLE directive must be placed at the beginning of a source module
prior to the PROGRAM or MEMBER declarations. The subtitle remains the
same on every page of the listing unless it is changed by an EJECT
directive.

Example:
SUBTITLE(‘GTobal Data Declarations’)

TITLE (print MODULE title)

TITLE(module title)
TITLE Declares a listing title printed in the first column of the
first line of a Clarion listing.
module title A string constant containing the title to be printed.

A TITLE is printed in the first column of the first line of a Clarion listing.
The TITLE directive does not print in the listing. The TITLE directive must
be placed at the beginning of a source module prior to the PROGRAM or
MEMBER declarations. The title remains the same on every page of the
listing.

Example:

TITLE(“ORDERSYS - Order Entry System Listing’)

CHAPTER 3 DECLARING VARIABLES 3-1

Variable Declaration Statements Contents |
BYTE (one-byte unsigned integer)

label BYTE(initial value) [,DIM()] [,OVER()] [[NAME()] [[EXTERNAL] [,DLL] [STATIC] [, THREAD]
[,AUTO]

BYTE A one-byte unsigned integer.
Format: magnitude

Bits: 7 0
Range: 0 to 255

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data

AUTO Specify the variable has naitial value
BYTE declares a one-byte unsigned integer.

Example:
Countl BYTE IDeclare one byte integer
Count2 BYTE,OVER(Countl) IDeclare OVER the one byte integer
Count3 BYTE,DIM(4) IDeclare it an array of 4 bytes
Count4 BYTE(5) IDecTare with initial value
Count5 BYTE,EXTERNAL IDeclare as external
Count6 BYTE,EXTERNAL,DLL IDeclare as external in a .DLL
Count7 BYTE,NAME(‘SixCount’) IDeclare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD

Count8 BYTE,NAME(‘Counter’) !Declare with external name

3-2 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SHORT (two-hyte signed integer)

label SHORT([initial valuel) [,DIM()] [,OVER()] [[NAME()] [EXTERNAL] [,DLL] [,STATIC]
[THREAD] [,AUTO]

SHORT A two-byte signed integer.
Format: + magnitude
b 1é . 1|4 O|

Range: -32,768 to 32,767

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value.

SHORT declares a two-byte signed integer, using the Intel 8086 word
integer format. The high-order bit of this configuration is the sign bit (0 =
positive, 1 = negative). Negative values are represented in standard two’s
complement notation.

Example:
Countl SHORT !Declare two-byte signed integer
Count2 SHORT,OVER(Countl) !Declare OVER the two-byte signed integer
Count3 SHORT,DIM(4) IDeclare it an array of 4 shorts
Count4 SHORT(5) !Declare with initial value
Count5 SHORT,EXTERNAL !Declare as external
Count6 SHORT,EXTERNAL,DLL !Declare as external in a .DLL
Count7 SHORT,NAME(“SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD

Count7 SHORT,NAME(“‘Counter’) !Declare with external name

CHAPTER 3 DECLARING VARIABLES

USHORT (two-byte unsigned integer)

label USHORT([initial value]) [,DIM()] [,OVER()] NAME()] [[EXTERNAL] [,DLL] [,STATIC]
[THREAD] [,AUTO]

USHORT A two-bye unsigned integer.
Format: magnitude
. 15| O|

Range: 0 to 65,535

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value

USHORT declares a two-byte unsigned integer in the Intel 8086 word
format. There is no sign bit in this configuration.

Example:
Countl USHORT !Declare two-byte unsigned integer
Count2 USHORT,OVER(Countl) IDeclare OVER the two-byte unsigned integer
Count3 USHORT,DIM(4) IDeclare it an array of 4 unsigned shorts
Count4 USHORT(5) IDeclare with initial value
Count5 USHORT,EXTERNAL IDeclare as external
Count6 USHORT,EXTERNAL,DLL !Declare as external in a .DLL
Count7 USHORT,NAME(‘SixCount”’) IDeclare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD

Count8 USHORT,NAME(“‘Counter’) !Declare with external name

W

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

LONG (four-byte signed integer)

label

Example:

LONG([initial value]) [,[DIM()] [,OVER()] [[NAME()] [EXTERNAL] [DLL] [STATIC] [THREAD]

Countl
Count?
Count3
Count4
Countb
Counté6
Count7

LONG
LONG
LONG
LONG
LONG
LONG
LONG

[LAUTO]
LONG A four-byte unsigned integer.
Format: + magnitude
Bits: 31| . 3|0 0|

Range: -2,147,483,648 to 2,147,483,647

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data

AUTO Specify the variable has maitial value.

LONG declares a four-byte signed integer, using the Intel 8086 long integer
format. The high-order bit is the sign bit (O = positive, 1 = negative).
Negative values are represented in standard two’s complement notation.

IDeclare four-byte signed integer
,OVER(Countl) !DecTlare OVER the four-byte signed integer
,DIM(4) IDeclare it an array of 4 longs
(5) IDeclare with initial value
,EXTERNAL IDeclare as external
,EXTERNAL,DLL !Declare as external in a .DLL
,NAME(‘SixCount’) IDeclare with external name

ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file

Record
Count8

RECORD
LONG,NAME(‘Counter’) !Declare with external name

CHAPTER 3 DECLARING VARIABLES

ULONG (four-byte unsigned integer)

label ULONG([initial value]) [,DIM()] [OVER()] [[NAME()] [EXTERNAL] [,DLL] [,STATIC]
[THREAD] [,AUTO]

ULONG A four-byte unsigned integer.
Format: magnitude
. 31| O|

Range: 0 to 4,294,967,295

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value

ULONG declares a four-byte unsigned integer, using the Intel 8086 long
integer format. There is no sign bit in this configuration.

Example:
Countl ULONG IDeclare four-byte unsigned integer
Count2 ULONG,OVER(Countl) !Declare OVER four-byte unsigned integer
Count3 ULONG,DIM(4) IDeclare it an array of 4 unsigned longs
Count4 ULONG(5) IDeclare with initial value
Count5 ULONG,EXTERNAL IDeclare as external
Count6 ULONG,EXTERNAL,DLL !Declare as external in a .DLL
Count7 ULONG,NAME(“SixCount’) IDeclare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD

Count8 ULONG,NAME(“‘Counter’) !Declare with external name

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SREAL (four-hyte signed floating point)

label SREAL([initial value]) [,DIM()] [OVER()] [[NAME()] [,EXTERNAL] [,DLL] [,STATIC]
[THREAD] [,AUTO]

SREAL A four-byte floating point number.
Format: + exponent significand

I [e |
Bits: 31 30 23 0

Range: 0, £ 1.175494e-38 .. + 3.402823e+38 (6 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value.

SREAL declares a four-byte floating point signed numeric variable, using
the Intel 8087 short real (single precision) format.

Example:
Countl SREAL IDeclare four-byte signed floating point
Count2 SREAL,OVER(Countl) IDeclare OVER the four-byte

! signed floating point

Count3 SREAL,DIM(4) IDeclare it an array of 4 floats
Count4 SREAL(5) IDeclare with initial value
Count5 SREAL,EXTERNAL IDeclare as external
Count6 SREAL,EXTERNAL,DLL IDeclare as external in a .DLL
Count7 SREAL,NAME(‘SixCount’) IDeclare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD

Count8 SREAL,NAME(“‘Counter’) !Declare with external name

CHAPTER 3 DECLARING VARIABLES

REAL (eight-byte signed floating point)

label REAL([initial value]) [,DIM()] [,OVER()] [,NAME()] [EXTERNAL] [,DLL] [,STATIC] [THREAD]
]

[LAUTO
REAL An eight-byte floating point number.
Format: + exponent significand
Bites é3. 42 Jz %
Range: 0, * 2.225073858507201e-308 .. + 1.79769313496231e+308

(15 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has naitial value

REAL declares an eight-byte floating point signed numeric variable, using
the Intel 8087 long real (double precision) format.

Example:
Countl REAL !Declare eight-byte signed floating point
Count2 REAL,OVER(Countl) IDeclare OVER the eight-byte

! signed floating point

Count3 REAL,DIM(4) IDeclare it an array of 4 reals
Count4 REAL(5) IDeclare with initial value
Count5 REAL,EXTERNAL IDeclare as external
Count6 REAL,EXTERNAL,DLL !Declare as external in a .DLL
Count7 REAL,NAME(‘SixCount’) IDeclare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD

Count8 REAL,NAME(‘Counter’) IDeclare with external name

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

BFLOAT4 (four-byte signed floating point)

label BFLOATA4([initial valuel) [,DIM()] [OVER()] [[NAME()] [[EXTERNAL] [,DLL] [STATIC]
[, THREAD] [,AUTO]

BFLOAT4 A four-byte floating point number.
Format: exponent + significand
it 3{ 2|3 . 2|2 |0

Range: 0, £ 5.87747e-39 .. = 1.70141e+38 (6 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value.

BFLOAT4 declares a four-byte floating point signed numeric variable,
using the Microsoft BASIC (single precision) format. This data type is
normally used for compatibility with existing data since it is internally
converted to a REAL before all arithmetic operations.

Example:
Countl BFLOAT4 IDeclare four-byte signed floating point
Count2 BFLOAT4,0VER(Countl) IDeclare OVER the four-byte
! signed floating point
Count3 BFLOAT4,DIM(4) !Declare array of 4 single-precision reals
Count4 BFLOAT4(5) IDeclare with initial value
Count5 BFLOAT4,EXTERNAL IDeclare as external
Count6 BFLOAT4,EXTERNAL,DLL IDeclare as external in a .DLL
Count7 BFLOAT4,NAME(‘SixCount”) IDeclare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD

Count8 BFLOAT4,NAME(‘Counter”’) !Declare with external name

CHAPTER 3 DECLARING VARIABLES

BFLOATS (eight-byte signed floating point)

label BFLOATS([initial valuel) [,DIM()] OVER()] NAME()] [EXTERNAL] [,DLL] [,STATIC]
[THREAD] [AUTO]

BFLOATS8 An eight-byte floating point number.
Format: exponent + significand
T 55. 5& J

Range: 0, £ 5.877471754e-39 .. £ 1.7014118346e+38
(15 significant digits)

initial value A numeric constant. If omitted, the initial value is zero.
DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has naitial value

BFLOAT8 declares an eight-byte floating point signed numeric variable,
using the Microsoft BASIC (double precision) format. This data type is
normally used for compatibility with existing data since it is internally
converted to a REAL before all arithmetic operations.

Example:
Countl BFLOAT8 !Declare eight-byte signed floating point
Count2 BFLOAT8,0VER(Countl) IDeclare OVER the eight-byte

! signed floating point

Count3 BFLOAT8,DIM(4) IDeclare it an array of 4 reals
Count4 BFLOAT8(5) IDeclare with initial value
Count5 BFLOAT8,EXTERNAL IDeclare as external
Count6 BFLOAT8,EXTERNAL,DLL IDeclare as external in a .DLL
Count7 BFLOAT8,NAME(‘SixCount”) IDeclare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD

Count8 BFLOAT8,NAME(‘Counter’) !Declare with external name

3-10 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DECIMAL (signed pac ked decimal)

label DECIMAL(length [,places] [initial value]) [,DIM()] [,OVER()] [[NAME()] [EXTERNAL] [DLL]
[STATIC] [THREAD] [,AUTO]

DECIMAL A packed decimal floating point number.
Format: = magnitude
Sites 12; . 1|24 .. 0|

Range: -9,999,999,999,999,999,999,999,999,999,999 to

+9,999,999,999,999,999,999,999,999,999,999

length A required numeric constant containing the total number
of decimal digits (integer and fractional portion com-
bined) in the variable. The maximuengthis 31.

places A numeric constant that fixes the number of decimal
digits in the fractional portion (to the right of the deci-
mal point) of the variable. It must be less than or equal
to thelengthparameter. If omitted, the variable will be
declared as an integer.

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value.

DECIMAL declares a variable length packed decimal signed numeric
variable. Each byte of a DECIMAL holds two decimal digits (4 bits per
digit). The left-most byte holds the sign in its high-order nibble (0 =
positive, anything else is negative) and one decimal digit. Therefore,
DECIMAL variables always contain a fixed “odd” number of digits
(DECIMAL(10) and DECIMAL(11) both use 6 bytes).

CHAPTER 3

DECLARING VARIABLES

Example:

Countl DECIMAL(5,0) !Declare three-byte signed packed decimal
Count2 DECIMAL(5),0VER(Countl) !Declare OVER the three-byte

! signed packed decimal
Count3 DECIMAL(5,0),DIM(4) !Declare it an array of 4 decimals
Count4 DECIMAL(5,0,5) IDeclare with initial value
Count5 DECIMAL(5,0),EXTERNAL !Declare as external
Count6 DECIMAL(5,0),EXTERNAL,DLL IDeclare as external in a .DLL
Count7 DECIMAL(5,0),NAME(“SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD
Count8 DECIMAL(5,0),NAME(‘Counter’) !Declare with external name

3-12 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

PDECIMAL (signed packed decimal)

label ~ PDECIMAL(length [,places] [,initial value]) [,DIM()] [,OVER()] [[NAME()] [[EXTERNAL] [,DLL]
[STATIC] [THREAD] [,AUTO]

PDECIMAL

Format:

Bits: 127

A packed decimal floating point number.

H

magnitude

Range: -9,999,999,999,999,999,999,999,999,999,999 to
+9,999,999,999,999,999,999,999,999,999,999

length A required numeric constant containing the total number
of decimal digits (integer and fractional portion com-
bined) in the variable. The maximuengthis 31.

places A numeric constant that fixes the number of decimal
digits in the fractional portion (to the right of the deci-
mal point) of the variable. It must be less than or equal
to thelengthparameter. If omitted, the variable will be
declared as an integer.

initial value A numeric constant. If omitted, the initial value is zero.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value.

PDECIMAL declares a variable length packed decimal signed numeric
variable in the Btrieve and IBM/EBCDIC type of format. Each byte of an
PDECIMAL holds two decimal digits (4 bits per digit). The right-most byte
holds the sign in its low-order nibble (OFh or OCh = positive, ODh =
negative) and one decimal digit. Therefore, PDECIMAL variables always
contain a fixed “odd” number of digits (PDECIMAL(10) and
PDECIMAL(11) both use 6 bytes).

CHAPTER 3 DECLARING VARIABLES

Example:
Countl PDECIMAL(5,0) !Declare three-byte signed packed decimal
Count2 PDECIMAL(5),0VER(Countl) !Declare OVER the three-byte

! signed packed decimal

Count3 PDECIMAL(5,0),DIM(4) !Declare it an array of 4 decimals
Count4 PDECIMAL(5,0,5) IDeclare with initial value
Count5 PDECIMAL(5,0),EXTERNAL !Declare as external
Count6 PDECIMAL(5,0),EXTERNAL,DLL !Declare as external in a .DLL
Count7 PDECIMAL(5,0),NAME(“SixCount’) !Declare with external name
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD

Count8 PDECIMAL(5,0),NAME(‘Counter’) !Declare with external name

3-14

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

STRING (fixed-length string)

length

label STRING(|string constant |) [,DIM()][,OVER()] [[NAME()] [EXTERNAL] [,DLL] [,STATIC]
picture | [, THREAD] [,LAUTO]
STRING A character string.

Format: A fixed number of bytes.
Size: 1 to 65,520 bytes in 16-bit, or 4MB in 32-bit.

length A numeric constant that defines the number of bytes in
the STRING. String variables are not initialized unless
given astring constant

string constant The initial value of the STRING. The length of the
STRING (in bytes) is set to the length of gteng
constant

picture Used to format the values assigned to the STRING. The
length is the number of bytes needed to contain the
formatted STRING.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.
NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has naitial value.

STRING declares a fixed-length character string. The memory assigned to
the STRING is initialized to all blanks unless the AUTO attribute is present.

In addition to its explicit declaration, all STRING variables are also
implicitly declared as STRING(1),DINKEngth of string. This allows each
character in the STRING to be addressed as an array element. If the
STRING also has a DIM attribute, this implicit array declaration is the last
(optional) dimension of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a STRING using
the “string slicing” technique. This technique performs similar action to the

CHAPTER 3 DECLARING VARIABLES

SUB function, but is much more flexible and efficient. It is more flexible
because a “string slice” may be used on both the destination and source
sides of an assignment statement and the SUB function can only be used as
the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a “slice” of the STRING, the beginning and ending character
numbers are separated by a colon (:) and placed in the implicit array
dimension position within the square brackets ([]) of the STRING. The
position numbers may be integer constants, variables, or expressions. If
variables are used, there must be at least one blank space between the
variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Example:
Name STRING(20) !Declare 20 byte name field
ArrayString STRING(5),DIM(20) IDeclare array
Company STRING(*CTarion Software, Inc.’) !The software company - 22 bytes
Phone STRING(@P (#HHE) HHE - fHHHEP) IPhone number field - 13 bytes
ExampleFile FILE,DRIVER(‘Clarion’) !Declare a file
Record RECORD
NameField STRING(20),NAME(“Name’) !Declare with external name
CODE
NameField = ‘Tammi’ IAssign a value
NameField[5] = ‘y’ ! change fifth Tetter
NameField[5:6] = ‘ie’ ! and change a “slice”
I -- the fifth and sixth Tetters
ArrayString[1] = ‘First’ IAssign value to first element
ArrayString[1,2] ‘u’ IChange first element 2nd character

ArrayString[1,2:3] = NameField[5:6] IAssign slice to slice

3-16 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

CSTRING (fixed-length null terminated string)

| length |
label CSTRING(|string constant]) [,DIM()] [,OVER()] [[NAME()] [,EXTERNAL] [,DLL]
| picture | [.STATIC] [THREAD] [,AUTO]
CSTRING A character string.

Format: A fixed number of bytes.
Size: 2 to 65,520 bytes in 16-bit, or unlimited in 32-bit.

length A numeric constant that defines the number of bytes of
storage the string will use. This must include a position
for the terminating null character. String variables are
not initialized unless given gtring constant

string constant A string constant containing the initial value of the
string. The length of the string is set to the length of the
string constanplus the terminating null character.

picture The picture token used to format the values assigned to
the string. The length of the string is the number of bytes
needed to contain the formatted string and the terminat-
ing null character.

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.
NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value.

CSTRING declares a character string terminated by a null character (ASCII
zero). The memory assigned to the CSTRING is initialized to a zero length
string unless the AUTO attribute is present.

CSTRING matches the string data type used in the “C” language and the
“ZSTRING” data type of the Btrieve Record Manager. Storage and memory
requirements are fixed-length, however the terminating null character is
placed at the end of the data entered. CSTRING should be used to achieve
compatibility with outside files or procedures.

CHAPTER 3 DECLARING VARIABLES

In addition to its explicit declaration, all CSTRINGs are implicitly declared
as a CSTRING(1),DIMéngth of string. This allows each character in the
CSTRING to be addressed as an array element. If the CSTRING also has a
DIM attribute, this implicit array declaration is the last (optional) dimension
of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a CSTRING using
the “string slicing” technique. This technique performs similar action to the
SUB function, but is much more flexible and efficient. It is more flexible
because a “string slice” may be used on both the destination and source
sides of an assignment statement and the SUB function can only be used as
the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a “slice” of the CSTRING, the beginning and ending character
numbers are separated by a colon (:) and placed in the implicit array
dimension position within the square brackets ([]) of the CSTRING. The
position numbers may be integer constants, variables, or expressions. If
variables are used, there must be at least one blank space between the
variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Since a CSTRING must be null-terminated, the programmer must be
responsible for ensuring that an ASCII zero is placed at the end of the data if
the field is only accessed through its array elements or as a “slice” (not as a
whole entity). Also, a CSTRING can have “junk” stored after the null
terminator. Because of this they do not work well inside GROUPs.

Example:

Name CSTRING(21) IDeclare 21 byte field - 20 bytes data
OtherName CSTRING(21),0VER(Name) IDeclare field over name field
Contact CSTRING(21),DIM(4) IArray 21 byte fields - 80 bytes data
Company CSTRING(‘Clarion Software, Inc.’) 123 byte string - 22 bytes data
Phone CSTRING (@P (¥) #HHE - fHHHEP) ! Declare 14 bytes - 13 bytes data
ExampleFile FILE,DRIVER(‘Btrieve’) IDeclare a file
Record RECORD
NameField CSTRING(21),NAME(“ZstringField’) !Declare with external name

CODE

Name = ‘Tammi’ IAssign a value

Name[5] = ‘y’ ! then change fifth letter

Name[6] = ‘s’ ! then add a letter

Name[7] = ‘<0>’ ! and handle null terminator

Name[5:6] = ‘ie’ ! and change a “slice”

I -- the fifth and sixth letters
Contact[1] ‘First’ IAssign value to first element

Contact[1,2] = ‘u’ IChange first element 2nd character
Contact[1,2:3] = Name[5:6] IAssign slice to slice

3-18 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

PSTRING (embedded length-byte string)

| length |
label PSTRING(|string constant|) [,DIM()] [,OVER()] [[NAME()] [LEXTERNAL] [,DLL] [,STATIC]
| picture | [, THREAD] [,LAUTO]
PSTRING A character string.

Format: A fixed number of bytes.
Size: 2 to 255 bytes.

length A numeric constant that defines the number of bytes in
the string. This must include the first position length-
byte.

string constant A string constant containing the initial value of the
string. The length of the string is set to the length of the
string constanplus the length-byte.

picture The picture token used to format the values assigned to
the string. The length of the string is the number of bytes
needed to contain the formatted string plus the first
position length byte. String variables are not initialized
unless given atring constant

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.
NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data

AUTO Specify the variable has maitial value.

PSTRING declares a character string with a leading length byte included in
the number of bytes declared for the string. The memory assigned to the
PSTRING is initialized to a zero length string unless the AUTO attribute is
present.

PSTRING matches the string data type used by the Pascal language and the
“LSTRING” data type of the Btrieve Record Manager. Storage and memory
requirements are fixed-length, however, the leading length byte will contain
the number of characters actually stored. PSTRING is internally converted

CHAPTER 3 DECLARING VARIABLES

Example:

to a STRING intermediate value for use during program execution. It should
be used to achieve compatibility with outside files or procedures.

In addition to its explicit declaration, all PSTRINGs are implicitly declared
as a PSTRING(1),DIMéngth of string. This allows each character in the
PSTRING to be addressed as an array element. If the PSTRING also has a
DIM attribute, this implicit array declaration is the last (optional) dimension
of the array (to the right of the explicit dimensions).

You may also directly address multiple characters within a PSTRING using
the “string slicing” technique. This technique performs similar action to the
SUB function, but is much more flexible and efficient. It is more flexible
because a “string slice” may be used on both the destination and source
sides of an assignment statement and the SUB function can only be used as
the source. It is more efficient because it takes less memory than individual
character assignments or the SUB function.

To take a “slice” of the PSTRING, the beginning and ending character
numbers are separated by a colon (:) and placed in the implicit array
dimension position within the square brackets ([]) of the PSTRING. The
position numbers may be integer constants, variables, or expressions. If
variables are used, there must be at least one blank space between the
variable name and the colon separating the beginning and ending number (to
prevent PREfix confusion).

Since a PSTRING must have a leading length byte, the programmer must be
responsible for ensuring that its value is always correct if the field is only
accessed through its array elements or as a “slice” (not as a whole entity).
The PSTRING's length byte is addressed as element zero (0) of the array
(the only case in Clarion where an array has a zero element). Therefore, the
valid range of array indexes for a PSTRING(30) would be 0 to 29. Also, a
PSTRING can have ‘junk’ stored outside the active portion of the string.
Because of this they do not work well inside GROUPs.

Name PSTRING(21) IDeclare 21 byte field - 20 bytes data
OtherName PSTRING(21),0VER(Name) !Declare field over name field
Contact PSTRING(21),DIM(4) Array 21 byte fields - 80 bytes data
Company PSTRING(‘Clarion Software, Inc.’) 123 byte string - 22 bytes data
Phone PSTRING(@P (#HF#) HHE - FHEFP) IDeclare 14 bytes - 13 bytes data
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD
NameField PSTRING(21),NAME(‘LstringField’) !Declare with external name

CODE

Name = ‘Tammi’ IAssign a value

Name[5] = ‘y’ ! then change fifth Tetter

Name[6] = ‘s’ ! then add a letter

Name[0] = “<6>” ! and handle Tlength byte

Name[5:6] = ‘ie’ ! and change a “slice” -- the 5th and 6th letters

Contact[1] = ‘First’ IAssign value to first element

Contact[1,2] ‘u’ IChange first element 2nd character

Contact[1,2:3] = Name[5:6] IAssign slice to slice

3-20 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DATE (four-byte date)
label DATE [,DIM()] [OVER()] LNAME()] [[EXTERNAL] [,DLLL] [STATIC] [, THREAD] [,AUTO]
DATE A four-byte date.
Format: year mm dd
s 3{ 1&';7' 0|
Range: year: 1 to 9999
month: 1 to 12
day: 1 to 31
DIM Dimension the variable as an array.
OVER Share a memory location with another variable.
NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has naitial value.

DATE declares a four-byte date variable. This format matches the “DATE”
field type used by the Btrieve Record Manager. A DATE used in a numeric
expression is converted to the number of days elapsed since December 28,
1800 (Clarion Standard Date - usually stored as a LONG). The valid Clarion
Standard Date range is January 1, 1801 through December 31, 2099. Using
an out-of-range date produces unpredictable results. DATE fields should be
used to achieve compatibility with outside files or procedures.

Example:
DueDate DATE IDeclare a date field
OtherDate DATE,OVER(DueDate) IDeclare field over date field
ContactDate DATE,DIM(4) Array of 4 date fields
ExampleFile FILE,DRIVER(‘Btrieve’) !Declare a file
Record RECORD

DateRecd DATE,NAME(‘DateField’) !Declare with external name

See Also: Standard Date

CHAPTER 3 DECLARING VARIABLES

TIME (four-byte time)

label TIME [,DIM()] [,OVER()] [[NAME()] [[EXTERNAL] [,DLL] [,STATIC] [THREAD] [,AUTO]

TIME A four-byte time.
Format: hh mm SS hs

P R A
Bits: 31 23 15 7 0
Range: hours: 0 to 23

minutes: 0 to 59
seconds: 0 to 59
seconds/100: 0 to 99

DIM Dimension the variable as an array.

OVER Share a memory location with another variable.
NAME Specify an alternate, “external” name for the field.
EXTERNAL Specify the variable is defined, and its memory is

allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

AUTO Specify the variable has maitial value

TIME declares a four byte time variable. This format matches the “TIME”
field type used by the Btrieve Record Manager. A TIME used in a numeric
expression is converted to the number of hundredths of a second elapsed
since midnight (Clarion Standard Time - usually stored as a LONG). TIME
fields should be used to achieve compatibility with outside files or

procedures.
Example:
ChkoutTime TIME !Declare checkout time field
OtherTime TIME,OVER(CheckoutTime) IDeclare field over time field
ContactTime TIME,DIM(4) Array of 4 time fields
ExampleFile FILE,DRIVER(‘Btrieve’) IDeclare a file
Record RECORD

TimeRecd TIME,NAME(‘TimeField’) IDeclare with external name

See Also: Standard Time

3-22 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

GROUP (compound data structure)

label GROUP([group]) [,PRE()] [,DIM()] [,OVER()] [NAME()] [[EXTERNAL] [,DLL] [STATIC]
[, THREAD] [,BINDABLE] [, TYPE]

declarations

declarations
END

GROUP A compound data structure.

group The label of a previously declared GROUP, QUEUE, or
RECORD structure from which it will inherit its struc-
ture. This may be a GROUP or QUEUE with the TYPE
attribute.

PRE Declare a label prefix for variables within the structure.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or
structure.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for
each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dy-
namic expressions.

TYPE Specify the GROUP is a type definition for GROUPs

passed as parameters.
Multiple consecutive variable declarations.

A GROUP structure allows multiple variable declarations to be referenced

by a single label. It may be used to dimension a set of variables, or to assign
or compare sets of variables in a single statement. In large complicated
programs, a GROUP structure is helpful for keeping sets of related data
organized. A GROUP must be terminated by a period or the END statement.

The structure of a GROUP declared with ¢gin@up parameter begins with
the same structure as the namesup, the GROUP inherits the fields of the
namedgroup. The GROUP may also contain its odeclarationsthat

follow the inherited fields. If the group parameter names a QUEUE or
RECORD structure, only the fields are inherited and not the functionality
implied by the QUEUE or RECORD.

CHAPTER 3

DECLARING VARIABLES 3-23

When referenced in a statement or expression, a GROUP is treated as a
STRING composed of all the variables within the structure. A GROUP
structure may be nested within another data structure, such as a RECORD ol
another GROUP.

Because of their internal storage format, numeric variables (other than
DECIMAL) declared in a group do not collate properly when treated as
strings. For this reason, building a KEY on a GROUP that contains numeric
variables may produce an unexpected collating sequence.

A GROUP with the BINDABLE attribute makes all the variables within the
GROUP available for use in a dynamic expression. The contents of each
variable’s NAME attribute is the logical name used in the dynamic
expression. If no NAME attribute is present, the label of the variable
(including prefix) is used. Space is allocated in the .EXE for the names of all
of the variables in the structure. This creates a larger program that uses more
memory than it normally would. Therefore, the BINDABLE attribute should
only be used when a large proportion of the constituent fields are going to be
used.

A GROUP with the TYPE attribute is not allocated any memory; it is only a
type definition for GROUPs that are passed as parameters to PROCEDURES
or FUNCTIONSs. This allows the receiving procedure to directly address
component fields in the passed GROUP. The parameter declaration on the
PROCEDURE or FUNCTION statement can instantiate a local prefix for the
passed GROUP as it names the passed GROUP for ther procedure, however
this is not necessary if you use the Field Qualification syntax instead of
prefixes. For example, PROCEDURE(LOC:PassedGroup) declares the
procedure uses the LOC: prefix (along with the individual field names used

in the type definition) to directly address component fields of the GROUP
passed as the parameter.

Example:

See Also:

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

PROGRAM
PassGroup GROUP,TYPE
F1 STRING(20)
F2 STRING(1)
F3 STRING(20)
END
MAP
MyProcl(PassGroup)
END
NameGroup GROUP
First STRING(20)
Middle STRING(1)
Last STRING(20)
END

NameGroup2 GROUP(PassGroup)

END
DateTimeGrp GROUP,DIM(10)
Date LONG
Time LONG
END
FileNames GROUP,BINDABLE
FileName STRING(8),NAME(“FILE”)
Dot STRING(*.”)
Extension STRING(3),NAME(“EXT”)
END
CODE
MyProcl(NameGroup)
MyProcl(NameGroup2)
MyProcl PROCEDURE(PassedGroup)
LocalVar STRING(20)
CODE

LocalVar = PassedGroup:Fl

Field Qualification

!Type-definition for passed GROUP parameters
! first field

! middle field

! last field

IPasses a GROUP defined the same as PassGroup

!Name group

! first name

! middle initial

! Tast name

'End group declaration

!Group that inherits PassGroup’s fields

! resulting in NameGroup2:F1l, NameGroup2:F2,
! and NameGroup2:F3

! fields declared in this group

IDate/time array

'End group declaration

!Bindable group

IDynamic name: FILE
!Dynamic name: Dot
!Dynamic name: EXT

ICall proc passing NameGroup as parameter
!Call proc passing NameGroup2 as parameter

!Proc to receive GROUP parameter

IAssign value in the first field to LocalVar
! from passed parameter

CHAPTER 3 DECLARING VARIABLES

LIKE (inherited data type)

new declaration LIKE(like declaration) [,DIM()] [,OVER()] [,PRE()] [NAME()] [EXTERNAL] [,DLL]
[, STATIC] [THREAD] [,BINDABLE]

LIKE Declares a variable whose data type is inherited from
another variable.

new declaration The label of the new data element declaration.

like declaration The label of the data element declaration whose defini-
tion will be used.

DIM Dimension the variables into an array.

OVER Share a memory location with another variable or
structure.

PRE Declare a label prefix for variables within thew

declarationstructure (if thdike declarationis a complex
data structure). This is not required, since you may use
the new declaratiorin the Field Qualification syntax to
directly reference any member of the new structure.

NAME Specify an alternate, “external” name for the field.

EXTERNAL Specify the variable is defined, and its memory is
allocated, in an external library. Not valid within FILE,
QUEUE, or GROUP declarations.

DLL Specify the variable is defined in a .DLL. This is re-
quired in addition to the EXTERNAL attribute.

STATIC Specify the variable’s memory is permanently allocated.

THREAD Specify memory for the variable is allocated once for

each execution thread. Also implicitly adds the STATIC
attribute on Procedure Local data.

BINDABLE Specify all variables in the group may be used in dy-
namic expressions.

LIKE tells the compiler to define threew declaratiorusing the same
definition as thdike declaration including all attributes. If the originéike
declarationchanges, so does thew declaration

Thenew declaratiormay use the DIM and OVER attributes. If the
declarationhas a DIM attribute, theew declaratioris already an array. If a
further DIM attribute is added to theew declarationthe array is further
dimensioned.

The PRE and NAME attributes may be used, if appropriate. likae
declarationalready has these attributes, tieav declaratiorwill inherit

them and compiler errors can occur. To correct this, specify a PRE or NAME
attribute on thenew declaratiorto override the inherited attribute.

Example:

See Also:

Amount
QTDAmount
YTDAmount
MonthlyAmts
AmtPrPerson

Construct
Fieldl
Field2

NewGroup

AmountFile
Record
Amount
QTDAmount

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

REAL IDefine a field

LIKE(Amount) IUse same definition

LIKE(QTDAmount) IUse same definition again
LIKE(Amount),DIM(12) IUse same definition for array, 12 elements

LIKE(MonthlyAmts),DIM(10)
IUse same definition for array of 120 elements (12,10)

GROUP,PRE(Con) !Define a group
LIKE(Amount) ! con:fieldl - real
STRING(10) ! con:field2 - string(10)

END

LIKE(Construct) IDefine new group, containing

! NewGroup:fieldl - real
! NewGroup:field2 - string(10)

FILE,DRIVER(‘CTarion’),PRE(Amt)

RECORD
REAL IDefine a field
LIKE(Amount) IUse same definition

DIM, OVER, PRE, MAME, Field Qualification

CHAPTER 3 DECLARING VARIABLES

ImplicitV ariables

Example:

See Also:

Implicit variables are not declared in data declarations. They are created by
the compiler when it first encounters them. Implicit variables are
automatically initialized to blank or zero; they do not have to be explicitly
assigned values before use. You may always assume that they contain blanks
or zero before your program’s first assignment to them.

Any implicit variable used in the global data declaration area (between the
keywords PROGRAM and CODE) is Global data, assigned static memory.
Any implicit variable used between the keywords MEMBER and
PROCEDURE (or FUNCTION) is Module data, assigned static memory.
Any other implicit variable is Local data, assigned dynamic memory on the
program’s stack.

Since the compiler dynamically creates implicit variables as they are
encountered, there is a danger that problems may arise that can be difficult
to trace. This is due to the lack of compile-time error and type checking on
implicit variables. For example, if you spell incorrectly the name of a
previously used implicit variable, the compiler will not tell you, but will
simply create a new implicit variable with the new spelling. When your
program checks the value in the original implicit variable, it will be

incorrect. Therefore, implicit variables should be used with care and caution,
and only within a limited scope (or not at all).

Implicit variables are generally used for: array subscripie/faise
switches, intermediate variables in complex calculations, loop control
variables, etc. The Clarion language provides three types of implicit

variables:
Pound sign names an implicit LONG variable, a label
terminated by a # character.
$ Dollar sign names an implicit REAL variable, a label
terminated by a $ character.
“ Double quote names an implicit 32 byte string, a label
terminated by a “ character.
LOOP Counterf# = 1 T0 10 IImplicit LONG Toop counter
ArrayField[Counter#f] = Counterf# * 2 ! to initialize an array
END
Address” = CLIP(City) & *, * & State & * * & Zip IImplicit STRING(32)
MESSAGE (Address”) !Used to display a temporary value
Percent$ = ROUND((Quota / Sales),.l) * 100 IImplicit REAL
MESSAGE(FORMAT(Percent$,@P%<<<.{HIP)) lUsed to display a temporary value

Data Declarations and Memory Allocation

3-28 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ReferenceVariables

A reference variable contains a reference to another data declaration (its
“target”). You declare a reference variable by prepending an ampersand (&)
to the data type of its target (&BYTE, &FILE, &LONG, &WINDOW, etc.).
Depending upon the target's data type, the reference variable may contain
the target's memory address, or a more complex internal datduster
(describing the location and type of target data).

Valid reference variable declarations are: &BYTE, &SHORT, &USHORT,
&LONG, &ULONG, &REAL, &SREAL, &BFLOATS8, &BFLOAT4,
&DECIMAL, &PDECIMAL, &STRING, &CSTRING, &PSTRING,
&QUEUE, &FILE, &BLOB, &VIEW, and &WINDOW. Refeence
variables may not be declared within GROUP, FILE, QUEURK/,BW
structures.

The &STRING, &CSTRING, &PSTRING, &DECIMAL, and

&PDECIMAL reference variable declarations do not require length
parameters, since all necessary information about the specific target data
item is contained in the reference. This means a &STRING reference
variable may contain a reference to any length STRING variable. A
reference variable declared with &WINDOW can target either an
APPLICATION, WINDOW, or REPORT structure.

The label of the reference variable is syntactically correct every place in
executable code where its target is allowed. When used in a code statement,
the reference variable is automatically “dereferenced” to supply the
statement the value of its target (except for reference assignment
statements). References cross thread boundaries, and so, may be used to
reference data items in other execution threads.

The &= operator executes a reference assignment statement (destination &=
source). This assigns the source’s reference to the destination reference
variable.

Example:

Appl APPLICATION(‘Hello0”)
END

App2 APPLICATION(‘Buenos Dias”)
END

AppRef &WINDOW IReference to an APPLICATION, WINDOW, or REPORT
?gDETL:Language = ‘English’ IIf english Tanguage user
AppRef &= Appl ! reference english application frame
ELiEpRef &= App2 ! else reference spanish application frame
ggEN(AppRef) !0Open the referenced application frame window

See Also: Reference Assignment Statements, THREAD

CHAPTER 3 DECLARING VARIABLES

Attributes of Variables

PRE (set group label prefix)

PRE([prefix])

PRE Provides a label prefix for complex data structures.

prefix Acceptable characters are alphabet letters, numerals 0
through 9, and the underscore charactgarefix must
start with an alphabet character and must not be a
reserved word. By conventionpaefix is 1-3 characters,
although it can be longer.

ThePRE attribute provides a label prefix for complex data structures. It is
used to distinguish between identical variable names that occur in different
structures. When referenced in executable statements, assignments, and
parameter lists, prefix is attached to a label by a colon (Pre:Label). The
PRE attribute may be used with the following datacdtrres discussed in

this chapter: GROUP, and LIKE.

Another more flexible method to distinguish between identical variable
names that occur in different structures does not use the PRE attribute, but
instead uses the Field Qualification syntax. When referenced in executable
statements, assignments, and parameter lists, the label of the structure
containing the field is attached to the field label by a colon
(GroupName:Label).

Example:

Gl GROUP, PRE(Mem) !Declare some memory variables

Message STRING(30) ! with the Mem prefix

Page LONG

Line LONG

Device STRING(30)

END
G2 LIKE(GL),PRE(Me2) !Declare second GROUP LIKE the first
IContains same variables with Me2 prefix

CODE
Mem:Message = ‘Variable in original group’ 1Using prefix
Gl:Message = ‘Same Variable in original group’ !Using Field Qualification

Me2:Message = ‘Variable in LIKE group’
G2:Message = ‘Same Variable in LIKE group’

See Also: Reserved Words, Field Qualification

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DIM (set array dimensions)

DIM(dimension,...,dimension)

DIM Declares a variable as an array.

dimension A numeric constant which specifies the number of
elements in thislimensionof the array.

The DIM attribute declares a variable as an array. The variable is repeated
the number of times specified by ttienensiornparameters. Multi-
dimensional arrays may be thought of as nested. &awtnsionn the array
has a corresponding subscript. Therefore, referencing a variable in a three
dimensional array requires three subscripts. There is no limit tauthber

of dimensions; however, the total size of an array must not exceed 65,520
bytes of data in 16-bit applications (there is no limit in 32-bit applications).

Subscripts identify which element of the array is being referenced. A
subscript list contains a subscript for edamensiornof the array. Each

subscript is separated by a comma and the entire list is enclosed in brackets
([1. A subscript may be a numeric constant, expression, or function. The
entire array may be referenced by the label of the array without a subscript
list.

A GROUP structure is a special case. Each level of nesting adds subscripts
to the GROUP and the variables within the GROUP. Data declared within
the GROUP may be referenced exactly like the GROUP itself.

Example:
Scr GROUP ICharacters on a text-mode screen
Row GROUP,DIM(25) ITwenty-five rows
Pos GROUP,DIM(80) ITwo thousand positions
Attr BYTE IAttribute byte
Char BYTE ICharacter byte

A ITerminate the group structures
! In the group above:

! Scr is a 4,000 byte GROUP
! Row[1l] is a 160 byte GROUP
! Pos[1,1] is a 2 byte GROUP
! Attr[1,1] is a BYTE
! Char[1,1] is a BYTE

Month STRING(10),DIM(12) IDimension the month to 12
CODE
CLEAR(Month) IAssign blanks to the entire array
Month[1] = ‘January’ !Load the months into the array
Month[2] = ‘February’
Month[3] = ‘March’

See Also: MAXIMUM

CHAPTER 3

DECLARING VARIABLES

EXTERNAL (set variable defined externally)

Example:

See Also:

EXTERNAL

TotalCount

TheEXTERNAL attribute specifies that the variable on which it is placed is
defined in an external library. Therefore, a variable with the EXTERNAL
attribute is declared and may be referenced in the Clarion code, but is not
allocated memory. The memory for the variable is allocated by the external
library. This allows the Clarion program access to variables declared as
public in external libraries.

The EXTERNAL attribute is valid only on variables declared outside FILE,
QUEUE, or GROUP strctures.

The variable declarations in all libraries (or .EXES) that reference common
variables must be EXACTLY the same (with the appropriate addition of the
EXTERNAL attribute). If they are not exactly the same, data corruption
could occur. Any incompatibilities between libraries cannot be detected by
the compiler or linker, therefore it is the programmer’s responsibility to
ensure that consistency is maintained.

When using EXTERNAL to declare a variable shared by multiple libraries
(.OBJs, .LIBs, or .DLLs and .EXE), only one library should define the
variable without the EXTERNAL attribute. All the other libraries (and the
.EXE) should declare the variable with the EXTERNAL attribute. This
ensures that there is only one memory allocation for the variable and all the
libraries and the .EXE will reference the same memory when referring to
that variable.

One suggested way of coding large systems using many .DLLs and/or
.EXEs that share the same variables would have one .DLL containing the
actual data definition that only contains FILE and global variable definitions
that are shared among all (or most) of the .DLLs and .EXEs. This makes one
central library in which the actual file definitions are maintained. This one
central .DLL is linked into all .EXEs that use those common files. All other
.DLLs and/or .EXEs in the system would declare the common variables with
the EXTERNAL and DLL attributes.

LONG, EXTERNAL A variable declared in an external library

NAME, DLL

3-32

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DLL (set variable defined externally in .DLL)

Example:

See Also:

DLL([flag])

TotalCount

DLL Declares a variable defined externally in a .DLL.

flag A numeric constant, equate, or Project system define
which specifies the attribute as active or not. Ifftag
is zero, the attribute is not active, just as if it were not
present. If thdlag is any value other than zero, the
attribute is active.

TheDLL attribute specifies that the variable on which it is placed is defined
in a .DLL. A variable with DLL attribute must also have the EXTERNAL
attribute. The DLL attribute is required for 32-bit applications because

.DLLs are relocatable in a 32-bit flat address space, which requires one extra
dereference by the compiler to address the variable. The DLL attribute is
valid only on variables declared outside FILE, QUEUE, or GROUP
structures.

The variable declarations in all libraries (or .EXES) that reference common
variables must be EXACTLY the same (with the appropriate addition of the
EXTERNAL and DLL attributes). If they are not exactly the same, data
corruption could occur. Any incompatibilities between libraries cannot be
detected by the compiler or linker, therefore it is the programmer’s
responsibility to ensure that consistency is maintained.

When using EXTERNAL and DLL to declare a variable shared by .DLLs
and .EXE, only one .DLL should define the variable without the
EXTERNAL and DLL attributes. All the other .DLLs (and the .EXE) should
declare the variable with the EXTERNAL and DLL attributes. This ensures
that there is only one memory allocation for the variable and all the .DLLs
and the .EXE will reference the same memory when referring to that
variable.

One suggested way of coding large systems using many .DLLs and/or
.EXEs that share the same variables would have one .DLL containing the
actual data definition that only contains FILE and global variable definitions
that are shared among all (or most) of the .DLLs and .EXEs. This makes one
central library in which the actual file definitions are maintained. This one
central .DLL is linked into all .EXEs that use those common files. All other
.DLLs and/or .EXEs in the system would declare the common variables with
the EXTERNAL and DLL attributes.

LONG, EXTERNAL,DLL A variable declared in an external .DLL

EXTERNAL

CHAPTER 3 DECLARING VARIABLES

NAME (set variable’s external name)

NAME([| constant | D
| variable |
NAME Specifies an “external” name for the linker or file driver.
constant A string constant.
variable The label of a STRING variable declared in the global

data declaration area or a MEMBER module’s data
declaration area.

TheNAME attribute specifies an “external” name for the linker or file
driver. The NAME attribute is completely independent of the EXTERNAL
attribute—there is no required connection between the two, although both
attributes may be used on the same variable.

The NAME attribute may be placed on a FUNCTION or PROCEDURE
Prototype, FILE, KEY, INDEX, MEMO, any field declared within a FILE,
any field declared within a QUEUE structure, or any field not within a
structure. The NAME attribute has different implications depending on
where it is used.

NAME(constant may be specified on a FUNCTION or PROCEDURE
Prototype. Theonstantsupplies the external name used by the linker to
identify the procedure or function from an external library.

The NAME(constan}t or NAME(variable) attribute on a FILE declaration
specifies a DOS directory file specification. If thenstantor variable does

not contain a drive and path, the current drive and directory are assumed. If
the extension is omitted, the directory entry assumes the file driver’s default
value. Some file drivers require that KEYs, INDEXes, or MEMOs be in
separate files. Therefore, a NAME may also be placed on a KEY, INDEX, or
MEMO. A NAME attribute without aonstantor variable defaults to the

label of the declaration statement on which it is placed (including any
specified prefix).

NAME(constant may be used on any field declared within the RECORD
structure. This provides the file driver with the name of a field as it may be
used in that driver’s file system.

NAME(constant may be used on any field declared within a QUEUE
structure. This provides the capability of run time dynamic sorts.

NAME(constant may be used on any variable declared outside of any
structure. This provides the linker with axternal name to identify a

variable declared in an external library. If the variable also has the
EXTERNAL attribute, it is declared, and its memory is allocated, as a public
variable in the external library. Without the EXTERNAL attribute, it is
declared, and its memory is allocated, in the Clarion program, and it is

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

See Also:

declared as an extal variable in the>dernal library.

PROGRAM
MAP
MODULE(‘External.0bj’)
AddCount (LONG),LONG,C,NAME(‘_AddCount’) IC function named ‘_AddCount’

Cust FILE,PRE(Cus),NAME(CustName) !Filename in CustName variable
CustKey KEY(“Name’),NAME(‘c:\data\cust.idx’) !Declare key, cust.idx

Record RECORD

Name STRING(20) !Default NAME to ‘Cus:Name’

SortQue QUEUE,PRE(Que)

Fieldl STRING(10),NAME(‘FirstField”) IQUEUE SORT NAME
Field2 LONG,NAME(*SecondField’) IQUEUE SORT NAME
END
CurrentCnt LONG,EXTERNAL,NAME(‘Cur’) IField declared public in
! external Tibrary as ‘Cur’
TotalCnt LONG,NAME(‘Tot”) IField declared external

! in external Tibrary as ‘Tot’

FUNCTION and PROCEDURE Prototypes, FILE, KEY, INDEX, QUEUE,
EXTERNAL

CHAPTER 3 DECLARING VARIABLES

OVER (set shared memory location)

OVER(overvariable)
OVER Allows one memory address to be referenced two
different ways.
overvariable The label of a variable that already occupies the memory

to be shared.

The OVER attribute allows one memory address to be referenced two
different ways. The variable declared with the OVER attribute must not be
larger than thevervariableit is being declared OVER (it may be smaller,
though).

You may declare a variable OVER awvervariablewhich is part of the
parameter list passed into a PROCEDURE or FUNCTION.

A field within a GROUP structure cannot be declared OVBRrable
outside that GROUP structure.

Example:
SomeProc PROCEDURE(PassedGroup) !Proc receives a GROUP parameter
NewGroup GROUP,OVER(PassedGroup) IRedeclare passed GROUP parameter
Fieldl STRING(10) ICompiler warning issued that
Field2 STRING(2) ! NewGroup must not be Tlarger
END I than PassedGroup
CustNote FILE,PRE(Csn) !Declare CustNote file
Notes MEMO(2000) IThe memo field
Record RECORD

CustID LONG

CsnMemoRow STRING(10),DIM(200),0VER(Csn:Notes)
ICsn:Notes memo may be addressed
! as a whole or in 10-byte chunks

See Also: DIM

3-36 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

STATIC (set local variable static)

STATIC

The STATIC attribute allows a variable declared within a PROCEDURE or
FUNCTION to be allocated static memory instead of stack memory. This
makes any value contained in the variable “persistent” from one instance of
the procedure to the next.

Example:

SomeProc PROCEDURE
AcctFile STRING(64),STATIC ISTATIC needed for use as
I Variable in NAME attribute

Transactions FILE,DRIVER(‘CTarion’),PRE(TRA),NAME(AcctFile)

AccountKey KEY(TRA:Account),0PT,DUP

Record RECORD

Account SHORT IAccount code

Date LONG !Transaction Date

Amount DECIMAL(13,2) ITransaction Amount
See Also: Data Declarations and Memory Allocation

THREAD (set thread-specific static variable)

THREAD

The THREAD attribute declares a static variable which is allocated memory
separately for each execution thread in the program. This makes the value
contained in the variable dependent upon which thread is executing.
Whenever a new execution thread is begun, a new instance of the variable,
specific to that thread, is created.

The variable must be allocated static memory so it should be declared as
Local data with the STATIC attribute. It may also be declared as Global data
or Module data.

This attribute creates runtime “overhead,” particularly on Global or Module
data. Therefore, it should be used only when absolutely necessary.

Example:
GlobalVar LONG,THREAD lEach execution thread gets its own copy

SomeProc PROCEDURE
LocalVar LONG,THREAD ILocal threaded variable (automatically STATIC)

See Also: START, Data Declarations and Memory Allocation, STATIC

CHAPTER 3 DECLARING VARIABLES

BINDABLE (set dynamic expression string variables)

BINDABLE

TheBINDABLE attribute declares a GROUP, QUEUE, FILEVOEW

whose constituent variables are all available for use in a runtime expression
string. The contents of each variable’s NAME attribute is the logical name
used in the runtime expression string. If no NAME attribute is present, the
label of the variable (including prefix) is used. Space is allocated in the
.EXE for the names of all of the variables in thecure. This creates a

larger program that uses more memory than it normally would. Therefore,
the BINDABLE attribute should only be used when a large proportion of the
constituent fields are going to be used.

Example:
FileNames GROUP,BINDABLE IBindable group
FileName STRING(8) ,NAME(“FILE”) !Dynamic name: FILE
Dot STRINGC(‘.") !Dynamic name: Dot
Extension STRING(3),NAME(“EXT") IDynamic name: EXT
END !
See Also: BIND, UNBIND, EVALUATE

AUTO (uninitialized local variable)

AUTO

TheAUTO attribute allows a variable, declared within a PROCEDURE or
FUNCTION, to be allocated uninitialized stack memory. Without the AUTO
attribute, a numeric variable is initialized to zero and a string variable is
initialized to all blanks when its memory is assigned at run-time.

The AUTO attribute is used when you do not need to rely on an initial blank
or zero value because you intend to assign some other value to the variable.
This saves a small amount of run-time memory by eliminating the internal
code necessary to perform the automatic initialization for the variable.

Example:

SomeProc PROCEDURE
SaveCustID LONG,AUTO INon-initialized local variable

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

TYPE (GROUP type definition)

TYPE
The TYPE attribute creates a “type definition” for a GROUP. The type
definition can then be used in a LIKE statement to define other similar
GROUPs. A GROUP with the TYPE attribute is not allocated any memory.
Example:
PassGroup GROUP,TYPE !Type-definition for passed GROUP parameters
F1 STRING(20) I first field
F2 STRING(1) ! middle field
F3 STRING(20) ! last field

END

NameGroup LIKE(PassGroup),PRE(Nme) !Name group

CHAPTER 3 DECLARING VARIABLES

Data Declarations and Memory Allocation

Global, Local, Static, and Dynamic

Data declarations allocate memory to store the data values. Global, Local,
Static, and Dynamic are terms that describe types of memory allocation.

The terms “Global” and “Local” refer to the “visibility” of data:

. “Global” means the data is visible and available to all
procedures in the program.
. “Local” means the data has limited visibility. This may

be limited to one procedure or function, or limited to a
specific set of procedures and/or functions.

The terms “Static” and “Dynamic” refer to the persistence of the data’s
memory allocation:

. “Static” means the data is allocated memory that is not
released until the entire program is finished executing.
. “Dynamic” means the data is allocated memory on the

program’s stack. Stack memory is released when the
PROCEDURE or FUNCTION that allocated the stack
memory returns to the place in the program from which
it was called.

3-40

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Data Declaration Sections

See Also:

There are three areas where data can be declared in a Clarion program:

. In the PROGRAM module, after the keyword PRO-
GRAM and before the CODE statement. This is the
Global data section.

. In a MEMBER module, after the keyword MEMBER
and before the first PROCEDURE or FUNCTION
statement. This is thdodule data section.

. In a PROCEDURE or FUNCTION, after the keyword
PROCEDURE (or FUNCTION) and before the CODE
statement. This is thieocal data section.

Global datais visible to executable statements and expressions in every
PROCEDURE and FUNCTION in the PROGRAM. Global data is allocated
in Static memory.

Module data is visible only to the set of PROCEDUREs and FUNCTIONSs
contained in the MEMBER module. Of course, it may be passed as a
parameter to PROCEDUREs or FUNCTIONSs in other MEMBER modules,
if required. Module data is also allocated Static memory.

Local data is visible only within the PROCEDURE or FUNCTION in

which it is declared. Of course, it may be passed as a parameter to any other
PROCEDURE or FUNCTION. Local data is allocated Dynamic memory.
Thew memory is allocated on the program’s stack for variables smaller than
the stack threshold (5K default), otherwise they are automatically placed
onto the heap. This can be overridden by using the STATIC attribute,

making its value persistent between calls to the procedure.

Dynamic memory allocation for Local data allows a FUNCTION or
PROCEDURE to be truly recursive, receiving a new copy of its local
variables each time it is called.

FUNCTION and PROCEDURE Prototypes, STATIC

CHAPTER 3 DECLARING VARIABLES

Picture Tokens

Picture tokens provide a masking format for displaying and editing

variables. Picture tokens may be used as parameters of STRING, ENTRY, or
STRING OPTION declarations in SCREEN structures; as a parameter of
STRING statements in a REPORT structure; as a parameter of some Clarion
procedures and functions; or, the parameter of STRING, CSTRING and
PSTRING variable declarations.

There are seven types of picture tokensnaric and currency, scientific
notation, date, time, p@m, key-in template, and string.

Numeric and Currency Pictures

@N [currency] [sign] [fill] size [grouping] [places] [sign] [currency] [B]

@N All numeric and currency pictures begin with @N.

currency Either a dollar sign ($) or a string constant enclosed in
tildes (~). When it precedes teignindicator and there
is nofill indicator, thecurrencysymbol “floats” to the
left of the high order digit. If there isfél indicator, the
currencysymbol remains fixed in the left-most position.
If the currencyindicator follows thesizeandgrouping it
appears at the end of the number displayed.

sign Specifies the display format for negative numbers. If a
hyphen precedes tfi# andsizeindicators, negative
numbers will display with a leading minus sign. If a
hyphen follows theize grouping places andcurrency
indicators, negative numbers will display with a trailing
minus sign. If parentheses are placed in both positions,
negative numbers will be displayed enclosed in paren-
theses. To prevent ambiguity, a trailing mirsign
should always havgroupingspecified.

fill Specifies leading zeros, spaces, or asterisks (*) in any
leading zero positions, and suppreggesiping If the
fill indicator is omitted, leading zeros are suppressed.

0 (zero) Produces leading zeroes
_ (underscore) Produces leading spaces
* (asterisk) Produces leading asterisks

size Thesizeis required to specify the total number of
significant digits to display, including the number of
digits in theplacesindicator and any formatting charac-
ters.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

grouping

places

B

A groupingsymbol, other than a comma (the default),
can be placed to the right of thizeindicator to specify
a three digit group separator.To prevent ambiguity, a
hyphengroupingindicator should always have thign
specified.

. (period) Produces periods
- (hyphen) Produces hyphens
_ (underscore) Produces spaces

Specifies the decimal separator symbol and the number
of decimal digits. The number of decimal digits must be
less than the size indicator. The decimal separator may
be a period (.), grave accent (* -- produces periods for
groupingseparators, unless overridden), or the letter “v”
(used only for STRING field storage declarations—not
for display).

. (period) Produces a period
‘ (grave accent) Produces a comma
v Produces no decimal separator

Specifies that the format displays as blank whenever its
value is zero.

The numeric and currency pictures format numeaiaes for screen display
or in reports. If the value is greater than the maximum value the picture can
display, a string of asterisks is displayed.

CHAPTER 3

DECLARING VARIABLES

Example:
Numeric Result Format
@N9 4,550,000 Nine digits, group with commas (default)
@N_9B 4550000 Nine digits, no grouping, leading blanks if zero
@N09 004550000 Nine digits, leading zero
@N*9 ***45,000 Nine digits, asterisk fill, group with commas
@N9_ 4 550 000 Nine digits, group with spaces
@N9. 4.550.000 Nine digits, group with periods
Decimal Result Format
@N9.2 4,550.75 Two decimal places, period decimal separator
@N_9.2B 4550.75 Two decimal places, period decimal separator, no

grouping, blank if zero

@N_9°2 4550,75 Two decimal places, comma decimal separator
@N9. ‘2 4.550,75 Comma decimal separator, group with periods
@N9_ ‘2 4 550,75 Comma decimal separator, group with spaces,
Signed Result Format
@N-9.28B -2,347.25 Leading minus sign, blank if zero
@N9.2- 2,347 .25~ Trailing minus sign
@N(10.2) (2,347.25) Enclosed in parens when negative
Dollar Currency Result Format
@N$9.2B $2,347.25 Leading dollar sign, blank if zero
@N$10.2- $2,347.25- Leading dollar sign, trailing minus when negative
@N$(11.2) $(2,347.25) Leading dollar sign, in parens when negative
Int’1 Currency Result Format
@N12_ ‘2~ F~ 1 5430,50 F France
@N~L. ~12° L. 1.430.050 Italy
@N~£~12.2 £1,240.50 United Kingdom
@N~kr~12°2 kr1.430,50 Norway
@N~DM~12°2 DM1.430,50 Germany
@N12_ ‘2~ mk~ 1 430,50 mk Finland
@N12 ‘2~ kr~ 1.430,50 kr Sweden

Storage-Only Pictures:

Variablel STRING(@N_6v2)

CODE
Variablel

MESSAGE(FORMAT (Variablel,@N_7.2))

= 1234.56

!Declare as 6 bytes stored without decimal

‘123456° in file
©1234.56°

IAssign value, stores
!Display with decimal point:

3-44 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Scientific Notation Pictures

@Em.n[B]

@E All scientific notation pictures begin with @E.

m Determines the total number of characters in the format
provided by the picture.

n Indicates the number of digits that appear to the left of
the decimal point.

B Specifies that the format displays as blank when the
value is zero.

The scientific notation picture formats very large or very small numbers. The
format is a decimal number raised by a power of ten.

Example:
Picture Value Result
@E9.0 1,967,865 .20e+007
@E12.1 1,967,865 1.9679e+006
@E12.1B 0
@E12.1 -1,967,865 -1.9679e+006

@El12.1 .000000032 3.2000e-008

CHAPTER 3

DECLARING VARIABLES

Date Pictures
@Dn(s][B]
@D All date pictures begin with @D.
n Determines the date picture format. Date pic_tur_e formats
range from 1 through 18. A leading zero (0) indicates a
zero-filled day or month.
s A separation character between the month, day, and year
components. If omitted, the slash (/) characters appears.
. (period) Produces periods
‘ (grave accent) Produces commas
- (hyphen) Produces hyphens
_ (underscore) Produces spaces
B Specifies that the format displays as blank when the
value is zero.
Dates may be stored in numeric variables (usually LONG), a DATE field
(for Btrieve compatibility), or in a STRING declared with a date picture. A
date stored in a numeric variable is called a “Clarion Standard Date.” The
stored value is the number of da_ys since December 28, 1800. The date
picture token converts the value into one of the 16 date formats.
Example:
Picture Format Result
@D1 mm/dd/yy 10/31/59
@no1 mm/dd/yy 01/01/95
@D2 mm/dd/yyyy 10/31/1959
@D3 mmm dd, yyyy 0CT 31,1959
@D4 mmmmmmmmm dd, yyyy October 31, 1959
@D5 dd/mm/yy 31/10/59
@D6 dd/mm/yyyy 31/10/1959
@D7 dd mmm yy 31 OCT 59
@D8 dd mmm yyyy 31 OCT 1959
@D9 yy/mm/dd 59/10/31
@D10 yyyy/mm/dd 1959/10/31
@D11 yymmdd 591031
@D12 yyyymmdd 19591031
@D13 mm/yy 10/59
@D14 mm/yyyy 10/1959
@D15 yy/mm 59/10
@D16 yyyy/mm 1959/10
@D17 Windows Control Panel setting for Short Date
@D18 Windows Control Panel setting for Long Date
Alternate separators
@D1. mm.dd.yy Period separator
@D2- mm-dd-yyyy Dash separator
@D5_ dd mm yy Underscore produces space separator
@D6 * dd,mm,yyyy Grave accent produces comma separator

See Also:

Standard Date

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Time Pictures
@Tn[s][B]
@T All time pictures begin with @T.
n Determines the time picture format. Time picture
formats range from 1 through 8. A leading zero (0)
indicates zero-filled hours.
s A separation character. By default, colon (:) characters
appear between the hour, minute, and second compo-
nents of certain time picture formats. The following s
indicators provide an alternate separation character for
these formats.
. (period) Produces periods
‘ (grave accent) Produces commas
- (hyphen) Produces hyphens
_ (underscore) Produces spaces
B Specifies that the format displays as blank when the
value is zero.
Times may be stored in a numeric variable (usually a LONG), a TIME field
(for Btrieve compatibility), or in a STRING declared with a time picture. A
time stored in a numeric variable is called a “Standard Time.” The stored
value is the number of hundredths of a second since midnight. The picture
token converts the value to one of the six time formats.
Example:
Picture Format Result
@T1 hh:mm 17:30
@T2 hhmm 1730
er3 hh :mmXM 5:30PM
@703 hh : mmXM 05:30PM
@T4 hh:mm:ss 17:30:00
@T5 hhmms s 173000
@T6 hh:mm:ssXM 5:30:00PM
@17 Windows Control Panel setting for Short Time
@T8 Windows Control Panel setting for Long Time
Alternate separators
@T1. hh.mm Period separator
@T1- hh-mm Dash separator
@T3_ hh mmXM Underscore produces space separator
@T4-* hh,mm,ss Grave accent produces comma separator

See Also: Standard Time

CHAPTER 3 DECLARING VARIABLES

Pattern Pictures

@P[<][#][x]P[B]

@P All pattern pictures begin with the @P delimiter and end
with the P delimiter. The case of the delimiters must be
the same.

< Specifies an integer position that is blank when zero.
Specifies an integer position.

X Represents optional display characters. These characters
appear in the final result string.

P All pattern pictures must end with P. If a lower case @p
delimiter is used, the ending P delimiter must also be
lower case.

B Specifies that the format displays as blank when the
value is zero.

Pattern pictures contain optional integer positions and optional edit
characters. Any character other than < or # is considered an edit character
which will appear in the formatted picture string. The @P and P delimiters
are case sensitive. Therefore, an upper case “P” can be included as an edit
character if the delimiters are both lower case “p” and vice versa.

Pattern pictures do not recognize decimal points, in order to permit the
period to be used as an edit character. Therefore, the value formatted by a
pattern picture should be an integer. If a floating piont value is formatted by
a pattern picture, only the integer portion of the number will appear in the

result.
Example:
Picture Value Result
@PiHHE - HE - FHHHEP 215846377 215-84-6377
@P <t/ /1P 103159 10/31/59
@P (HHHE) HHE - THHHEP 3057854555 (305)785-4555
@PiHHE/ FHHE - HEHEP 7854555 000/785-4555
@p<it: PMp 530 5:30PM
@P<F’ <P 506 5' 6"
@P<#1b. <foz.P 902 91b. 2o0z.
@PAFHEA- P 112 411A-2

@PAdHE. CP 312.45 A31.C2

3-48 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Key-inT emplate Pictures

@K[@]AIXIN?I LK B]

@K All key-in template pictures begin with the @K delim-
iter and end with the K delimiter. The case of the
delimiters must be the same.

@ Specifies only uppercase and lowercase alphabetic
characters.

Specifies an integer 0 through 9.
< Specifies an integer that is blank for high order zeros.

Represents optional constant display characters (any
displayable character). These characters appear in the
final result string.

\ Indicates the following character is a display character.
This allows you to include any of the picture formatting
characters (@,#,<\,?,,_,|) within the string as a display
character.

Specifies any character may be placed in this position.

Specifies only uppercase alphabetic characters in this
position.

Underscore specifies only lowercase alphabetic charac-
ters in this position.

Allows the operator to “stop here” if there are no more
characters to input. Only the data entered and any
display characters up to that point will be in the string
result.

K All key-in template pictures must end with K. If a lower
case @k delimiter is used, the ending K delimiter must
also be lower case.

B Specifies that the format displays as blank when the
value is zero.

Key-in pictures may contain integer positions (# <), alphabet character
positions (@ ™ _), any character positions (?), and display characters. Any
character other than a formatting indicator is considered a display character,
which appears in the formatted picture string. The @K and K delimiters are
case sensitive. Therefore, an upper case “K” may be included as a display
character if the delimiters are both lower case “k” and vice versa.

Key-in pictures are used specifically with STRING, PSTRING, and
CSTRING fields to allow custom field editing control and validation. Using
a key-in picture containing any of the alphabet indicators (@ ~ _)on a
numeric entry field produces unpredictable results.

CHAPTER 3 DECLARING VARIABLES

Using the Insert typing mode for a key-in picture could produce
unpredictable results. Therefore, key-in pictures always receive data entry in
Overwrite mode, even if the INS attribute is present.

Example:
Picture Value Entered Result String
@KAHHE - HE - THHHEK 215846377 215-84-6377
@KFHHHHE | - HHEHEK 33064 33064
@KiHHHHE | - HHHEK 330643597 33064-3597
@K<F A FHEK 10AUG59 10 AUG 59
@K (#HHE) @@Q - JHE\ @HEK 305abc4555 (305)abc-45@55
@KAFHE/ 2 9HE - THEHEK 7854555 000/785-4555
@Kk <t HF Mk 530P 5:30PM
@K<F# <F°K 506 5' 6"

@KA#_HA-#K 1912 41gl1A-2

3-50 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

String Pictures

@Slength
@S All string pictures begin with @S.
length Determines the number of characters in the picture
format.

A string picture describes an unformatted string of a spdeiiigth

Example:
Name STRING(@S20) A 20 character string field

CHAPTER 3 DECLARING VARIABLES

Compiler Directives

EQUATE (assign label)

| label |
label EQUATE(| constant |)

| picture |

| type I

EQUATE
label

constant

picture

type

Assigns a label to another label or constant.

Thelabel of any statement preceding the EQUATE
statement. This is used to declare an alternate statement
label.

A numeric or stringconstant This is used to declare a
shorthand label for a constant value. It also makes a
constant easy to locate and change.

A picturetoken. This is used to declare a shorthand label
for a picture token. However, the screen and report
formatter in the Clarion Editor will not recognize the
equated label as a valid picture.

A data type. This is usually used to declare a single
method of declaring a variable as one of several data
types. depending upon compiler settings (like a C++
typedef for a simple data type).

TheEQUATE directive assigns a label to another label or constant. It does
not use any run-time memory. The label of an EQUATE directive cannot be
the same as its parameter.

Example:
Init EQUATE(SetUpProg)
off EQUATE(O)
On EQUATE(1)
PI EQUATE(3.1415927)

1Set alias Tabel
10ff means zero
!On means one

!The value of PI

EnterMsg EQUATE(‘Press Ctrl-Enter to SAVE’)
SocSecPic EQUATE (@PHHHE-#HE-1HHHP) 1Soc-sec number picture

OMIT(‘Endl16BitChk’,Fl1ag32Bit
SIGNED EQUATE(LONG)
End16BitChk

OMIT(‘End32BitChk’,Flag32Bit
SIGNED EQUATE(SHORT)
End32BitChk

See Also: Reserved Words

=0 IOMIT if 32-bit compile is turned off
ISIGNED = LONG in a 32-bit compile

1) IOMIT if 32-bit compile is turned on
ISIGNED = SHORT in a 16-bit compile

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SIZE (memory size in bytes)

Example:

| variable |
SIZE(| constant |)
| picture |
SIZE Supplies the amount of memory used for storage.
variable The label of a previously declared variable.
constant A numeric or string constant.
picture A picture token.

SIZE directs the compiler to supply the amount of memory (in bytes) used
to store thevariable constant or picture.

SavRec STRING(1),DIM(SIZE(Cus:Record)
IDimension the string to size of record

StringVar STRING(SIZE(‘Clarion Software, Inc.’))
A string long enough for the constant

LOOP I# = 1 TO SIZE(ParseString) ILoop for number of bytes in the string

Piclen = SIZE(@P ({HHE)HHHE-{HHHP) 1Save size of the picture

CHAPTER 4

EXPRESSIONS AND ASSIGNMENTS 4-1

Expressions Contents |

An expression is a mathematical, string, or logical formula that produces a
value. An expression may be the source variable of an assignment statement
a parameter of a procedure or function, a subscript of an array (a
dimensioned variable), or the condition of an IF, CASE, LOOP, or

EXECUTE structure. Expressions may contain constant values, variables,
and function calls connected by logical and/or arithmetic or string operators.

Expression Evaluation

Expressions are evaluated in the standard algebraic order of operations. The
precedence of operations is controlled by operator type and placement of
parentheses. Each operation produces an (internal) intermediate value used
in subsequent operations. Parentheses may be used to group operations
within expressions. Expressions are evaluated beginning with the inner-most
set of parentheses and working through to the outer-most set.

Precedence levels for expression evaluation, from highest to lowest, are:

Levell () Parenthetical Grouping

Level2 - Unary Minus (Negative sign)

Level 3 function call Gets the RETURN value

Level4 ~ Exponentiation

Level5 */% Multiplication, Division, Modulus Division
Level6 + - Addition, Subtraction

Level 7 & Concatenation

Level8 =<> Logical Comparisons

Level 9 AND, NOT, OR Boolean expressions

Expressions may produce numeric values, string values, or logicesv
(true/false evaluation). An expression may contain no operators at all; it may
be a single variable, constant value, or function call.

Arithmetic Operators

An arithmetic operator combines two operands arithmetically to produce an
intermediate value. The operators are:

Addition (A + B gives the sum of A and B)

Subtraction (A B gives the difference of A and B)

Multiplication (A * B multiples A by B)

Division (A/ B gives divides A by B)

Exponentiation (X* B gives A raised to power of B)

% Modulus Division (A% B gives the remainder of A divided by B)

>~ %1 4

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Logical Operators

A logical operator compares two operands or expressions and produces a
true or false condition. There are two types of logical operators: conditional
and Boolean. Conditional operators compare two values or expressions.
Boolean operators connect string, numeric, or logical expressions together to
determine true-false logic. Operators may be combined to create complex

operators.
Conditional Operators = Equal sign
< Less than
> Greater than

Boolean Operators NOT Boolean NOT
~ Tilde (Logical NOT)
AND Boolean AND
OR Boolean OR
XOR Boolean XOR (eXclusive OR)

Combined operators <> Not equal
~= Not equal
NOT = Not equal
<= Less than or equal to

=< Less than or equal to
~> Not greater than

NOT > Not greater than

>= Greater than or equal to
=> Greater than or equal to
~< Not less than

NOT < Not less than

During logical evaluation, any non-zero value indicates a true condition, and
a null (blank) string or zero value indicates a false condition.

Example:
Logical Expression Result
A=8B True when A is equal to B
A<B True when A is less than B
A>B True when A is greater than B
A <> B, A~ B, ANOT =B True when A is not equal to B
A ~< B, A > B, ANOT < B True when A is not less than B
A ~> B, A<= B, ANOT >B True when A is not greater than B
~ A, NOT A True when A is null or zero
A AND B True when A is true and B is true
A OR B True when A is true, or B is true, or both are true
A XOR B True when A is true or B is true, but not both.

CHAPTER 4

EXPRESSIONS AND ASSIGNMENTS

Numeric Constants

Example:

-924
76.346

Numeric constants are fixed numeric values. They may occur in data
declarations, in expressions, and as parameters of procedures, functions, or
attributes. A numeric constant may be represented in decimal (base 10—the
default), binary (base 2), octal (base 8), hexadecimal (base 16), or scientific
notation formats. Formatting characters, such as dollar signs and commas,
are not permitted in numeric constants.

Decimal (base ten) numeric constants may contain an optional leading

minus sign (hyphen character), an integer, and an optional decimal with a
fractional component. Binary (base two) numeric constants may contain an
optional leading minus sign, the digits 0 and 1, and a terminating B or b
character. Octal (base eight) numeric constants contain an optional leading
minus sign, the digits 0 through 7, and a terminating O or o character.
Hexadecimal (base sixteen) numeric constants contain an optional leading
minus sign, the digits 0 through 9, alphabet characters A through F
(representing the numbers 10 through 15) and a terminating H or h character.
If the left-most character is a letter A through F, a leading zero must be used.

IDecimal constants

1011b IBinary constants

-10001108B

34030 !0ctal constants

-70413120
-1FFBh
OCD1F74FH

IHexadecimal constants

Numeric Expressions

Example:

Count + 1

(1 -

N * N)

Numeric expressions may be used as parameters of procedures or functions,
the condition of IF, CASE, LOOP, or EXECUTE structures, or as the source
portion of an assignment statement where the destination is a numeric
variable. A numeric expression may contain arithmetic operators and the
concatenation operator, but they may not contain logical operators. When
used in a numeric expression, string constants and lesiabe converted to
numeric intermediate values. If the concatenation operator is used, the
intermediate value is converted tomeric after the concatenation occurs.

'Add 1 to Count
/ R IN times N subtracted from 1 then divided by R

305 & 7854555 !Concatenate area code with phone number

See Also:

Data Conversion Rules

4-4 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

String Constants

A string constant is a set of characters enclosed in single quotes
(apostrophes). The maximum length of a string constant is 255 characters.
Characters that cannot be entered from the keyboard may be inserted into a
string constant by enclosing their ASCII character codes in angle brackets
(<>). ASCII character codes may be represented in decimal or hexadecimal
numeric constant format.

In a string constant, a left angle bracket (<) initiates a scan for a right angle
bracket. Therefore, to include a left angle bracket in a string constant
requires two left angle brackets in succession. To include an apostrophe as
part of the value inside a string constant requires two apostrophes in
succession. Two apostrophes ('), with no characters (or just spaces)
between them, represents a null, or blank, string. Consecutive occurrences o
the same character within a string constant may be representepay
countnotation. The number of times the character is to be repeated is placed
within curly braces ({ }) immediately following the character to repeat. To
include a left curly brace ({) as part of the value inside a string constant
requires two left curly braces ({{) in succession.

Example:
‘string constant’ A string constant
‘It’’s a girll” IWith embedded apostrophe
‘<27,15>° 'Using decimal ASCII codes
‘A KK B’ IWith embedded left angle, A < B
‘*{20}° !Twenty asterisks, repeat-count notation

'A null (blank) string

The Concatenation Operator

The concatenation operator (&) is used to append one string or variable to
another. The length of the result string is the sum of the lengths of the two
values being concatenated. Numeric data types may be concatenated with
strings or other numeric variables or constants. In many cases, the CLIP
function should be used to remove any trailing spaces from a string being
concatenated to another string.

Example:

CLIP(FirstName) & * * Initial & “. ° & LastName IConcatenate full name
‘Clarion Software’ & ‘, Inc.’ IConcatenate two constants

See Also: CLIP, Numeric Expressions, Data Conversion Rules

CHAPTER 4

EXPRESSIONS AND ASSIGNMENTS

String Expressions

Example:

StringVar
Name
Weight
Phone
CODE
StringVar

StringVar

StringVar

String expressions may be used as parameters of procedures, functions, and
attributes, or as the source portion of an assignment statement when the
destination is a string variable. String expressions may contain a single
string or numeric variable, or a complex combination of sub-expressions,
functions, and operations.

STRING(30)
STRING(10)
STRING(3)
LONG

= ‘Address:’ & Cus:Address !Concatenate a constant and variable
= ‘Phone:’ & ‘ 305-’ & FORMAT(Phone,@PiHE-1HHHIP)
IConcatenate constant valuess

! and FORMAT function’s return value

= Weight & “Tbs.’ !Concatenate a constant and variable

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Implicit String Arrays and String Slicing

In addition to their explicit declaration, all STRING, CSTRING and
PSTRING variables have an implicit array declaration of one character
strings, dimensioned by the length of the string. This is directly equivalent
to declaring a second variable as:

StringVar STRING(10)
StringArray STRING(1),DIM(SIZE(StringVar)),0VER(StringVar)

This implicit array declaration allows each character in the string to be
directly addressed as an array element, without the need of the second
declaration.

If the string also has a DIM attribute, this implicit array declaration is the
last (optional) dimension of the array (to the right of the explicit
dimensions). The MAXIMUM function does not operate on the implicit
dimension, you should use SIZE instead.

You may also directly address multiple characters within a string using the
“string slicing” technique. This technique performs a similar function to the
SUB function, but is much more flexible and efficient. It is more flexible
because a “string slice” may be used as eitheddiséinationor sourcesides

of an assignment statement, while the SUB function can only be used as the
source. It is more efficient because it takes less memory than either
individual character assignments or the SUB function.

To take a “slice” of the string, the beginning and ending character numbers
are separated by a colon (:) and placed in the implicit array dimension
position within the square brackets ([]) of the string. The position numbers
may be integer constants, variables, or expressions. If variables are used,
there must be at least one blank space between the variable name and the
colon separating the beginning and ending number (to prevent PREfix

confusion).
Example:

Name STRING(15)

CONTACT STRING(15),DIM(4)
CODE
Name = ‘Tammi’ IAssign a value
Name[5] = ‘y’ ! then change fifth letter
Name[6] = ‘s’ I then add a letter
Name[0] = “<6>’ ! and handle length byte
Name[5:6] = “ie’ ! and change a “slice”

' -- the fifth and sixth Tetters

Contact[1] = ‘First’ IAssign value to first element
Contact[1,2] ‘u’ IChange first element 2nd character

Contact[1,2:3] = Name[5:6] !Assign slice to first element 2nd & 3rd characters

See Also: STRING, CTRING, PSTRING

CHAPTER 4

EXPRESSIONS AND ASSIGNMENTS

Logical Expressions

Example:

Logical expressions evaluate true-false conditions in IF, LOOP UNTIL, and
LOOP WHILE control structures. Control is determined by the final result
(true or false) of the expression. Logical expressions are evaluated from left
to right. The right operand of an AND, OR, or XOR logical expression will
only be evaluated if it could affect the result. Parentheses should be used to
eliminate ambiguous evaluation and to control evaluation precedence. The
level or precedence for the logical operators is as follows:

Level 1
Level 2
Level 3
Level 4

LOOP UNTIL KEYBOARD()
I'some statements
END

IF A = B THEN RETURN.
LOOP WHILE ~ Donest

I'some statements
END

Conditional operators
~, NOT

AND

OR, XOR

ITrue when user presses any key

IRETURN if A is equal to B

ILoop while false (Done# = 0)

IF A >= B OR (C > B AND E = D) THEN RETURN.

True if a >= b, also true if

! both ¢ > b and e = d.

IThe second part of the expression

I (after OR) 1is evaluated only if the
I first part is not true.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Runtime Expression Strings

Clarion for Windows has the ability to evaluate Clarion language

expressions dynamically created at runtime, rather than at development time.
This allows a Clarion program to contruct expressions “on the fly.” This

also makes it possible to allow an end-user to enter the expression to
evaluate.

An expression is a mathematical or logical formula that produces a value; it
is not a complete Clarion language statement. Expressions may only contain
constant values, variables, or function calls connected by logical and/or
arithmetic operators. An expression may be used as the source side of an
assignment statement, a parameter of a procedure or function, a subscript of
an array (a dimensioned variable), or the conditions of IF, CASE, LOOP, or
EXECUTE structures.

Any program variable, and most of the internal Clarion functions, can be
used as part of a runtime expression string. User-defined functions that fall
within certain specific guidelines (described in the BIND statement
documentation) may also be used in runtime expression strings.

All of the standard Clarion expression syntax is available for use in runtime
expression strings. This includes parenthetical grouping and all the
arithmetic, logical, and string operators. Dynamic expressions are evaluated
just as any other Clarion expression and all the standard operator precedenc
level rules described in the Expression Evaluation section (see page 3) apply.

It takes three steps to use runtime expression strings:

. The variables that are allowed to be used in the expres-
sions must be explicitly declared with the BIND state-
ment.

. The expression must be built. This may involve concat-

enating user choices or allowing the user to directly type
in their own expression.

. The expression is passed to the EVALUATE function
which returns the result. If the expression is not a valid
Clarion expression, ERRORCODE is set.

Once the expression is evaluated, its result is used just as the result of any
hard-coded expression would be. For example, a runtime expression string
could provide a filter expression to eliminate certain records when viewing
or printing a database (the FILTER expression of a VIEW structure is an
implicit runtime expression string).

CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS

BIND (declare runtime expression string variable)

BIND(| name,variable |
| name,function |
I

)

| group
BIND Identifies variables allowed to be used in dynamic
expressions.
name A string constant containing the identifier used in the

dynamic expression. This may be the same as the
variable or functionlabel.

variable The label of any variable (including fields in FILE,
GROUP, or QUEUE structures) or passed parameter. If it
is an array, it must have only one dimension.

function The label of a Clarion language FUNCTION that returns
a STRING, REAL, or LONG value. If parameters are
passed to the function, they must be STRING value-
parameters (passed by value, not by address).

group The label of a GROUP, RECORD, or QUEUE structure
declared with the BINDABLE attribute.

TheBIND statement declares the logical name used to identify a variable or
user-defined function in runtime expression strings. A variable or user-
defined function must be identified with the BIND statement before it can be
used in an expression string.

BIND(name,variablg
The specifiechameis used in the expression in place of
the label of thevariable

BIND(name,functioh
The specifiechameis used in the expression in place of
the label of thdéunction

BIND(group) Declares all the variables within the GROUP, RECORD,
or QUEUE (with the BINDABLE attribute) available for
use in a dynamic expression. The contents of each
variable’'s NAME attribute is the logical name used in
the dynamic expression. If no NAME attribute is
present, the label of the variable (including prefix) is
used.

A GROUP, RECORD, or QUEUE structure declared with the BINDABLE
attribute has space allocated in the .EXE for the names of all of the data
elements in the structure. This creates a larger program that uses more
memory than it normally would. Also, the more variables that are bound at
one time, the slower the EVALUATE function will work. Therefore,
BIND(group) should only be used when a large proportion of the constituent
fields are going to be used.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:
PROGRAM
MAP
AT1CapsFunc(STRING),STRING IClarion function
END
Header FILE,DRIVER(“CTarion’),PRE(Hea) !Declare header file Tayout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY (Hea:0rderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)
Detail FILE,DRIVER(‘CTarion’),PRE(Dt1),BINDABLE IBindable RECORD structure
OrderKey KEY(Dt1:0rderNumber)
Record RECORD
OrderNumber LONG
Item LONG
Quantity SHORT
CODE
BIND(‘ShipName’,Hea:ShipToName) !BIND a single variable
BIND(Dt1:Record) IBIND a RECORD structure
BIND(‘SomeFunc’,AT1CapsFunc) IBIND a Clarion Tanguage function

IF EVALUATE(‘ShipName = SomeFunc(ShipName)”)
MESSAGE(“Name 1is in ALL CAPS’)
END

Al1CapsFunc FUNCTION(PassedString)

CODE
RETURN(UPPER(PassedString))

See Also: UNBIND, EVALUATE

CHAPTER 4

EXPRESSIONS AND ASSIGNMENTS

UNBIND (free runtime expression string variable)

Example:

See Also:

UNBIND([name])

UNBIND Frees variables from use in runtime expression strings.

name A string constant that specifies the identifier used by the
dynamic expression evaluator. If omitted, all bound
variables are unbound.

TheUNBIND statement frees logical names previously bound by the BIND
statement. The more variables that are bound at one time, the slower the
EVALUATE function works. Therefore, UNBIND should be used to free all
variables and user-defined functions not currently available for use in
runtime expression strings.

PROGRAM
MAP
Al11CapsFunc(STRING),STRING IClarion function

END
Header FILE,DRIVER(‘Clarion’),PRE(Hea) !Declare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY (Hea:0rderNumber)

Record RECORD
AcctNumber LONG
OrderNumber LONG

ShipToName STRING(20)

ShipToAddr STRING(20)

ShipToCity STRING(20)

ShipToState STRING(20)

ShipToZip STRING(20)

Detail FILE,DRIVER(‘CTarion’),PRE(Dt1),BINDABLE IBindable RECORD structure
OrderKey KEY(Dt1:0rderNumber)

Record RECORD

OrderNumber LONG

Item LONG

Quantity SHORT

CODE

BIND(‘ShipName’,Hea:ShipToName)
BIND(Dt1:Record)
BIND(‘SomeFunc’,Al1CapsFunc)

UNBIND(‘ShipName’) IUNBIND the variable

UNBIND(‘SomeFunc’) TUNBIND the Clarion language function

UNBIND TUNBIND all bound variables
Al1CapsFunc FUNCTION(PassedString)

CODE

RETURN(UPPER(PassedString))

BIND, EVALUATE

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

EVALUATE (return runtime expression string result)

EVALUATE(expression)
EVALUATE Evaluates runtime expression strings.
expression A string constant or variable containing the expression to

Return Data Type:

Errors Posted:

Example:

See Also:

evaluate.

The EVALUATE function returns the result of tleepressioras a STRING
value. If theexpressiordoes not meet the rules of a valid Clarion expression,
the result will be a null string, and the ERRORCODE function is set.

The more variables are bound at one time, the slower the EVALUATE
function works. Therefore, BINDfoup) should only be used when most of
thegroup’sfields are needed, and UNBIND should be used to free all
variables and user-defined functions not curremyuired for use in
dynamic expressions.

STRING

800 lllegal Expression
801 Variable Not Found

PROGRAM
MAP
A11CapsFunc(STRING),STRING IClarion function
END
Header FILE,DRIVER(‘Clarion’),PRE(Hea),BINDABLE IDeclare header file layout
AcctKey KEY(Hea:AcctNumber)
OrderKey KEY(Hea:0rderNumber)
Record RECORD
AcctNumber LONG
OrderNumber LONG
ShipToName STRING(20)
ShipToAddr STRING(20)
ShipToCity STRING(20)
ShipToState STRING(20)
ShipToZip STRING(20)
StringVar STRING(20)
CODE

BIND(‘ShipName’,Hea:ShipToName)
BIND(‘SomeFunc’,Al11CapsFunc)

StringVar

= ‘SMITH’

IF EVALUATE(‘StringVar = SomeFunc(ShipName)’)
DO SmithProcess

END
All1CapsFunc
CODE

FUNCTION(PassedString)

RETURN(UPPER(PassedString))

BIND, UNBIND

CHAPTER 4

EXPRESSIONS AND ASSIGNMENTS

Assignment Statements

Simple Assignment Statements

Example:

See Also:

destination = source
destination The label of a variable or data structure property.
source A numeric or string constant, variable, function, expres-

sion, or data structure property.

The= sign assigns the value sburceto thedestination it copies the value
of thesourceexpression into theestinationvariable. Ifdestinationand
sourceare different data types, the value tlestinationreceives from the
sourceis dependent upon the Data Conversion Rules.

Name = ‘JONES’ !Variable = string constant

PI = 3.14159 !Variable = numeric constant

Cosine = SQRT(1 - Sine * Sine) IVariable = function return value

A=B+C+3 !Variable = numeric expression

Name = CLIP(FirstName) & ° * Initial & ‘. ° & LastName

!Variable = string expression

Data Conversion Rules

Operating Assignment Statements

Example:

destination
destination
destination
destination
destination
destination

+= source
-= source
= source
/= source
A= source
%= source
destination Must be the label of a variable. This may not be any type
property (window, control, report, etc.).
source A constant, variable, function, or expression.

Operating assignment statements perform their operation ateghieation
andsource assigning the result to thiestination Operating assignment
statements are more efficient than their equivalent operations.

Operating Assignment Functional Equivalent

A+=1 A=A+1
A-=8 A=A-B
A *= -5 A=A=*-5
A /=100 A=A/ 100
Ar=T1+1 A=A (I +1)
A %=7 A=A%7

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Deep Assignment Statements

destination

= source
destination The label of a GROUP, RECORD, or QUEUE data
structure, or an array.
source The label of a GROUP, RECORD, or QUEUE data

structure, or a numeric or string constant, variable,
function, or expression.

The:=: sign executes a deep assignment statement which performs multiple
individual component variable assignments from one data structure to
another. The assignments are only performed between the variables within
each structure that have exactly matching labels, ignoring all prefixes. The
compiler looks within nested GROUP structures to find matching labels.
Any variable in thedestinationwhich does not have a label exactly matching

a variable in thesource is not changed.

Deep assignments are performed just as if each matching variable were
individually assigned to its matching variable. This means that all normal
data conversion rules apply to each matching variable assignment. For
example, the label of a nesteourceGROUP may match a nested
destinationGROUP or simple variable. In this case, the nestenice
GROUP is assigned to tlgestinationas a STRING, just as normal GROUP
assignment is handled.

The name of dourcearray may match destinationarray. In this case, each
element of thesourcearray is assigned to its corresponding element in the
destinationarray. If thesourcearray has more or fewer elements than the
destinationarray, only the matching elements are assigned to the
destination

If the destinationis an array variable that is not part of a GROUP,
RECORD, or QUEUE, and theourceis a constant, variable, or expression,
then each element of tloestinationarray is initialized to the value of the
source This is a much more efficient method of initializing an array to a
specific value than using a LOOP structure and assigning each element in
turn.

CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS

Example:

Groupl GROUP

S SHORT

L LONG
END

Group2 GROUP

L SHORT

S REAL

T LONG
END

ArrayField SHORT,DIM(1000)

CODE
Group2 :=: Groupl ITs equivalent to:

' Group2:S = Groupl:S

I Group2:L = Groupl:L

! and performs all necessary data conversion
ArrayField :=: 7 I'Ts equivalent to:

! LOOP I# =1 to 1000
! ArrayField[I#] = 7
! END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Reference Assignment Statements

Example:

See Also:

destination &= source

destination The label of a reference variable.

source The label of another reference variable of the same type
as thedestination or the label of a variable or data
structure of the type referenced by testination This
cannot be an expression, only a data label.

The &= sign executes a reference assignment statement which assigns to the
destinationreference variable the reference togbarcevariable.

Depending upon the data type, ttestinationreference variable may

receive thesource’smemory address, or a more complex internal data
structure (describing the location and typesofircedata).

The declarations of théestinationreference variable and gsurcemust
match exactly; reference assignment does not perform automatic type
conversion. For example, a reference assignment statemedétirzation
declared as &QUEUE must haveaurcethat is either another &QUEUE
reference variable, or the label of a QUEUE structure.

Queuel QUEUE
ShortVar SHORT
LongVarl LONG
LongVar2 LONG
END
QueueRef &QUEUE IReference a QUEUE, only
LongRef &LONG IReference a LONG, only
CODE
QueueRef &= Queuel IAssign QUEUE reference
IF SomeCondition lEvaluate some condition
LongRef &= Queuel:LongVarl ! and reference an appropriate variable
ELSE
LongRef &= Queuel:LongVar2
END
LongRef += 1 IIncrement either LongVarl or LongVar2

! depending upon which variable is referenced

Reference Variables

CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS

CLEAR (clear a variable)
CLEAR(/abel [,n])
CLEAR Clears any value from a variable.
label The label of a variable.
n A numeric constant; 1 or -1. This parameter indicates a

cleared value other than zero or blank i§ 1, the
variable is set to the highest possible value for that data
type. For STRING, PSTRING and CSTRING, that is
ASCII 255. Ifnis -1, the variable is set to the lowest
possible value for that data type. For STRING,
PSTRING and CSTRING, that is ASCII 0.

TheCLEAR statement clears any value from khleel variable. Ifn is

omitted, numeric varidbs are cleared to zero, and string variables are

cleared to spaces. If thebel parameter is a GROUP, RECORD, or QUEUE
structure name, all variables in the structure are cleared. If the variable has a
DIM attribute, the entire array is cleared. A single element of an array

cannot be CLEARed.

Example:
CLEAR(Count) IClear a variable
CLEAR(Cus:Record) IClear the record structure
CLEAR(Amount,1) IClear variable to highest possible value

CLEAR(Amount,-1) IClear variable to Towest possible value

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Data Conversion Rules

BaseTypes

The Clarion language provides automatic conversion between data types.
However, some assignments can produce an unequal source and destination
Assigning an “out of range” value can produce unpredictable results.

To facilitate this automatic data type conversion, Clarion internally uses four
Base Types to which all data items are automatically converted when any
operation is performed on the data. These types are: STRING, LONG,
DECIMAL, and REAL.These are all standard Clarion data types.

The STRING Base Type is used as the intermediate type for all string
operations. The LONG, DECIMAL, and REAL Base Types are used in all
arithmetic operations. Which numeric type is used, amenyis detenined

by the original data types of the operands and the type of operation being
performed on them.

The “normal” Base Type for each data type is:

Base Type LONG:
BYTE

SHORT

USHORT

LONG

DATE

TIME

Integer Constants

Base Type DECIMAL:
ULONG
DECIMAL
PDECIMAL
STRING(@NX.y)
Decimal Constants

Base Type REAL:
SREAL
REAL
BFLOAT4
BFLOAT8
STRING(@EX.y)
Scientific Notation Constants
Untyped (? and *?) Parameters

Base Type STRING:
STRING
CSTRING
PSTRING
String Constants

DATE and TIME data types are first converted to Clarion Standard Date and
Clarion Standard Time intermediate values and have a LONG Base Type for

CHAPTER 4

EXPRESSIONS AND ASSIGNMENTS

all operations.

For the most part, Clarion’s internal use of these Base Types is transparent tc
the programmer and do not require any consideration when planning
applications. However, for business programming with numeric data
containing fractional portions (currency, for instance), using data types that
have the DECIMAL Base Type has some significant advantages over REAL
Base Types.

. DECIMAL supports 31 significant digits of accuracy for
data storage while REAL only supports 15.
. DECIMAL automatically rounds to the precision

specified by the data declaration, while REAL can create
rounding problems due to the transalation of decimal
(base 10) numbers to binary (base 2) for processing by
the CPU’s Floating Point Unit (or Floating Point emula-
tion software).

. On machines without a Floating Point Unit, DECIMAL
is substantially faster than REAL.
. DECIMAL operations are closely linked with conven-

tional (decimal) arithmetic.

BCD Operations and Functions

Clarion has a Binary Coded Decimal (BCD) library of operations and
functions that execute in a manner similar to the manner in which decimal
arithmetic is performed on paper. These operations use internal intermediate
values with 31 digits accuracy on both sides of the decimal point.

The big advantage of the BCD operations is that it is very easy to “see” what
is happening because they execute just as you would with pencil and paper.
Simply imagine doing the computation long hand and throwing away
numbers that go off the end of the page (rounding to the right).

Having 31 fixed decimal places either side of the decimal point there are
numbers that cannot be represented in a BCD system which can be
represented by a REAL. Therefore, understanding what is going on is useful.

Generally, the only cases where underflow will affect you is in division
operations, usually when dividing by a multiple of 3. For example:

100000/3 = 33333.3333333333333333333333333333333
(100000/3)-INT(100000/3)*100000 = 33333.3333333333333333333333333300000

BCD computation times are very data sensitive; the time taken is
proportional to how long the computation would take you by hand.
Therefore, the longer the numbers involved, the longer the execution times.
However, standard “tricks of the trad@uch as multiplying by a power of

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ten by shifting the decimal point) are spotted, making the BCD libraries fast
in real world applications.

The following operations may execute as BCD operations:

Addition (+), Subtraction (-), Multiplication (*)
Performed as a BCD operation when neither operand has
a REAL Base Type (both are LONG or DECIMAL) and
one has the DECIMAL Base Type. Any digits appearing
to the right of 1e31 disappear (wrap), and any to the left
of 1e-30 are rounded up.

Division (/) Performed as a BCD operation when neither operand has
a REAL Base Type (both are LONG or DECIMAL).
Any digits appearing to the right of 1e31 disappear
(wrap), and any to the left of 1e-30 are rounded up.

Exponentiation (*) Performed as a BCD operation when the first operand is
a DECIMAL or LONG Base Type and the second
operand is a LONG Base Type. Any digits appearing to
the right of 1e31 disappear (wrap), and any to the left of
1le-30 are rounded.

ABS() Removes the sign from a DECIMAL variable or inter-
mediate value and returns the DECIMAL value.

INT() Truncates a DECIMAL intermediate value and returns a
DECIMAL value.

ROUND() If the second parameter is a LONG or DECIMAL Base

Type, then rounding is performed as a BCD operation
which returns a DECIMAL value. ROUND is very
efficient as a BCD operation and should be used to
compare REALs to DECIMALs at decimal width.

Type Conversion and Intermediate Results

Internally, a BCD intermediate result may have up to 31 digits of accuracy
on both sides of the decimal point, so any two DECIMALSs can be added
with complete accuracy. Therefore, storage from BCD intermediate results
to a data type can result in loss of precision. This is handled as follows :

Decimal(x,y) = BCD
First the BCD value is rounded to y decimal places. If
the result overflows x digits then leading digits are
removed (this corresponds to “wrapping around” a
decimal counter).

Integer = BCD Any digits to the right of the decimal point are ignored.
The decimal is then converted to an integer with com-
plete accuracy and then taken modulo 2/32.

CHAPTER 4

EXPRESSIONS AND ASSIGNMENTS

String(@Nx.y) = BCD
The BCD value is rounded to y decimal places, the
result is fitted into the pictured string. If overflow
occurs, an invalid picture (####) results.

Real = BCD The most significant 15 digits are taken and the decimal
point ‘floated’ accordingly.

For those operations and functions that do not support DECIMAL types, the
DECIMAL is converted to REAL first. In cases where more than 15 digits
were available in the DECIMAL value, there is a loss of accuracy.

Note: Untyped parameters have an implicit REAL Base Type, therefore
DECIMAL Base Type data passed as an Untyped Parameterswill only
have 15 digits of precision. DECIMAL Base Types can be passed as
*DECIMAL parameters with no loss of precision.

When EVALUATEIng a expression (or processing a VIEW FILTER)
the REAL Base Type is used.

Simple Assignment Data Conversion

BYTE =

The rules of simple assignment data conversion from source into destination
are as follows:

(SHORT, USHORT, LONG, or ULONG)

The destination receives the low-order 8 bits of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS, or BFLOAT4)
The source is first converted to a LONG, which truncates
any decimal portion, then the destination receives the
low-order 8 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no formatting
characters. The source is converted to a LONG, which
truncates any decimal portion, then the dettina
receives the low-order 8 bits of the LONG.

4-22

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SHORT =

USHORT =

LONG =

BYTE The destination receives the value of the source.

(USHORT, LONG, or ULONG)
The destination receives the low-order 16 bits of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS8, or BFLOAT4)
The source is first converted to a LONG, which truncates
any decimal portion, then the destination receives the
low-order 16 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no formatting
characters. The source is first converted to a LONG,
which truncates any decimal portion, then the destina-
tion receives the low-order 16 bits of the LONG.

BYTE The destination receives the value of the source.

(SHORT, LONG, or ULONG)
The destination receives the low-order 16 bits of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS8, or BFLOAT4)
The source is first converted to a LONG, which truncates
any decimal portion, then the destination receives the
low-order 16 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
LONG, which truncates any decimal portion, then the
destination eceives the low-order 16 bits of the LONG.

(BYTE, SHORT, USHORT, or ULONG)
The destination receives the value and the sign of the
source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS, or BFLOAT4)
The destination receivélle value of the source, includ-
ing the sign, up to* If the number is greater thaft,2
the destinationaceives the result of modul&2Any
decimal portion is truncated.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
REAL, which is then converted to the LONG.

CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS

DATE = (BYTE, SHORT, USHORT, or ULONG)
The destination receives the Btrieve format for the
Clarion Standard Date for the value of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS8, or BFLOAT4)
The source is first converted to a LONG as a Clarion
Standard Date, which truncates any decimal portion,
then the destination receives the Btrieve format for the
Clarion Standard Date.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
LONG as a Clarion Standard Date, which truncates any
decimal portion, then the destination receives the Btrieve
format for the Clarion Standard Date.

TIME = (BYTE, SHORT, USHORT, or ULONG)
The destination receives the Btrieve format for the
Clarion Standard Time for the value of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS, or BFLOAT4)
The source is first converted to a LONG as a Clarion
Standard Time, which truncates any decimal portion,
then the destination receives the Btrieve format for the
Clarion Standard Time.

(STRING, CSTRING, PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
LONG as a Clarion Standard Time, which truncates any
decimal portion, then the destination receives the Btrieve
format for the Clarion Standard Time.

ULONG = (BYTE, SHORT, or USHORT)
The source is first converted to a LONG, then the
destination eceives the entire 32 bits of the LONG.

LONG The destination receives the entire 32 bits of the source.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS, or BFLOAT4)
The source is first converted to a LONG, which truncates
any decimal portion, then the destination receives the
entire 32 bits of the LONG.

(STRING, CSTRING, or PSTRING)
The source must be a numeric value with no embedded
formatting characters. The source is first converted to a
LONG, which truncates any decimal portion, then the
destination eceives the entire 32 bits of the LONG.

REAL =

SREAL =

BFLOATS =

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the full integer portion and the
sign of the source.

(DECIMAL, PDECIMAL, SREAL, BFLOATS, or BFLOAT4)
The destinationaceives the sign, integer portion, and
the decimal portion of the source.

(STRING, CSTRING, PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional
portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

(BYTE, SHORT, USHORT, LONG, or ULONG)

The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional
portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

CHAPTER 4 EXPRESSIONS AND ASSIGNMENTS

BFLOAT4 = (BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and value of the
source.

(DECIMAL, PDECIMAL, or REAL)
The destination receives the sign, integer, and fractional
portion of the source.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

DECIMAL = (BYTE, SHORT, USHORT, LONG, ULONG, or PDECIMAL)
The destination receives the sign and the value of the
source, wrapping or rounding as appropriate.

(REAL, or SREAL)
The destinationeaceives the sign, integer, and the high
order part of the fraction from the source. The high order
fractional portion is rounded in the destination.

(STRING, CSTRING, PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

PDECIMAL = (BYTE, SHORT, USHORT, LONG, ULONG, or DECIMAL)
The destination receives the sign and the value of the
source, wrapping or rounding as appropriate.

(REAL, SREAL, BFLOATS, or BFLOAT4)
The destinationeaceives the sign, integer, and the high
order part of the fraction from the source. The high order
fractional portion is rounded in the destination.

(STRING, CSTRING, or PSTRING)
The source must be a numeric string value with no
embedded formatting characters. The destination re-
ceives the sign, integer, and decimal portion of the
number. Trailing spaces are ignored.

4-26

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

STRING =

CSTRING =

PSTRING =

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS, or BFLOAT4)
The destination receives the sign, integer, and fractional
portion of the source (rounded into the string’s picture
format). The value is left justéd in the destination.

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS, or BFLOAT4)
The destination receives the sign, integer, and fractional
portion of the source (rounded into the string’s picture
format). The value is left justéd in the destination.

(BYTE, SHORT, USHORT, LONG, or ULONG)
The destination receives the sign and the unformatted
number. The value is left justified in the destination.

(DECIMAL, PDECIMAL, REAL, SREAL, BFLOATS, or BFLOAT4)
The destination receives the sign, integer, and fractional
portion of the source (rounded into the string’s picture
format). The value is left justéd in the destination.

CHAPTER 5 CONTROL STATEMENTS 5-1

Control Structures Contents |

CASE (selective execution structure)

CASE condition
OF expression [TO expression]

Initiates a selective execution structure.
A numeric or string variable or expression.

The statementdollowing anOF are executed when the
expressiorfollowing the OF option is equal to the
conditionof the CASE. There may be many OF options
in a CASE structure.

A numeric or string constant, variable, or expression.

TO allows a range of values in an OF or OROF. The
statement$ollowing the OF (or OROF) are executed if
the value of theonditionfalls within the inclusive range
specified by thexpressionsTheexpressiorfollowing

OF (or OROF) must contain the lower limit of the range.
The expressiorfollowing TO must contain the upper

limit of the range.

The statementdollowing anOROF are executed when
either theexpressiorfollowing the OROF or the OF
option is equal to theonditionof the CASE. There may
be many OROF options associated with one OF option.
An OROF may optionally be put on a separate line. An
OROF does not terminate precedstgtementgroups,

so control “falls into” the OROBtatements

The statementsollowing ELSE are executed when all
preceding OF and OROF options have been evaluated as
not equivalent. ELSE is not required; however, when
used, it must be the last option in the CASE structure.

Statements
[OROF expression [TO expression | |
Statements
[ELSE]
Statements
END
CASE
condition
OF
expression
TO
OROF
ELSE
statements

Any valid Clarion excutable source code.

A CASE structure selectively executsmtementbased on equivalence
between theonditionandexpressioror range okexpressionsCASE
structures may be nested within other executable structures and other
executable structures may be nested within CASE structures. The CASE
structure must terminate with an END statement (or period).

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

CASE ACCEPTED()

OF ?Name
ERASE(?Address,?Zip)
GET(NameFile,NameKey)

CASE Action
0F 1
IF NOT ERRORCODE()
ErrMsg = ‘ALREADY ON FILE’
DISPLAY(?Address,?Zip)
SELECT(?Name)
END
OF 2 OROF 3
DISPLAY(?Address,?Zip)
END

CASE Name[1l]

OF ‘A’ TO ‘M’

OROF ‘a’” T0 ‘m’
DO FirstHalf

OF “N T0 “Z’ OROF ‘n” TO ‘z’
DO SecondHalf

END

OF ?Address
DO AddressVal
END

lEvaluate field edit routine
IIf field is Name

! erase Address through Zip
! get the record

Evaluate Action

I adding record - does not exist

! should be a file error

! otherwise display error message
! display address through zipcode
! re-enter the name

I change or delete - record exists
! display address through zipcode
! end case action

!Get first Tetter of name
!Process first half of alphabet

IProcess second half of alphabet
1End case sub(name
IIf field is address

! call validation routine
1End case accepted()

CHAPTER 5 CONTROL STATEMENTS

EXECUTE (statement execution structure)

EXECUTE expression
statement 1
statement 2

[BEGIN
statements
END]
Statement n
END
EXECUTE Initiates a single statement execution structure.
expression A numeric expression or a variable that contains a
numeric integer.
statement 1 A single statement that executes only wherettpges-
sionis equal to 1.
statement 2 A single statement that executes only wherettpes-
sionis equal to 2.
BEGIN BEGIN marks the beginning of a structure containing a

number of lines of code. The BEGIN structure will be
treated as a single statement by the EXECUTE structure.
The BEGIN structure is terminated by a period or the
keyword END.

statement n A single statement that executes only wherettpes-
sionis equal tan.

An EXECUTE structure selects a single executable statement (or executable
code structure) based on the value ofdkpressionThe EXECUTE
structure must terminate with an END statement (or period).

If theexpressiorequals 1, the first statemeistdtement Jlexecutes. If
expressiorequals 2, the second statemestatement Rexecutes, and so on.
If the value of theexpressions zero, or greater than the total number of
statements (or structures) within the EXECUTE structure, program
execution continues with the next statement following the EXECUTE
structure.

EXECUTE structures may be nested within other executable structures.
Other executable structures (IF, CARBOP, EXECUTE, and BEGIN)
may be nested within an EXECUTE.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

EXECUTE Transact lEvaluate Transact
ADD(Customer) lExecute if Transact =1
PUT(Customer) lExecute if Transact = 2
DELETE(Customer) lExecute if Transact = 3

END End execute

EXECUTE CHOICE() lEvaluate CHOICE() function
OrderPart lExecute if CHOICE() =1
BEGIN lExecute if CHOICE() = 2

SavVendor” = Vendor

UpdVendor

IF Vendor <> SavVendor”

Mem:Message = ‘VENDOR NAME CHANGED’

CASE VendorType IExecute if CHOICE() = 3
OF 1

UpdPartNol
0F 2

UpdPartNo?2
END
RETURN lExecute if CHOICE() = 4

END 'End execute

See Also: BEGIN

CHAPTER 5 CONTROL STATEMENTS

IF (conditional execution structure)

Example:

IF logical expression [THEN]
Statements

[ELSIF logical expression [THEN]
statements |

[ELSE
statements |
END

IF Initiates a conditional statement execution structure.

logical expression A numeric or string variable, expression, or function. A
logical expressiorevaluates a condition. Control is
determined by the result (true or false) of the expression.
A zero (or blank) value evaluates as false, anything else
is true.

THEN The statementdollowing THEN are executed when the
precedindogical expressiors evaluated as true. If used,
THEN must only be placed on the same line askher
ELSIF.

statements An executable statement, or a sequence of executable
statements.

ELSIF Thelogical expressiorollowing anELSIF is evaluated
only when all preceding~ or ELSIF conditions were
evaluated as false.

ELSE The statements$ollowing ELSE are executed when all
precedindF andELSIF options were evaluated as
false. ELSE is not required, however, when it is used, it
must be the last option in the IF structure.

An IF structure controls program execution based on the outcome of one or

morelogical expressiondF structures may have any number of ELSIF

statement groups. IF structures may be “nested” within other executable
structures. Other executable structures may be nested within an IF structure.

Each IF structure must terminate with an END statement (or period).

IF Cus:TransCount =1 !'Tf new customer
AcctSetup ! call account setup procedure
ELSIF Cus:TransCount > 10 AND Cus:TransCount < 100 !If regular customer
DO RegularAcct ! process the account
ELSIF Cus:TransCount > 100 IIf special customer
DO SpecialAcct ! process the account
ELSE !0therwise
DO NewAcct ! process the account

IF Cus:Credit THEN CheckCredit ELSE CLEAR(Cus:CreditStat).
I verify credit status
END

IF ERRORCODE() THEN ErrHandler(Cus:AcctNumber,Trn:InvoiceNbr). !Handle errors

5-6

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

LOORP (iteration structure)

LOOP [| count TIMES
| i = initial TO limit[BY step]

END

|
| UNTIL /ogical expression |
I

| WHILE logical expression
statements

LOOP
count

TIMES
i

initial
TO
limit

BY
step

UNTIL
WHILE

logical expression

statements

Initiates an iterative statement execution structure.

A numeric constant, variable, or expression that deter-
mines the number of TIMES tistatementsn the LOOP
are executed.

Executesountnumber of iterations of theatements

The label of a variable which is automatically
incremented on each iteration of the LOOP.

Assigns a new value to the incremen) {ariable for
each cycle of the LOOP.

A numeric constant, variable, or expression that specifies
the initial value assigned to the increment variable (
on the first pass through the LOOP structure.

A syntax conjunctive for themit parameter.

Wheni is greater thatimit, the LOOP structure control
sequence terminates.

A syntax conjunctive for thetepparameter.

A numeric constant, variable, or expression. $tep
determines the quantity by which theariable incre-
ments on each iteration of the LOOP. If the B¢ép
parameter is omittedincrements by 1.

Evaluates théogical expressiomefore each iteration of
the LOOP. If thdogical expressiomvaluates to true, the
LOOP control sequence terminates.

Evaluates théogical expressiomefore each iteration of
the LOORP. If thdogical expressiomvaluates to false,
the LOOP control sequence terminates.

A numeric or string variable, expression, or function. A
logical expressiorevaluates a condition. Control is
determined by the result (true or false) of the expression.
A zero (or blank) value evaluates as false, anything else
is true.

An executable statement, or a sequence of executable
statements.

A LOOP structure repetitively executes thatementsvithin its structure.

CHAPTER 5 CONTROL STATEMENTS

LOOP conditions are always evaluated at the top of the LOOP, before the
LOOP is executed. LOOP structures may be nested within other executable
code structures. Other executable codectires may be nested within a
LOOP structure. Each LOOP structure must terminate with an END
statement (or period).

A LOOP with no parameters iterates continuously, unless a BREAK or
RETURN statement is executed. BREAK discontinues the LOOP and
continues program execution with the statement following the LOOP
structure. All statements within a LOOP structure are executed unless a
CYCLE statement is executed. CYCLE immediately sends program
execution back to the top of the LOOP for the next iteration, without
executing any statements following the CYCLE in the LOOP.

Example:

LOOP !Continuous Toop
Char = GetChar() get a character
IF Char <> CarrReturn if it’s not a carriage return

!
!
Field = CLIP(Field) & Char ! append the character
ELSE I otherwise
BREAK ! break out of the Toop
'End if, end Toop
IF ERRORCODE() 10n error
LOOP 3 TIMES ! Toop three times
BEEP ! sound the alarm
'End loop, end if
LOOP I# =1 TO 365 BY 7 ILoop, increment I# by 7 each time
GET(DailyTotal, I#) ! read every 7th record
DO Weeklydob ! do the routine
END 'End Toop
SET(MasterFile) IPoint to first record
LOOP UNTIL EOF(MasterFile) IProcess all the records
NEXT(MasterFile) ! read a record
ProcMaster ! call the procedure
END
LOOP WHILE KEYBOARD() 'Empty the keyboard buffer
ASK ! without processing keystrokes
END

See Also: BREAK, CYCLE

5-8 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Control Statements

BREAK (immediately leave loop)

BREAK
The BREAK statement immediately terminates the LOOP or ACCEPT loop
and transfers control to the first statement following the LOOP or ACCEPT
loop structure. BREAK may only be used in a LOOP or ACCEPT loop
structure.
Example:
LOOP !'Loop
ASK ! wait for a keystroke
IF KEYCODE() = 256 ! if Esc key pressed
BREAK ! break out of the loop
ELSE I otherwise
BEEP ! sound the alarm
END
END
ACCEPT IACCEPT loop structure
CASE ACCEPTED()
0F 20k
CallSomeProc
O0F ?Cancel
BREAK ! break out of the Toop
END
END

See Also: LOOP, CYCLE, ACCEPT

CHAPTER 5 CONTROL STATEMENTS

CHAIN (execute another program)

CHAIN(program)

CHAIN Terminates the current program and executes another.

program A string constant or variable containing the name of the
program to execute. This may be any .EXE or .COM
program.

CHAIN terminates the current program, closing all files and returning its
memory to the operating system, and executes anptbgram

Example:
PROGRAM !MainMenu program code
CODE
EXECUTE CHOICE()
CHAIN(‘Ledger’) lExecute LEDGER.EXE
CHAIN(‘Payrol1’) lExecute PAYROLL.EXE
RETURN IReturn to DOS
END
PROGRAM !Ledger program code
CODE
EXECUTE CHOICE()
CHAIN(‘MainMenu’) IReturn to MainMenu program
RETURN IReturn to DOS
END
PROGRAM !Payroll program code
CODE
EXECUTE CHOICE()
CHAIN(‘MainMenu’) !Return to MainMenu program
RETURN IReturn to DOS
END

See Also: RUN

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

CYCLE (go to top of loop)

Example:

See Also:

CYCLE

SET(MasterFi
LOOP
NEXT (Maste
IF ERRORCO
DO MatchMa
IF NoMatch
CYCLE
END
DO TransVa
PUT(Master
END

The CYCLE statement passes control immediately back to the top of the
LOOP or ACCEPT loop, where the LOOP condition is evaluated. CYCLE
may only be used in a LOOP or ACCEPT loop structure.

In an ACCEPT loop, for certain events, CYCLE terminates an automatic
action before it is performed (such as EVENT:Move). This behavior is
documented for each event so affected.

Te) IPoint to first record

IProcess all the records
rFile) ! read a record
DE() THEN BREAK. !Get out of loop at end of file
ster I check for a match

! if match not found

! jump to top of loop
1 ! validate the transaction
File) ! write the record

LOOP, BREAK, ACCEPT

DO (call a ROUTINE)

Example:

See Also:

DO label

DO Executes a ROUTINE.
label The label of a ROUTINE statement.

The DO statement is used to execute a ROUTINE local to a PROGRAM,
PROCEDURE, or FUNCTION. When a ROUTINE completes execution,
program control reverts to the statement following the DO statement. A
ROUTINE may only be called within the CODE section containing the
ROUTINE's source code.

DO NextRecord 1Call the next record routine

DO CalcNetPa

y ICall the calc net pay routine

EXIT, ROUTINE

CHAPTER 5 CONTROL STATEMENTS

EXIT (leave a ROUTINE)

EXIT

TheEXIT statement immediately leaves a ROUTINE and returns program
control to the statementlfowing the DO statement that called ihig is
different from RETURN, which completely exits the PROCEDURE or
FUNCTION even when called from within a ROUTINE.

An EXIT statement is not required. A ROUTINE with no EXIT statement
terminates automatically when the entire sequence of statements in the
ROUTINE is complete.

Example:
CalcNetPay ROUTINE
IF GrossPay = 0 I'Tf no pay
EXIT ! exit the routine
END
NetPay = GrossPay - FedTax - Fica
QtdNetPay += NetPay
YtdNetPay += NetPay
See Also: DO, RETURN

GOTO (go to a label)

GOTO label
GOTO Unconditionally transfers program control to another
statement.
label The label of another executable statement within the
PROGRAM, PROCEDURE, FUNCTION, or ROU-
TINE.

TheGOTO statement unconditionally transfers control from one statement
to another. The targébel of a GOTO must not be the label of a ROUTINE,
PROCEDURE, or FUNCTION.

The scope of GOTO is limited to the currently executing ROUTINE,
PROCEDURE, or FUNCTION; it may not targetadoel outside the
ROUTINE, PROCEDURE, or FUNCTION in which it is used.

Example:
ComputelIt FUNCTION(Level)
CODE
IF Level = 0 THEN GOTO PassCompute. !Skip rate calculation if no Level
Rate = Level * MarkUp ICompute Rate
RETURN(Rate) ! and return it

PassCompute RETURN(999999) IReturn bogus number

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

HALT (exit program)
HALT ([errorlevel] [,message])
HALT Immediately terminates the program.
errorlevel A positive integer constant or variable (range: 0 - 250)

which is the exit code to pass to DOS, setting the DOS
ERRORLEVEL. If omitted,the default is zero.

message A string constant or variable which is typed on the
screen after program termination.

The HALT statement immediately returns to the operating system, setting
theerrorleveland optionally displaying messagefter the program
terminates.

If the program being HALTed was launched by a RUN statement within
another Clarion program, tleerorlevel exit code HALT sets may be
determined by using the RUNCODE function in the launching program.

Example:

PasswordProc PROCEDURE
Password STRING(10)
Window WINDOW,CENTER
ENTRY(@s10),AT(5,5),USE(Password) ,HIDE
END
CODE
OPEN(Window)
ACCEPT
CASE ACCEPTED()
OF ?Password)
IF Password <> ‘Pay$MeMoRe’
HALT(O,’Incorrect Password entered.’)
END
END
END

See Also: RUN, RUNCODE, STOP

CHAPTER 5 CONTROL STATEMENTS

IDLE (arm periodic procedure)

IDLE([procedure] [,separation])

IDLE Arms aprocedurethat periodically executes.

procedure The label of a PROCEDURE. Timoceduremay not
take any parameters.

separation An integer that specifies the minimum wait time (in

seconds) between calls to fw®cedure A separationof
0 specifies continuous calls.déparationis omitted, the
default value is 1 second.

An IDLE procedure is active while ASK or ACCEPT are waiting for user
input. Only one IDLE procedure may be active at a time, and it executes on
thread zero (0). Naming a new IDLE procedure overrides the previous one.
An IDLE statement with no parameters disarms the IDLE process.

An IDLE procedureis usually prototyped in the PROGRAM'’s MAP. If
prototyped in a MEMBER MAP, the IDLE statements which activate and
de-activate it must be contained in a procedure or function within the same
MEMBER module.

Example:
IDLE(ShoTime,10) ICall shotime every 10 seconds
IDLE(CheckNet) ICheck network activity every 1 second
IDLE IDisarm idle procedure

See Also: ASK, ACCEPT, PROCEDURE, MAP

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

RETURN (return to caller)

Example:

RETURN([expression])

RETURN Terminates a PROGRAM, PROCEDURE, or FUNC-
TION.
expression The expressiorpasses the return value of a FUNCTION

back to the expression in which the FUNCTION was
used. Theexpressions required for a FUNCTION and
may not be used in a PROCEDURE or PROGRAM.

The RETURN statement terminates a PROGRAM, PROCEDURE, or
FUNCTION, and passes control back to the caller. When RETURN is
executed from the CODE section of a PROGRAM, the program is
terminated, all files and windows are closed, and control is passed to the
operating system.

RETURN is required in a FUNCTION and optional in a PROCEDURE or
PROGRAM. If RETURN is not used in a PROCEDURE or PROGRAM, an
implicit RETURN occurs at the end of the executable code. The end of
executable code is defined as the end of the source file, or the beginning of
another PROCEDURE, FUNCTION, or ROUTINE.

RETURN from a PROCEDURE or FUNCTION (whether explicit or
implicit) automatically closes any local APPLICATION, WINDOW,
REPORT, or VIEW structure opened in the PROCEDURE or FUNCTION.
It does not automatically close any Global or Module Static APPLICATION,
WINDOW, REPORT, or VIEW. It also closes and frees any local QUEUE
structure declared without the STATIC attribute.

IF Doneff THEN RETURN. 1Quit when done
DayOfWeek FUNCTION(Date) !'Function to return the day of the week

CODE

EXECUTE (Date % 7) + 1 IDetermine what day of week Date is
RETURN(“Sunday’) ! and RETURN the correct day string
RETURN(‘Monday’)
RETURN(‘Tuesday’)
RETURN(‘Wednesday’)
RETURN(‘Thursday’)
RETURN(‘Friday’)

RETURN(
END

‘Saturday’)

CHAPTER 5

CONTROL STATEMENTS

RUN (execute command)

RUN(command)

RUN Executes @ommands if it were entered on the DOS
command line.

command A string constant or variable containing the command to
execute. This may include a full path and command line
parameters.

The RUN statement executecammando execute a DOS or Windows
program. When theommandkexecutes, the new program is loaded as the
ontop and active program. Execution control in the launching program
returns immediately to the statement following RUN and the program
continues executing as a background application. The user can return to the
launching program by either terminating the launched program, or switching
back to it through the Windows Task List.

If the commandioes not contain a path to the program, the following search
sequence is followed:

The DOS current directory

The Windows directory

The Windows system directory
Each directory in the DOS PATH
Each directory mapped in a network

ohwnE

The successful execution of tbemmandnay be verified with the
RUNCODE function, which returns the DOS exit code ofdabamand If
unsuccessful, RUN posts the error to the ERROR and ERRORCODE
functions.

Errors Posted: RUN may post any possible error

Example:
RUN(‘notepad.exe readme.txt’) IRun Notepad, automatically loading readme.txt file
RUN(ProgName) !Run the command in the ProgName variable

See Also:

RUNCODE, HALT

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SHUTDOWN (arm termination procedure)

SHUTDOWN([procedure])
SHUTDOWN Arms a procedure which is called when the program
terminates.
procedure The label of a PROCEDURE. If omitted, tB&lUT-

DOWN process is disarmed.

The SHUTDOWN statement arms@ocedurewhich is called when the
program terminates. The shutdommocedureis called by normal program
termination or by an abnormal-end/run-time halt. It may not be able to
execute for an abnormal-end/run-time halt, depending upon the state of the
system resources at the time of the crash. It is not called if the computer is
rebooted or the program is terminated due to power failure. RESTART
within a SHUTDOWNprocedureis not recommended.

The same effect as SHUTDOWN can be more safely achieved by simply
calling a procedure to execute on EVENT:CloseDown for the application
frame.

Example:

SHUTDOWN(CloseSys) IArm CloseSys as the shutdown procedure

CHAPTER 5 CONTROL STATEMENTS

STOP (suspend program execution)

STOP([message])

STOP Suspends program execution and displays a message
window.
message An optional string expression (up to 64K) which dis-

plays in the error window.

STOP suspends program execution and displays a message window. It
offers the user the option of continuing the program or exiting. When
exiting, it closes all files and frees the allocated memory.

Example:

PswdScreen WINDOW
STRING(* Please Enter the Password ‘),AT(5,5)

ENTRY(@10),AT(20,5),USE(Password) ,HIDE IPassword storage field
END
CODE
OPEN(PswdScreen) !Open the password screen
ACCEPT ! and get user input

CASE ACCEPTED
OF ?Password)

IF Password <> ‘PayMe$moRe’ ICorrect password?
STOP(“Incorrect Password Entered -- Access Denied’)
HALT(O, ’Incorrect password’) !'Tf not, throw them out
END
END

END

CHAPTER 6

WINDOW STRUCTURES 6-1

Clarion Windows Contents |

Window Overview

In most Windows programs there are three types of screen windows used:
application windows, document windows, and dialog boxes. An aiplica
window is the first window opened in a Windows program, and it usually
contains the main menu as the entry point to the rest of the program. All
other windows in the program are document windows or dialog boxes.

Along with these three screen window types, there are two user interface
design conventions that are used in Windows programs: the Single
Document Interface (SDI), and the Multiple Document Interface (MDI).

An SDI program usually only contains linear logic that allows the user to
take only one execution path (thread) at a time; it does not open separate
execution threads which the user may move between. This is the same type
of program logic used in most DOS programs. An SDI program would not
contain a Clarion APPLICATION structure as its application window. The
Clarion WINDOW structure (without an MDI attribute) is used to define an
SDI program’s application window, and the subsequent document windows
or dialog boxes opened on top of it.

An MDI program allows the user to choose multiple execution paths
(threads) and change from one to another at any time. This is a very
common Windows program user interface. It is used by applications as a
way of organizing and grouping windows which present several execution
paths for the user to take.

A Clarion APPLICATION structure defines the MDI application window.

The MDI application window acts as a parent for all the MDI child windows
(document windows and dialog boxes), in that the child windows are clipped
to its frame and automatically moved when the application frame is moved.
They can also be concealed en masse by minimizing the parent. There may
be only one APPLICATION open at any time in a Clarion Windows

program.

Document windows and dialog boxes are very similar in that they are both
defined as Clarion WINDOW structures. They differ in the conventional
context in which they are commonly used and the conventions regarding
appearance and attributes. In many cases, the difference is not
distinguishable and does not matter. The generic term for both document
windows and dialog boxes is “window” and that is the term used throughout
this text.

Document windows usually display data. By convention they are movable
and resizable. They usually have a title, a system menu, and maximize

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

button. For example, in the Windows environment,“¥ain” program
group window that appears when ymawsLE-cLick on the “Main” icon in
the Program Manager’s desktop, is a document window.

Dialog boxes usually request information from the user or alert the user to
some condition, usually prior to performing some action requested by the
user. They may or may not be movable, and so, may or may not have a
system menu and title. By convention, they are not resizable, although they
can have a maximize button which gives the dialog two alternate sizes. A
dialog box may be system modal (the user must respond before doing
anything else in Windas), application modal (the user must respond before
doing anything in the application), or modeless. For example, in the Clarion
environment, the window that appears fromRie menu’'sOpen selection

is an application modal dialog box that requests the name of the file to open.

Control Fields and Input Focus

The objects placed in an APPLICATION or WINDOW structure are “control
fields.” “Control” is a standard Windows term used to refer to any screen
object—command buttons, text entry fields, radio buttons, list boxes, etc. In
most DOS programs, the term “field” is usually used to refer to these
objects. In this document, the terms “control” and “field” are generally
interchangeable.

Controls appear only in MENUBARs, TOOLBARS, or WINDOW

structures. Controls are available to the user to select and/or edit the data
they contain only when it has “input focus.” This occurs when the user uses
theTae key, the mouse, or an accelerator key combination to highlight the
control.

A WINDOW also has “input focus” when it is the top WINDOW in the
currently active execution thread. Since Clarion for Windows allows multi-
threaded programs, the concept of which WINDOW currently has focus is
important. Only the thread whose uppermost WINDOW has focus is active.
The user may edit data in the WINDOW's control fields only when it has
focus.

Field Equate Labels

In WINDOW structures, every control field with a USE variable is assigned
a field number by the compiler. By default, these field numbers begin with
one (1) and are assigned to controls in the order they appear in the
WINDOW structure code. The actual assignechbers can be overridden

by the second parameter of the USE attribute. The order of appearance in
code determines the “natural” selection order of control fields for the
ACCEPT structure (which may be altered with the SELECT statement). The

CHAPTER 6

WINDOW STRUCTURES 6-3

order of appearance in code is independent of the control’'s placement on the
screen. Therefore, there is not necessarily any correlation between a
control’s position on screen and the field number assigned by the compiler.

There are a number of statements that use these field numbers as parameter
It would be very tedious to “hard code” these numbers in order to use these
statements. Therefore, Clarion provides a mechanism to address this
problem: Field Equate Labels.

Field Equate Labels always begin with a question mark (?) followed by the
name of the control’s USE variable. The leading question mark indicates to
the compiler a Field Equate Label. They are very similar to normal
EQUATE compiler directives. The compiler substitutes the field number for
the Field Equate Label at compile time. This makes it unnecessary to know
field numbers in adance.

Field Equate Labels for USE variables which are array elements always
begin with a question mark (?) followed by the name of the USE variable
followed by an underscore and a number (?ArrayField_1). Array elements
from the same array are incrementally numbered beginning with one (1) for
each element used in the same structure (?ArrayField_1, ?ArrayField_2, ...).
Multi-dimensioned arrays are treated similarly (?ArrayField 1 1,
?ArrayField_1 2, ..).

Two or more controls with exactly the same USE variable in one WINDOW
or APPLICATION structure would create the same Field Equate Label for
all. Therefore, when the compiler encounters this condition, all Field Equate
Labels for that USE variable are discarded. This makes it impossible to
reference any of these controls in executable code, preventing confusion
about which control you really want to reference. It also allows you to
deliberately create this condition to display the contents of the variable in
multiple controls using different display pictures. Some fields may have
USE variables that camly be Field Equate Labels (a unique label with a
leading question mark). This provides a way of referencing these fields in
code statements.

In APPLICATION structures, every menu selection in the MENUBAR, and
every control with a USE variable placed in the TOOLBAR, is assigned a
number by the compiler. By default, these numbers begin with negative one
(-1) and are decremented by one (1) in the order the menu selections and
controls appear in the APPLICATION stture code.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Window Structures
APPLICATION (declare an MDI frame window)

label APPLICATION(‘itle’) [,AT()] [[CENTER] [SYSTEM] [[MAX] LICON()] [.STATUS()] [LHLP()]
[LCURSOR()] [, TIMER()] ALRT()] [,ICONIZE] [MAXIMIZE] [MASK] [,FONT()]

[[MSG()] [IMM] [LAUTO] [, | HSCROLL |][,| DOUBLE |]
|[VSCROLL | | NOFRAME |
| HYSCROLL | |RESIZE |
[MENUBAR
multiple menu and/or item declarations
END]
[TOOLBAR
multiple control field declarations
END]
END

APPLICATION Declares a Multiple Document Interface (MDI) frame.

label A valid Clarion label. Alabelis required on the APPLI-
CATION statement.

title Specifies the title text for the application window

AT Specifies the initial size and location of the application

window. If omitted, default values are selected by the
runtime library.

CENTER Specifies that the window’s initial position is centered in
the screen by default. This attribute takes effect only if at
least one parameter of tA& attribute is omitted.

SYSTEM Specifies the presence of a system menu.
MAX Specifies the presence of a maximize control.
ICON Specifies the presence of a minimize control, and names

a file or standard icon identifier for the icon displayed
when the window is minimized.

STATUS Specifies the presence of a status bar at the base of the
application window.

HLP Specifies the “Help ID” associated with the APPLICA-
TION window and provides the default for any child
windows.

CURSOR Specifies a mouse cursor to be displayed when the

mouse is positioned over the APPLICATION window. If
omitted, the Windows default cursor is used.

TIMER Specifies periodic timed event generation.
ALRT Specifies “hot” keys active for the APPLICATION.
ICONIZE Specifies the APPLICATION is opened as an icon.

CHAPTER 6

WINDOW STRUCTURES

MAXIMIZE

MASK

FONT

MSG

IMM

AUTO

HSCROLL

VSCROLL

HVSCROLL

DOUBLE

NOFRAME

RESIZE

MENUBAR

TOOLBAR

Specifies the APPLICATION is maximized when
opened.

Specifies pattern input editing mode of all ENTRY
controls in the TOOLBAR.

Specifies the default font for all controls in the toolbar.

Specifies a string constant containing the default text to
display in the status bar for all controls in the APPLICA-
TION.

Specifies the window generates events whenever it is
moved or resized.

Specifies all toolbar controls’ USE variables re-display
on screen each time through the ACCEPT loop.

Specifies that a horizontal scroll bar is automatically
added to the application frame when any portion of a
child window lies horizontally outside the visible area.

Specifies that a vertical scroll bar is automatically added
to the application frame when any portion of a child
window lies vertically outside the visible area.

Specifies that both vertical and horizontal scroll bars are
automatically added to the application frame when any
portion of a child window lies outside the visible area.

Specifies a double-width frame around the window. A
window with this type of frame may not be resized.

Specifies a window with no frame. A window with this
type of frame may not be resized.

Specifies a thick frame around the window which does
allow window resizing.

Defines the menu structure (optional). The menu speci-
fied in an APPLICATION is the “Global menu.”

Defines a toolbar structure (optional). The toolbar
specified in an APPLICATION is the “Global toolbar.”

APPLICATION declares a Multiple Document Interface (MDI) frame
window. MDI is a part of the standard Windows interface, and is used by
Windows applications to present several “views” in different windows. This
is a way of organizing and grouping these. The MDI frame window
(APPLICATION structure) acts as a “parent” for all the MDI “child”
windows (WINDOW structures with the MDI attribute). These MDI “child”
windows are clipped to the APPLICATION frame and automatically moved
when the frame is moved, and can be totally concealed by minimizing the

parent.

There may be only one APPLICATION window open at any time in a
Clarion Windows program, and it must be opened before any MDI “child”

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

windows may be opened. However, non-MDI windows may be opened
before or after the APPLICATION is opened, and may be on the same
execution thread as the APPLICATION.

An MDI “child” window must not be on the same execution thread as the
APPLICATION. Therefore, any MDI “child” window called directly from

the APPLICATION must be in a separate procedure so the START function
can be used to begin a new execution thread. Once started, multiple MDI
“child” windows may be called in the new thread.

A “conventional” APPLICATION window would have the ICON, MAX,
STATUS, RESIZE, and SYSTEM attributes. This creates an application
frame window with minimize and maximize buttons, a status bar, a resizable
frame, and a system menu. It would also have a MENUBAR structure
containing the global menu items, and may have a TOOLBAR with
“shortcuts” to global menu items. These attributes create a standard
Windows look and feel for the application frame.

An APPLICATION window may not contain controls except within its
MENUBAR and TOOLBAR structures, and cannot be used for any output.

For output, document windows or dialog boxes are required (defined using
theWINDOW structure).

When the APPLICATION window is first opened, it remains hidden until
the first DISPLAY statement or ACCEPT loop is encountered. This enables
any changes to be made to the appearance before it is displayed. For
example, the caption or size can be adjusted via runtime property
assignment.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.

EVENT:CloseWindow
The window is closing.

EVENT:CloseDown
The application is closing.

EVENT:OpenWindow
The window is opening.

EVENT:LoseFocus The window is losing focus to another thread.
EVENT:GainFocus The window is gaining focus from another thread.

EVENT:Suspend The window still has input focus but is giving control to
another thread to process timer events.

EVENT:Resume The window still has input focus and is regaining control
from an EVENT:Suspend.

CHAPTER 6

WINDOW STRUCTURES

EVENT:Timer The TIMER attribute has triggered.
EVENT:Move The user is moving the window. CYCLE aborts the

move.
EVENT:Moved The user has moved the window.
EVENT:Size The user is resizing the window. CYCLE aborts the
resize.

EVENT:Sized The user has resized the window.

EVENT:Restore The user is restoring the window’s previous size.
CYCLE aborts the resize.

EVENT:Restored The user has restored the window’s previous size.

EVENT:Maximize The user is maximizing the window. CYCLE aborts the
resize.

EVENT:Maximized The user has maximized the window.

EVENT:Iconize The user is minimizing the window. CYCLE aborts the
resize.

EVENT:Iconized The user has minimized the window.

EVENT:Completed AcceptAll (non-stop) mode has finished processing all
the window’s controls.

EVENT:DDErequest
A client has requested a data item from this Clarion
DDE server application.

EVENT:DDEadvise
A client has requested continuous updates of a data item
from this Clarion DDE server application.

EVENT:DDEexecute
A client has executed a DDEEXECUTE statement to
this Clarion DDE server application.

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE
server application.

EVENT:DDEdata A DDE server has supplied an updated data item to this
Clarion client application.

EVENT:DDEclose A DDE server has terminated the DDE link to this
Clarion client application.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

'An MDI application frame window with system menu, minimize and maximize
! buttons, a status bar, scroll bars, and a resizable frame, containing the
! main menu and toolbar for the application:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
,HVSCROLL,RESIZE
MENUBAR
MENU(*&File’),USE(?FileMenu)
ITEM(“&0pen...’),USE(?0penFile)
ITEM(“&Close’),USE(?CloseFile),DISABLE
ITEM(‘E&xit’),USE(?MainExit)
END
MENU(*&Edit’),USE(?EditMenu)
ITEM(‘Cu&t’),USE(2CutText),KEY(Ctr1X),STD(STD:Cut),DISABLE
ITEM(“&Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy),DISABLE
ITEM(‘&Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste),DISABLE
END
MENU(“&Window’),STD(STD:WindowList), LAST
ITEM(“&Tile’),STD(STD:TileWindow)
ITEM(“&Cascade’),STD(STD:CascadeWindow)
ITEM(‘&Arrange Icons’),STD(STD:Arrangelcons)
END
MENU(*&Help’),USE(?HelpMenu)
ITEM(“&Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(“&Search...’),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘&How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(‘&About MyApp...’),USE(?HelpAbout)
END
END
TOOLBAR
BUTTON(‘E&xit’),USE(?MainExitButton)
BUTTON(‘&0pen’),USE(?0penButton),ICONCICON:Open)

END
END
CODE
OPEN(MainWin) !0Open APPLICATION
ACCEPT !Display APPLICATION and accept user input
CASE ACCEPTED() !'Which control was chosen?
OF ?0penFile !Open... menu selection
OROF ?0penButton !0pen button on toolbar
START (OpenFileProc) !Start new execution thread
OF ?MainExit lExit menu selection
OROF ?MainExitButton 'Exit button on toolbar
BREAK IBreak ACCEPT Toop
OF ?HelpAbout IAbout... menu selection
HelpAboutProc ICall application information procedure
END
END

CLOSE(MainWin) IClose APPLICATION

CHAPTER 6 WINDOW STRUCTURES

WINDOW (declare a dialog window)

label ~ WINDOW(title’) [,AT()] [,CENTER] [,SYSTEM] [[MAX] [,ICON()] [,STATUS()] [,HLP()]
[,CURSOR()] [,MDI] [MODAL] [, MASK] [,FONT()] [,GRAY][,TIMER()] [, ALRT()]
[.ICONIZE] [, MAXIMIZE] [,MSG()] [TOOLBOX][,PALETTE()] [,DROPID()] [,IMM]

[LAUTO] [, | HSCROLL |][,| DOUBLE |]
|[VSCROLL | | NOFRAME |
| HYSCROLL | |RESIZE |

[MENUBAR
menus and/or items
END]
[TOOLBAR
controls
END]
controls
END

WINDOW Declares a document window or dialog box.

label A valid Clarion label. Aabelis required.

title A string constant containing the window’s title text.

AT Specifies the initial size and location of the window. If
omitted, default values are selected by the runtime
library.

CENTER Specifies that the window’s initial position is centered
on screen relative to its parent window, by default. This
attribute takes effect only if at least one parameter of the
AT attribute is omitted.

SYSTEM Specifies the presence of a system menu.

MAX Specifies the presence of a maximize control.

ICON Specifies the presence of a minimize control, and names
a file or standard icon identifier for the icon displayed
when the window is minimized.

STATUS Specifies the presence of a status bar for the window.

HLP Specifies the “Help ID” associated with the window.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the window. This cursor is inherited by
the WINDOW's controls unless overridden.

MDI Specifies that the window conforms to normal MDI
child-window behsior.

MODAL Specifies the window is “system modal” and must be
closed before the user may do anything else.

MASK Specifies pattern input editing mode of all ENTRY

controls in this window.
FONT Specifies the default font for all controls in this window.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

GRAY

TIMER
ALRT
ICONIZE
MAXIMIZE
MSG

TOOLBOX

PALETTE

DROPID

IMM

AUTO

HSCROLL

VSCROLL

HVSCROLL

DOUBLE

NOFRAME

RESIZE

MENUBAR

Specifies that the window has a gray background for use
with 3-D look controls.

Specifies periodic timed event generation.

Specifies “hot” keys active when the window has focus.
Specifies the window is opened as an icon.

Specifies the window is maximized when opened.

Specifies a string constant containing the default text to
display in the status bar for all controls in the window.

Specifies the window is “always on top” and its controls
never retain focus.

Specifies the number of hardware colors used for
graphics in the window.

Specifies the window may serve as a drop target for
drag-and-drop actions.

Specifies the window generates events whenever it is
moved or resized.

Specifies all window controls’ USE variables re-display
on screen each time through the ACCEPT loop.

Specifies that a horizontal scroll bar is automatically
added to the window when any scrollable portion of the
window lies horizontally outside the visible area.

Specifies that a vertical scroll bar is automatically added
to the window when any scrollable portion of the
window lies vertically outside the visible area.

Specifies that both vertical and horizontal scroll bars are
automatically added to the window when any scrollable
portion of the window lies outside the visible area.

Specifies a double-width frame around the window. A
window with this type of frame may not be resized.

Specifies a window with no frame. A window with this
type of frame may not be resized.

Specifies a thick frame around the window, which does
allow window resizing.

Defines a menu structure (optional).

menus and/or itemSIENU and/or ITEM declarations that define the menu

TOOLBAR
controls

selections.
Defines a toolbar structure (optional).

Control field declarations that define tools available on
the TOOLBAR, or the control fields in tA&/INDOW.

CHAPTER 6

WINDOW STRUCTURES 6-11

A WINDOW declares a document window or dialog box which may contain
contwols, and may be used to display output to the user. When the WINDOW
is first opened, it remains hidden until the first DISPLAY statement or
ACCEPT loop is encountered. This enables any changes to be made to the
appearance before it is displayed. For example, the caption or size can be
adjusted via runtime property assignment. Any previously opened
WINDOW on the same execution thread is disabled.

A WINDOW automatically receives a single-width border frame unless one
of the DOUBLE, NOFRAME, or RESIZE attributes are specified. Screen
coordinates are measured in dialog units. A dialog unit is defined as one-
quarter the average character width and one-eighth the average character
height of the font specified in the WINDOW's FONT attribute (or the
system font, if no FONT attribute is specified on the WINDOW).

A WINDOW with the MODAL attribute is system modal; it takes exclusive
control of the computer. This means that any other progam running in the
background halts its execution until the MODAL WINDOW is closed.
Therefore, the MODAL attribute should be used only when absolutely
necessary. Also, the RESIZE attribute is ignored, and the WINDOW cannot
be moved when the MODAL attribute is present.

A WINDOW without the MDI attribute, when opened in an MDI program

on an MDI execution thread, is application modal. This means that the user
must respond before moving to any other window in the application. The
user may, however, move to any other program running in Windows at the
time. Non-MDI windows may be opened either before or after an
APPLICATION is opened, and may be on the same execution thread as the
APPLICATION or any MDI child window (application modal) or their own
thread (not application modal).

A WINDOW with the MDI attribute is an MDI “child” window. MDI

“child” windows are clipped to the APPLICATION frame and automatically
moved when the frame is moved, and can be totally concealed by
minimizing the parent APPLICATION. MDI “child” windows are modeless;
the user may change to the top window of another execution thread, within
the same application or any other application running in Windows, at any
time. An MDI “child” window must not be on the same execution thread as
the APPLICATION. Therefore, any MDI “child” window called directly

from the APPLICATION must be in a separate procedure so the START
function can be used to begin a new execution thread. Once started, multiple
MDI “child” windows may be called in the new thread.

The MENUBAR specified in a WINDOW with the MDI attribute is
automatically merged into the “Global menu” (from the APPLICATION)
when the WINDOW receives focus unless either the WINDOW's or
APPLICATION’'s MENUBAR has the NOMERGE attribute. A MENUBAR
specified in a WINDOW without the MDI attribute is never merged into the
“Global menu"—it always appears in the window itself.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

The TOOLBAR specified in a WINDOW with the MDI attribute is
automatically merged into the “Global toolbar” (from the APPLICATION)
when the WINDOW receives focus, unless either the WINDOW's or
APPLICATION’s TOOLBAR has the NOMERGE attribute. The toolbar
specified in a WINDOW without the MDI attribute is never merged into the
“Global toolbar’—it always appears in the window itself.

A WINDOW with the TOOLBOX attribute is automatically “always on top”
and its controls do not retain focus (just as if they all had the SKIP
attribute). This creates a window whose controls all behave in the same
manner as controls in the toolbar. Normally, a WINDOW with the
TOOLBOKX attribute would be executed in its own thread.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:Alertkey The user pressed an ALRT attribute hot key.

EVENT:CloseWindow
The window is closing.

EVENT:CloseDown
The application is closing.

EVENT:OpenWindow
The window is opening.

EVENT:LoseFocus The window is losing focus to another thread.
EVENT:GainFocus The window is gaining focus from another thread.

EVENT:Suspend The window still has input focus but is giving control to
another thread to process timer events.

EVENT:Resume The window still has input focus and is regaining control
from an EVENT:Suspend.

EVENT:Timer The TIMER attribute has triggered.
EVENT:Move The user is moving the window. CYCLE aborts the

move.

EVENT:Moved The user has moved the window.

EVENT:Size The user is resizing the window. CYCLE aborts the
resize.

EVENT:Sized The user has resized the window.

EVENT:Restore The user is restoring the window’s previous size.
CYCLE aborts the resize.

EVENT:Restored The user has restored the window’s previous size.

EVENT:Maximize The user is maximizing the window. CYCLE aborts the
resize.

CHAPTER 6

WINDOW STRUCTURES

EVENT:Maximized The user has maximized the window.

EVENT:Iconize The user is minimizing the window. CYCLE aborts the
resize.

EVENT:Iconized The user has minimized the window.

EVENT:Completed AcceptAll (non-stop) mode has finished processing all
the window’s controls.

EVENT:DDErequest
A client has requested a data item from this Clarion
DDE server application.

EVENT:DDEadvise
A client has requested continuous updates of a data item
from this Clarion DDE server application.

EVENT.DDEexecute
A client has executed a DDEEXECUTE statement to
this Clarion DDE server application.

EVENT:DDEpoke A client has sent unsolicited data to this Clarion DDE
server application.

EVENT:DDEdata A DDE server has supplied an updated data item to this
Clarion client application.

EVENT:DDEclose A DDE server has terminated the DDE link to this
Clarion client application.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

IMDI child window with system menu, minimize and maximize buttons, status bar,
! scroll bars, a resizable frame, with menu and toolbar which are merged into the
lapplication’s menubar and toolbar:
MDIChild WINDOW(‘Child One’),MDI,SYSTEM,MAX,ICON(‘Icon.ICO”),STATUS,HVSCROLL,RESIZE
MENUBAR
MENU(‘FiTe’),USE(?FiTleMenu)
ITEM(‘Close’),USE(?CToseFile)
END
MENU(“Edit’),USE(?EditMenu)
ITEM(*Undo’),USE(?UndoText),KEY(Ctr1Z),STD(STD:Undo)
ITEM(*Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut)
ITEM(*Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy)
ITEM(“Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste)
END
END
TOOLBAR
BUTTON(“Cut’),USE(?CutButton),ICONCICON:Cut),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),ICON(CICON:Copy),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),ICONCICON:Paste),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field)
BUTTON(‘&0K*) ,USE(?Exit),DEFAULT
END

INon-MDI, system menu, maximize button, status bar, non-resizable frame,
NonMDI WINDOW(‘Dialog Window’),SYSTEM,MAX,STATUS
TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
BUTTON(“&0K”),USE(?Exit),DEFAULT
END

ISystem-modal window with non-resizable frame, with only a message and Ok button:
ModalWin WINDOW(‘Modal Window’),MODAL
IMAGE(ICON:Exclamation)
STRING(“‘An ERROR has occurred’)
BUTTON(“‘&0K*),USE(?Exit),DEFAULT
END

CHAPTER 6 WINDOW STRUCTURES

APPLICATION and WINDOW Attributes
ALRT (set window “hot” keys)

ALRT(keycode)
ALRT Specifies a “hot” key active while the APPLICATION or
WINDOW has focus.
keycode A numeric constant keycode or keycode EQUATE.

TheALRT attribute specifies a “hot” key active while the APPLICATION or
WINDOW has focus. When the user presses an ALRT “hot” key for the
APPLICATION or WINDOW, two field-independent events,
EVENT:PreAlertKey and EVENT:AlertKey, are generated. If the code
executes a CYCLE statement when processing EVENT:PreAlertKey, you
“shortstop” the EVENT:AlertKey, preventing library’s default action on the
alerted keypress for the window.

You may have multiple ALRT attributes on one APPLICATION or
WINDOW. The ALERT statement and the ALRT attribute of a window or
control are completely separate. This means that clearing ALERT keys has
no effect on any keys alerted by ALRT attributes.

Example:

Screen WINDOW,ALRT(F10Key),ALRT(F9Key) IF10 and F9 alerted
LIST,AT(109,48,50,50),USE(?List),FROM(Que),IMM
BUTTON(&0k’),AT(111,108,,),USE(?0k)
BUTTON(‘&Cancel’),AT(111,130,,),USE(?Cancel)

END
CODE
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:PreAlertKey IPre-check alert events
IF FOCUS() <> ?LIST IA1Tow execution only on the Tist
CYCLE ITerminate alert processing on other controls
END
OF EVENT:AlertKey IAlert processing
CASE KEYCODE()
OF F9Key ICheck for F9
FO9HotKeyProc 1Call hot key procedure
OF F10Key ICheck for F10
F10HotKeyProc 1Call hot key procedure
END
END

END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

AT (set window position and size)

AT([X] [V [,widtH] [, heighd])

AT Specifies the initial position and size of the window.

X An integer constant or constant expression that specifies
the initial horizontal position of the top left corner. If
omitted, the runtime library provides a default value.

y An integer constant or constant expression that specifies
the initial vertical position of the top left corner. If
omitted, the runtime library provides a default value.

width An integer constant or constant expression that specifies
the initial width. If omitted, the runtime library provides
a default value.

height An integer constant or constant expression that specifies
the initial height. If omitted, the runtime library provides
a default value.

The AT attribute defines the initial position and size of an APPLICATION or
WINDOW. If any parameter is omitted, the runtime library provides a
default value. Th& andy parameters are relative to the top left hand corner
of the video screen when the AT attribute is placed on an APPLICATION
structure, or a WINDOW without the MDI attribute that is opened before
any APPLICATION structure is opened by the program. They are relative to
the top left hand corner of the APPLICATION when the AT attribute is
placed on a WINDOW with the MDI attribute, or a WINDOW without the
MDI attribute opened after an APPLICATION structure has been opened.

Thewidth andheightparameters specify the size of the “client area” or
“workspace” of an APPLICATION. This is the area below the MENUBAR
and above the status bar which defines the area in which the TOOLBAR is
placed and MDI “child” windows are opened. On a WINDOW, they specify
the size of the “workspace” which may contain control fields.

The values contained in thxey, width, andheightparameters are mreasured

in to dialog units. Dialog units are defined as one-quarter the average
character width by one-eighth the average character height. The size of a
dialog unit is dependent upon the size of the default font for the window.

This measurement is based on the font specified in the FONT attribute of the
window, or the system default font specified by Windows.

Example:

WinOne WINDOW,AT(0,0,380,200),MDI Itop Teft corner, relative to app frame
END

WinTwo WINDOW,AT(0,0,380,200) ITop left corner, relative to video screen
END

CHAPTER 6 WINDOW STRUCTURES

AUTO (set USE variable automatic re-display)

AUTO
The AUTO attribute specifies all window and toolbar controls’ USE
variables re-display on screen each time through the ACCEPT loop. This
incurs some overhead, but ensures the data displayed is current, without
requiring explicit DISPLAY statements.
Example:
WinOne WINDOW,AT(,,380,200),MDI,CENTER,AUTO !A11 controls values always display
Icontrols
END
CODE
ACCEPT IACCEPT automatically re-dislays changed USE variables
END

CENTER (set position and size)

CENTER

TheCENTER attribute indicates that the window’s default width and height
are centered. A WINDOW structure with the MDI attribute is centered on
the APPLICATION. An APPLICATION structure is centered on the screen.
A non-MDI WINDOW is centered on its parent (the window currently with
focus when the non-MDI WINDOW is opened).

This attribute has no meaning unless at least one parameter of the AT
attribute is omitted. This means that the CENTER attribute provides a
default value for any omitted AT parameter.

Example:

IWindow centered relative to application frame:
WinOne WINDOW,AT(,,380,200),MDI,CENTER
END

IWindow centered relative to its parent:
WinTwo WINDOW,AT(,,380,200),CENTER
END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

CURSOR (set mouse cursor type)

CURSOR(file)
CURSOR Specifies a mouse cursor to display for the window.
file A string constant containing the name of a .CUR file, or

an EQUATE naming a Windows-standard mouse cursor.
The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the
mouse is positioned over the window. This cursor is inherited by the controls
in the window unless overridden.

The Windows standard mouse cursors contained in EQUATES.CLW are:

CURSOR:None No mouse cursor
CURSOR:Arrow The normal windows arrow cursor
CURSOR:IBeam A capital “I” like a steel I-beam
CURSOR:Wait An hourglass

CURSOR:Cross A large plus sign
CURSOR:UpArrow A vertical arrow

CURSOR:Size A four-headed arrow
CURSOR:Icon A box within a box

CURSOR:SizeNWSE A double-headed arrow slanting left
CURSOR:SizeNESW A double-headed arrow slanting right

CURSOR:SizeWE A double-headed horizontal arrow
CURSOR:SizeNS A double-headed vertical arrow
CURSOR:DragWE A double-headed horizontal arrow

Example:

'Window with Windows-standard large plus sign cursor
WinOne WINDOW,CURSOR(CURSOR:Cross)
END

IWindow with custom cursor
WinTwo WINDOW,CURSOR(“CUSTOM.CUR”)
END

CHAPTER 6

WINDOW STRUCTURES

DOUBLE, NOFRAME, RESIZE (set window border)

Example:

DOUBLE
NOFRAME
RESIZE

TheDOUBLE, NOFRAME, andRESIZE attributes specify a WINDOW
or APPLICATION border frame style other than the default single-width
border. TheDOUBLE attribute places a double-width border around the
window and theNOFRAME attribute places no border on the window. A
window with these frame types may not bsized.

TheRESIZE attribute places a thick border frame around the window. This
is the only type that allows the user to dynamicadlgize the window.
RESIZE is ignored on any WINDOW with the MODAL attribute.

The RESIZE frame type is normally used on APPLICATION&ures and
WINDOW structures used as document windows, not dialog boxes.
NOFRAME is usually used on “hidden” windows used only to activate an
ACCEPT loop. DOUBLE is a common dialog bix frame type.

IA Window with a single-width border:

Winl WINDOW
END

A resizable Window:
Win2 WINDOW,RESIZE

END

A Window with a double-width border:
Win3 WINDOW,DOUBLE

END

A Window without a border:
Win4 WINDOW,NOFRAME

END

6-20

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

FONT (set window default f ont)

Example:

FONT ([typeface] [,size] [,colon [,style])

FONT Specifies the default display font for the window.

typeface A string constant containing the name of the font. If
omitted, the system font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the system default font size is used.

color A LONG integer constant containing the red, green, and

blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, black is used.

style An integer constant or constant expression or EQUATE
specifying the strike weight and style of the font. If
omitted, the weight is normal.

The FONT attribute on a WINDOW or APPLICATION structure specifies
the default display font for all controls in the WINDOW or APPLICATION
that do not have a FONT attribute. This is also the default font for newly
created controls on the window, and is the font used by the SHOW and

TYPE statements when writing to the window.

The typefacemay name any font registered in the Windows system. The
EQUATES.CLW file contains EQUATE values for standatglevalues. A
styleon the range zero (0) to one thousand (1000) specifies the strike weight
of the font. You may add to that values that indicate italic, underline, or
strikeout text. The following EQUATES are in EQUATES.CLW.

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)

A Window using 14 point Times New Roman
Winl WINDOW,FONT(‘Times New Roman’,14,00H)
END

A Window using 14 point Times New Roman, Bold and Italic
Win2 WINDOW,FONT(‘Times New Roman’,14,00H,FONT:italic+FONT:bol1d)
END

CHAPTER 6 WINDOW STRUCTURES

GRAY (set 3-D look background)

GRAY

TheGRAY attribute indicates that the WINDOW has a gray background,
suitable for use with three-dimensional dialog controls. All controls on a
WINDOW with the GRAY attribute are automatically given a three-
dimensional appearance. Controls in a TOOLBAR are always atitaity
given a three-dimensional appearance, without the GRAY attribute.

This attribute is not valid on an APPLICATION wstture.

The three-dimensional look may be disabled by SET3DLOOK.

Example:

A Window with 3-D controls
Winl WINDOW,GRAY
END

6-22

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

HLP (set window's on-line help identifier)

Example:

HLP(helpID)

HLP Specifies thénelplD for the APPLICATION, WINDOW,
or control.
helpID A string constant specifying the key used to access the

Help system. This may be either a Help keyword or a
“context string.”

TheHLP attribute specifies thieelplD for the APPLICATION or
WINDOW. Help, if available, is automatically displayed by Windows
whenever the user presses

If the user presses to request help when the APPLICATION window is
foremost and no menus are active, the APPLICATIONRID is used to

locate the Help text. Otherwise, the library automatically uselseipD of

the active menu of uppermost control or window, searching up the hierarchy
until an object with thalelplD is found. ThehelpID of the APPLICATION

is at the top of the hierarchy.

The helplD may contain a Help keyword or a “context string.” A Help
keyword is a keyword or phrase that is displayed in the Help Search dialog.
When the user presses if only one topic in the help file specifies this
keyword, the help file is opened at that topic; if more than one topic
specifies the keyword, the search dialog is opened for the user.

A “context string” is identified by a leading tilde (~) in thelpID, followed

by a unique identifier (no spaces allowed) associated with exactly one help
topic. When the user pressasthe help file is opened at the specific topic
associated with that “context string.” If the tilde is missing,hteipID is
assumed to be a help keyword.

A Window with a help context string:

Winl WINDOW
END

LHLP(“~WinlHelp”)

A Window with a help keyword:

Win2 WINDOW,

END

HLP(‘Window One Help’)

CHAPTER 6 WINDOW STRUCTURES

HSCROLL, VSCROLL, HVSCROLL (set window scroll bars)

HSCROLL
VSCROLL
HVSCROLL

TheHSCROLL, VSCROLL, andHVSCROLL parameters place scroll
bars on an APPLICATION or WINDOW. HSCROLL adds a horizontal
scroll bar to the bottom, VSCROLL adds a vertical scroll bar onighe r
side, and HVSCROLL adds both.

The vertical scroll bar allows a mouse to scroll up or down. The horizontal
scroll bar allows a mouse to scroll left or right. The scroll bars appear
whenever any scrollable portion of the APPLICATION or WINDOW lies
outside the visible area on screen.

Example:

IA Window with a horizontal scroll bar:
Winl WINDOW,HSCROLL
END

IA Window with a vertical scroll bar:
Win2 WINDOW,VSCROLL
END

IA Window with both scroll bars:
Win2 WINDOW,HVSCROLL
END

6-24 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ICON (set window icon)

ICON([file])
ICON Specifies an icon to display for the APPLICATION or
WINDOW.
file A string constant containing the name of an .ICO file, or

an EQUATE for the Windows-standard icon to display.
The .ICO file is automatically linked into the .EXE as a
resource.

TheICON attribute specifies an icon to display for the APPLICATION or
WINDOW. On an APPLICATION or WINDOW, ICON also specifies the
presence of a minimize control. The minimize control appears in the top
right corner of the window as a downward pointing triangle (usually). When
the user clicks the mouse on it, the window shrinks to an icon without
halting its execution. When an APPLICATION or non-MDI WINDOW is
minimized, the icorfile is displayed in the operating system’s desktop;
when a WINDOW with the MDI attribute is minimized, the icfie is
displayed in the APPLICATION.

EQUATE statements for the Windows-standard icons are contained in the
EQUATES.CLW file. The following list is a repsentative sample of these
(see EQUATES.CLW for the complete list):

ICON:None No icon
ICON:Application

ICON:Question ?
ICON:Exclamation I
ICON:Asterisk *
ICON:VCRtop >>
ICON:VCRrewind <<
ICON:VCRback <
ICON:VCRplay >
ICON:VCRfastforward >>
ICON:VCRbottom <<
ICON:VCRIocate ?

Example:

A Window with a minimize button:
WinOne WINDOW,ICON(‘MyIcon.ICO”)
END

A Window with a minimize button:
WinTwo WINDOW,ICON(ICON:Application)
END

CHAPTER 6 WINDOW STRUCTURES

ICONIZE (set window open as icon)

ICONIZE

ThelCONIZE attribute specifies the APPLICATION or WINDOW is
opened minimized as the icon specified by the ICON attribute. When an
APPLICATION or non-MDI WINDOW is minimized, the icofile is
displayed in the operating system’s desktop; when a WINDOW with the
MDI attribute is minimized, the icofile is displayed in the APPLICATION.

Example:
A Window with a minimize button, opened as the icon:

Win2 WINDOW,ICON(‘MyIcon.ICO”),ICONIZE
END

6-26

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

IMM (set immediate resize event notification)

Example:

IMM

TheIMM attribute on a WINDOW or APPLICATION specifies immediate
event generation whenever the user moves or resizes the window. It
generates one the folling events before the action is executed:

EVENT:Move
EVENT:Size
EVENT:Restore
EVENT:Maximize
EVENT:Iconize

If the code that handles these events executes a CYCLE statement, the actio
is not performed. This allows you to prevent the user from moving or

resizing the window. Once the action has been performed, one or more of
the following events are generated:

EVENT:Moved
EVENT:Sized
EVENT:Restored
EVENT:Maximized
EVENT:Iconized

Multiple post-action events are generated because some of the actions have
multiple results. For example, if the usercks on the maximize button,
EVENT:Maximize is generated. If there is no CYCLE statement executed as
a result of this event, the action is performed, then EVENT:Maximized,
EVENT:Moved, and EVENT:Sized are generated. This occurs because the
window has been maximized, which also moves asies it at the same

time.

Win2 WINDOW(‘Some Window’),AT(58,11,174,166),MDI,DOUBLE,MAX, IMM

LIST

,AT(109,48,50,50),USE(?List),FROM(“Que’),IMM

BUTTON(“&0k’),AT(111,108,,),USE(?0k)
BUTTON(‘&Cancel’),AT(111,130,,),USE(?Cancel)

END
CODE
OPEN(Win2)
ACCEPT
CASE EVENT()
OF EVENT:Move !Prevent user from moving window
CYCLE
OF EVENT:Maximized IWhen Maximized
?List{PROP:Height} = 100 ! resize the Tlist
OF EVENT:Restored IWhen Restored
?List{PROP:Height} = 50 ! resize the list
END

END

CHAPTER 6

WINDOW STRUCTURES

MASK (set pattern editing data entry)

Example:

MASK

TheMASK attribute specifies pattern input editing mode of all controls in
this window. This means that, as the user types in data, each character is
automatically validated against the control’s picture for proper input
(numbers only in mmeric pictures, etc.). This forces the user to enter data in
the format specified by the control’s display picture.

If omitted, Windows free-input is allowed in the controls. Free-input means
the user’s data is formatted to the control’s picture only after entry. This
allows users to enter data as they choose and it is automatically formatted to
the control’s picture after entry. If the user types in data in a format different
from the control’s picture, the libraries attempt to determine the format the
user used, and convert the data to the control’s display picture. For example,
if the user types “January 1, 1995” into a control with a display picture of
@D1, the runtime library formats the user’s input to “1/1/95." This action
occurs only after the user completes data entry and moves to another control
If the runtime library cannot determine what format the user used, it will not
update the USE variable. It then beeps and leaves the user on the same
control with the data they entered, to allow them to try again.

A Window with pattern input editing enabled
Win2 WINDOW,MASK

END

MAX (set maximize control)

Example:

MAX

TheMAX attribute specifies a maximize control on the APPLICATION or
WINDOW. The maximize control appears in the top right corner of the
window as a box containing either an upward pointing triangle, or an
upward pointing triangle above a downward pointing triangle (in Windows
3.1). When the user clicks the mouse on it, an APPLICATION or non-MDI
WINDOW expands to occupy the full screen, an MDI WINDOW expands to
occupy the entire APPLICATION. Once expanded, the maximize control
appears as an upward pointing triangle above a downward pointing triangle.
Click the mouse on it again, and the wind@turns to its previous size and
the maximize control appears as an upward pointing triangle.

A Window with a maximize button:
Win2 WINDOW,MAX

END

6-28

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

MAXIMIZE (set window open maximized)

Example:

MAXIMIZE

The MAXIMIZE attribute specifies the APPLICATION or WINDOW is
opened maximized.When maximized, an APPLICATION or non-MDI
WINDOW expands to occupy the full screen, and an MDI WINDOW
expands to occupy the entire APPLICATION. Once expanded, the maximize
control appears as an upward pointing triangle above a downward pointing
triangle (in Windows 3.1).

A Window with a maximize button, opened maximized:
Win2 WINDOW,MAX,MAXIMIZE

END

MDI (set MDI child window)

Example:

MDI

TheMDI attribute specifies a WINDOW structure that acts as a “child”
window to the APPLICATION. MDI “child” windows are clipped to the
APPLICATION frame—they scroll only within the boundaries set by the
display size of the APPLICATION. MDI “child” windows are automatically
moved when the APPLICATION frame is moved, and can be totally
concealed by minimizing the APPLICATION. A WINDOW with the MDI
attribute cannot be opened unless there is a currently open APPLICATION.

MDI “child” windows are modeless; the user may change to the top window
of another execution thread, within the same application or any other
application running in Windows, at any time. An MDI “child” window must
not be on the same execution thread as the APPLICATION. Therefore, any
MDI “child” window called directly from the APPLICATION must be in a
separate procedure so the START function can be used to begin a new
execution thread. Once started, multiple MDI “child” windows may be
called in the new thread.

A non-MDI WINDOW operates independently of any previously opened
APPLICATION. It will, however, disable an APPLICATION if it or any of

its MDI “child” windows are on the same execution thread. This makes a
non-MDI window opened in an MDI program an “application modal”
window which effectively disables the application while the user has the
window open (unless it is opened in its own execution thread). It does not,
however, prevent the user from changing to another application running
under Windows.

IAn MDI child Window:
Win2 WINDOW,MDI

END

CHAPTER 6

WINDOW STRUCTURES

MODAL (set system modal window)

Example:

MODAL

TheMODAL attribute specifies the WINDOW is “system modal.” This
means that no other window (in the same or any other concurrent program)
can receive focus while the MODAL window has focus—the MODAL
window has exclusive control of the computer. MODAL windows are
usually used for error messages, or messages which require immediate
attention by the user, such as: “Please insert a disk in drive A:.”

A WINDOW without the MODAL attribute, may be “application-modal” or
“modeless.” An application-modal window is a non-MDI window opened as
the top window of an MDI execution thread. An application-modal window
restricts the user from moving to another execution thread in the same
application, but does not restrict them from changing to another Windows
program.

A modeless window is an MDI “child” WINDOW (with the MDI attribute)
without the MODAL attribute. From a modeless window, The top window

on other execution threads may be selected by the mouse, keyboard, or men
commands. If so, the other window takes focus and becomes uppermost on
the video display. Any window not on the top of its execution thread may

not be selected to receive focus, even from a modeless window.

Win2 WINDOW,MODAL !A system-modal Window

END

6-30 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

MSG (set window status bar message)

MSG(text)
MSG Specifiestextto display in the status bar.
text A string constant containing the message to display in
the status bar.
The MSG attribute on an APPLICATION or WINDOW structure specifies
thetextto display in the first zone of the status bar when the control with
focus has no MSG attribute of its own.
Example:

WinOne WINDOW,AT(0,0,160,400),MSG(Enter Data’) IDefault MSG to use
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),MSG(‘Enter or Select’)
TEXT,AT(20,0,40,40) ,USE(E2) IDefault MSG used
ENTRY (@S8),AT(100,200,20,20),USE(E2) !Default MSG used

CHECK(“&A’),AT(0,120,20,20),USE(?C7),MSG(‘On or Off”)
OPTION(“Option 1’),USE(OptVar),MSG(‘Pick One or Two’)
RADIO(“Radio 1’),AT(120,0,20,20),USE(?RL)
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2)
END
END

PALETTE (set number of hardware colors)

PALETTE(colors)
PALETTE Specifies the number of hardware colors displayed in the
window.
colors An integer constant specifying the number of hardware

colors displayed in the window.

The PALETTE attribute on a WINDOW specifies how many colors in the
hardware palette you want this window to use when it is the foreground
window. This is only applicable in hardware modes where a palette is in use
and spare colors (not reserved by the system) are available - in practice this
means 256 color mode. This enforces a particular set of colors for the
graphics. 24-bit color (16.7M) does not use a hardware palette. Values of
PALETTE above 256 are not recommended.

Example:

WinOne WINDOW,AT(0,0,160,400),PALETTE(256) !Display 256-color
IMAGE,AT(120,120,20,20),USE(ImageField)
END

CHAPTER 6

WINDOW STRUCTURES

STATUS (set status bar)

Example:

STATUS([widths])

STATUS Specifies the presence of a status bar.

widths A list of integer constants (separated by commas)
specifying the size of each zone in the status bar. If
omitted, the status bar has one zone the width of the
window.

The STATUS attribute specifies the presence of a status bar at the base of
the APPLICATION or WINDOW. The status bar of an MDI WINDOW is
always displayed at the bottom of the APPLICATION. A WINDOW without
the MDI attribute displays its status bar at the base of the WINDOW. If the
STATUS attribute is not present on the APPLICATION or WINDOW, there
iS no status bar.

The status bar may be divided into multiple zones specified hyithies
parameters. The size of each zone is specified in dialog units. A negative
value indicates the zone is expandable, but has a minimum width indicated
by the parameter’s absolute value. Ifwidthsparameters are specified, a
single expanding zone with no minimum width is created, which is
equivalent to a STATUS(-1).

The first zone of the status bar is always used to display MSG attributes.
The MSG attribute string is displayed in the status bar as long as its control
field still has input focus. A control or menu item without a MSG attribute
causes the status bar to revert to its former state (either blank or displaying
the text previously displayed in the zone).

Text may be placed in, or retrieved from, any zone of the status bar using the
runtime property assignment syntax. The text remains present until replaced.
The status bar configuration can also be changed dynamically by using the
runtime property assignment syntax.

'An APPLICATION with a one-zone status bar:
MainWin APPLICATION,STATUS

END

A WINDOW with a two-zone status bar:
Winl WINDOW,STATUS(160,160)

END

6-32 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SYSTEM (set system menu)

SYSTEM

The SYSTEM attribute specifies the presence of a Windows system menu
(also called the control menu) on the APPLICATION or WINDOW. This

menu contains standard Windows menu selections, such as: Close,
Minimize, Maximize (the window), and Switch To (another wiwjloThe

actual selections available on a given window depend upon the attributes set
for that window.

Example:

'An APPLICATION with a system menu:
MainWin APPLICATION,SYSTEM
END
IA WINDOW with a system menu:
Winl WINDOW,SYSTEM
END

TOOLBOX (set toolbox window behavior)

TOOLBOX

The TOOLBOX attribute specifies a WINDOW that is “always on top.”
Neither the WINDOW nor its controls retain input focus. This creates

control behavior as if all the controls in the WINDOW had the SKIP

attribute. Normally, a WINDOW with the TOOLBOX attribute executes in

its own execution thread to provide a set of tools to the window with input
focus. The MSG attributes of the controls in the window appear in the status
bar when the mouse cursor is positioned over the control.

CHAPTER 6 WINDOW STRUCTURES

Example:
PROGRAM
MainWin APPLICATION(‘My Application’)
MENUBAR
MENUC*FiTe’),USE(?FileMenu)
ITEM(“E&xit’),USE(?MainExit),LAST
END
MENU(“Edit’),USE(?EditMenu)
ITEM(“Use Tools’),USE(?UseTools)
Pre:Field STRING(400)
UseToolsThread BYTE
ToolsThread BYTE
CODE
OPEN(MainWin)
ACCEPT

CASE ACCEPTED()
OF ?MainExit
BREAK
OF ?UseTools
UseToolsThread = START(UseTools)

UseTools PROCEDURE A procedure that uses a toolbox
MDIChild WINDOW(‘Use Tools Window’),MDI

TEXT,HVSCROLL,USE(Pre:Field)

BUTTON(“&0K”),USE(?Exit),DEFAULT

END
CODE
OPEN(MDIChild) !Open the window
DISPLAY ! and display it
ToolsThread = START(Tools) !Pop up the toolbox
ACCEPT
CASE EVENT() ICheck for user-defined events
OF 401h ! posted by toolbox controls
Pre:Field += * * & FORMAT(TODAY(),@D1l) ! append date to end of field
OF 402h
Pre:Field += * * & FORMAT(CLOCK(),@T1l) ! append time to end of field
END
CASE ACCEPTED()
OF ?Exit
POSTEVENT(400h,,ToolsThread) 1Signal to close tools window
BREAK

CLOSE(MDIChiTd)

Tools PROCEDURE !The toolbox procedure
Winl WINDOW(‘Tools’),TOOLBOX
BUTTON(‘Date’),USE(?Buttonl)
BUTTON(‘Time”),USE(?Button2)
END
CODE
OPEN(Winl)
ACCEPT
IF EVENT() = 400h THEN BREAK. ICheck for close window signal
CASE ACCEPTED()
OF ?Buttonl

POSTEVENT(401h, ,UseToolsThread) IPost datestamp signal
OF ?Button2
POSTEVENT(402h, ,UseToolsThread) IPost timestamp signal

CLOSE(Win1)

6-34 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

TIMER (set periodic event)
TIMER(period)
TIMER Specifies a periodic event.
period An integer constant or constant expression specifying the

interval between timed events, in hundredths of a
second. The maximueriodyou can specify is 6553 (a
Windows limitation).

The TIMER attribute specifies generation of a periodic field-independent
event whenever the tinperiod passes. EQUATES.CLW contains
EVENT:Timer which equates the timer-generated event. The FOCUS()
function returns the number of the control that currently has focus at the
time of the event.

Example:

RunClock PROCEDURE
ShowTime LONG

A WINDOW with a timed event occurring every second:
Winl WINDOW,TIMER(100)
STRING(@T4),USE(ShowTime)
END
CODE
OPEN(Winl)
ShowTime = CLOCK()
ACCEPT
CASE EVENT()
OF EVENT:Timer
ShowTime = CLOCK()
DISPLAY
END
END
CLOSE(Winl)

CHAPTER

6

WINDOW STRUCTURES

MENUBAR and TOOLBAR Structures

MENUBAR (declare a pulldown menu)

MENUBAR [, NOMERGE]

E

[MENU()
[ITEM()]
[MENU()
[ITEM()]
END]
END]
[ITEM()]
ND
MENUBAR Declares the menu for an APPLICATION or WINDOW.
NOMERGE Specifies menu merging behavior.
MENU A menu item with an associated drop box containing
other menu selections.
ITEM A menu item for selection.

The MENUBAR structure declares the pulldown menu selections displayed
for an APPLICATION or WINDOW. MENUBAR must appear in the source
code before any TOOLBAR or controls.

On an APPLICATION, the MENUBAR defines the Global menu selections
for the program. These are active and available on all MDI “child” windows
(unless the window's own MENUBAR structure has the NOMERGE
attribute). If the NOMERGE attribute is specified on the APPLICATION’s
MENUBAR, then the menu is a local menu displayed only when no MDI
child windows are open and there is no global menu.

On an MDI WINDOW, the MENUBAR defines menu selections that are
automatically merged with the Global menu. Both the Global and the
window’s menu selections are then active while the MDI “child” window
has input focus. Once the window loses focus, its specific menu selections
are removed from the Global menu. If the NOMERGE attribute is specified
on an MDI WINDOW'’'s MENUBAR, the menu overwrites and replaces the
Global menu.

On a non-MDI WINDOW, the MENUBAR is never merged with the Global
menu. A MENUBAR on a non-MDI WINDOW always appears in the
WINDOW, not on any APPLICATION which may have been previously
opened.

Events generated by local menu items are sent to the WINDOW's ACCEPT
loop in the normal way. Events generated by global menu items are sent to
the active event loop of the thread which opened the APPLICATION (in a
normal multi-thread application this means the APPLICATION’s own

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ACCEPT loop).

Dynamic changes to menu items which reference the currently active
window affect only the currently displayed menu, even if global items are
changed. Changes made to the Global menu items when the APPLICATION
is the current window, or which reference the global APPLICATION

window affect the global portions of all menus, whether already open or not.

When a WINDOW'’s MENUBAR is merged into an APPLICATION's
MENUBAR, the global menu selections appear first, followed by the local
menu selections, unless the FIRST or LAST attributes are specified on
individual menu selections.

Example:

IAn MDI application frame window with main menu for the application:
MainWin APPLICATION(‘My Application’)
MENUBAR

MENU(C“File’),USE(?FileMenu)
ITEM(*Open...”),USE(?0penFile)
ITEM(‘Close’),USE(?CloseFile),DISABLE
ITEM(‘E&xit’),USE(?MainExit), LAST

END

MENU(“Edit’),USE(?EditMenu)
ITEM(“Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut),DISABLE
ITEM(‘Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy),DISABLE
ITEM(“Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste),DISABLE

END

MENU(“Help’),USE(?HelpMenu), LAST
ITEM(‘Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(‘Search for Help On...’),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(‘About MyApp...’),USE(?HelpAbout)

END

END
END

'An MDI child window with menu for the window, merged into the
! application’s menubar:
MDIChild WINDOW(‘Child One’),MDI

MENUBAR
MENU(C“File’),USE(?FileMenu) IMerges into File menu
ITEM(‘Close’),USE(?CloseFile) ISupercedes main menu selection
ITEM(‘Pick...”),USE(?PickFiTe) IAdded to menu selections
END
MENU(“Edit’),USE(?EditMenu) IMerges into Edit menu

ITEM(‘Undo’),USE(?UndoText) ,KEY(Ctr1Z),STD(STD:Undo) !Added to menu
!These items supercede main menu selections:
ITEM(*Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut)
ITEM(“Copy’),USE(?2CopyText),KEY(Ctr1C),STD(STD:Copy)
ITEM(‘Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste)
END
MENU(“Window”),STD(STD:WindowlList),LAST
ITEM(‘Tile’),STD(STD:TileWindow)
ITEM(‘Cascade’),STD(STD:CascadeWindow)
END
END
TEXT,HVSCROLL,USE(Pre:Field)
BUTTON(“&0K*) ,USE(?Exit),DEFAULT
END

CHAPTER 6 WINDOW STRUCTURES

'An MDI window with its own menu, overwriting the main menu:
MDIChild2 WINDOW(‘Dialog Window’),MDI,SYSTEM,MAX,STATUS
MENUBAR, NOMERGE

MENU(C*File’),USE(?FileMenu)
ITEM(‘Close’),USE(?CToseFile)

END

MENU(“Edit’),USE(?EditMenu)
ITEM(*Undo’),USE(?UndoText),KEY(Ctr1Z),STD(STD:Undo)
ITEM(‘Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut)
ITEM(*Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy)

ITEM(‘Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste)
END

END
TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)

BUTTON(“&0K”),USE(?Exit),DEFAULT
END

A non-MDI window with its own menu:
NonMDI WINDOW(‘Dialog Window’),SYSTEM,MAX,STATUS
MENUBAR

MENU(“File’),USE(?FileMenu)
ITEM(“‘Close’),USE(?CloseFile)

END

MENU(“Edit’),USE(?EditMenu)
ITEM(“Undo’),USE(?UndoText),KEY(Ctr1Z),STD(STD:Undo)
ITEM(‘Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut)
ITEM(‘Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy)

ITEM(‘Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste)
END

END
TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)

BUTTON(“&0K”),USE(?Exit),DEFAULT
END

6-38 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

TOOLBAR (declare a tool bar)

TOOLBAR [AT()] [[CURSOR()] [[FONT()] [NOMERGE]

controls
END

TOOLBAR Declares tools for an APPLICATION or WINDOW.

AT Specifies the initial size of the toolbar. If omitted,
default values are selected by the runtime library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the TOOLBAR. If omitted, the WIN-
DOW or APPLICATION structure’s CURSOR attribute
is used, else the Windows default cursor is used.

FONT Specifies the default display font for the controls in the
TOOLBAR.

NOMERGE Specifies tools merging behavior.

controls Control field declarations that define the available tools.

The TOOLBAR structure declares the tools displayed for an
APPLICATION or WINDOW. On an APPLICATION, the TOOLBAR
defines the Global tools for the program. If the NOMERGE attribute is
specified on the APPLICATION’s TOOLBAR, the tools are local and are
displayed only when no MDI child windows are open; there are no global
tools. Global tools are active and available on all MDI “child” windows
unless an MDI “child” window’s TOOLBAR structure has the NOMERGE
attribute. If so, the “child” window’s tools evwrite the Global tools.

On an MDI WINDOW, the TOOLBAR defines tools that are automatically
merged with the Global toolbar. Both the Global and the window’s tools are
then active while the MDI “child” window has input focus. Once the
window loses focus, its specific tools are removed from the Global toolbar.
If the NOMERGE attribute is specified on an MDI WINDOW's TOOLBAR,
the tools overwrite and replace the Global toolbar. On a nhon-MDI
WINDOW, the TOOLBAR is never merged with the Global menu. A
TOOLBAR on a non-MDI WINDOW always appears in the WINDOW, not
on any APPLICATION which may have been previously opened.

Events generated by local tools are sent to the WINDOW'’s ACCEPT loop in
the normal way. Events generated by global tools are sent to the active event
loop of the thread which opened the APPLICATION. In a hormal multi-
thread application, this means the APPLICATION’s own ACCEPT loop.

TOOLBAR controls generate events in the normal manner. However, they do
not keep the focus, and cannot be operated from the keyboard unless
accelerator keys are provided. As soon as user interaction with a TOOLBAR
control is done, focuseturns to the window and local control which

previously had it.

CHAPTER 6 WINDOW STRUCTURES

Dynamic changes to tools which reference the currently active window
affect only the currently displayed toolbar, even if global tools are changed.
Changes made to the Global toolbar when the APPLICATION is the current
window, or which reference the global APPLICATION's window affect the
global portions of all toolbars, whether already open or not.

When a WINDOW'’s TOOLBAR is merged into an APPLICATION’s
TOOLBAR, the global tools appear first, followed by the local tools. The
toolbars are merged so that the fields in the WINDOW's toolbar begin just
right of the position specified by the value of the width parameter of the
APPLICATION TOOLBAR's AT attribute. The height of the displayed
toolbar is the maximum height of the “tallest” tool, whether global or local.
If any part of a control falls below the bottom, the height is increased
accordingly.

Example:

I'An MDI application frame window containing the
! main menu and toolbar for the application:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.IC0"),STATUS |
,HVSCROLL,RESIZE
MENUBAR
ITEM(“E&xit’),USE(?MainExit)
END
TOOLBAR
BUTTON(“Exit’),USE(?MainExitButton)
END
END
'An MDI child window with toolbar for the window, merged into the
! application’s toolbar:
MDIChild WINDOW(‘Child One’),MDI
TOOLBAR
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(“‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field)
BUTTON(‘&0K”),USE(?Exit),DEFAULT
END
IAn MDI window with its own toolbar, overwriting the main toolbar:
MDIChi1d2 WINDOW(‘Dialog Window’),MDI,SYSTEM,MAX,STATUS
TOOLBAR,NOMERGE
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(“‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
BUTTON(‘&0K”),USE(?Exit),DEFAULT
END
A non-MDI window with its own toolbar:
NonMDI WINDOW(‘Dialog Window’),SYSTEM,MAX,STATUS
TOOLBAR
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(“‘Copy”),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field) ,MSG(‘Enter some text here’)
BUTTON(“&0K”),USE(?Exit),DEFAULT
END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

MENUBAR and TOOLBAR Attributes

CURSOR (set toolbar mouse cursor type)

CURSOR(file)
CURSOR Specifies a mouse cursor to display for the TOOLBAR.
file A string constant containing the name of a .CUR file, or

an EQUATE naming a Windows-standard mouse cursor.
The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the
mouse is positioned over the TOOLBAR. This cursor is inherited by the
controls in the toolbar unless overridden.

EQUATE statements for the Windows-standard mouse cursors are contained
in the EQUATES.CLW file. The following list is a regsentative sample of
these (see EQUATES.CLW for the complete list):

CURSOR:None No mouse cursor
CURSOR:Arrow Normal windows arrow cursor
CURSOR:IBeam Capital “I” like a steel I-beam
CURSOR:Wait Hourglass

CURSOR:Cross Large plus sign
CURSOR:UpArrow Vertical arrow

CURSOR:Size Four-headed arrow
CURSOR:Icon Box within a box

CURSOR:SizeNWSE Double-headed arrow slanting left
CURSOR:SizeNESW Double-headed arrow slanting right

CURSOR:SizeWE Double-headed horizontal arrow
CURSOR:SizeNS Double-headed vertical arrow
CURSOR:DragWE Double-headed horizontal arrow

Example:

!Toolbar with large plus sign cursor
WinOne WINDOW

TOOLBAR,CURSOR(‘CURSOR:Cross”’)
BUTTON(“Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(“‘Paste’),USE(?PasteButton),STD(STD:Paste)

END

END

CHAPTER 6

WINDOW STRUCTURES

FONT (set toolbar default f ont)

Example:

FONT ([typeface] [,siz€] [,colon [,style])

Winl

Win2

FONT Specifies the default display font for the TOOLBAR.

typeface A string constant containing the name of the font. If
omitted, the system font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the system default font size is used.

color A LONG integer constant containing the red, green, and

blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, black is used.

style An integer constant or constant expression or EQUATE
specifying the strike weight and style of the font. If
omitted, the weight is normal.

TheFONT attribute on a TOOLBAR structure specifies the default display
font for all controls in the TOOLBAR that do not have a FONT attribute.
Thetypefacemay name any font registered in the Windows system. The
EQUATES.CLW file contains EQUATE values for standatglevalues. A
styleon the range zero (0) to one thousand (1000) specifies the strike weight
of the font. You may add to that values that indicate italic, underline, or
strikeout text. The following EQUATES are in EQUATES.CLW.:

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)
WINDOW 'A toolbar using 14 point Times New Roman

TOOLBAR,FONT(‘Times New Roman’,14,00H)
BUTTON(“Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)
END
END

WINDOW !14 point Times New Roman, Bold and Italic
TOOLBAR,FONT(‘Times New Roman’,14,00H,FONT:italic+FONT:bold)
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)
END
END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

NOMERGE (set merging behavior)

NOMERGE

The NOMERGE attribute indicates that the MENUBAR or TOOLBAR on
a WINDOW should not be merged with the Global menu or toolbar.

The NOMERGE attribute on an APPLICATION’s MENUBAR indicates that
the menu is local and to be displayed only when no MDI “child” windows
are open and that there is no Global menu. The NOMERGE attribute on an
APPLICATION’s TOOLBAR indicates that the tools are local and to be

displayed only when no MDI “child” windows are open and that there are no
Global tools.

Without the NOMERGE attribute, an MDI WINDOW'’s menu and toolbar
are automatically merged with the global menu and toolbar, and then
displayed in the APPLICATION menu and toolbar. When NOMERGE is
specified, the WINDOW'’s menu and toolbar overwrite the Global menu and
toolbar. The menu and toolbar displayed when the WINDOW has focus are
only the WINDOW'’s own menu and toolbar. However, they are still
displayed on the APPLICATION.

A MENUBAR or TOOLBAR specified in a non-MDI WINDOW is never
merged with the Global menu or toolbar—they appear in the WINDOW.

Example:

I'An MDI application frame window with Tocal-only menu and toolbar:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO”),STATUS
MENUBAR, NOMERGE
ITEM(“E&xit’),USE(?MainExit)
END
TOOLBAR,NOMERGE
BUTTON(“‘Exit’),USE(?MainExitButton)
END
END

IMDI window with its own menu and toolbar, overwriting the application’s:
MDIChild WINDOW(*‘Dialog Window’),MDI,SYSTEM,MAX,STATUS
MENUBAR, NOMERGE
MENU(‘Edit’),USE(?EditMenu)
ITEM(“Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut)
ITEM(“Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy)
ITEM(“‘Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste)
END
END
TOOLBAR,NOMERGE
BUTTON(‘Cut’),USE(?CutButton),STD(STD:Cut)
BUTTON(‘Copy’),USE(?CopyButton),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),STD(STD:Paste)
END
TEXT,HVSCROLL,USE(Pre:Field),MSG(‘Enter some text here’)
BUTTON(‘&0K*),USE(?Exit),DEFAULT
END

CHAPTER 6 WINDOW STRUCTURES

MENUBAR Controls

MENU (declare a menu box)

MENU(text) [LUSE()] [LKEY()] LMSG()] [HLP()] [STD()] [,RIGHT] [,DISABLE]

[, | FIRST |]
| LAST |

MENU Declares a menu box within a MENUBAR.

text A string constant containing the display text for the
menu selection.

USE A field equate label to reference the menu selection in
executable code.

KEY Specifies an integer constant or keycode equate that
immediately opens the menu.

MSG Specifies a string constant containing the text to display
in the status bar when the menu is pulled down.

HLP Specifies a string constant containing the help system
identifier for the menu.

STD Specifies an integer constant or equate that identifies a
“Windows standard behavior” for the menu.

RIGHT Specifies the MENU appears at the far right of the action
bar.

FIRST Specifies the MENU appears at the left or top of the
menu when merged.

LAST Specifies the MENU appears at the right or bottom of
the menu when merged.

DISABLE Specifies the menu appears dimmed when the WINDOW

or APPLICATION is first opened.

MENU declares a drop-down or cascading menu box structure within a
MENUBAR structure. When the MENU is selected, the MENU and/or
ITEM statements within the structure are displayed in a menu box. A
MENU is not required to have any MENUSs or ITEMs in it. A menu box
usually appears (drops down) immediately belovtgtson the menu bar (or
above, if there is no room below). When selected wtfr Or RIGHT ARROW,
any subsequent menu drop-box appears (cascades) immediatelyigbtthe r
of the MENUTtextin the preceding menu box (or left, if there is no room to
the right).Lert ARrow backs up to the preceding menu. The KEY attribute
designates a separate accelerator key for the field. This may be any valid
Clarion keycode to immediately pull down the MENU.

Thetextstring may contain an ampersand (&) which designates the
following character as the accelerator “hot” key which is automatically

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

underlined. If the MENU is on the menu bar, pressing the Alt key together
with the accelerator key highlights and displays the MENU. If the MENU is
within another MENU, pressing the accelerator key, alone, highlights and
executes the MENU. If there is no ampersand irteékethe first non-blank
character in théextstring is the accelerator key for the MENU, but it will
not be underlined. To include an ampersand as part téxh@lace two
ampersands together (&&) in thextstring and only one will display.

Example:

IAn MDI application frame window with main menu for the application:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
,HVSCROLL,RESIZE
MENUBAR

MENU(C*File’),USE(?FileMenu),FIRST
ITEM(“Open...”),USE(?0penFile)
ITEM(‘Close’),USE(?CloseFile),DISABLE
ITEM(“E&xit’),USE(?MainExit)

END

MENU(*Edit’),USE(?EditMenu),KEY(Ctr1E),HLP(‘EditMenuHelp’)
ITEM(“Undo’),USE(?UndoText),KEY(Ctr1Z),STD(STD:Undo),DISABLE
ITEM(‘Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut),DISABLE
ITEM(“Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy),DISABLE
ITEM(“Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste),DISABLE

END

MENU(“‘Window”),STD(STD:WindowList),MSG(“Arrange or Select Window’),LAST
ITEM(*Tile’),STD(STD:TileWindow)
ITEM(‘Cascade’),STD(STD:CascadeWindow)
ITEM(‘Arrange Icons’),STD(STD:Arrangelcons)

END

MENU(‘Help’),USE(?HelpMenu),LAST,RIGHT
ITEM(‘Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(‘Search for Help On...”),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(‘About MyApp...’),USE(?HelpAbout)

END

END
END

CHAPTER 6 WINDOW STRUCTURES

ITEM (declare a menu item)

ITEM(text) [LUSE()] [[KEY()] LMSG()] [[HLP()] [.STD()] [.CHECK] [,DISABLE]
[, | FIRST |] [[SEPARATOR]

| LAST |

ITEM

text

USE

KEY

MSG

HLP

STD

CHECK
DISABLE

FIRST

LAST

SEPARATOR

Declares a menu choice within a MENUBAR or MENU
structure.

A string constant containing the display text for the
menu item.

A field equate label to reference the menu item in
executable code, or the variable used with CHECK.

Specifies an integer constant or keycode equate that
immediately executes the menu item.

Specifies a string constant containing the text to display
in the status bar when the menu item is highlighted.

Specifies a string constant containing the help system
identifier for the menu item.

Specifies an integer constant or equate that identifies a
“Windows standard action” the menu item executes.

Specifies an on/off ITEM.

Specifies the menu item appears dimmed when the
WINDOW or APPLICATION is first opened.

Specifies the ITEM appears at the top of the menu when
menus are merged.

Specifies the ITEM appears at the bottom of the menu
when menus are merged.

Specifies the ITEM displays a solid horizontal line
across the menu box at run-time to delimit groups of
menu selections. No other attributes may be specified
with SEPARATOR.

ITEM declares a menu choice within a MENUBAR or MENU structure.
Thetextstring may contain an ampersand (&) which designates the
following character as an accelerator “hot” key which is automatically
underlined. If the ITEM is on the menu bar, pressing the Alt key together
with the accelerator key highlights and executes the ITEM. If the ITEM is in
a MENU, pressing the accelerator key, alone, when the menu is displayed,
highlights and executes the ITEM. If there is no ampersand iexhe¢he

first non-blank character in thextstring is the accelerator key for the

ITEM, which will not be underlined. To include an ampersand as part of the
text place two ampersands together (&&) in tlet string and only one will

display.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

The KEY attribute designates a separate “hot” key for the field. This may be
any valid Clarion keycode to immediately execute the ITEM’s action.

A cursor bar highlights individual ITEMs within the MENU structure. Each
ITEM is usually associated with some code to be executed upon selection of
that ITEM, unless the STD attribute is present. The STD atribute specifies a
standard Windows action the menu item performs, such as Tile or Cascade
the windows.

The SEPARATOR attribute creates an ITEM which serves only to delimit
groups of menus selections so it should not haegtmarameter, nor any
other attributes. It creates a solid horizontal line across the menu box.

An ITEM that is not within a MENU structure is placed on the menu bar.
This creates a menu bar selection which has no related drop-down menu.
The normal convention to indicate this to the user is to terminatexhe
displayed for the item with an exclamation point (!). For exampletetkie

for the ITEM might contain ‘Exit!" to alert the user to the executable nature
of the menu choice.

Events Generated:

EVENT:Accepted The control has been pressed by the user.
Example:

IAn MDI application frame window with main menu for the application:
MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
,HVSCROLL,RESIZE
MENUBAR

ITEM(“E&xit!’),USE(?MainExit),FIRST

MENU(C*File’),USE(?FileMenu), FIRST
ITEM(‘Open...”),USE(?0penFile) ,HLP(‘OpenFileHelp’) ,FIRST
ITEM(‘Close’),USE(?CloseFile) ,HLP(‘CloseFileHelp’),DISABLE
ITEM(‘Auto Increment’),USE(ToggleVar),CHECK

END

MENU(“‘Edit’),USE(?EditMenu),KEY(Ctr1E),HLP(‘EditMenuHelp’)
ITEM(“Undo’),USE(?UndoText),KEY(Ctr1Z),STD(STD:Undo),DISABLE
ITEM, SEPARATOR
ITEM(‘Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut),DISABLE
ITEM(“Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy),DISABLE
ITEM(‘Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste),DISABLE

END

MENU(“‘Window”),STD(STD:WindowList),MSG(“Arrange or Select Window’),LAST
ITEM(*Tile’),STD(STD:TileWindow)
ITEM(‘Cascade’),STD(STD:CascadeWindow)
ITEM(‘Arrange Icons’),STD(STD:Arrangelcons)
ITEM,SEPARATOR

END

MENU(‘Help’),USE(?HelpMenu),LAST,RIGHT
ITEM(‘Contents’),USE(?HelpContents),STD(STD:HelpIndex)
ITEM(‘Search for Help On...”),USE(?HelpSearch),STD(STD:HelpSearch)
ITEM(‘How to Use Help’),USE(?HelpOnHelp),STD(STD:HelpOnHelp)
ITEM(“About MyApp...’),USE(?HelpAbout),MSG(‘Copyright Info’),LAST

END

END
END

CHAPTER 6 WINDOW STRUCTURES

TOOLBAR and WINDOW Control Fields

BOX (declare a window box control)

BOX ,AT() [LUSE()] [DISABLE] [[COLOR()] [,FILL()] [ROUND] [,FULL] [,SCROLL] [HIDE]

BOX Places a rectangular box on the window.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW (or APPLICATION) is first opened.

COLOR Specifies the color for the border of the control. If
omitted, the border is black.

FILL Specifies the fill color for the control. If omitted, the box
is not filled with color.

ROUND Specifies the box corners are rounded. If omitted, the

corners are square.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

TheBOX control places a rectangular box on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. This
control cannot receive input focus and does not generate events.

Example:
MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
BOX,FILL(COLOR:MENU),FULL IFilled, full screen, black border
BOX,AT(0,0,20,20) Unfilled, black border

BOX,AT(0,20,20,20),USE(?Box1),DISABLE

'Unfilled, black border, dimmed
BOX,AT(20,20,20,20),ROUND IUnfilled, rounded, black border
BOX,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

IFilled, black border
BOX,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER)

!Unfilled, active border color border
BOX,AT(480,180,20,20),SCROLL IScrolls with screen

END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

BUTTON (declare a pushbutton control)

BUTTON(text) ,AT() [[CURSOR()] [LUSE()] [,DISABLE] [,KEY()] [[MSG()] [HLP()] [,SKIP]
[STD()] [FONT()] [ICON()] [, DEFAULT] [,IMM][,REQ] [,FULL] [SCROLL] [ALRT()]
[HIDE] [DROPID()] [TIP()] [, | LEFT |]

BUTTON

text

AT

CURSOR

USE

DISABLE

KEY

MSG

HLP

SKIP

STD

FONT
ICON

DEFAULT

IMM

| RIGHT |

Places a command button on the WINDOW or
TOOLBAR.

A string constant containing the text to display on the
button face (along with any ICON specified). This may
contain an ampersand (&) to indicate the “hot” letter
(accelerator key) for the button.

Specifies the initial size and location of the control. If
omitted, default values are set by the runtime library.

Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW's
CURSOR attribute is used, else the Windows default
cursor is used.

A field equate label to reference the control in executable
code.

Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

Specifies an integer constant or keycode equate that
immediately gives focus to and presses the button.

Specifies a string constant containing the text to display
in the status bar when the control has focus.

Specifies a string constant containing the help system
identifier for the control.

Specifies the control does nefceiveinput focus and
may only be accessed with the mouse or accelerator key.

Specifies an integer constant or equate that identifies a
“Windows standard action” the control executes.

Specifies the display font for the control.

Specifies an .ICO file or standard icon to display on the
button face.

Specifies the BUTTON is automatically pressed when
the user presses theTter key.

Specifies the control generates an event when the left
mouse button is pressed, continuing as long as it is
depressed. If omitted, an event is generated only when
the left mouse button is pressed and released on the
control.

CHAPTER 6

WINDOW STRUCTURES 6-49

REQ Specifies that when the BUTTON is pressed, the runtime
library automatically checks all ENTRY controls in the
same WINDOW with the REQ attribute to ensure they
contain data other than blanks or zeroes.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.
ALRT Specifies “hot” keys active for the control.
HIDE Specifies the control does not appear when the WIN-

DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

LEFT Specifies that theext appears to the left of the icon.

RIGHT Specifies that theext appears to the right of the icon.

TheBUTTON control places a pushbutton on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute.

A BUTTON with the IMM attribute generates an event as soon as the left
mouse button is pressed on the control and continues to do so until it is
released. This allows the BUTTON control’'s executable code to execute
continuously until the mouse button is released. A BUTTON without the

IMM attribute generates an event only when the left mouse button is pressed
and released on the control.

A BUTTON with the REQ attribute is a “required control fields check”
button. REQ attributes of ENTRY or TEXT control fields are not checked
until a BUTTON with the REQ attribute is pressed or the INCOMPLETE
function is called. Focus is given to the first required control which is blank
or zero.

A BUTTON with an ICON attribute displays the icon on the button face in
addition to itstextparameter (which appears below the icon, by default). The
textparameter also serves for accelerator “hot” key definition.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

EVENT:Selected The control hasceived input focus.
EVENT:Accepted The control has been pressed by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
BUTTON(“1”),AT(0,0,20,20),USE(?B1)
BUTTON(‘2"),AT(20,0,20,20),USE(?B2),KEY(F10Key)
BUTTON(*3”),AT(40,0,20,20),USE(?B3),MSG(‘Button 3°)
BUTTON(“4”),AT(60,0,20,20),USE(?B4),HLP(‘ButtondHelp”’)
BUTTON(‘5”),AT(80,0,20,20),USE(?B5),STD(STD:Cut)
BUTTON(“6”),AT(100,0,20,20),USE(?B6),FONT(“Arial’,12)
BUTTON(“7*),AT(120,0,20,20),USE(?B7),ICON(ICON:Question)
BUTTON(“8”),AT(140,0,20,20),USE(?B8),DEFAULT
BUTTON(‘9”),AT(160,0,20,20),USE(?B9),IMM
BUTTON(‘10"),AT(180,0,20,20),USE(?B10),CURSOR(CURSOR:Wait)
BUTTON(“11”),AT(200,0,20,20),USE(?B11),REQ
BUTTON(“12”),AT(220,0,20,20),USE(?B12),ALRT(F10Key)
BUTTON(“13*),AT(240,0,20,20),USE(?B13),SCROLL

END

CODE
OPEN(MDIChild)
ACCEPT

CASE ACCEPTED()

OF ?B1

IPerform some action

END

END

CHAPTER 6 WINDOW STRUCTURES

CHECK (declare a window checkbox control)

CHECK(text) ,AT() [,CURSOR()] [USE()] [,DISABLE] [KEY()] [MSG()] HLP()] [,SKIP]
[LFONT()] [ICON()] [,FULL] [SCROLL] [ALRT()] [,HIDE] [DROPID()]

LTIPOI L |LEFT]
| RIGHT |
CHECK Places a check box on the WINDOW or TOOLBAR.
text A string constant containing the text to display for the

check box. fiis may contain an ampersand (&) to
indicate the “hot” letter for the check box.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW's
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of a numeric variable teaeive the value of
the check box, zero (0 = OFF) or one (1 = ON).

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to and toggles the box.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control does neteiveinput focus and
may only be accessed with the mouse or accelerator key.

FONT Specifies the display font for the control.

ICON Specifies an .ICO file or standard icon to display on the

button face of a “latching” pushbutton.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.
ALRT Specifies “hot” keys active for the control.
HIDE Specifies the control does not appear when the WIN-

DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DROPID Specifies the control may serve as a drop target for drag-

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

LEFT Specifies that the text appears to the left of the check
box.

RIGHT Specifies that the text appears to the right of the check

box (the default position).

The CHECK control places a check box on the WINDOW (or TOOLBAR)
at the position and size specified by its AT attribute. A CHECK with an
ICON attribute appears as a “latched” button with the icon displayed on the
button face. When the button appears “up” the CHECK is off and the USE
variable receives a zero (0); when it appears “down” the CHECK is on and
the USE variable receives a one (1). The PROP:TrueValue and
PROP:FalseValue runtimeqperties can be used to automatically set the
USE variable to values other than zero and one.

Events Generated:

EVENT:Selected The control hasceived input focus.
EVENT:Accepted The control has been toggled by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.
Example:
MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL

CHECK(“1"),AT(0,0,20,20),USE(C1)
CHECK(*2”),AT(0,20,20,20),USE(C2),KEY(F10Key)
CHECK(*3”),AT(0,40,20,20),USE(C3),MSG(‘Button 3°)
CHECK(*4*),AT(0,60,20,20),USE(C4),HLP(‘Check4Help”)
CHECK(“5”),AT(20,80,20,20),USE(C5),LEFT
CHECK(*6°),AT(0,100,20,20),USE(C6),FONT(*Arial’,12)
CHECK(“7),AT(0,120,20,20),USE(C7),ICONCICON:Question)
CHECK(‘8°),AT(0,140,20,20),USE(C8),DEFAULT
CHECK(‘9"),AT(0,160,20,20),USE(C9), IMM

CHECK(“10’),AT(0,180,20,20),USE(C10),CURSOR(CURSOR:Wait)
CHECK(“11’),AT(0,200,20,20),USE(C11),ALRT(F10Key),DISABLE
END
CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
0F ?C1
IFCl =1
ENABLE(?C11)
ELSE
DISABLE(?C11)
END
END
END

CHAPTER 6 WINDOW STRUCTURES

COMBO (declare an entry/list control)

COMBO(picture) ,FROM() ,AT() [,CURSOR()] [LUSE()] [,DISABLE] [KEY()] [[MSG()]
LHLP()] [,SKIP] [FONT()] [,FORMAT()] [, DROP] [, COLUMN] [,VCR] [,FULL]
[.SCROLL] [,ALRT()] [,HIDE] [READONLY] [,REQ] [NOBAR] [DROPID()] [, TIP()]
[, | MARK(Q [I[, | HSCROLL][, | LEFT [Il. [INS [I[, |UPR]

[IMM | |VSCROLL | |RIGHT | |OVR| |CAP|
| HVYSCROLL | |CENTER |

COMBO
picture

FROM
AT

CURSOR

USE

DISABLE
KEY
MSG
HLP
SKIP
FONT

FORMAT
DROP

COLUMN

VCR

| DECIMAL |

Places a data entry field with an associated list of data
items on the WINDOW or TOOLBAR.

A display picture token that specifies the input format
for the data entered into the control.

Specifies the origin of the data displayed in the list.

Specifies the initial size and location of the control. If
omitted, the runtime library chooses a value.

Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW's
CURSOR attribute is used, else the Windows default
cursor is used.

A field equate label to reference the control in executable
code or the label of the variable that receives the value
selected by the user.

Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

Specifies an integer constant or keycode equate that
immediately gives focus to the control.

Specifies a string constant containing the text to display
in the status bar when the control has focus.

Specifies a string constant containing the help system
identifier for the control.

Specifies the controkceives input focus to enter text
only with the mouse or accelerator key and does not
retain focus.

Specifies the display font for the control.
Specifies the display format of the data.

Specifies a drop-down list box and the number of
elements the drop-down portion contains.

Specifies a field-by-field highlight bar on multi-column
list boxes.

Specifies a VCR-type control to the left of the horizontal
scroll bar (if present).

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

FULL

SCROLL
ALRT
HIDE

READONLY
NOBAR
DROPID
TIP

REQ
MARK
IMM

HSCROLL

VSCROLL

HVSCROLL

LEFT
RIGHT
CENTER
DECIMAL

INS / OVR

UPR / CAP

Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

Specifies the control scrolls with the window.
Specifies “hot” keys active for the control.

Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

Specifies the control does not allow data entry.

Specifies the highlight bar is displayed only when the
LIST has focus.

Specifies the control may serve as a drop target for drag-
and-drop actions.

Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

Specifies the control may not be left blank or zero.
Specifies multiple item selection mode.

Specifies generation of an event whenever the user
presses any key.

Specifies that a horizontal scroll bar is automatically
added to the list box when any portion of the data item
lies horizontally outside the visible area.

Specifies that a vertical scroll bar is automatically added
to the list box when any data items lie vertically outside
the visible area.

Specifies that both vertical and horizontal scroll bars are
automatically added to the list box when any portion of
the data items lies outside the visible area.

Specifies that the data is left justified within the list.
Specifies that the data is right justified within the list.
Specifies that the data is centered within the list.

Specifies that the data is aligned on the decimal point
within the list.

Specifies Insert or Overwrite entry mode (valid only on
windows with the MASK attribute).

Specifies all upper case or proper name capitalization
(First Letter Of Each Word Capitalized) entry.

The COMBO control places a data entry field with an associated list of data
items on the WINDOW (or TOOLBAR) at the position and size specified by
its AT attribute (a combination of an ENTRY and LIST control). The user

CHAPTER 6

WINDOW STRUCTURES 6-55

Events Generated:

may type in data or select an item from the list. The entered data is not
automatically validated against the entries in the list. The data entrgrpor

of the COMBO acts as an “incremental locator” to the list—as the user types
each character, the highlight bar is positioned to the closest matching entry.

A COMBO with the DROP attribute displays only the currently selected

data item on screen until the control has focus and the user presses the dowr
arrow key, okLicks on the the icon to the right of the displayed data item.
When either of these occurs, the selection list appears (“drops down”) to
allow the user to select an item.

A COMBO with the IMM attribute generates an event every time the user
moves the highlight bar to another selection, or pressed any key that causes
the displayed entries to scroll. This allows an opportunity for the source
code to re-fill the display QUEUE, or get the currently highlighted record to
display other fields from the record. A COMBO with the VCR attribute has
scroll control buttons like Yideo CassettdRecorder to the left of the

horizontal scroll bar (if there is one). These buttons allow the user to use the
mouse to scroll through the list.

EVENT:Selected The control hasceivedinput focus.
EVENT:Accepted The user has selected an entry.

EVENT:Rejected The user has entered an invalid value for the entry
picture.

EVENT:NewSelection
The current selection in the list has changed (highlight
has moved up or down).

EVENT:PreAlertkey
The user pressed an ALRT attribute hot key.

EVENT:Alertkey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.

A COMBO with the IMM attribute also generates the following events:
EVENT:ScrollUp The highlight bar has attempted to move off the top of
the LIST.

EVENT:ScrollDown
The highlight bar has attempted to move off the bottom
of the LIST.

EVENT:PageUp The user pressed PgUp.

EVENT:PageDown
The user pressed PgDn.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

See Also:

EVENT:ScollTop The user pressed Ctrl-PgUp.

EVENT:ScrollBottom
The user pressed Ctrl-PgDn.

EVENT:PreAlertKey
The user pressed a printable character or an ALRT
attribute hot key.

EVENT:AlertKkey The user pressed a printable character or an ALRT
attribute hot key.

EVENT:Locate The user pressed the locator VCR button.
A COMBO with the DROP attribute also generates the following events:
EVENT:DroppingDown

The user pressed the down arrow button.

EVENT:DroppedDown
The list has dropped.

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL

CODE

COMBO(@S8),AT(0,0,20,20),USE(C1),FROM(Que)
COMB0O(@S8),AT(20,0,20,20),USE(C2),FROM(Que),KEY(F10Key)
COMBO(@S8),AT(40,0,20,20),USE(C3),FROM(Que) ,MSG(‘Button 3”)
COMB0O(@S8),AT(60,0,20,20),USE(C4),FROM(Que),HLP(*Check4Help”)
COMBO(@S8),AT(80,0,20,20),USE(C5),FROM(Q) |

, FORMAT(*5C~List~15L~Box~"),COLUMN
COMBO(@S8),AT(100,0,20,20),USE(C6),FROM(Que),FONT(“Arial’,12)
COMBO(@S8),AT(120,0,20,20),USE(C7),FROM(Que),DROP(8)
COMB0O(@S8),AT(140,0,20,20),USE(C8),FROM(Que) ,HVSCROLL,VCR
COMB0O(@S8),AT(160,0,20,20),USE(C9),FROM(Que),IMM
COMB0O(@S8),AT(180,0,20,20),USE(C10),FROM(Que),CURSOR(CURSOR:Wait)
COMBO(@S8),AT(200,0,20,20),USE(C11),FROM(Que) ,ALRT(F10Key)
COMBO(@S8),AT(220,0,20,20),USE(C12),FROM(Que),LEFT
COMBO(@S8),AT(240,0,20,20),USE(C13),FROM(Que),RIGHT
COMBO(@S8),AT(260,0,20,20),USE(C14),FROM(Que),CENTER
COMBO(@N8.2),AT(280,0,20,20),USE(C15),FROM(Que),DECIMAL
END

OPEN(MDIChi1d)

ACCEPT

CASE ACCEPTED()

OF 2C1

LOOP X# = 1 to RECORDS(Que) ICheck for user’s entry in Que
GET(Que, X#)
IF C1 = Que THEN BREAK. IBreak loop if present

END

IF X# > RECORDS(Que) ICheck for BREAK
Que = C1 ! and add the entry
ADD(Que)

LIST, ENTRY

CHAPTER 6 WINDOW STRUCTURES

CUSTOM (declare a window .VBX custom control)

CUSTOM(text) ,AT() [,CLASS()] [,CURSOR()] [LUSE()] [.DISABLE] [,KEY()] MSG()]
[LHLP()] [,SKIP] [,FULL] [,SCROLL] [,ALRT()] [,HIDE] [,FONT()] [DROPID()]
[,TIP()] [.property(value)|

CUSTOM

text
AT

CLASS
CURSOR

USE
DISABLE

KEY

MSG

HLP

SKIP

FULL

SCROLL

ALRT
HIDE

FONT
DROPID

TIP

Places a Visual Basic .VBX control on the WINDOW or
TOOLBAR.

A string constant containing the title for the control.

Specifies the initial size and location of the control. If
omitted, default values are selected by the control.

Specifies the .VBX filename and type of control.

Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW'’s
CURSOR attribute is used, else the Windows default
cursor is used.

The label of a variable to receive the value of the control.

Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

Specifies an integer constant or keycode equate that
immediately gives focus to the control.

Specifies a string constant containing the text to display
in the status bar when the control has focus.

Specifies a string constant containing the help system
identifier for the control.

Specifies the control does neteiveinput focus and
may only be accessed with the mouse or accelerator key.

Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

Specifies the control scrolls with the window.
Specifies “hot” keys active for the control.

Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

Specifies the display font for the control.

Specifies the control may serve as a drop target for drag-
and-drop actions.

Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

property A string constant containing the name of a custom
property setting for the control.
value A string constant containing the property value number

or EQUATE for theproperty

The CUSTOM control places a Visual Basic .VBX control on the
WINDOW (or TOOLBAR) at the position and size specified by its AT
attribute.

The propertyattribute allows you to specify any additional property settings
the .VBX control may require. These are properties that need to be set for
the .VBX control to properly function, and are not standard Clarion
properties (such as AT, CURSOR, or USE). The custom control should only
receive values for these properties that are defined for that control. Valid
properties and values for those properties would be defined in the custom
control’s documentation. You may have multiplepertyattributes on a

single CUSTOM control.

Events Generated:

EVENT:VBXevent A VBX-specific event occurred. Interrogate the
PROP:VBXEvent and PROP:VBXEventArg properties
for the event.

EVENT:Selected The control hasceived input focus.
EVENT:Accepted The user has completed using the control.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKkey The user pressed an ALRT attribute hot key.

EVENT:Drop A successful drag-and-drop to the control.
Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
CUSTOM,AT(0,0,120,320),USE(C1), |
CLASS(“graph.vbx’,’graph’),’graphstyle’(*2”)
END
CODE
OPEN(MDIChild)
ACCEPT
CASE ACCEPTED()
OF ?C1
?C1{*graphstyle’} = 3’ !Change graphstyle property “on the fly”
! using runtime property access syntax
END
END

CHAPTER 6 WINDOW STRUCTURES

ELLIPSE (declare a window ellipse control)

ELLIPSE ,AT() [LUSE()] [DISABLE] [,COLOR()] [,FILL()] [,FULL] [,SCROLL] [,HIDE]

ELLIPSE Places a “circular” figure on the WINDOW or
TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

COLOR Specifies the color for the border of the ellipse. If
omitted, the ellipse has a black border.

FILL Specifies the fill color for the control. If omitted, the

ellipse is not filled with color.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

TheELLIPSE control places a “circular” figure on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. The ellipse
is drawn inside a “bounding box” defined by tkey, width, andheight
parameters of it SAT attribute. The@andy parameters specify the starting
point, and thavidth andheight parameters specify the horizontal and

vertical size of the “bounding box.” This control cannot receive input focus
and does not generate events.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
ELLIPSE,FILL(COLOR:MENU),FULL I'Filled, full screen, black border
ELLIPSE,AT(0,0,20,20) IUnfilled, black border
ELLIPSE,AT(0,20,20,20),USE(?Box1),DISABLE IDimmed
ELLIPSE,AT(20,20,20,20),ROUND 1Unfilled, rounded, black border
ELLIPSE,AT(40,40,20,20),FILL(COLOR:ACTIVEBORDER)

IFilled, black border
ELLIPSE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDeR)
Unfilled, active border color border
ELLIPSE,AT(480,180,20,20),SCROLL !Scrolls with screen
END

6-60 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ENTRY (declare a data entry control)

ENTRY (picture) ,AT() [,CURSOR()] [,USE()] [,DISABLE] [KEY()] [MSG()] [HLP()] [,SKIP]
[LFONT()] [,IMM] [PASSWORD] [,REQ] [,FULL] [, SCROLL][,ALRT()] [HIDE] [TIP()]

LREADONLY] [DROPID()] [, |INS |]1[|CAP |]1[|LEFT]
|[OVR | |UPR| |RIGHT |
| CENTER
| DECIMAL |

ENTRY Places a data entry field on the WINDOW or
TOOLBAR.

picture A display picture token that specifies the input format
for the data entered into the control.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW'’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of the variable thagaeives the value entered
into the control by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the controkceives input focus to enter text
only with the mouse or accelerator key and does not
retain focus.

FONT Specifies the display font for the control.

IMM Specifies immediate event generation whenever the user
presses any key.

PASSWORD Specifies non-display of the data entered (password
mode).

REQ Specifies the control may not be left blank or zero.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

CHAPTER 6

WINDOW STRUCTURES

ALRT Specifies “hot” keys active for the control.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

READONLY Specifies the control does not allow data entry.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on
windows with the MASK attribute).

UPR / CAP Specifies all upper case or proper name capitalization
(First Letter Of Each Word Capitalized) entry.

LEFT Specifies that the data entered is left justified within the
area specified by the AT attribute.

RIGHT Specifies that the data entered is right justified within the
area specified by the AT attribute.

CENTER Specifies that the data entered is centered within the area
specified by the AT attribute.

DECIMAL Specifies that the data entered is aligned on the decimal

point within the area specified by the AT attribute.

TheENTRY control places a data entry field on the WINDOW (or

TOOLBAR) at the position and size specified by its AT attribute. Data

entered is formatted according to fhieture, and the variable specified in

the USE attribute receives the data entered when the user has completed dat
entry and moves on to another control. Data entry scrolls horizontally to
allow the user to enter data to the full length of the variable. Therefore, the
right and left arrow keys move within the data in the ENTRY control.

An ENTRY control with the PASSWORD attribute displays asterisks when
the user enters data. This is useful for password-type variables. An ENTRY
control with the SKIP attribute is used for seldom-used data entry. Display-
only data should be declared with the READONLY attribute.

The MASK attribute on a WINDOW specifies pattern input editing mode of
all controls in the window. This means that, as the user types in data, each
character is automatically validated against the control’s picture for proper
input (numbers only inumeric pictures, etc.). This forces the user to enter
data in the format specified by the control’s display picture. If omitted,
Windows free-input is allowed in the controls. This is Windows’ default data
entry mode. Free-input means the user’s data is formatted to the control’s
picture only after entry. This allows users to enter data as they choose and it
is automatically formatted to the control’s picture after entry. If the user
types in data in a format different from the control’s picture, the libraries

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

Example:

attempt to determine the format the user used, and convert the data to the
control’s display picture. For example, if the user types “January 1, 1995”
into a control with a display picture of @D1, the runtime library formats the
user’s input to “1/1/95.” This action occurs only after the user completes
data entry and moves to another control. If the runtime library cannot
determine what format the user used, it will not update the USE variable. It
then beeps and leaves the user on the same control with the data they
entered, to allow them to try again.

EVENT:Selected The control hasceived input focus.
EVENT:Accepted The user has completed data entry in the control.

EVENT:Rejected The user has entered an invalid value for the entry
picture.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKkey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.

An ENTRY with the IMM attribute also generates the following events:

EVENT:NewSelection
The user has pressed a key.

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL

ENTRY (@S8),AT(0,0,20,20),USE(EL)
ENTRY (@S8),AT(20,0,20,20),USE(E2),KEY(F10Key)
ENTRY(@S8),AT(40,0,20,20),USE(E3),MSG(‘Button 3°)
ENTRY(@S8),AT(60,0,20,20),USE(E4) ,HLP(“Entry4Help”)
ENTRY (@S8),AT(80,0,20,20),USE(E5),DISABLE
ENTRY (@S8),AT(100,0,20,20),USE(E6),FONT(*Arial’,12)
ENTRY(@S8),AT(120,0,20,20),USE(E7),REQ, INS,CAP
ENTRY(@S8),AT(140,0,20,20),USE(E8),SCROLL,0VR,UPR
ENTRY (@S8),AT(160,0,20,20),USE(E9),IMM
ENTRY (@S8),AT(180,0,20,20),USE(EL0),CURSOR(CURSOR:Wait)
ENTRY (@S8),AT(200,0,20,20),USE(ELL1),ALRT(F10Key)
ENTRY (@S8),AT(220,0,20,20),USE(E12),LEFT
ENTRY (@S8),AT(240,0,20,20),USE(EL3),RIGHT
ENTRY (@S8),AT(260,0,20,20),USE(E14),CENTER
ENTRY(@N8.2),AT(280,0,20,20),USE(E15),DECIMAL

END

CHAPTER 6 WINDOW STRUCTURES

GROUP (declare a group of window controls)

GROUP(text) ,AT() [, CURSOR()] [LUSE()] [,DISABLE] [,KEY()] [[MSG()] [[HLP()] [,FONT()]
[,[BOXED] [,FULL] [,SCROLL] [,HIDE] [,ALRT()] [,SKIP] [,TIP()] [[DROPID()]
controls
END

GROUP Declares a group of controls that may be referenced as
one entity.

text A string constant containing the prompt for the group of
controls. This may contain an ampersand (&) to indicate
the“hot” letter for the prompt. Theextis displayed on
screen only if the BOXED attribute is also present.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control (or any control within the
GROUP). If omitted, the window’s CURSOR attribute is
used, else the Windows default cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the GROUP control and the controls in the
GROUP appear dimmed when the WINDOW or APPLI-
CATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the first control in the
GROUP.

MSG Specifies a string constant containing the default text to
display in the status bar when any control in the GROUP
has focus.

HLP Specifies a string constant containing the default help
system identifier for any control in the GROUP.

FONT Specifies the display font for the control and the default
for all the controls in the GROUP.

BOXED Specifies a single-track border around the group of
controls with the text at the top of the border.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the GROUP control and the controls in the
GROUP scroll with the window.

HIDE Specifies the GROUP control and the controls in the
GROUP do not appear when the WINDOW or APPLI-

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

CATION is first opened. UNHIDE must be used to

display them.

ALRT Specifies “hot” keys active for the controls in the
GROUP.

SKIP Specifies the controls in the GROUP do rextaive

input focus and may only be accessed with the mouse or
accelerator key.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

controls Control declarations that may be referenced as the
GROUP.

The GROUP control declares a group of controls that may be referenced as
one entity. GROUP allows the user to use the cursor keys insteadret the
key to move between tle@ntrolsin the GROUP, and provides default MSG
and HLP attributes for all controls in the GROUP. This control cannot
receive input focus.

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.
Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL

GROUP(“Group 1’),USE(?G1),KEY(F10Key)
ENTRY (@S8),AT(0,0,20,20),USE(?EL)
ENTRY(@S8),AT(20,0,20,20),USE(?E2)

END

GROUP(“Group 2”),USE(?G2),MSG(‘Group 2")
ENTRY(@S8),AT(40,0,20,20),USE(?E3)
ENTRY(@S8),AT(60,0,20,20),USE(?E4)

END

GROUP(“Group 3°),USE(?G3),AT(80,0,20,20),BOXED
ENTRY(@S8),AT(80,0,20,20),USE(?E5)
ENTRY (@S8),AT(100,0,20,20),USE(?E6)

END

GROUP(“Group 4°),USE(?G4),FONT(*Arial’,12)
ENTRY(@S8),AT(120,0,20,20),USE(?E7)
ENTRY(@S8),AT(140,0,20,20),USE(?E8)

END

GROUP(“Group 57),USE(?G5),CURSOR(CURSOR:Wait)
ENTRY(@S8),AT(160,0,20,20),USE(?E9)
ENTRY (@S8),AT(180,0,20,20),USE(?E10)

END

GROUP(“Group 6”),USE(?G6),SCROLL,HLP(*Group6Help”)
ENTRY (@S8),AT(200,0,20,20) ,USE(?ELL)
ENTRY (@S8),AT(220,0,20,20) ,USE(?E12)

END

END

CHAPTER 6 WINDOW STRUCTURES

IMAGE (declare a window graphic image control)

IMAGE(file) ,AT() [LJUSE()] [,DISABLE] [FULL] [[SCROLL] [HIDE] [, | HSCROLL |]

I
| VSCROLL |
| HVSCROLL |

IMAGE Places a graphic image on the WINDOW or TOOLBAR.

file A string constant containing the name of the file to
display. The file is linked into the .EXE as a resource.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

FULL Specifies the control expands to occupy the entire size of

the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

HSCROLL Specifies that a horizontal scroll bar is automatically
added to the IMAGE control when the graphic image is
wider than the area specified for display.

VSCROLL Specifies that a vertical scroll bar is automatically added
to the IMAGE control when the graphic image is taller
than the area specified for display.

HVSCROLL Specifies that both vertical and horizontal scroll bars are
automatically added to the IMAGE control when the
graphic image is larger than the display area.

ThelMAGE control places a graphic image on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. This may
be a bitmap (.BMP), icon (.ICO), PaintBrush (.PCX), Graphic Interchange
Format (.GIF), JPEG (.JPG), or Windows metafile (WMF). This control
cannot receive input focus and does not generate events.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
IMAGE(*PIC.BMP*),AT(0,0,20,20),USE(?I1)
IMAGE(“PIC.WMF*),AT(40,0,20,20),USE(?I3),SCROLL

END

6-66 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

LINE (declare a window line control)

LINE ,AT() [,USE()] [,DISABLE] [,COLOR()] [,FULL] [,SCROLL] [,HIDE]

LINE Places a straight line on the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

COLOR Specifies the color for the line. If omitted, the color is
black.

FULL Specifies the control expands to occupy the entire size of

the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

The LINE control places a straight line on the WINDOW (or TOOLBAR) at
the position and size specified by its AT attribute. Xlamdy parameters of

the AT attribute specify the starting point of the line. Width andheight
parameters of the AT attribute specify the horizontal and vertical distance to
the end point of the line. If these are both positive humbers, the line slopes
to the right and down from its starting point. If thiglth is negative, the line
slopes left; if théheightis negative, the line slopes left. If either thiglth or
heightis zero, the line is horizontal or vertical. This control cannot receive
input focus and does not generate events.

Width Height Result
positive positive right and down from start point
negative positive left and down from start point
positive negative right and up from start point
negative negative left and up from start point
zero positive vertical, down from start point
zero negative vertical, up from start point
positive zero horizontal, right from start point
negative zero horizontal, Teft from start point
Example:
MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
LINE,AT(60,60,20,20),COLOR(COLOR:ACTIVEBORDER) !Border color
LINE,AT(480,180,20,20),SCROLL !Scrolls with screen

END

CHAPTER 6 WINDOW STRUCTURES

LIST (declare a window list control)

LIST ,FROM() ,AT() [,CURSOR()] [,USE()] [[DISABLE] [KEY()] [MSG()] [LHLP()] [,SKIP]
[LFONT()] [FORMAT()] [,LDROP] [,COLUMN] [,VCR] [,FULL] [, SCROLL] [[NOBAR]
LALRT()] [LHIDE] [DRAGID()] [[DROPID()] [TIP()]

[, | MARK() | 1[,| HSCROLL |1, | LEFT |1
| IMM | |VSCROLL | |RIGHT |
| HYSCROLL | |CENTER |
| DECIMAL |
LIST Places a scrolling list of data items on the WINDOW or
TOOLBAR.
FROM Specifies the origin of the data displayed in the list.
AT Specifies the initial size and location of the control. If
omitted, the runtime library chooses a value.
CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW'’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code, or the label of the variable that recethhesvalue
selected by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control does neteiveinput focus and
may only be accessed with the mouse or accelerator key.

FONT Specifies the display font for the control.

FORMAT Specifies the display format of the data. This can include
icons, colors, and tree controls.

DROP Specifies a drop-down list box and the number of
elements the drop-down portion contains.

COLUMN Specifies cell-by-cell highlighting on multi-column lists.

VCR Specifies a VCR-type control to the left of the horizontal
scroll bar (if present).

FULL Specifies the control expands to occupy the entire size of

the WINDOW for any missing AT attribute width or
height parameter.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SCROLL
NOBAR

ALRT

HIDE

DRAGID

DROPID

TIP

MARK
IMM

HSCROLL

VSCROLL

HVSCROLL

LEFT
RIGHT
CENTER
DECIMAL

Specifies the control scrolls with the window.

Specifies the highlight bar is displayed only when the
LIST has focus.

Specifies “hot” keys active for the control.

Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

Specifies the control may serve as a drag host for drag-
and-drop actions.

Specifies the control may serve as a drop target for drag-
and-drop actions.

Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

Specifies multiple items selection mode.

Specifies generation of an event whenever the user
presses any key.

Specifies that a horizontal scroll bar is automatically
added to the list box when any portion of the data item
lies horizontally outside the visible area.

Specifies that a vertical scroll bar is automatically added
to the list box when any data items lie vertically outside
the visible area.

Specifies that both vertical and horizontal scroll bars are
automatically added to the list box when any portion of
the data items lies outside the visible area.

Specifies that the data is left justified within the LIST.
Specifies that the data is right justified within the LIST.
Specifies that the data is centered within the LIST.

Specifies that the data is aligned on the decimal point
within the LIST.

The LIST control places a scrolling list of data items on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. The data
items displayed in the LIST come from a QUEUE or STRING specified by
the FROM attribute and are formatted by the parameters specified in the
FORMAT attribute (which can include colors, icons, and tree control

parameters).

The CHOICE function returns the QUEUE entry number (the value returned
by POINTER(queue)) of the selected item when the EVENT:Accepted event
has been generated by the LIST. The data displayed in the LIST is
automatically refreshed every time through the ACCEPT loop, whether the
AUTO attribute is present or not.

CHAPTER 6

WINDOW STRUCTURES 6-69

Events Generated:

A LIST with the DROP attribute displays only the currently selected data
item on screen until the control has focus and the user presses the down
arrow key, orcicks on the the icon to the right of the displayed data item.

When either of these occurs, the selection list appears (“drops down”) to
allow the user to select an item.

A LIST with the IMM attribute generates an event every time the user moves
the highlight bar to another selection, or pressed any key that causes the
displayed entries to scroll. This allows an opportunity for the source code to
re-fill the display QUEUE, or get the currently highlighted record to display
other fields from the record. If VSCROLL is also present, the vertical scroll
bar is always displayed and when the end-useks on the scroll bar,

events are generated but the list does not move (executable code should
perfrom this action). You can interrogate the PROP:VscrollPos property to
determine the scroll thumb’s position from 0 (top) to 255 (bottom).

A LIST with the VCR attribute has scroll control buttons likéideo
CassettdRecorder to the left of the horizontal scroll bar (if there is one).
These buttons allow the user to use the mouse to scroll through the list.

A LIST with the DRAGID attribute can serve as a drag-and-drop host,
providing information to be moved or copied to another control. A LIST
with the DROPID attribute can serve as a drag-and-drop targetjingcei
information from another control. These attributes work together to specify
drag-and-drop “signatures” that define a valid target for the operation. The
DRAGID() and DROPID() functions, along with the SETDROPID
procedure, are used to perform the data exchange.

EVENT:Selected The control hasceivedinput focus.
EVENT:Accepted The user has selected an entry from the control.

EVENT:NewSelection
The current selection in the list has changed (the high-
light bar has moved up or down).

EVENT:ScrollUp The highlight bar has attempted to move off the top of
the LIST (only with the IMM attribute).

EVENT:ScrollDown
The highlight bar has attempted to move off the bottom
of the LIST (only with the IMM attribute).

EVENT:PageUp The user pressedr (only with the IMM attribute).
EVENT:PageDown The user presseabn (only with the IMM attribute).
EVENT:ScollTop The user pressedri+pcur (only with IMM attribute).

EVENT:ScrollBottom
The user pressettri+prcpn (Only with IMM attribute).

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

EVENT:Locate The user pressed the locator VCR button (only with the
IMM attribute).

EVENT:ScrollDrag The scroll bar “thumb” is being moved (only with the
IMM attribute).

EVENT:PreAlertKey
The user pressed a printable character (only with the
IMM attribute) or an ALRT attribute hot key.

EVENT:AlertKey The user pressed a printable character (only with the
IMM attribute) or an ALRT attribute hot key.

EVENT:Dragging The mouse cursor is over a potential drag target (only
with the DRAGID attribute).

EVENT:Drag The mouse cursor has been released over a drag target
(only with the DRAGID attribute).

EVENT:Drop The mouse cursor has been released over a drag target
(only with the DROPID attribute).

EVENT:DroppingDown

The user has requested the droplist drop down (only with
the DROP attribute). CYCLE aborts the dropdown.

EVENT:DroppedDown
The user has dropped the droplist (only with the DROP
attribute).

EVENT:Expanding The user has clicked on a tree expansion box (only with
the T in the FORMAT attrilnte string). CYCLE aborts
the expansion.

EVENT:Expanded The user has clicked on a tree expansion box (only with
the T inthe FORMAT attribute string).

EVENT:Contracting
The user has clicked on a tree contraction box (only with
the T in the FORMAT attrilnte string). CYCLE aborts
the contraction.

EVENT:Contracted The user has clicked on a tree contraction box (only with
the T inthe FORMAT attribute string).

CHAPTER 6 WINDOW STRUCTURES

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
LIST,AT(0,0,20,20),USE(?L1),FROM(Que),IMM
LIST,AT(20,0,20,20),USE(?L2),FROM(Que),KEY(F10Key)
LIST,AT(40,0,20,20),USE(?L3),FROM(Que),MSG(‘Button 3”)
LIST,AT(60,0,20,20),USE(?L4),FROM(Que) ,HLP(‘Check4Help’)
LIST,AT(80,0,20,20),USE(?L5),FROM(Q),FORMAT(*5C~List~15L~Box~"),COLUMN
LIST,AT(100,0,20,20),USE(?L6),FROM(Que),FONT(*Arial’,12)
LIST,AT(120,0,20,20),USE(?L7),FROM(Que),DROP(6)
LIST,AT(140,0,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR
LIST,AT(180,0,20,20),USE(?L10),FROM(Que),CURSOR(CURSOR:Wait)
LIST,AT(200,0,20,20),USE(?L11),FROM(Que),ALRT(F10Key)
LIST,AT(220,0,20,20),USE(?L12),FROM(Que),LEFT
LIST,AT(240,0,20,20),USE(?L13),FROM(Que),RIGHT
LIST,AT(260,0,20,20),USE(?L14),FROM(Que),CENTER
LIST,AT(280,0,20,20),USE(?L15),FROM(Que),DECIMAL

END

See Also: COMBO, DRAGID, DROPID, SETDROPID

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

OPTION (declare a group of window RADIO controls)

OPTION(text) ,AT() [,CURSOR()] [LUSE()] [LDISABLE] [LKEY()] [[MSG()] [,LHLP()] [[BOXED]
[LFULL] [,SCROLL] [,HIDE] [,FONT()] [,ALRT()] [,SKIP] [DROPID()] [, TIP()]
radios
END

OPTION Declares a group of RADIO controls.

text A string constant containing the prompt for the group of
controls. This may contain an ampersand (&) to indicate
the “hot” letter for the prompt. Theéextis displayed on
screen only if the BOXED attribute is also present.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW's
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of a variable to receive the choice. If this is a
string variable, it receives the value of the RADIO string
(with any accelerator key ampersand stripped out)
selected by the user. If a numeric variablegdtives the
number of the RADIO button selected by the user (the
value returned by the CHOICE() function).

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.
KEY Specifies an integer constant or keycode equate that

immediately gives focus to the currently selected RA-
DIO in the OPTION control.

MSG Specifies a string constant containing the default text to
display in the status bar when any control in the OP-
TION has focus.

HLP Specifies a string constant containing the default help
system identifier for any control in the OPTION.
BOXED Specifies a single-track border around the RADIO

controls with the text at the top of the border.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

CHAPTER 6

WINDOW STRUCTURES 6-73

Events Generated:

FONT Specifies the display font for the control and the default
for all the controls in the OPTION.

ALRT Specifies “hot” keys active for the controls in the OP-
TION.

SKIP Specifies the controls in the OPTION do neteive

input focus and may only be accessed with the mouse or
accelerator key.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.
radios Multiple RADIO control declarations.

TheOPTION control declares a group of RADIO controls that offer the
user a list of choices. The multiple RADIO controls in the OPTION
structure define the choices offered to the user.

Input focus changes between the OPTION’s RADIO controls are signalled
only to the individual RADIO controls affected. This means the events
generated when the user changes input focus within an OPTION structure
are field-specific events for the affected RADIO controls, not the OPTION
structure which contains them.

A string variable as the OPTION structure’s USE attribute receives the text
of the RADIO control selected by the user, and the CHO?OR(ion

function returns the number of the selected RADIO button. If the OPTION
structure’s USE attribute is aimeric variable, iteceives the number of the
RADIO button selected by the user (the value returned by the CHOICE
function).

No RADIO button selected is a valid option, which occurs only when the
OPTION structure’s USE variable does not contain a value related to one of
its component RADIO controls. This condition only lasts until the user has
selected one of the RADIOs.

EVENT:Selected One of the OPTION’s RADIO controls heseived
input focus.

EVENT:Accepted One of the OPTION’s RADIO controls has been selected
by the user.

EVENT:PreAlertkey
The user pressed an ALRT attribute hot key.

EVENT:AlertKkey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
OPTION(*Option 1’),USE(OptVarl),KEY(F10Key),HLP(‘OptionlHelp’)
RADIO(‘Radio 1’),AT(0,0,20,20),USE(?R1)
RADIO(‘Radio 2°),AT(20,0,20,20),USE(?R2)
END
OPTION(‘Option 2’),USE(OptVar2),MSG(‘Option 2°),SCROLL
RADIO(‘Radio 3'),AT(40,0,20,20),USE(?R3)
RADIO(‘Radio 4’),AT(60,0,20,20),USE(?R4)
END
OPTION(‘Option 3”),USE(OptVar3),AT(80,0,20,20),BOXED
RADIO(‘Radio 5°),AT(80,0,20,20),USE(?R5)
RADIO(‘Radio 6°),AT(100,0,20,20),USE(2R6)
END
OPTION(‘Option 4°),USE(OptVar4),FONT(‘Arial’,12),CURSOR(CURSOR:Wait)
RADIO(‘Radio 7°),AT(120,0,20,20),USE(?R7)
RADIO(‘Radio 8°),AT(140,0,20,20),USE(?R8)
END
END

See Also: RADIO

CHAPTER 6 WINDOW STRUCTURES

PROMPT (declare a prompt control)

PROMPT(text) ,AT() [,[CURSOR()] [LUSE()] [DISABLE] [,FONT()] [,FULL] [SCROLL]
[LHIDE] [DROPID()] [, | LEFT |]

| RIGHT |
| CENTER |
PROMPT Places a prompt for the next active control following it,
in the WINDOW or TOOLBAR.
text A string constant containing the text to display. This

may contain an ampersand (&) to indicate the “hot”
letter for the prompt.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW's
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

FONT Specifies the font used to display the text.

FULL Specifies the control expands to occupy the entire size of

the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

LEFT Specifies that the prompt is left justified.
RIGHT Specifies that the prompt is right justified.
CENTER Specifies that the prompt is centered.

ThePROMPT control places a prompt for the next active control following
the PROMPT in the WINDOW or TOOLBAR structure. The pronegtis
placed on the WINDOW (or TOOLBAR) at the position and size specified
by its AT attribute.

Thetextmay contain an ampersand (&) to indicate the letter immediately
following the ampersand is the “hot” letter for the prompt. By default, the

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

“hot” letter displays with an underscore below it to indicate its special
purpose. Tis “hot” letter, when pressed in conjunction with soe key,
changes input focus to the next control following the PROMPT in the
WINDOW or TOOLBAR structure, which is capable eteiving focus.

Disabling or hiding the control directly following the PROMPT in the
window structure does not autmatically disable or hide the PROMPT; it
must also be explicitly disabled or hidden, otherwise the PROMPT will then
refer to the next currently active control following the disabled control. This
allows you to place one PROMPT control on the window that will apply to
any of multiple controls (if only one will be active at a time). If the next
active control is a BUTTON, it is pressed when the user presses the
PROMPT'’s “hot key.”

To include an ampersand as part of the praetplace two ampersands
together (&&) in thetextstring and only one will display.

This control cannot receive input focus.
Events Generated:

EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
PROMPT(“Enter Data:’),AT(10,100,20,20),USE(?P1),CURSOR(CURSOR:Wait)
ENTRY (@S8),AT(100,100,20,20),USE(EL)
PROMPT(“‘Enter More Data:’),AT(10,200,20,20),USE(?P2),CURSOR(CURSOR:Wait)
ENTRY (@S8),AT(100,200,20,20),USE(E2)
ENTRY(@D1),AT(100,200,20,20),USECE3)
END
CODE
OPEN(MDIChild)
IF SomeCondition
HIDE(?E2) !Prompt will refer to E3
ELSE
HIDE(?E3) !Prompt will refer to E2
END

CHAPTER 6 WINDOW STRUCTURES

PROGRESS (declare a progress control)

PROGRESS, AT() [,CURSOR()] [LUSE()] [,DISABLE] [,FULL] [[SCROLL] [,HIDE]
[,LDROPID()] [RANGE()]

PROGRESS Places a control that displays the current progress of a
batch process in the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, tAd NDOW'’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of the variable containing the value of the
current progress, or a field equate label to reference the
control in executable code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.
FULL Specifies the control expands to occupy the entire size of

the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

RANGE Specifies the range of values the progress bar displays. If
omitted, the default range is zero (0) to one hundred
(100).

ThePROGRESScontrol declares a control that displays a progress bar.
This usually displays the current percentage of completion of a batch
process.

If a variable is named as the USE attribute, the progress bar is automatically
updated whenever the value in that variable changes. If the USE attribute is
a field equate label, you must directly update the display by assigning a
value (within the range defined by the RANGE attribute) to the control’s
PROP:progress property (an undeclared property equateUnseelared
Properties.

This control cannot receive input focus.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

EVENT:Drop A successful drag-and-drop to the control.
Example:

BackgroundProcess PROCEDURE IBackground processing batch process
ProgressVariable LONG

Win WINDOW(‘Batch Processing...”),AT(,,400,400),TIMER(1),MDI,CENTER
PROGRESS,AT(100,100,200,20),USE(ProgressVariable),RANGE(0,200)
PROGRESS,AT(100,140,200,20),USE(?ProgressBar),RANGE(0,200)
BUTTON(‘Cancel’),AT(190,300,20,20),STD(STD:Close)

END

CODE
OPEN(Win)
OPEN(File)
?ProgressVariable{PROP:rangehigh} = RECORDS(File)
?ProgressBar{PROP:rangehigh} = RECORDS(File)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK
OF EVENT:Timer IProcess records when timer allows it
ProgressVariable += 3 lAuto-updates 1st progress bar
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
?ProgressBar{PROP:progress} += 1 IManually update 2nd progress bar
IPerform some batch processing code

CLOSE(File)

CHAPTER 6 WINDOW STRUCTURES

RADIO (declare a window radio button control)

RADIO(text) ,AT() [,CURSOR()] [LUSE()] [,DISABLE] [KEY()] [MSG()] [,HLP()] [SKIP]
[LFONT()] [ICON()] [FULL] [SCROLL] [,HIDE] [ALRT()] [DROPID()] [VALUE()]

LTIPOI L [LEFT]
| RIGHT |

RADIO Places a radio button on the WINDOW or TOOLBAR.

text A string constant containing the text to display for the
radio button. This may contain an ampersand (&) to
indicate the “hot” letter for the radio button.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is
positioned over the control. If omitted, the WINDOW's
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately selects the radio button.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the control does neteiveinput focus and
may only be accessed with the mouse or accelerator key.

FONT Specifies the display font for the control.

ICON Specifies an .ICO file or standard icon to display on the
face of a “latching” button.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-

DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

ALRT Specifies “hot” keys active for the control.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Events Generated:

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

VALUE Specifies the value the OPTION structure’s USE variable
receives when the radio button is selected by the user.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

LEFT Specifies the text appears to the left of the radio button.

RIGHT Specifies the text appears to the right of the radio button

(this is the default position).

The RADIO control places a radio button on the WINDOW (or TOOLBAR)
at the position and size specified by its AT attribute. A RADIO control may
only be placed within an OPTION control. When selected by the user, the
RADIO text (with any accelerator key ampersand stripped out) is placed in
the OPTION’s USE variable, unless the VALUE attribute is used.

A RADIO with an ICON attribute appears as a “latched” pushbutton with
the icon on the button face. When the icon appears “up” the RADIO is off;
when it appears “down” the RADIO is on and the OPTION's USE variable
receives the value in the selected RADI@%t parameter (unless the

VALUE attribute is used).

EVENT:Selected The control hasceived input focus.
EVENT:Accepted The control has been selected by the user.

EVENT:PreAlertKey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.

CHAPTER 6

WINDOW STRUCTURES

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL

END

See Also:

OPTION(“‘Option
RADIO(‘Radio
RADIO(“Radio

END

OPTION(“‘Option
RADIO(‘Radio
RADIO(“Radio

END

OPTION(“‘Option
RADIO(‘Radio
RADIO(‘Radio

END

OPTION(“‘Option
RADIO(‘Radio
RADIO(“Radio

END

OPTION(“‘Option
RADIO(‘Radio
RADIO(‘Radio

END

OPTION(‘Option
RADIO(‘Radio
RADIO(‘Radio

END

OPTION

1°),USE(OptVarl)
1°),AT(0,0,20,20),USE(?R1),KEY(F10Key)
2°),AT(20,0,20,20),USE(?R2) ,MSG(‘Radio 2°)

2°),USE(OptVar2)
3°),AT(40,0,20,20),USE(?R3), FONT(“Arial’,12)
4°),AT(60,0,20,20),USE(?R4), CURSOR(CURSOR: Wait)

3’),USE(OptVar3)
5%),AT(80,0,20,20),USE(?R5),HLP(*Radio5Help’)
6°),AT(100,0,20,20),USE(?R6)

4*),USE(OptVar4)
7°),AT(120,0,20,20),USE(?R7), ICON(‘Radiol.IC0")
8”),AT(140,0,20,20),USE(?R8),ICON(‘Radio2.1C0")

5”),USE(OptVar5)
9°),AT(100,20,20,20),USE(?R9),LEFT
10°),AT(120,20,20,20) ,USE(?R10),LEFT

6’),USE(OptVar6),SCROLL
11°),AT7(200,0,20,20),USE(?R11),SCROLL
12°),AT(220,0,20,20),USE(?R12),SCROLL

6-82 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

REGION (declare a window region control)

REGION ,AT() [[CURSOR()] [LUSE()] [[DISABLE] [,FILL] [COLOR()] [,IMM] [,FULL]
[,SCROLL] [,HIDE] [,DRAGID()] [DROPID()]

REGION Defines an area in the WINDOW or TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW's
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code.

DISABLE Specifies the control is disabled when the WINDOW or
APPLICATION is first opened.

FILL Specifies the red, green, and blue component values that

create the fill color for the control. If omitted, the region
is not filled with color.

COLOR Specifies the border color of the control. If omitted,
there is no border.

IMM Specifies control generates an event whenever the mouse
is moved in the region.
FULL Specifies the control expands to occupy the entire size of

the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

DRAGID Specifies the control may serve as a drag host for drag-
and-drop actions.
DROPID Specifies the control may serve as a drop target for drag-

and-drop actions.

The REGION control defines an area on screen at the position and size
specified by its AT attribute. Generally, tracking the position of the mouse is
the reason for defining a REGION. The MOUSEX and MOUSEY functions
can be used to determine the exact position of the mouse when the event
occurs. Use of the IMM attribute causes some excess code and speed
overhead at runtime, so it should be used only when necessary. This control
cannot receive input focus.

CHAPTER 6 WINDOW STRUCTURES 6-83

A REGION with the DRAGID attribute can serve as a drag-and-drop host,
providing information to be moved or copied to another control. A REGION
with the DROPID attribute can serve as a drag-and-drop targetjinecei
information from another control. These attributes work together to specify
drag-and-drop “signatures” that define a valid target for the operation. The
DRAGID() and DROPID() functions, along with the SETDROPID

procedure, are used to perform the data exchange. Since a REGION can be
defined over any other control, you can write drag-and-drop code between
any two controls. Simply define REGION controls to handle the required
drag-and drop functionality.

Events Generated:

EVENT:Accepted The mouse has been clicked by the user in the region.
A REGION with the IMM attribute also generates the following events:

EVENT:Mouseln The mouse has entered the region.
EVENT:MouseOut The mouse has left the region.

EVENT:MouseMove
The mouse has moved within the region.

A REGION with the DRAGID attribute also generates the following events:

EVENT:Dragging The mouse cursor is over a potential drag target.
EVENT:Drag The mouse cursor has been released over a drag target.

A REGION with the DROPID attribute also generates the following events:

EVENT:Drop The mouse cursor has been released over a drag target.
Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
REGION,AT(10,100,20,20),USE(?R1)
REGION,AT(100,100,20,20),USE(?R2),CURSOR(CURSOR:Wait)
REGION,AT(10,200,20,20),USE(?R3), IMM
REGION,AT(100,200,20,20),USE(?R4),COLOR(COLOR:ACTIVEBORDER)
REGION,AT(10,300,20,20),USE(?R4),FILL(COLOR:ACTIVEBORDER)

END

6-84 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SHEET (declare a group of TAB controls)

SHEET ,AT() [,CURSOR()] [,USE()] [[DISABLE] [,KEY()] [,FULL] [,SCROLL] [,HIDE]
[,FONT()] [[DROPID()] [WIZARD] [,SPREAD] [,SKIP]

tabs
END

SHEET Declares a group of TAB controls.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW'’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of a variable to receive the choice. If this is a
string variable, it receives the value of the TAB string
(with any accelerator key ampersand stripped out)
currently selected by the user. If a numeric variable, it
receives the number of the TAB currently selected by the
user (the value returned by the CHOICE() function).

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.
KEY Specifies an integer constant or keycode equate that

immediately gives focus to the currently selected TAB in
the SHEET control.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

FONT Specifies the display font for the control and the default
for all the controls in the SHEET.

ALRT Specifies “hot” keys active for controls in the SHEET.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

WIZARD Specifies the SHEET's TAB controls do not appear. The

user is moved from TAB to TAB under the program’s
control (usually with “Next” and “Previous” buttons).

SPREAD Specifies the TABs are evenly spaced on one line.
SKIP Specifies the TAB controls in the SHEET do neteive

CHAPTER 6

WINDOW STRUCTURES 6-85

Events Generated:

input focus through theas key sequence and may only
be accessed with the mouse or accelerator key.

tabs Multiple TAB control declarations.

TheSHEET control declares a group of TAB controls that offer the user
multiple “pages” of controls for the window. The multiple TAB controls in
the SHEET structure define the “pages” displayed to the user.

Input focus changes between the SHEET’s TAB controls are signalled only
to the individual TAB controls affected. This means the events generated
when the user changes input focus within a SHEET structure are field-
specific events for the affected TAB controls, not the SHEET structure
which contains them.

A string variable as the SHEET structure’s USE attribute receives the text of
the TAB control selected by the user, and the CHORCIption) function

returns the number of the selected TAB control. If the SHEHRIC&ire's

USE attribute is a numeric variable, éceives the number of the TAB

control selected by the user (the same vadtierned by the CHOICE

function).

EVENT:Selected One of the SHEET’s TAB controls hexeived input
focus.

EVENT:Accepted One of the SHEET's TAB controls has been selected by
the user.

EVENT:PreAlertkey
The user pressed an ALRT attribute hot key.

EVENT:AlertKkey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.

EVENT:TabChanging
Focus is passing to another tab.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB(*Tab One’),USE(?TabOne)

OPTION(“Option 1°),USE(OptVarl),KEY(F10Key),HLP(‘OptionlHelp”)
RADIO(‘Radio 1°),AT(20,0,20,20),USE(?R1)
RADIO(‘Radio 2’),AT(40,0,20,20),USE(?R2)

END

OPTION(‘Option 2’),USE(OptVar2),MSG(‘Option 2’)
RADIO(‘Radio 3°),AT(60,0,20,20),USE(?R3)
RADIO(‘Radio 4’),AT(80,0,20,20),USE(?R4)

END

PROMPT(“Enter Data:’),AT(100,100,20,20),USE(?P1)

ENTRY (@S8),AT(100,140,32,20),USE(EL)

PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P2)

ENTRY (@S8),AT(100,240,32,20),USE(E2)

END
TAB(*Tab Two’),USE(?TabTwo)

OPTION(‘Option 3’),USE(OptVar3)

RADIO(‘Radio 1°),AT(20,0,20,20),USE(?R5)
RADIO(‘Radio 2’),AT(40,0,20,20),USE(?R6)

END

OPTION(‘Option 4’),USE(OptVar4)

RADIO(‘Radio 3°),AT(60,0,20,20),USE(?R7)
RADIO(‘Radio 4’),AT(80,0,20,20),USE(?R8)

END

PROMPT(“Enter Data:’),AT(100,100,20,20),USE(?P3)

ENTRY (@S8),AT(100,140,32,20),USE(E3)

PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P4)

ENTRY (@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON(‘Ok’),AT(100,180,20,20),USE(?0k)
BUTTON(“‘Cancel’),AT(200,180,20,20),USE(?Cancel)
END

See Also: TAB

CHAPTER 6 WINDOW STRUCTURES

SPIN (declare a spinning list control)

SPIN(picture) ,AT() [, CURSOR()] [,USE()] [,DISABLE] [KEY()] [MSG()] [HLP()] [,SKIP]
[LFONT()] [,FULL] [, SCROLL] [,ALRT()] [,HIDE][, READONLY] [,REQ] [,IMM] [, TIP()]

[DROPID()] [, ILEFT |1[|INS |],| RANGE(Q[STEP] |[, |UPR]
| RIGHT | |OVR | |FROM() | |CAP |
| CENTER |
| DECIMAL |

SPIN Places a “spinning” list of data items on the WINDOW
or TOOLBAR.

picture A display picture token that specifies the format for the
data displayed in the control.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW'’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code or the label of the variable that receives the value
selected by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the text to display

in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the controkceives input focus to enter text
only with the mouse or accelerator key and does not
retain focus.

FONT Specifies the display font for the control.

FULL Specifies the control expands to occupy the entire size of
the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.
ALRT Specifies “hot” keys active for the control.
HIDE Specifies the control does not appear when the WIN-

DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

READONLY Specifies the control does not allow data entry.

REQ Specifies the control may not be left blank or zero.

IMM Specifies immediate event generation whenever the user
presses any key.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

LEFT Specifies that the data is left justified within the area
specified by the AT attribute.

RIGHT Specifies that the data is right justified within the area
specified by the AT attribute.

CENTER Specifies that the data is centered within the area speci-
fied by the AT attribute.

DECIMAL Specifies that the data is aligned on the decimal point
within the area specified by the AT attribute.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on
windows with the MASK attribute).

RANGE Specifies the range of values the user may choose.

STEP Specifies the increment/decrement amount of the choices
within the specified RANGE. If omitted, the STEP is
1.0.

FROM Specifies the origin of the choices displayed for the user.

UPR / CAP Specifies all upper case or proper name capitalization

(First Letter Of Each Word Capitalized) entry.

The SPIN control places a “spinning” list of data items on the WINDOW

(or TOOLBAR) at the position and size specified by its AT attribute. The
“spinning” list displays only the current selection with a pair of buttons to
the right to allow the user to “spin” through the available selections (similar
to a slot machine wheel).

If the SPIN control offers the user regularly spacedheric choices, the

RANGE attribute specifies the valid range of values from which the user

may choose. The STEP attribute then works in conjunction with RANGE to
increment/decrement those values by the specified amount. If the choices are
not regular, or are string values, the FROM attribute is used instead of
RANGE and STEP. The FROM attribute provides the SPIN control its list of
choices from a memory QUEUE or a string. Using the FROM attribute, you
may provide the user any type of choices in the SPIN control.

The user may select an item from the list or type in the desired value, so this
control also acts as an ENTRY control.

CHAPTER 6 WINDOW STRUCTURES

Events Generated:

EVENT:Selected The control hasceivedinput focus.
EVENT:Accepted The user has selected a value from the control.

EVENT:Rejected The user has entered an invalid value for the entry
picture.

EVENT:NewSelection
The user has changed the displayed value.

EVENT:PreAlertkey
The user pressed an ALRT attribute hot key.

EVENT:AlertKey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
SPIN(@S8),AT(0,0,20,20),USE(SpinVarl),FROM(Que)
SPIN(@N3),AT(20,0,20,20),USE(SpinVar2),RANGE(1,999),KEY(F10Key)
SPIN(@N3),AT(40,0,20,20),USE(SpinVar3),RANGE(5,995),STEP(5)
SPIN(@S8),AT(60,0,20,20),USE(SpinVar4),FROM(Que) ,HLP(“Check4Help’)
SPIN(@S8),AT(80,0,20,20),USE(SpinVar5),FROM(Que) ,MSG(‘Button 3’)
SPIN(@S8),AT(100,0,20,20),USE(SpinVar6),FROM(Que),FONT(“Arial’,12)
SPIN(@S8),AT(120,0,20,20),USE(SpinVar7),FROM(Que),DROP
SPIN(@S8),AT(140,0,20,20),USE(SpinVar8),FROM(Que),HVSCROLL,VCR
SPIN(@S8),AT(160,0,20,20),USE(SpinVar9),FROM(Que), IMM
SPIN(@S8),AT(180,0,20,20),USE(SpinVarl0),FROM(Que),CURSOR(CURSOR:Wait)
SPIN(@S8),AT(200,0,20,20),USE(SpinVarll),FROM(Que),ALRT(F10Key)
SPIN(@S8),AT(220,0,20,20),USE(SpinVarl2),FROM(Que),LEFT
SPIN(@S8),AT(240,0,20,20),USE(SpinVarl3),FROM(Que),RIGHT
SPIN(@S8),AT(260,0,20,20),USE(SpinVarl4),FROM(Que),CENTER
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVarl5),FROM(Que),DECIMAL

END

6-90 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

STRING (declare a window string control)

STRING(text) ,AT() [,CURSOR()] [LUSE()] [DISABLE] [,FONT()] [,FULL] [SCROLL] [,HIDE]
[,TRN] [,DROPID()] [, | LEFT]

I
| RIGHT |
| CENTER |
| DECIMAL |
STRING Places theéexton the WINDOW or TOOLBAR.
text A string constant containing the text to display, or a

display picture token to format the variable specified in
the USE attribute.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW'’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE A field equate label to reference the control in executable
code, or a variable whose contents are displayed in the
format of the picture token declared instead of string

text.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

FONT Specifies the font used to display the text.

FULL Specifies the control expands to occupy the entire size of

the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.

HIDE Specifies the control does not appear when the WIN-
DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

TRN Specifies the text or USE variable characters transpar-
ently display over the background.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

LEFT Specifies that the text is left justified within the area
specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area
specified by the AT attribute.

CENTER Specifies that the text is centered within the area speci-

fied by the AT attribute.

CHAPTER 6 WINDOW STRUCTURES 6-91

DECIMAL Specifies that the text is aligned on the decimal point
within the area specified by the AT attribute.

TheSTRING control places theexton the WINDOW (or TOOLBAR) at
the position and size specified by its AT attribute.

If the textparameter is a picture token instead of a string constant, the
contents of the variable named in the USE attribute are formatted to that
display picture, at the position and size specified by the AT attribute. This
makes the STRING with a USE variable a “display-only” control for the
variable. The data displayed in the STRING is automatically refreshed every
time through the ACCEPT loop, whether the AUTO attribute is present or
not.

There is a difference between ampersand (&) use in STRING and PROMPT
controls. An ampersand in a STRING displays as part dettiewhile an
ampersand in a PROMPT defines the prompt’s “hot” letter.

A STRING with the TRN attribute displays characters transparently, without
obliterating the background. This means only the pixels required to create
each character are written to screen. This allows the STRING to be placed
directly on top of an IMAGE without destroying the background picture.

This control cannot receive input focus.
Events Generated:

EVENT:Drop A successful drag-and-drop to the control.
Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
STRING(*String Constant’),AT(10,0,20,20),USE(?2S1)
STRING(@S30),AT(10,20,20,20),USE(StringVarl)
STRING(@S30),AT(10,20,20,20),USE(StringVar2),CURSOR(CURSOR:Wait)
STRING(@S30),AT(10,20,20,20),USE(StringVar3),FONT(Arial’,12)

END

6-92 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

TAB (declare a page of a SHEET control)

TAB(text) [,CURSOR()] [LJUSE()] [.LKEY()] [MSG()] [.HLP()] [,REQ] [DROPID()] [,TIP()]

controls
END

TAB Declares a group of controls that constitute one of the
multiple “pages” of controls contained within a SHEET
structure.

text A string constant containing the text to display on the
TAB.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW'’s
CURSOR attribute is used, else the Windows default
cursor is used.

USE Specifies a field equate label to reference the control in
executable code.

KEY Specifies an integer constant or keycode equate that
immediately gives focus to the control.

MSG Specifies a string constant containing the default text to
display in the status bar when any control in the TAB
has focus.

HLP Specifies a string constant containing the default help
system identifier for any control in the TAB.

REQ Specifies that when another TAB is selected, the runtime

library automatically checks all ENTRY controls in the
same TAB structure with the REQ attribute to ensure
they contain data other than blanks or zeroes.

DROPID Specifies the control may serve as a drop target for drag-
and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

controls Multiple control declarations. This should not contain
any SHEET controls (nested SHEET structures are not
supported).

The TAB structure declares a group of controls that constitute one of the
multiple “pages” of controls contained within a SHEET structure. The
multiple TAB controls in the SHEET structure define the “pages” displayed
to the user. The SHEET structure’s USE attribute receiveexhef the

TAB control selected by the user.

Input focus changes between the SHEET's TAB controls are signalled only
to the individual TAB controls affected. This means the events generated
when the user changes input focus within a SHEET structure are field-

CHAPTER 6 WINDOW STRUCTURES

specific events for the affected TAB controls, not the SHEET structure
which contains them.

Events Generated:

EVENT:Selected The TAB control hasaeivednput focus.
EVENT:Accepted The TAB control has been selected by the user.

EVENT:Drop A successful drag-and-drop to the control.
Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
SHEET,AT(0,0,320,175),USE(SelectedTab)
TAB(‘Tab One’),USE(?TabOne)

OPTION(“Option 1°),USE(OptVarl),KEY(F10Key),HLP(‘OptionlHelp”)
RADIO(‘Radio 1°),AT(20,0,20,20),USE(?R1)
RADIO(‘Radio 2°),AT(40,0,20,20),USE(?R2)

END

OPTION(‘Option 2’),USE(OptVar2),MSG(‘Option 27)
RADIO(‘Radio 3’),AT(60,0,20,20),USE(?R3)
RADIO(‘Radio 4°),AT(80,0,20,20),USE(?R4)

END

PROMPT(“Enter Data:’),AT(100,100,20,20),USE(?P1)

ENTRY (@S8),AT(100,140,32,20),USE(EL)

PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P2)

ENTRY (@S8),AT(100,240,32,20),USE(E2)

END
TAB(*‘Tab Two’),USE(?TabTwo)

OPTION(“Option 3’),USE(OptVar3)

RADIO(‘Radio 1°),AT(20,0,20,20),USE(?R5)
RADIO(‘Radio 2°’),AT(40,0,20,20),USE(?R6)

END

OPTION(“Option 4’),USE(OptVar4)

RADIO(‘Radio 3’),AT(60,0,20,20),USE(?R7)
RADIO(‘Radio 4°),AT(80,0,20,20),USE(?R8)

END

PROMPT(“Enter Data:’),AT(100,100,20,20),USE(?P3)

ENTRY (@S8),AT(100,140,32,20),USE(E3)

PROMPT(‘Enter More Data:’),AT(100,200,20,20),USE(?P4)

ENTRY (@S8),AT(100,240,32,20),USE(E4)

END
END
BUTTON(‘Ok’),AT(100,180,20,20),USE(?0k)
BUTTON(‘Cancel’),AT(200,180,20,20),USE(?Cancel)
END

See Also: SHEET

6-94 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

TEXT (declare a multi-line data entry control)

TEXT ,AT() [CURSOR()] [LUSE()] [,DISABLE] [LKEY()] [MSG()] [HLP()] [,SKIP] [FONT()]
[LREQ] [,FULL] [.SCROLL] [ALRT()] [,HIDE] [READONLY] [,DROPID()] [,UPR]

LTIPOIL |INS |][|HSCROLL |][|LEFT |]
|OVR| |VSCROLL | |RIGHT |
| HYSCROLL | |CENTER|

TEXT Places a multi-line data entry field on the WINDOW or
TOOLBAR.

AT Specifies the initial size and location of the control. If
omitted, default values are selected by the runtime
library.

CURSOR Specifies a mouse cursor to display when the mouse is

positioned over the control. If omitted, the WINDOW's
CURSOR attribute is used, else the Windows default
cursor is used.

USE The label of the variable thadaeives the value entered
into the control by the user.

DISABLE Specifies the control appears dimmed when the WIN-
DOW or APPLICATION is first opened.

KEY Specifies an integer constant or keycode equate that

immediately gives focus to the control.

MSG Specifies a string constant containing the text to display
in the status bar when the control has focus.

HLP Specifies a string constant containing the help system
identifier for the control.

SKIP Specifies the controkceives input focus to enter text
only with the mouse or accelerator key and does not
retain focus.

FONT Specifies the display font for the control.
REQ Specifies the control may not be left blank or zero.
FULL Specifies the control expands to occupy the entire size of

the WINDOW for any missing AT attribute width or
height parameter.

SCROLL Specifies the control scrolls with the window.
ALRT Specifies “hot” keys active for the control.
HIDE Specifies the control does not appear when the WIN-

DOW or APPLICATION is first opened. UNHIDE must
be used to display it.

READONLY Specifies the control does not allow data entry.
DROPID Specifies the control may serve as a drop target for drag-

CHAPTER 6 WINDOW STRUCTURES

and-drop actions.

TIP Specifies the text that displays as “balloon help” when
the mouse cursor pauses over the control.

INS / OVR Specifies Insert or Overwrite entry mode (valid only on
windows with the MASK attribute).

UPR Specifies all upper case entry.

HSCROLL Specifies that a horizontal scroll bar is automatically

added to the text field when any portion of the data lies
horizontally outside the visible area.

VSCROLL Specifies that a vertical scroll bar is automatically added
to the text field when any of the data lies vertically
outside the visible area.

HVSCROLL Specifies that both vertical and horizontal scroll bars are
automatically added to the text field when any portion of
the data lies outside the visible area.

LEFT Specifies that the text is left justified within the area
specified by the AT attribute.

RIGHT Specifies that the text is right justified within the area
specified by the AT attribute.

CENTER Specifies that the text is centered within the area speci-

fied by the AT attribute.

TheTEXT control places a multi-line data entry field on the WINDOW (or
TOOLBAR) at the position and size specified by its AT attribute. The
variable specified in the USE attribute receives the data entered when the
user has completed data entry and moves on to another control.

Events Generated:

EVENT:Selected The control hasceivednput focus.
EVENT:Accepted The user has completed data entry in the control.

EVENT:PreAlertkey
The user pressed an ALRT attribute hot key.

EVENT:AlertKkey The user pressed an ALRT attribute hot key.
EVENT:Drop A successful drag-and-drop to the control.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
TEXT,AT(0,0,40,40),USECEL),ALRT(F10Key),CENTER
TEXT,AT(20,0,40,40),USE(E2),KEY(F10Key) ,HLP(*Text4Help’)
TEXT,AT(40,0,40,40),USE(E3),SCROLL,OVR,UPR
TEXT,AT(60,0,40,40),USE(E4),CURSOR(CURSOR:Wait),RIGHT
TEXT,AT(80,0,40,40),USE(E5),DISABLE,FONT(“Arial’,12)
TEXT,AT(100,0,40,40),USE(E6),HVSCROLL, LEFT
TEXT,AT(120,0,40,40),USE(E7),REQ, INS,CAP,MSG(‘Text Field 7°)

END

6-96 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Control Field Attributes
ALRT (set control “hot” keys)

ALRT(keycode)
ALRT Specifies a “hot” key active while the control has focus.
keycode A numeric constant keycode or keycode EQUATE.

The ALRT attribute specifies a “hot” key active while the control has focus.
When the user presses an ALRT “hot” key for a control, two field-specific
events, EVENT:PreAlertKey and EVENT:AlertKey, are generated. If the
code executes a CYCLE statement when processing EVENT:PreAlertKey,
you “shortstop” the EVENT:AlertKey, preventing library’s default action on
the alerted keypress for the control.

You may have multiple ALRT attributes on one control. Ah&RT

statement and the ALRT attribute of a window or control are completely
separate. This means that clearing ALERT keys has no effect on any keys
alerted by ALRT attributes.

Example:
WinOne WINDOW,AT(0,0,160,400)
ENTRY,AT(6,40),USE(SomeVarl),ALRT(F9Key) IF9 alerted for control
ENTRY,AT(60,40),USE(SomeVar2),ALRT(F10Key) !F10 alerted for control
END

CODE

OPEN(WinOne)

ACCEPT

CASE FIELDC()
OF ?SomeVarl
CASE EVENT()

OF EVENT:PreAlertKey IPre-check alert events
IF NOT SomeVarl
CYCLE ITerminate alert processing on other controls
END
OF EVENT:AlertKey IAlert processing
DO F9Routine
END

OF ?SomeVar?2
CASE EVENT()
OF EVENT:AlertKey IAlert processing
DO F1ORoutine
END
END
END

CHAPTER 6 WINDOW STRUCTURES

AT (set control position and size in window)

Example:

AT([X [V [width] [, heighd)

AT Defines the position and size of a control.

X An integer constant or constant expression that specifies
the horizontal position of the top left corner. If omitted,
the runtime library provides a default value (zero).

y An integer constant or constant expression that specifies
the vertical position of the top left corner. If omitted, the
runtime library provides a default value (zero).

width An integer constant or constant expression that specifies
the width. If omitted, the runtime library provides a
default value.

height An integer constant or constant expression that specifies
the height. If omitted, the runtime library provides a
default value.

TheAT attribute defines the position and size of a control. If any parameter
is omitted, the runtime library provides a default value.

The values contained in tlxey, width, andheightparameters are measured

in dialog units. Dialog units are defined as one-quarter the average character
width by one-eighth the average character height. The size of a dialog unit is
dependent upon the size of the default font for the window. This
measurement is based on the font specified in the FONT attribute of the
window, or the system default font specified by Windows.

IMeasurement in dialog units
WinOne WINDOW,AT(0,0,160,400)
ENTRY,AT(8,40,80,8) !Approx. 2 characters in, 5 down, 20 wide, 1 high
END

IMeasurement in Tousandths of an Inch
WinOne WINDOW,AT(0,0,160,400)
ENTRY,AT(1000,1000,2000,250) !1"™ in & down, 2" wide, 1/4"™ high
END

IMeasurement in Millimeters
WinOne WINDOW,AT(0,0,160,400)
ENTRY,AT(100,100,200,50) !1 cm in and down, 2 cm wide, 50 mm high
END

IMeasurement in Points
WinOne WINDOW,AT(0,0,160,400)
ENTRY,AT(72,72,144,18) !1" in & down, 2" wide, 1/4" high
END

6-98 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

BOXED (set window controls group border)

BOXED

The BOXED attribute specifies a single-track border around a GROUP or
OPTION structure. Theextparameter of the GROUP or OPTION control
appears in a gap at the top of the border box. If BOXED is omittedexhe
parameter of the GROUP or OPTION control is not displayed on screen.

CAP, UPR (set display case)

CAP
UPR

The CAP andUPR attributes specify the automatic case of text entered into
ENTRY or TEXT controls when the MASK attribute is on the window. UPR
specifies all upper case.

The CAP attribute specifies “Proper Name Capitalization,” where the first
letter of each word is capitalized and all other letters are lower case. The
user can override this default behavior by pressingHire key to allow an
upper case letter in the middle of a name (allowing for names such as,
“McDowell”) or sHiFT while capsLock is on, forcing a lower case first letter
(allowing for names such as, “von Richtofen”).

CHECK (set on/off ITEM)

CHECK

The CHECK attribute specifies an ITEM that may be either ON or OFF.
When ON, a check appears to the left of the menu selection and the USE
variable receives the value one (1). When OFF, the check to the left of the
menu selection disappears and the USE variable receives the value zero (0).

CHAPTER 6 WINDOW STRUCTURES

CLASS (set .VBX custom control class)

CLASS(file [,name])

CLASS The specifies the filename and type of .VBX custom
control.
file A string constant containing the name of the .VBX file

(including the .VBX extension) in which the custom
control is implemented.

name A string constant containing the name of the custom
control type from the .VBX file. If omitted, the first
control type defined in the .VBX file is used.

The CLASS attribute specifies the filename and type of .VBX custom
contol. Thenameparameter identifies the specific control to use in a .VBX
that contains multiple controls.

Example:

WinOne WINDOW,AT(0,0,160,400)
CUSTOM,AT(0,0,120,320),CLASS(‘graph.vbx’,’graph’), ’graphstyle’(‘2”)
END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

COLOR (set control display color)

COLOR(rgb)

COLOR Specifies display color.

rgb A LONG or ULONG integer constant, or constant
EQUATE, containing the red, green, and blue compo-
nents that create the color in the three low-order bytes
(bytes 0, 1, and 2), or an EQUATE for a standard
Windows color value.

The COLOR attribute specifies the display color of a BOX, LINE,
ELLIPSE, or REGION control. On a BOX, ELLIPSE, or REGION, the
color specified is the color used for the border.

EQUATESs for Windows’ standard colors are contained in the
EQUATES.CLW file. Windows automatically finds the closest match to the
specifiedrgb color value for the hardware on which the program is run.

Windows standard colors may be reconfigured by the user in the Windows
Control Panel. Any control using a Windows standard color is automatically
repainted with the new color when this occurs.

Example:

WinOne WINDOW,AT(0,0,160,400)
BOX,AT(20,20,20,20),COLOR(COLOR:ACTIVEBORDER)
IWindows’ active border color
BOX,AT(100,100,20,20),COLOR(O0FF0000h) !Blue
BOX,AT(140,140,20,20),COLOR(0O000FF0O0h) !Green
BOX,AT(180,180,20,20),COLOR(000000FFh) !Red
END

COLUMN (set list box highlight bar)

COLUMN

The COLUMN attribute specifies a field-by-field highlight bar on a LIST or
COMBO control with multiple display columns.

CHAPTER 6 WINDOW STRUCTURES

CURSOR (set control mouse cursor type)

CURSOR(file)
CURSOR Specifies a mouse cursor to display for the control.
file A string constant containing the name of a .CUR file, or

an EQUATE naming a Windows-standard mouse cursor.
The .CUR file is linked into the .EXE as a resource.

The CURSOR attribute specifies a mouse cursor to be displayed when the
mouse is positioned over the control.

EQUATE statements for the Windows-standard mouse cursors are contained
in the EQUATES.CLW file. The following list is a regsentative sample of
these (see EQUATES.CLW for the complete list):

CURSOR:None No mouse cursor
CURSOR:Arrow Normal windows arrow cursor
CURSOR:IBeam Capital “I” like a steel I-beam
CURSOR:Wait Hourglass

CURSOR:Cross Large plus sign
CURSOR:UpArrow Vertical arrow

CURSOR:Size Four-headed arrow
CURSOR:Icon Box within a box

CURSOR:SizeNWSE Double-headed arrow slanting left
CURSOR:SizeNESW Double-headed arrow slanting right

CURSOR:SizeWE Double-headed horizontal arrow
CURSOR:SizeNS Double-headed vertical arrow
CURSOR:DragWE Double-headed horizontal arrow

Example:

WinOne WINDOW,AT(0,0,160,400)
REGION,AT(20,20,20,20),CUSOR(CURSOR: IBeam)
REGION,AT(100,100,20,20),CURSOR(“Custom.CUR")

END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DEFAULT (set enter key button)

DEFAULT

The DEFAULT attribute specifies a BUTTON that is automatically pressed
when the user presses therer key. Only one active BUTTON on a window
should have this attribute.

DISABLE (set control dimmed at open)

DISABLE

The DISABLE attribute specifies a control that is disabled when the
WINDOW or APPLICATION is opened. The disabled control may be
activated with the ENABLE statement.

DROP (set list box behavior)

DROP (count)
DROP Specifies the list appears only when the user presses an
arrow cursor key or clicks on the drop icon.
count An integer constant that specifies the number of ele-

ments displayed.

The DROP attribute specifies that the selection list appears only when the
user presses an arrow cursor key or clicks on the drop icon to the right of the
currently selected value display. Once it drops into view, the list displays
countnumber of elements. If the DROP attribute is omitted, the LIST or
COMBO control always displays the number of data items specified by the
heightparameter of the control’s AT of the selection list.

The DROP attribute does not work on a WINDOW with the MODAL
attribute and should not be used.

Example:

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L7),FROM(Quel),DROP(6)
COMBO(@S8),AT(120,120,20,20),USE(?C7),FROM(Que2),DROP(8)

END

CHAPTER 6 WINDOW STRUCTURES

DRAGID (set drag-and-drop host signatures)

Example:

See Also:

DRAGID(signature [, signature])

DRAGID Specifies a LIST or REGION control that can serve as a
drag-and-drop host.
signature A string constant containing an identifier used to indi-

cate valid drop targets. Arsignhaturethat begins with a
tilde (~) indicates that the information can also be
dragged to an external (Clarion) program. A single
DRAGID may contain up to 16ignatures

TheDRAGID attribute specifies a LIST or REGION control that can serve
as a drag-and-drop host. DRAGID works in conjunction with the DROPID
attribute. The DRAGIDsignaturestrings (up to 16) define validation keys to
match against theignatureparameters of the target control’'s DROPID. This
plrlovid%s control over where successful drag-and-drop operations are
allowed.

A drag-and-drop operation occurs when the user drags information from a
control with the DRAGID attribute to a control with the DROPID attribute.
For a successful drag-and-drop operation, both controls must have at least
one identicakignaturestring in their respective DRAGID and DROPID
attributes.

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?Listl),FROM(Quel),DRAGID(‘FromListl’)
!'Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(‘FromListl”)
IA11ows drops from Listl, but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag IWhen a drag event is attempted
IF DRAGID() I check for success
SETDROPID(Quel) ! and setup info to pass
END
OF EVENT:Drop IWhen drop event is successful
Que2 = DROPID() ! get dropped info
ADD(Que2) ! and add it to the queue
END
END
DROPID

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DROPID (set drag-and-drop target signatures)

DROPID(signature [, signature])

DROPID Specifies a control that can serve as a drag-and-drop
target.
signature A string constant containing an identifier used to indi-

cate valid drag hosts. A single DROPID may contain up
to 16 signatures Any signaturethat begins with a tilde

(~) indicates that the information can also be dropped
from an external (Clarion) program. A DROP$igna-

ture of ‘~FILE’ indicates the target accepts a comma-
delimited list of filenames dragged from the Windows
File Manager.

The DROPID attribute specifies a control that can serve as a drag-and-drop
target. DROPID works in conjunction with the DRAGID attribute. The
DROPIDsignaturestrings (up to 16) define validation keys to match against
the signatureparameters of the host control’'s DRAGID. This provides
control over where successful drag-and-drop operations are allowed.

A drag-and-drop operation occurs when the user drags information from a
control with the DRAGID attribute to a control with the DROPID attribute.
For a successful drag-and-drop operation, both controls must have at least
one identicabkignaturestring in their respective DRAGID and DROPID
attributes.

Example:

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?Listl),FROM(Quel),DRAGID(‘FromListl”)
!Allows drags, but not drops
LIST,AT(120,120,20,20),USE(?List2),FROM(Que2),DROPID(“‘FromListl”, ~FILE")
!ATlows drops from Listl or the Window File Manager,
! but no drags

END
CODE
OPEN(WinOne)
ACCEPT
CASE EVENT()
OF EVENT:Drag IWhen a drag event is attempted
IF DRAGID() ! check for success
SETDROPID(Quel) ! and setup info to pass
END
OF EVENT:Drop IWhen drop event is successful
Que2 = DROPID() ! get dropped info
ADD(Que2) ! and add it to the queue
END
END

See Also: DRAGID

CHAPTER 6 WINDOW STRUCTURES

FILL (set display fill color)

FILL(rgb)

FILL Specifies display fill color.

rgb A LONG or ULONG integer constant, or constant
EQUATE, containing the red, green, and blue compo-
nents that create the color in the three low-order bytes
(bytes 0, 1, and 2) or an EQUATE for a standard Win-
dows color value.

TheFILL attribute specifies the display fill color of a BOX, ELLIPSE, or
REGION control. If omitted, the control is not filled with color.

Example:

WinOne WINDOW,AT(0,0,160,400)
BOX,AT(20,20,20,20),FILL(COLOR:ACTIVEBORDER)
IWindows’ active border color
BOX,AT(100,100,20,20),FILL(OOFFO000h) !Blue
BOX,AT(140,140,20,20),FILL(O000FFO0h) !Green
BOX,AT(180,180,20,20),FILL(000000FFh) !Red
END

FIRST, LAST (set MENU or ITEM position)

FIRST
LAST

TheFIRST andLAST attributes specify menu selection positioning within
the global pulldown menu, when a WINDOW’s MENUBAR is merged into
the global menu. The order of priorities is:

1. Global selections with FIRST attribute

2. Local selections with FIRST attribute

3. Global selections without FIRST or LAST attributes
4. Local selections without FIRST or LAST attributes
5. Global selections with LAST attribute

6. Local selections with LAST attribute

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

FONT (set control f ont)

Example:

FONT ([typeface] [,size] [,colon [,style])

FONT Specifies the display font for a control.

typeface A string constant containing the name of the font. If
omitted, the default font is used.

size An integer constant containing the size (in points) of the
font. If omitted, the system default font size is used.

color A LONG integer constant containing the red, green, and

blue values for the color of the font in the low-order
three bytes, or an EQUATE for a standard Windows
color value. If omitted, the default font color is used.

style An integer constant, constant expression, or EQUATE
specifying the strike weight and style of the font. If
omitted, the default font weight is used.

The FONT attribute specifies the display font for the control, overriding any
FONT specified on the WINDOW.

Thetypefacemay name any font registered in the Windows system. The
EQUATES.CLW file contains EQUATE values for standatglevalues. A
styleon the range zero (0) to one thousand (1000) specifies the strike weight
of the font. You may add to that values that indicate italic, underline, or
strikeout text. The following EQUATES are in EQUATES.CLW:

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:italic EQUATE (01000h)
FONT:underline EQUATE (02000h)
FONT:strikeout EQUATE (04000h)

WinOne WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L7),FROM(Quel),FONT(*Arial’,14,0FFh)
114 point Arial typeface, Red, normal
LIST,AT(120,120,20,20),USE(?C7),FROM(Que2),FONT(“Arial’,14,0,700)
114 point Arial typeface, Black, Bold
LIST,AT(120,240,20,20),USE(?C7),FROM(Que2),FONT(“Arial’,14,0,700+01000h)
114 point Arial typeface, Black, Bold Italic
END

CHAPTER 6 WINDOW STRUCTURES

FORMAT (set LIST or COMBO layout)

FORMAT (format string)

FORMAT Specifies the display format of the data in the LIST or
COMBO control.
format string A string constant specifying the display format.

The FORMAT attribute specifies the display format of the data in the LIST
or COMBO control. Théormat stringcontains the information for single or
multi-column formatting of the data.

Theformat stringcontains “field-specifiers” which map to the fields of the
QUEUE. Multiple “field-specifiers” may be grouped together as a “field-
group” in square bracketg](to display as a single unit.

Only the fields in the QUEUE for which there are “field-specifiers” are
included in the display. This means that, if there are two fields specified in
theformat stringand three fields in the QUEUE, only the two specified in
theformat stringare displayed in the LIST or COMBO control.

The following describes the components allowed fioraat string

“Field-specifier” format: width justification [(inden)] [modifiers]
width A required integer defining the width of the field.
Specified in dialog units.
justification A single capital letterl(, R , C , or D) that specifies
L eft, Right, Center, orDecimal justification. One is
required.
indent An optional integer, enclosed in parentheses, that

specifies the indent from the justification. This may be
negative. With leftl() justification,indentdefines a left
margin; with right R) or decimal D), it defines a right
margin; and with centect), it defines an offset from the
center of the field (negative = left offset).

modifiers: Optional special characters (listed below) to modify the display format of the
field or group. Multiplemodifiersmay be used on one field or group.

* An asterisk indicates color information for the field is
contained in four LONG fields that immediately follow
the data field in the QUEUE (or FROM attribute string).
The four colors are normal foreground, normal back-
ground, selected foreground, and selected background
(in that order).

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

T [(suppress)]

An | indicates an icon number for the field is contained
in a LONG field that immediately follows the data field
in the QUEUE (or FROM attribute string).The LONG
field contains a number that refers to an entry in a list of
icons associated with the LIST control through the
PROP:IconList runtime property. If an asterisk is also
specified for color, this LONG must follow all the color
information.

A T indicates the LIST is a tree control. The tree level is
contained in a LONG field that immediately follows the
data field in the QUEUE (or FROM attribute string). If
an asterisk and | are also specified, this LONG must
follow all their LONG fields. The expanded/coatted
state of the tree level is determined by the sign of the
tree level LONG field's value (positive value=expanded
and negative value=contracted).

The optionakuppresgparameter can contain anto
suppress the conecting lines between levesta
suppress expansion boxes, and émsuppress level
indentation (which also implicitly suppresses both lines
and boxes).

~header~ [justification [(indent)]]

@picture@

#number#

A header string enclosed in tildes, followed by optional
justification and/or indent, displays the header at the top
of the list. The header uses the same justification and
indent as the field, if not specifically overidden.

The pictureformats the field for display. The trailing @
is required to define the end of thieture so that
display pictures like @N12~Kr~ can be used in the
format string without creating ambiguity.

A question mark defines the locator field for a COMBO
list box with a selector field. For a drop-down multi-
column list box, this is the value displayed in the
current-selection box.

Thenumberenclosed in pound signs (#) indicates the
QUEUE field to display. Following fields in the format
string without an explicit #tumbe# are taken in order
from the fields following the #umbet field. For

example, #2# on the first field in the format string
indicates starting with the second field in the QUEUE,
skipping the first. If the number of fields specified in the
format string are >= the number of fields in the QUEUE,
the format “wraps around” to the start of the QUEUE.

An underscore underlines the field.

A slash causes the next field to appear on a new line
(only used on a field within a group).

CHAPTER 6 WINDOW STRUCTURES 6-109

S(integen

A vertical bar places a vertical line to the right of the
field.

An M allows the field or group of fields to be dynami-
cally re-sized at runtime. This allows the user to drag the
right vertical bar (if present) or right edge of the data
area.

An F creates a fixed column in the list that stays on
screen when the user horizontally pages through the
fields (by the HSCROLL attribute). Fixed fields or
groups must be at the start of the list. This is ignored if
placed on a field within a group.

An S followed by arintegerin parentheses adds a scroll
bar to the group. Thiategerdefines the total number of
dialog units to scroll. This allows large fields to be
displayed in a small column width. This is ignored if
placed on a field within a group.

“Field-group” format: [multiple field-specifier$ [(siz@] [modifiers]

multiple field-specifiers

size

modifiers

A list of field-specifiers contained in square brackets
([1) that cause them to be treated as a single display
unit.

An optional integer, enclosed in parentheses, that
specifies the default width of the group. If omitted, the
size is calculated from the enclosed fields.

The “field-group”maodifiersact on the entire group of
fields. These are the samdifierslisted above for a
field (except the *, I, and Modifierswhich are not
appropriate to groups).

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:
PROGRAM
MAP
RandomAlphaData(*STRING)

END
TreeDemo QUEUE,PRE() !Data 1ist box FROM queue
FName STRING(20)
ColorNFG LONG INormal Foreground color for FName
ColorNBG LONG INormal Background color for FName
ColorSFG LONG !Selected Foreground color for FName
ColorSBG LONG ISelected Background color for FName
IconField LONG IIcon number for FName
Treelevel LONG ITree Level
LName STRING(20)
Init STRING(4)

END

Win WINDOW(‘List Boxes’),AT(0,0,366,181),SYSTEM,DOUBLE
LIST,AT(0,34,366,146),FROM(TreeDemo),USE(?Show),HVSCROLL, |
FORMAT(’80L*IT~First Name~*80L~Last Name~16C~Initials~’)
END

CODE
LOOP X# =1 TO 20
RandomAlphaData(FName)
CoTorNFG = COLOR:White TAssign FNAME’s colors

ColorNBG = COLOR:Maroon

ColorSFG = COLOR:YelTlow

ColorSBG = COLOR:Blue

IconField = ((X#-1) % 4) + 1 IAssign icon number
TreeLevel = ((X#-1) % 4) + 1 IAssign tree level

RandomAlphaData(LName)
RandomAlphaData(Init)

ADD(TD)
END
OPEN(Win)
?Show{PROP:iconlist,1} = ICON:VCRback ITcon 1 =<
?Show{PROP:iconlist,2} = ICON:VCRrewind IIcon 2 = KK
?Show{PROP:iconlist,3} = ICON:VCRplay IIcon 3 = >
?Show{PROP:iconlist,4} = ICON:VCRfastforward IIcon 4 = >>
ACCEPT
END
RandomAlphaData PROCEDURE(Field) IMAP Prototype is: RandomAlphaData(*STRING)
CODE
Z# = RANDOM(1,SIZE(Field)) IRandom fill size
LOOP Z# =1 to Y# IFi11 each character with
Field[Z#] = CHR(RANDOM(97,122)) ! a random lower case letter

END

CHAPTER 6 WINDOW STRUCTURES

FROM (set window listbox data source)

FROM(source)
FROM Specifies the source of the data elements displayed in a
LIST, COMBO, or SPIN.
source The label of a QUEUE, a field within a QUEUE, or a
string constant containing the data items to display in
the list.

TheFROM attribute specifies the source of the data elements displayed in a
LIST, COMBO, or SPIN.

For a SPIN control, theourcewould usually be a QUEUE field or string. If
thesourceis a QUEUE with multiple fields, only the first field is displayed
in the SPIN.

For LIST and COMBO controls, the data elements are formatted for display
according to the information in the FORMAT attribute. If the label of a
QUEUE is specified as theource all fields in the QUEUE are displayed. If
the label of one field in a QUEUE is specified asdbgrce only that field

is displayed.

If a string constant is specified as gwurce the individual data elements to
display in the LIST must be delimited by a vertical bar (|) character. To
include a vertical bar as part of one data element, place two adjacent vertical
bars in the string (||), and only one will be displayed. To indicate that an
element is empty, place at least one blank space between the two vertical
bars delimiting the elements (| |).

Example:
Quel QUEUE,PRE(Q1)
F1 LONG
F2 STRING(8)
END

Winl WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L1),FROM(Quel), FORMAT(‘5C~List~15L~Box~"),COLUMN
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(QL:F2)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVarl),FROM(Q1:F1)
SPIN(@S4),AT(280,0,20,20),USE(SpinVar2),FROM(‘Mr.|Mrs.|Ms.|Dr.”)
END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

FULL (set full-screen)

FULL

The FULL attribute specifies the control expands to occupy the entire size
of the WINDOW for any missing AT attribute width or height parameter.

FULL may not be specified for TOOLBAR controls.

HIDE (set control hidden at open)

HIDE

The HIDE attribute specifies the control does not appear when the
WINDOW or APPLICATION is first opened. UNHIDE must be used to
display it.

HLP (set control's on-line help identifier)

HLP(helpID)

HLP Specifies théelplID for the control.

helpID A string constant specifying the key used to access the
Help system. This may be either a Help keyword or a
“context string.”

The HLP attribute specifies thieelplD for the control. Help, if available, is
automatically displayed by Windows whenever the user presséfsthe

user pressesl to request help when the control has input focus, the library
uses the control’belpID to search the help file until an object with that
helpID is found.

The helplD may contain a Help keyword or a “context string.” A Help
keyword is a keyword or phrase that is displayed in the Help Search dialog.
When the user presses, if only one topic in the help file specifies this
keyword, the help file is opened at that topic; if more than one topic
specifies the keyword, the search dialog is opened for the user.

A “context string” is identified by a leading tilde (~) in thelplD, followed

by a unique identifier (no spaces allowed) associated with exactly one help
topic. When the user pressds the help file is opened at the specific topic
associated with that “context string.” If the tilde is missing,hbkpID is
assumed to be a help keyword.

Example:

Winl WINDOW
ENTRY (@s30),USE(SomeVariable) ,HLP(‘~EntrylHelp’)!A help context string
ENTRY (@s30),USE(SomeVariable),HLP(‘Control Two Help’)!A help keyword
END

CHAPTER 6

WINDOW STRUCTURES

HSCROLL, VSCROLL, HVSCROLL (set control scroll bars)

HSCROLL
VSCROLL
HVSCROLL

TheHSCROLL, VSCROLL, andHVSCROLL attributes place scroll bars
on a COMBO, LIST, IMAGE, or TEXT control. HSCROLL adds a
horizontal scroll bar to the bottom; VSCROLL adds a vertical scroll bar on
the right side, and HYSCROLL adds both.

The vertical scroll bar allows a mouse to scroll the control’s display up or
down. The horizontal scroll bar allows a mouse to scroll the control’s
display left or right. The scroll bars appear whenever any scrollaldierpor
of the control lies outside the visible area on screen.

When you place VSCROLL on a LIST with the IMM attribute, the vertical
scroll bar is always present, even when the list is not full. When the user
clicks on the scroll bar, events are generated, but the list contents do not
move (executable code should perform this task). You can interrogate the
PROP:VscrollPos property to determine the scroll thumb’s position in the
range O (top) to 100 (bottom).

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ICON (set control icon)

ICON([file])

ICON Specifies an icon to display as the control.

file A string constant or EQUATE containing the name of an
.ICO file or Windows standard icon to display. The .ICO
file is automatically linked into the .EXE as a resource.

TheICON attribute specifies an icon to display as the control. The icon is
displayed on the button face of the control. The ICON attribute may be
specified on a BUTTON, RADIO, or CHECK control. For RADIO and
CHECK controls, the ICON attribute creates “latchpd$hbuttons, where
the control button appears “down” when on and “up” when off.

EQUATE statements for the Windows-standard icons are contained in the
EQUATES.CLW file. The following list is a repsentative sample of these
(see EQUATES.CLW for the complete list):

ICON:None No icon
ICON:Application
ICON:Question ?
ICON:Exclamation [
ICON:Asterisk *
ICON:VCRtop >>
ICON:VCRrewind <<
ICON:VCRback <
ICON:VCRplay >
ICON:VCRfastforward >>
ICON:VCRbottom |<<
ICON:VCRIocate ?

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
OPTION(‘Option’),USE(OptVar)
RADIO(‘Radio 1°),AT(120,0,20,20),USE(?R1),ICON(‘Radiol.IC0")
RADIO(‘Radio 2°),AT(140,0,20,20),USE(?R2),ICON(‘Radio2.1C0")
END
CHECK(*&A”),AT(0,120,20,20),USE(2C7),ICON(ICON:Asterisk)
BUTTON(*&1°),AT(120,0,20,20),USE(?B7),ICON(ICON:Question)
END

CHAPTER 6

WINDOW STRUCTURES

IMM (set immediate event notification)

IMM

The MM attribute specifies immediate generation of an event.

On a REGION control, the IMM attribute generates an event whenever the
mouse enters, moves within, or leaves the area specified by the REGION's
AT attribute. The exact position of the mouse can be deteremined by the
MOUSEX and MOUSEY functions.

On a BUTTON control, the IMM attribute indicates the BUTTON generates
an event when the left mouse button is pressed down on the control, instead
of on its release. The event is continuously generated as along as the user
keeps the mouse button pressed.

The IMM attribute specifies immediate event generation each time the user
presses any keystroke on a LIST or COMBO control, usually requiring the
QUEUE to be re-filled. When the user presses a printable character,
EVENT:NewSelection is generated. It does the same thing on an ENTRY or
SPIN control.

INS, OVR (set typing mode)

INS
OVR

TheINS andOVR attributes specify the typing mode for an ENTRY or
TEXT control when the MASK attribute is present on the window. INS
specifies insert mode while OVR specifiegownrite mode. These modes are
only active on windows with the MASK attribute.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

KEY (set control execution keycode)

KEY (keycode)
KEY Specifies a “hot” key for the control
keycode A Clarion Keycode or keycode equatbda

TheKEY attribute specifies a “hot” key to immediately give focus to the
control or execute the control’s associated action.

The following contols receive focus:

COMBO
CUSTOM
ENTRY
GROUP
LIST
OPTION
PROMPT
SPIN
TEXT

The following controls botheceive focus and immediately execute:

BUTTON
CHECK
CUSTOM
RADIO
MENU
ITEM

Example:

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(QL:F2),KEY(F1lKey)
LIST,AT(120,0,20,20),USE(?L1),FROM(Quel),KEY(F2Key)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVarl),FROM(Q),KEY(F3Key)
TEXT,AT(20,0,40,40),USE(E2),KEY(F4Key)

PROMPT(“Enter &Data in E2:’),AT(10,200,20,20),USE(?P2),KEY(F5Key)
ENTRY(@S8),AT(100,200,20,20),USE(E2),KEY(F6Key)
BUTTON(“&1”),AT(120,0,20,20),USE(?B7),KEY(F7Key)
CHECK(“&A’),AT(0,120,20,20),USE(?C7),KEY(F8Key)
OPTION(‘Option’),USE(OptVar),KEY(F9Key)

RADIO(‘Radio 1’),AT(120,0,20,20),USE(?R1),KEY(F10Key)

RADIO(‘Radio 2°),AT(140,0,20,20),USE(?R2),KEY(F11Key)
END

END

CHAPTER 6

WINDOW STRUCTURES

LEFT, RIGHT, CENTER, DECIMAL (set display justification)

Example:

LEFT([indent])
RIGHT([indent])
CENTER([indent])
DECIMAL([indent])

indent An integer constant specifying the amount of offset from
the justification point. This is in dialog units.

TheLEFT, RIGHT , CENTER, andDECIMAL attributes specify the
justification of data displayed. LEFT specifies left justification, RIGHT
specifies right justification, CENTER specifies centered text, and
DECIMAL specifies numeric data aligned on the decimal point.

Theindentparameter on the CENTER attribute specifies an offset from the
center (negative = left offset). On the DECIMAL attributelentspecifies
the offset of the decimal point from the right.

The CHECK and RADIO controls allow LEFT or RIGHT only (without an
indentparameter). The TEXT control allows only LEKIden),
RIGHT(inden), or CENTERI{nden).

The following controls allow LEFTigden), RIGHT (inden),
CENTER({nden, or DECIMAL(inden):

COMBO
ENTRY
LIST
SPIN
STRING

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(QL1:F2),RIGHT(4)
LIST,AT(120,0,20,20),USE(?L1),FROM(Quel),CENTER
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVarl),FROM(Q),DECIMAL(8)
TEXT,AT(20,0,40,40),USE(E2),LEFT(8)

ENTRY (@S8),AT(100,200,20,20),USE(E2),LEFT(4)
CHECK(“&A’),AT(0,120,20,20),USE(?C7),LEFT
OPTION(‘Option’),USE(OptVar)

RADIO(‘Radio 1°),AT(120,0,20,20),USE(?R1),LEFT
RADIO(‘Radio 2°),AT(140,0,20,20),USE(?R2),RIGHT

END

END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

MARK (set multiple selection mode)

Example:

MARK(flag)

Quel
MarkFlag
F1

F2

WinOne

MARK Enables multiple items selection.
flag The label of a QUEUE field.

The MARK attribute enables multiple items selection from a LIST or
COMBO contol. When an item in the LIST is selectéle appropriatflag

field is set to true (1). Each marked entry is automatically highlighted in the
LIST or COMBO. Changing the value of thag field also changes the
screen display for the related LIST or COMBO entry.

If the MARK attribute is specified on the LIST or COMBO, the IMM
attribute may not be.

QUEUE, PRE(Q1)

BYTE
LONG
STRING(8)

END

WINDOW,AT(0,0,160,400)
LIST,AT(120,0,20,20),USE(?L1),FROM(Q1:F1),MARK(Ql:MarkFlag)
COMBO(@S8),AT(120,120,,),USE(?C1),FROM(Q1:F2),MARK(Q1l:MarkFlag)

END

CHAPTER 6 WINDOW STRUCTURES

MSG (set control status bar message)

MSG(text)

MSG Specifiestextto display in the status bar.

text A string constant containing the message to display in
the status bar.

TheMSG attribute specifies thiextto display in the first zone of the status
bar when the control has focus.

Example:

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2),MSG(‘Enter or Select’)
LIST,AT(120,0,20,20),USE(?L1),FROM(Quel) ,MSG(‘Select One’)
SPIN(@N8.2),AT(280,0,20,20),USE(SpinVarl),FROM(Q),MSG(‘Choose One’)
TEXT,AT(20,0,40,40),USE(E2) ,MSG(‘Enter Text’)
ENTRY(@S8),AT(100,200,20,20),USE(E2) ,MSG(‘Enter Data’)
CHECK(“&A’),AT(0,120,20,20),USE(?C7),MSG(‘On or Off”)
OPTION(“Option 1’),USE(OptVar),MSG(‘Pick One or Two’)

RADIO(“Radio 1’),AT(120,0,20,20),USE(?RL)
RADIO(‘Radio 2’),AT(140,0,20,20),USE(?R2)
END
OPTION(‘Option’),USE(OptVar)
RADIO(“‘Radio 1°),AT(120,40,20,20),USE(?R1),MSG(‘Pick One’)
RADIO(‘Radio 2°),AT(140,40,20,20),USE(?R2),MSG(‘Pick Two’)
END
END

NOBAR (set no highlight bar)

NOBAR

TheNOBAR attribute specifies the currently selected element in the LIST is
only highlighted when the LIST control has focus.

PASSWORD (set data non-display)

PASSWORD

The PASSWORD attribute specifies non-display of the data entered in the
ENTRY contol. When the user types in dasaterisks are displayed on
screen for each character entered.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

RANGE (set range limits)

RANGE (/lower,upper)

RANGE Specifies the valid range of data values the user may
select in a SPIN control, or the range of values displayed
in a PROGRESS control.

lower A numeric constant that specifies the lower inclusive
limit of valid data.

upper A numeric constant that specifies the upper inclusive
limit of valid data.

The RANGE attribute specifies the valid range of data values the user may
select in a SPIN control. RANGE also defines the range of values that are
displayed in a PROGRESS control.This attribute works in conjunction with
the STEP attribute on SPIN controls. On a SPIN control, the STEP attribute
provides the user with the valid choices within the range.

Example:

WinOne WINDOW,AT(0,0,160,400)
SPIN(@N4.2),AT(280,0,20,20),USE(SpinVarl),RANGE(.05,9.95),STEP(.05)
SPIN(@n3),AT(280,0,20,20),USE(SpinVar2),RANGE(5,995),STEP(5)

END

READONLY (set display-only)

READONLY

The READONLY attribute specifies a display-only COMBO, ENTRY,

SPIN or TEXT control. The control magaeive input focus with the mouse,

but may not enter data. If the user attempts to change the displayed value, a
beep warns the user that data entry is not allowed.

REQ (set required entry)

REQ

The REQ attribute specifies an ENTRY or TEXT control that may not be
left blank or zero. The REQ attribute on an ENTRY or TEXT control is not
checked until a BUTTON with the REQ attribute is pressed, or the
INCOMPLETE() function is called.

When a BUTTON with the REQ attribute is pressed, or the
INCOMPLETE() function is called, all ENTRY and TEXT controls with the
REQ attribute are checked to ensure they contain data. The first control
encountered in this check that does not contain data inmediately receives
input focus.

CHAPTER 6 WINDOW STRUCTURES

RIGHT (set MENU position)

RIGHT

TheRIGHT attribute specifies the MENU is placed at the right end of the
action bar.

ROUND (set round-cornered window BOX)

ROUND
TheROUND attribute specifies a BOX control with rounded corners.

SCROLL (set scrolling control)

SCROLL

The SCROLL attribute specifies a control that moves with the window
when the WINDOW scrolls. This allows “virtual” windows larger than the
physical video display.

The presence of the SCROLL attribute means that the control stays fixed at a
position in the window relative to the top left corner of the virtual window,
whether that position is currently in view or not. This means that the control
appears to move as the window scrolls.

If the SCROLL attribute is omitted, the control stays fixed at a position in

the window relative to the top left corner of the currently visible portion of

the window. This means that the control appears to stay in the same position
on screen while the rest of the window scrolls. This is useful for controls
which should stay visible to the user at all times (such as Ok or Cancel
buttons).

Mixing controls with and without the SCROLL attribute on the same
WINDOW can result in multiple controls appearing to occupy the same
screen position. This occurs because the controls with SCROLL move and
the controls without SCROLL do not. This condition is temporary and
scrolling the window will correct the situation. The situation can be avoided
entirely by careful placement of controls in the window. For example, you
can place all controls without SCROLL at the bottom of the window then
place all controls with SCROLL above them extending to the right and left.
This would create a window that only scrolls horizontally.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SEPARATOR (set separator line ITEM)

SEPARATOR

The SEPARATOR attribute specifies an ITEM in a MENU that displays a
horizontal line to group ITEMs within the MENU. No other attributes may
be specified for the ITEM.

SKIP (setTab key skip)

SKIP

The SKIP attribute specifies the control may only be accessed with the
mouse or an accelerator key. Controls that allow data entry receive input
focus only during data entry and the control does not retain focus. Controls
that do not allow data entry do not receive or retain input focus. The effect
of this is to create the same behavior as a control in a toolbar. When the
mouse cursor is over a control with the SKIP attribute, the control’'s MSG
attribute is displayed in the status bar.

SPREAD (set evenly spaced TAB controls)

SPREAD

The SPREAD attribute specifies a SHEET’s TAB controls are evenly
spaced.

CHAPTER 6 WINDOW STRUCTURES

STD (set standard behavior)

STD(behavior)
STD Specifies standard Windoveghavior
behavior An integer constant or EQUATE specifying the identifier

of a standard windows behar.

The STD attribute specifies the control activates some standard Windows
action. This action is automatically executed by the runtime library and does
not generate an event.

EQUATE statements for the standard Windows actions are contained in the
EQUATES.CLW file. The following list is a repsentative sample of these
(see EQUATES.CLW for the complete list):

STD:WindowList List of open MDI windows
STD:TileWindow Tile Windows
STD:CascadeWindow Cascade Windows
STD:Arrangelcons Arrange Icons
STD:Helplindex Help Contents
STD:HelpSearch Help Search dialog

Example:

MDIChild WINDOW(‘Child One’),MDI,SYSTEM,MAX
MENUBAR
MENU(“Edit’),USE(?EditMenu)
ITEM(‘Undo’),USE(?UndoText),KEY(Ctr1Z),STD(STD:Undo)
ITEM(‘Cu&t’),USE(?CutText),KEY(Ctr1X),STD(STD:Cut)
ITEM(‘Copy’),USE(?CopyText),KEY(Ctr1C),STD(STD:Copy)
ITEM(‘Paste’),USE(?PasteText),KEY(Ctr1V),STD(STD:Paste)
END
END
TOOLBAR
BUTTON(‘Cut’),USE(?CutButton),ICONCICON:Cut),STD(STD:Cut)
BUTTONC(“Copy’),USE(?CopyButton),ICONCICON:Copy),STD(STD:Copy)
BUTTON(‘Paste’),USE(?PasteButton),ICONCICON:Paste),STD(STD:Paste)
END
END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

STEP (set SPIN increment)

STEP(count)
STEP Specifies a SPIN control RANGE attribute’s increment/
decrement value.
count A numeric constant specifying the amount to increment

or decrement.

The STEP attribute specifies the amount by which a SPIN control’s value is
incremented or decremented within its valid RANGE. The default STEP
value is 1.0.

Example:

WinOne WINDOW,AT(0,0,160,400)
SPIN(@N4.2),AT(280,0,20,20),USE(SpinVarl),RANGE(.05,9.95),STEP(.05)
SPIN(@n3),AT(280,0,20,20),USE(SpinVar2),RANGE(5,995),STEP(5)

END

CHAPTER 6 WINDOW STRUCTURES

TIP (set“balloon help” text)

TIP(string)

TIP Specifies the text to display when the mouse cursor
pauses over the control.
string A string constant that specifies the text to display.

TheTIP attribute on a control specifies the text.to display in a “balloon

help” box when the mouse cursor pauses over the control. Although there is
no specific limit on the number of characters, string should not be longer
than can be displayed on the screen.

Although it is valid on any control that can gain focus for user input, this
attribute is most commonly used on BUTTON controls with the ICON
attribute that are placed on the TOOLBAR. This allows the user to quickly
determine the control’s purpose without accessing the on-line Help system.

Automatic TIP attribute display can be disabled for any single control or
window by setting the PROP:NoTips undeclared property to one (1). It can
be disabled for an entire application by setting the PROP:NoTips for the
built-in variable SYSTEM to one (1).

The time delay before TIP display can be set for an entire application by
setting the PROP:TipDelay for the built-in variable SYSTEM to the desired
delay amount (in hundredths of a second). This is valid only for 16-bit
applications; in 32-bit operating systems, the amount of tip delay is an
operating system setting under the user’s control.

Example:

WinOne WINDOW,AT(0,0,160,400)

TOOLBAR
BUTTON(*E&xit”),USE(?MainExitButton),ICONCICON:hand),TIP(‘Exit Window”)
BUTTON(‘&0pen’),USE(?0penButton), ICONCICON:Open),TIP(“Open a File’)

END

COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(QL:F2)

ENTRY (@S8),AT(100,200,20,20),USE(E2)

END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

TRN (set transparent window string)

TRN

The TRN attribute on a STRING control specifies the characters display
transparently, without obliterating the background over which the STRING

is placed. Only the pixels required to create each character are written to the
screen. This allows the STRING to be placed directly on top of an IMAGE
without destroying the background picture.

Example:

WinOne WINDOW,AT(0,0,160,400)
IMAGE(*PIC.BMP’),USE(?I1),FULL IFull window image
STRING(‘String Constant’),AT(10,0,20,20),USE(?S1),TRN
ITransparent string on image
END

CHAPTER 6 WINDOW STRUCTURES

USE (set control variable or equate label)

USE(| label | [Lnumben [,equate])
| variable |
USE Specifies a variable or field equate label for the control.
label A field equate label to reference the control in executable
code.
variable The label of the field to receive the value entered in the

control. This label (with a ? prepended) becomes the
field equate label for the control, unless guriate
parameter is used.

number An integer constant that specifies the number the com-
piler equates to the field equate label for the control.
eguate A field equate label to reference the control in executable

code when the namegriable has already been used in
the same structure. This provides a mechanism to
provide a unique field equate when Yaiable would
not.

The USE attribute specifies a variable or field equate label for the control.
USE with alabel parameter simply provides a mechanism for executable
source code statements to reference the control. Some controls only allow a
field equatdabel as the USE parameter, notariable These controls are:
PROMPT, IMAGE, LINE, BOX, ELLIPSE, GROUP, RADIO, REGION,
MENU, and BUTTON. USE with a&ariable parameter supplies the control
with a variable to update by operator entry. This is applicable to an ITEM
with the CHECK attribute, or an ENTRY, OPTION, SPIN, TEXT, LIST,
COMBO, CHECK, or CUSTOM.

All controls in an APPLICATION or WINDOW are automatically assigned
numbers by the compiler. For an APPLICATION’s MENUBAR controls,
these numbers start at negative one (-1) and decrement by one (1) for each
MENU and ITEM in the MENUBAR. On a WINDOW, these numbers start
at one (1) and increment by one (1) for each control in the WINDOW.

The USE attribute’sumberparameter allows you to specify the actual field
number the compiler assigns to the control. Thisberalso is used as the
new starting point for subsequent field numbering for fields without a
numberparameter in their USE attribute. Subsequent controls without a
numberparameter in their USE attribute are incremented (or decremented)
relative to the lagtumberassigned.

Two or more controls with exactly the same USE variable in one WINDOW
or APPLICATION structure would create the same Field Equate Label for
all, therefore, when the compiler encounters this condition, all Field Equate
Labels for that USE variable are discarded. This makes it impossible to
reference any of these controls in executable code, preventing confusion

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

about which control you really want to reference. It also allows you to
deliberately create this condition to display the contents of the variable in
multiple controls with different display pictures.

Example:

WinOne WINDOW,AT(0,0,160,400)
COMBO(@S8),AT(120,120,20,20),USE(?C1),FROM(Q1:F2)
ENTRY (@S8),AT(100,200,20,20),USE(E2)
END

CHAPTER 6 WINDOW STRUCTURES

VALUE (set RADIO control OPTION USE variable assignment)

VALUE(string)

VALUE Specifies the value assigned to the OPTION structure’s
USE variable when the RADIO control is selected by the
user.

string A string constant that specifies the value to assign.

TheVALUE attribute specifies the value that is automatically assigned to
the OPTION structure’s USE variable when the RADIO control is selected
by the user. This attribute overrides the RADIO contrabd parameter.

All automatic type conversion rules apply to gteng assigned to the
OPTION structure’s USE variable. Therefore, if fiegng contains only
numeric data and the USE variable is a numeric data typeeitves the
numeric value of thstring.

Example:

Win WINDOW,AT(0,0,160,400)

OPTION(“Option 1°),USE(OptVarl),MSG(‘Pick One or Two’)
RADIO(‘Radio 1°),AT(120,0,20,20),USE(?R1),VALUE(‘10") !OptVarl gets 10
RADIO(‘Radio 2°),AT(140,0,20,20),USE(?R2),VALUE(‘20") !0ptVarl gets 20

END

OPTION(“Option 2’),USE(OptVar2),MSG(‘Pick One or Two’)
RADIO(‘Radio 1°),AT(120,0,20,20),USE(?R1),VALUE(‘10") !OptVar2 gets ‘10’
RADIO(‘Radio 2°),AT(140,0,20,20),USE(?R2),VALUE(‘20") !0ptVar2 gets 20’

END

END

6-130 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

VCR (set VCR control)
VCR([field])
VCR Places Video Cassette Recorder (VCR) style buttons on
a LIST or COMBO control.
field A field equate label that specifies the ENTRY control to

use as a locator for a LIST (not valid on a COMBO).

TheVCR attribute place¥ideoCassettd&Recorder (VCR) style buttons on a
LIST or COMBO control. The VCR style buttonsexf the scrolling
characteristics of the data displayed in the LIST or COMBO.

There are six buttons displayed as the VCR:

[< Top of list (EVENT:ScrollTop)

<< Page Up (EVENT:PageUp)

< Entry Up (EVENT:ScrollUp)

> Entry Down (EVENT:ScrollDown)
>> Page Down (EVENT:PageDown)
>| Bottom of list (EVENT:ScrollBottom)

On a LIST control’'s VCHRield), there also appears a button with a question
mark (?) in the middle of the other buttons. This is the locator button that
gives focus to the control specified by fredd parameter. When the user
enters data and then presseson the locatofield, the LIST scrolls to its
closest matching entry.

Example:

MDIChild WINDOW(‘Child One’),AT(0,0,320,200),MDI,MAX,HVSCROLL
LIST,AT(140,0,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR
ENTRY (@S8),AT(100,200,20,20),USE(E2)
LIST,AT(140,100,20,20),USE(?L8),FROM(Que),HVSCROLL,VCR(?E2)
END

WIZARD (set“tabless” SHEET control)

WIZARD

The WIZARD attribute specifies a SHEET control that does not display its
TAB controls. This allows the program to direct the user through each TAB
in a specified sequence (usually with “Next” and “Previous” buttons.

CHAPTER 7

WinDow COMMANDS 7-1

Event Processing Contents |

Event-driven Programming

Windows programs are generally event-driven. This means the user causes
an event by clicking the mouse on a screen control or pressing a key. Every
user action in the program results in Windows sending a message to the
program which owns the window telling it what the user has done. Once
Windows has sent the message signaling an event to the program, the
program has the opportunity to handle the event in the appropriate manner.
This basically means the Windows programming paradigm is exactly
opposite from the DOS programming paradigm—the operating system
(Windows) tells the program what to do, instead of the program telling the
operating system what to do.

Writing a Windows program in a programming language other than Clarion
becomes very complex, because the program must be coded to explicitly
handle every message from Windows. Common tasks, suehdsiswing
graphics that have been overwritten by a window that was open and is now
closed, must be explicitly coded in the program.

These common tasks could be handled automatically by writing generic
procedures to accomplish the task and call them every time the need arises.
Of course, in other programming languages, you would have to write these
procedures yourself. In Clarion for Windows, they are already written and
included as part of our runtime library. The Clarion language, therefore, has
persistent graphics commands that do not require an explicit re-draw each
time they are overwritten (unlike other langagag

In Clarion Windows programs, most of the messages from Windows are
automatically handled internally by the ACCEPT event processor. These are
the common events handled by the runtime library (screen re-draws, etc.).
Only those events that actually may require program action are passed on by
ACCEPT to your Clarion code. The net effect of this is to make your
programming job easier by removing the low-level “drudgery” code from

your program, allowing you to concentrate on the high-level aspects of
programming, instead.

There are two types of events passed on to the program by ACEERIF:
specificandField-independentevents.

A Field-specificevent occurs when the user presses a key that may require
the program to perform a specific action related to that control.

A Field-independentevent does not relate to any one control but requires
some program action (for example, to close a window, quit the program, or
change execution threads). Most of these events cause the system to becom
modal, since they require a response before the program may continue.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ACCEPT (the event processor)

ACCEPT
statements
END

ACCEPT The event handler.
statements Executable code statements.

The ACCEPT loop is the event handler that processes events generated by
Windows for the APPLICATION or WINDOW atictures. An ACCEPT loop
and a window are bound together, in that, when the window is opened, the
next ACCEPT loop encountered will process all events for that window.

ACCEPT operates in the same manner as a LOOP—the BREAK and
CYCLE statements can be used within it. The ACCEPT loop cycles for
every event that requires program action. ACCEPT waits until the Clarion
runtime library sends it an event that the program should process, then
cycles through to execute #gtatementsDuring the time ACCEPT is
waiting, the Clarion runtime library has control, automatically handling
common events from Windows that do not need specific program action
(such as screen reaWs).

The current contents of all STRING control USE variables (in the top
window of each thread) automatically display on screen each time the
ACCEPT loop cycles to the top. This eliminates the need to explicitly issue
a DISPLAY statement to update the video display for display-only data.
USE variable contents for any other control automatically display on screen
for any event generated for that control, unless PROP:Auto is turned on to
automatically display all USE variables each time through the ACCEPT
loop.

Within the ACCEPT loop, the program determines what happened by using
the following functions:

EVENT() Returns a value indicating what happened. Symbolic
constants for events are in the EQUATES.CLW file.
FIELD() Returns the field number for the control to which the

event refers, if the event is a field-specific event.

ACCEPTED() Returns the field number for the control to which the
event refers for the EVENT:Acce ptedesy.

SELECTED() Returns the field number for the control to which the
event refers for the EVENT:Selectectat.

FOCUS() Returns the field number of the control that has input
focus, no matter what event occurred.
MOUSEX() Returns the x-coordinate of the mouse cursor.

MOUSEY() Returns the y-coordinate of the mouse cursor.

CHAPTER 7 WiNnDow COMMANDS 7-3

Two events cause an implicit BREAK from the ACCEPT loop. These are the
events that signal the close of a window (EVENT:CloseWindow) or close of

a program (EVENT:CloseDown). The program’s code need not check for
these events as they are handled automatically. However, the code may chec
for them and execute some specific action, such as displaying a “You sure?”
window or handling some housekeeping details. A CYCLE statement at that
point returns to the top of the ACCEPT loop without exiting the window or
program.

Similarly, there are several other events whose action can also be terminated
by a CYCLE statement: EVENT:PreAlertkey, EVENT:Move, EVENT:Size,
EVENT:Restore, EVENT:Maximize, and EVENT:Iconize. A CYCLE
statement in response to any of these events stops the normal action and
prohibits generation of the related EVENT:Alertkey, EVENT:Moved,
EVENT:Sized, EVENT:Restored, EVENT:Maximized, or EVENDnized.

Example:
CODE
OPEN(Window)
ACCEPT !Event handler
CASE FIELD()
OF 0 !Handle Field-independent events

CASE EVENT()
OF EVENT:Move
CYCLE !Do not allow user to move the window
OF EVENT:Suspend
CASE FOCUS()
OF ?Fieldl
!Save some stuff
END
OF EVENT:Resume
IRestore the stuff
END
OF ?Fieldl !Handle events for Fieldl
CASE EVENT()
OF EVENT:Selected
! pre-edit code for fieldl
OF EVENT:Accepted
! completion code for fieldl
END
OF ?Field2
CASE EVENT()
OF EVENT:Selected
! pre-edit code for field2
OF EVENT:Accepted
! completion code for field2
END
END

See Also: EVENT, FIELD, FOCUS, ACCEPTED, SELECTED, CYCLE

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

ALERT (set event generation key)

ALERT([first-keycode] [,last-keycode])

ALERT Specifies keys that generate an event.

first-keycode A numeric keycode or keycode equate label. This may
be the lower limit in a range of keycodes.

last-keycode The upper limit keycode, or keycode equabelain a

range of keycodes.

ALERT specifies a key, or an inclusive range of keys, as event gienera
keys. Two field-independent events, EVENT:PreAlertKey and
EVENT:AlertKey, are generated when the user presses the ALERTed key. If
the code executes a CYCLE statement when processing
EVENT:PreAlertkey, you “shortstop” the EVENT:AlertKey, preventing the
library’s default action on the alerted keypress for the window.

The ALERT statement with no parameters clears all ALERT keys. Any key
with a keycode may be used as the parameter of an ALERT statement.
ALERT generates field-independent events, since it is not associated with
any particular control. When EVENT:AlertKey is generated by an ALERT
key, the USE variable of the control that currently has input focus is not
automatically updated (use UPDATE if this is required).

The ALERT statement alerts its keys separately from the ALRT attribute of a
window or control. This means that clearingALERT keys has no effect
on any keys alerted by ALRT attributes.

CHAPTER 7 WiNnDow COMMANDS

Example:

Screen WINDOW,ALRT(F10Key),ALRT(F9Key) !F10 and F9 alerted
LIST,AT(109,48,50,50),USE(?List),FROM(Que), IMM
BUTTON(“&0k’*),AT(111,108,,),USE(?0k)
BUTTON(‘&Cancel’),AT(111,130,,),USE(?Cancel)

END
CODE
ALERT ITurn off all alerted keys
ALERT(F1Key,F12Key) IAlert all function keys
ALERT(279) Alert the Ctrl-Esc key
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:PreAlertKey IPre-check alert events
IF KEYCODE() = F4Key IDis-Allow F4 key
CYCLE ITerminate alert processing
END
OF EVENT:AlertKey IAlert processing
CASE KEYCODE()
0F 279 ICheck for Ctrl+Esc
BREAK
OF F9Key ICheck for F9
F9HotKeyProc 1Call hot key procedure
OF F10Key ICheck for F10
F10HotKeyProc ICall hot key procedure
END
END
END

See Also: UPDATE

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

EVENT (return event number)

EVENT()

The EVENT function returns a number indicating what caused ACCEPT to
alert the program that something has happened that it may need to handle.
There are EQUATES listed in EQUATES.CLW for all the events the program
may need to handle.

There are two types of events generated by ACCEPT: field-specific and
field-independent events. Field-specific events affect a single control, while
field-independent events affect the window or program. The type of event
can be determined by the values returned by the ACCEPTED, SELECTED,
and FIELD functions. If you need to know which field has input focus on a
field-independent event, use the FOCUS function.

For field-specific events:
The FIELD function returns the field number of the
control on which the event occurred. The ACCEPTED
function returns the field number if the event is
EVENT:Accepted. The SELECTED function returns the
field number if the event is EVENT:Selected.

For field-independent events:
The FIELD, ACCEPTED, and SELECTED functions all
return zero (0).

Return Data Type: SHORT

Example:

ACCEPT
CASE EVENT()
OF EVENT:Selected
CASE SELECTED()
OF ?Controll
IPre-edit code here
OF ?Control2
IPre-edit code here
END
OF EVENT:Accepted
CASE ACCEPTED()
OF ?Controll
!Post-edit code here
OF ?Control2
!Post-edit code here
END
OF EVENT:Suspend
!Save some stuff
OF EVENT:Resume
IRestore the stuff
END
END

CHAPTER 7 WiNnDow COMMANDS

POST (post user-defined event)

POST(event [,control] [,thread])

POST Posts an event.

event An integer constant, variable, expression, or EQUATE
containing an event number. A value in the range 400h
to OFFFh is a User-defined event.

control An integer constant, EQUATE, variable, or expression
containing the field number of the control affected by the
event. If omitted, the event is field-independent.

thread An integer constant, EQUATE, variable, or expression
containing the execution thread number whose ACCEPT
loop is to process the event. If omitted, the event is
posted to the current thread.

POST posts an event to the currently active ACCEPT loop of the specified
thread This may be User-defined events, or any other event. User-defined
event numbers can be defined as any integer between 400h and OFFFh. Any
eventposted with aontrol specified is a field-specific event, while those
without are field-independent events.

Example:

Winl WINDOW(‘Tools”),AT(156,46,32,28),TO0LBOX
BUTTON(‘Date’),AT(0,0,,),USE(?Buttonl)
BUTTON(‘Time”),AT(0,14,,),USE(?Button2)
END
CODE
OPEN(Winl)
ACCEPT
IF EVENT() = EVENT:User THEN BREAK. !Detect user-defined event
CASE ACCEPTED()
OF ?Buttonl
POST(EVENT:User, ,UseToolsThread)
Post field-independent event to other thread
OF ?Button2
POST(EVENT:User) !Post field-independent event to this thread
END
END
CLOSE(Winl)

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

YIELD (allow event processing)

YIELD

YIELD temporarily gives control to Windows to allow other concurrently
executing Windows applications to process events they need to handle
(except those events that would post messages back to the program
containing the YIELD statement ,or events that would change focus to the
other application).

YIELD is used to ensure that long batch processing in a Clarion application
does not completely “lock out” other applications from completing their
tasks. This is known as “cooperative multi-tasking” and ensures that your
Windows programs peacefully co-exist with any other Windows
applications.

Within your Clarion application, YIELD only allows control to pass to
EVENT:Timer events in other execution threads. This allows you to code a
“background” procedure in its own execution thread using the TIMER
attribute to perform some long batch processing without requiring the user
to wait until the task is complete before continuing with other work in the
application. This is an industry-standard Windows method of doing
background processing within an application.

The example code on the next page demonstrates both approaches to
performing batch processing: making the user wait for the process to
complete, and processing in the background. Only &R Process
procedure requires the YIELD statement, because it takes full control of the
program. Background processing using EVENT:Timer does not need a
YIELD statement, since the ACCEPT loop automatically performs
cooperative multi-tasking with other Windows applications.

CHAPTER 7 WiNnDow COMMANDS

Example:

StartProcess PROCEDURE
Win WINDOW(‘Choose a Batch Process’),MDI
BUTTON(C“Full Control’),USE(?FullControl)
BUTTON(‘Background’),USE(?Background)
BUTTON(“Close’),USE(?Close)
END
CODE
OPEN(Win)
ACCEPT
CASE FIELD()
OF ?FullControl

DISABLE(FIRSTFIELD(),LASTFIELD()) !Disable all buttons
WaitForProcess ! and call the batch process procedure
ENABLE(FIRSTFIELD(),LASTFIELD()) !Enable buttons when batch is complete
OF ?Background
X# = START(BackgroundProcess) !Start new execution thread for the process
OF ?Close
BREAK
END
END
WaitForProcess PROCEDURE !'Full control Batch process
CODE
SETCURSOR(CURSOR:Wait) !Alert user to batch in progress
SET(File) !Set up a batch process
Loop
NEXT(File)

IF ERRORCODE() THEN BREAK.
IPerform some batch processing code

YIELD !Yield to other applications and EVENT:Timer
END
SETCURSOR IRestore mmouse cursor
BackgroundProcess PROCEDURE IBackground processing batch process

Win WINDOW(‘Batch Processing...”),TIMER(1),MDI
BUTTON(*Cancel’),STD(STD:Close)
END
CODE
OPEN(Win)
SET(File) !Set up a batch process
ACCEPT
CASE EVENT()
OF EVENT:CloseWindow
BREAK
OF EVENT:Timer IProcess records whenever the timer allows it
LOOP 3 TIMES
NEXT(File)
IF ERRORCODE() THEN BREAK.
IPerform some batch processing code

7-10

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Multi-Threaded Applications

Multi-Threading vs. Multi-Tasking

Multi-threading, as the term is used here, should not be confused with the
ability to have the computer perform multiple tasks concurrently. Multiple
execution threads within a single executing program do not necessarily
imply multi-tasking, because only one threadmally executes at a time.

Windows 3.1 allows cooperative, non-preemptive, multi-tasking between
separately executing applications in any mode, and preemptive multi-tasking
in 386 enhanced mode. Its preemptive multi-tasking is based on “time
slicing” between the applications and the amount of time each
simultaneously executing application receives is gmeiby the end user’s
Windows configuration. See your Windows 3.1 documentation for an
explanation of Windows’ multi-tasking settings.

Windows 95 allows preemptive multi-tasking between separately executing
applications. Its preemptive multi-tasking is not based on “time slicing”
between the applications as Windows 3.1 was; instead, it has true preemptive
multi-tasking in which the amount of time each simultaneously executing
application receives is governed by each program yielding control to allow
other programs to execute.

A form of cooperative, non-preemptive, multi-threading (similar to inter-
application multi-tasking) can be accomplished within a single Clarion
application by using the TIMER attribute. This is not based on “time
slicing” between execution threads. Instead, each execution thread gains
control and does not relinquish it until it executes an ASK or ACCEPT
statement.

When the top window of an execution thread has the TIMER attribute, a
timer event (EVENT:Timer) is periodically generated to cycle its ACCEPT
loop to process the event. This occurs even if the thread does not currently
have input focus. Therefore, if you want to perform this type of multi-
threading, you must ensure that any lengthy execution code includes YIELD
statements that occasionally execute to allow the timer events in other
threads to generate and execute.

Multi-Threading and MDI

A multi-threaded application allows the user the ability to switch between
multiple execution threads at runtime, as they choose. This makes the
Windows Multiple Document Interface (MDI) approach to programming
possible. A single Windows application may have a maximum of 64
execution threads concurrently available.

CHAPTER 7

WiNnDow COMMANDS 7-11

The first execution thread in any program is the main program code. This
opens an APPLICATION structure as the MDI “parent” window, containing
the main menu selections for the application.

The menu selections in the APPLICATION’s MENUBAR call the START
function to begin each subsequent execution thread. The procedures called
by START usually open an MDI “child” WINDOW, as a document window
or dialog box. These windows allow the user to perform the tasks the
application is designed to perform.

The last MDI “child” WINDOW opened (and not closed) in any execution
thread is the “top” window in the thread and has input focus when that
thread is executing. The user can switch between execution threads by using
the mouse teLick on the top window of another execution thread. Thread
switching can also be accomplished by selecting an open window from an
MDI window list in the main menu, if the APPLICATION’s menu contains

this standard Windows menu item.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

START (return new execution thread)

START (procedure [,stack])

START Begins a new execution thread.

procedure The label of the first PROCEDURE to call on the new
execution thread. Theroceduremust have been
prototyped not to receive any parameters.

stack An integer constant or variable containing the size of the
stack to allocate to the new execution thread. If omitted,
the default stack is 10,000 bytes.

The START function begins a new execution thread, callingptoeedure

and returning the number assigned to the new thread. The returned thread
number number is used by procedures and functions whose action may be
performed on any execution thread (such as SETTARGET). The maximum
number of simultaneously available execution threads in a single application
is 64.

The first execution thread in any program is the main program code, which
is always numbered one (1). Therefore, the lowest value STAREtan r

is two (2), when the first START function is executed in a program. START
may return zero (0), which indicatesltire to open the thread. This can
occur by attempting to START a 65th thread, or by running out of memory,
or by starting a thread when the system is modal.

Return Data Type: LONG

Example:

MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
,HVSCROLL,RESIZE
MENUBAR
MENU(“&File’),USE(?FileMenu)
ITEM(‘Selection &l...’),USE(?MenuSelectionl)
ITEM(‘Selection &2...’),USE(?MenuSelection2)

END
END
END

SaveThreadl LONG IDeclare thread number save variable
SaveThread2 LONG !Declare thread number save variable

CODE

OPEN(MainWin) !Open the APPLICATION

ACCEPT !Handle Global events

CASE ACCEPTED()
OF ?MenuSelectionl

SaveThreadl = START(NewProcl) IStart a new thread
OF ?MenuSelection2

SaveThread2 = START(NewProc2) IStart a new thread
OF ?Exit

RETURN
END

CHAPTER 7 WiNnDow COMMANDS

THREAD (return current execution thread)

THREAD()

TheTHREAD function returns the currently executing threadber. The
returned thread number number can be used by procedures and functions
whose action may be performed on any execution thread (such as
SETTARGET).

The maximum number of simultaneously available execution threads in a
single application is 64. The first execution thread in any program is the
main program code, which is always thread number one (1). Therefore,
THREAD always returns a value in the range of one (1) to sixty-four (64).

Return Data Type: LONG

Example:

MainWin APPLICATION(‘My Application’),SYSTEM,MAX,ICON(‘MyIcon.ICO’),STATUS |
,HVSCROLL,RESIZE
MENUBAR
MENU(*&File”),USE(?FileMenu)
ITEM(‘Selection &l...’),USE(?MenuSelectionl)
ITEM(*Selection &2...’),USE(?MenuSelection2)

END
END
END

SaveThread LONG IDeclare thread number save variable
SaveThreadl LONG !Declare thread number save variable
SaveThread2 LONG IDeclare thread number save variable

CODE

SaveThread = THREAD() 1Save thread number

OPEN(MainWin) !0pen the APPLICATION

ACCEPT IHandle Global events

CASE ACCEPTED()
OF ?MenuSelectionl
SaveThreadl = START(NewProcl) IStart a new thread
OF ?MenuSelection2
SaveThread2 = START(NewProc?2) IStart a new thread
OF ?Exit
RETURN
END
END

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Window Procedures
CHANGE (change control field value)

CHANGE(control,value)

CHANGE Changes thealuedisplayed in @ontrol in an APPLI-
CATION or WINDOW structure.

control Field number or field equate label of a window control
field.

value A constant or variable containing tbentrol's new
value.

The CHANGE statement changes thalue displayed in acontrol in an
APPLICATION or WINDOW structure. CHANGE updates thentrol’s
USE variable with thealue and then displays that nexluein the control
field.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ct1:Code)
ENTRY (@S30),USE(Ct1:Name)
BUTTON(“OK”),USE(?0kButton),KEY(EnterKey)
BUTTON(“‘Cancel”),USE(?CanxButton),KEY(EscKey)
END
CODE
OPEN(Screen)
ACCEPT
CASE EVENT()
OF EVENT:Selected
CASE SELECTED()
OF ?Ct1:Code
CHANGE(?Ct1:Code,4) !Change Ctl1:Code to 4 and display it
OF ?Ct1:Name
CHANGE(?Ct1:Name, "ABC Company’)
IChange Ctl1:Name to ABC Company and display
END
OF EVENT:Accepted
CASE ACCEPTED()
OF ?0kButton
BREAK
OF ?CanxButton
CLEAR(Ct1:Record)
BREAK
END
END

CHAPTER 7 WiNnDow COMMANDS

CLOSE (close window)
CLOSE(/abel)
CLOSE Closes the active APPLICATION or WINDOW struc-
ture.
label The label of an APPLICATION or WINDOW structure.

CLOSE terminates processing on the active APPLICATION or WINDOW
structure. Memory used by the active window is released when it is closed
and the underlying screen is automatically re-drawn.

When a window is closed, if it is not the top-most window on its execution
thread, all windows opened subsequent to the window being closed are
automatically closed first. This occurs in the reverse order from which they
were opened.

An APPLICATION or WINDOW that is declared local to (within) a
PROCEDURE or FUNCTION is automatically closed when the program
RETURNSs from the procedure.

Example:

CLOSE(MenuScr) IClose the menu screen
CLOSE(CustEntry) IClose customer data entry screen

7-16

CREATE (create new control)

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

CREATE(control ,type [,parent])

CREATE Creates a new control.

control A field number or field equate label for the control to
create.

type An integer constant, expression, EQUATE, or variable

that specifies the type of control to create.

parent A field number or field equate label. This specifies an
OPTION, GROUP, or MENU to contain the nean-

trol.

CREATE dynamically creates a new control in the currently active
APPLICATION or WINDOW. When first created, the newntrol is initially
hidden, so its properties can be set using the runtime property assignment
syntax, SETPOSITION, and SETFONT. It appears on screen only by
issuing an UNHIDE statement for thentrol. To place the new control on

the toolbar, add CREATE: TOOLBAR to the equate for the new control’s

type

EQUATE statements for thgpeparameter are contained in the
EQUATES.CLW file. The following list is a comphensive sample of these
(see EQUATES.CLW for the complete list):

CREATE:sstring
CREATE:string
CREATE:image
CREATE:region
CREATE:line
CREATE:box
CREATE:ellipse
CREATE:entry
CREATE:button
CREATE:pompt
CREATE:option
CREATE:radio
CREATE:check
CREATE:group
CREATE:list
CREATE:combo
CREATE:spin
CREATE:text
CREATE:custom
CREATE:droplist
CREATE:dropcombo
CREATE:menu
CREATE:item

STRING(picture),USE(variable)
STRING(constant)
IMAGE()
REGION()
LINE()
BOX()
ELLIPSE()
ENTRY()
BUTTON()
PROMPT()
OPTION()
RADIO()
CHECK()
GROUP()
LIST()
COMBO()
SPIN()
TEXT()
CUSDM()
LIST(),DROP()
COMBO(),DROP()
MENU()
ITEM()

WiNnDow COMMANDS

CHAPTER 7

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(CtT:Code)
ENTRY (@S30),USE(Ct1:Name)
BUTTON(‘OK”),USE(?0kButton),KEY(EnterKey)
BUTTON(‘Cancel”),USE(?CanxButton),KEY(EscKey)

END

X SHORT

Y SHORT

Width SHORT

Height SHORT

CodedEntry STRING(10)
?Coded4Entry EQUATE(100)

CODE
OPEN(Screen)
ACCEPT
CASE ACCEPTED()
OF ?2Ct1:Code
IF Ct1:Code = 4
CREATE(?Code4Entry,CREATE:entry)
?Code4Entry{PROP:use} = ‘Code4Entry’
?Code4Entry{PROP:text} = ‘@s10’

GETPOSITION(?Ct1:
?Code4Entry{PROP:
?Code4Entry{PROP:

Code,X,Y,Width,Height)
at,1} = X + Width + 40
at,2} =Y

UNHIDE(?Code4Entry)

END
OF ?0kButton
BREAK
OF ?CanxButton
CLEAR(CtT1:Record)
BREAK
END
END
CLOSE(Screen)
RETURN

See Also: DESTROY

ICreate the control
ISet USE variable
ISet entry picture

ISet x position
ISet y position
IDisplay the new control

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DESTROQY (remove a control)

Example:

See Also:

DESTROQOY((first control [,last control])

DESTROY Removes window controls.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a

range of controls.

The DESTROY statement removes a control, or range of controls, from an
APPLICATION or WINDOW structure. When removed, the control’s
resources are returned to the operating system.

DESTROYing a GROUP, OPTION, MENU, TAB, or SHEET control also
destroys all controls contained within it.

Screen WINDOW,PRE(Scr)
ENTRY (@N3),USE(Ct1:Code)
ENTRY (@S30),USE(Ct1:Name)
BUTTON(‘0OK”),USE(?0kButton),KEY(EnterKey)
BUTTON(“‘Cancel”),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
DESTROY(?Ct1:Code) !Remove a control
DESTROY(?Ct1:Code,?Ct1:Name) IRemove range of controls
DESTROY (2) IRemove the second control

CREATE

CHAPTER 7 WiNnDow COMMANDS

DISABLE (dim a control)
DISABLE(first control [,last control])
DISABLE Dims controls on the window.
first control Field number or field equate label of a control, or the
first control in a range of controls.
last control Field number or field equate label of the last control in a

range of controls.

TheDISABLE statement disables a control or a range of controls on an
APPLICATION or WINDOW structure. When disabled, the control appears
dimmed on screen.

Example:

Screen WINDOW,PRE(Scr)
ENTRY(@N3),USE(Ct1:Code)
ENTRY (@S30),USE(Ct1:Name)
BUTTON(“OK”),USE(?0kButton),KEY(EnterKey)
BUTTON(“‘Cancel”),USE(?CanxButton),KEY(EscKey)

END
CODE
OPEN(Screen)
DISABLE(?Ct1:Code) IDisable a control
DISABLE(?Ct1:Code,?Ct1:Name) IDisable range of controls
DISABLE(2) IDisable the second control

See Also: ENABLE, HIDE, UNHIDE

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

DISPLAY (write USE variables to screen)

Example:

See Also:

DISPLAY([first control [,last control])

DISPLAY Writes the contents of USE variables to their associated
controls.

first control Field number or field equate label of a control, or the
first control in a range of controls.

last control Field number or field equate label of the last control in a

range of controls.

DISPLAY writes the contents of the USE variables to their associated
controls on the active window. DISPLAY with no parameters writes the USE
variables for all controls on the screen. Udingf controlalone, as the
parameter of DISPLAY, writes a specific USE variable to the screen. Both
first control andlast controlparameters are used to display the USE
variables for an inclusive range of controls on the screen.

The current contents of the USE variables of all controls are automatically
displayed on screen each time the ACCEPT loop cycles. This eliminates the
need to explicitly issue a DISPLAY statement to update the video display.
Of course, if your application performs some operation that takes a long
time and you want to indicate to the user that something is happening
without cycling back to the top of the ACCEPT loop, you should DISPLAY
some variable that you have updated.

DISPLAY IDisplay all